WO2023007752A1 - 回路装置 - Google Patents

回路装置 Download PDF

Info

Publication number
WO2023007752A1
WO2023007752A1 PCT/JP2021/028514 JP2021028514W WO2023007752A1 WO 2023007752 A1 WO2023007752 A1 WO 2023007752A1 JP 2021028514 W JP2021028514 W JP 2021028514W WO 2023007752 A1 WO2023007752 A1 WO 2023007752A1
Authority
WO
WIPO (PCT)
Prior art keywords
gain
output signal
voltage
analog output
conversion
Prior art date
Application number
PCT/JP2021/028514
Other languages
English (en)
French (fr)
Inventor
嵩大 藤井
精吾 高橋
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to US18/558,785 priority Critical patent/US20240243749A1/en
Priority to JP2021565802A priority patent/JP7111913B1/ja
Priority to CN202180100778.8A priority patent/CN117652102A/zh
Priority to PCT/JP2021/028514 priority patent/WO2023007752A1/ja
Priority to DE112021007305.2T priority patent/DE112021007305T5/de
Priority to TW111125388A priority patent/TWI813369B/zh
Publication of WO2023007752A1 publication Critical patent/WO2023007752A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/18Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging
    • H03M1/181Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging in feedback mode, i.e. by determining the range to be selected from one or more previous digital output values
    • H03M1/183Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging in feedback mode, i.e. by determining the range to be selected from one or more previous digital output values the feedback signal controlling the gain of an amplifier or attenuator preceding the analogue/digital converter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0602Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic
    • H03M1/0604Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic at one point, i.e. by adjusting a single reference value, e.g. bias or gain error
    • H03M1/0607Offset or drift compensation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/129Means for adapting the input signal to the range the converter can handle, e.g. limiting, pre-scaling ; Out-of-range indication
    • H03M1/1295Clamping, i.e. adjusting the DC level of the input signal to a predetermined value

Definitions

  • the present invention relates to circuit devices.
  • a circuit device that performs analog-to-digital conversion requires an A/D converter with high resolution for wide measurement range and high-precision measurement (see, for example, Patent Document 1).
  • the integrated circuit device described in Patent Document 1 includes an amplifier circuit and an A/D converter that performs A/D conversion on an output signal of the amplifier circuit, and the amplifier circuit detects an offset voltage of an operational amplifier included in the amplifier circuit. It is composed of a switched capacitor circuit that cancels
  • A/D converters with high resolution take a long time for A/D conversion, so there are cases where analog signals cannot be converted into digital signals within the desired time. Therefore, there is a demand for a circuit device capable of realizing A/D conversion at high speed and with high resolution.
  • a circuit device includes a gain adjustment circuit that adjusts a gain of an analog output signal output from a sensor, an offset adjustment circuit that adjusts an offset voltage of the analog output signal, and a digital An A/D converter that converts into a signal, and a control unit that sets the gain and offset voltage of the analog output signal based on the voltage value of the digital signal that was just converted by the A/D converter.
  • A/D conversion can be achieved at high speed and with high resolution.
  • FIG. 1 is a block diagram showing the configuration of a circuit device according to an embodiment
  • FIG. 4 is a flowchart showing processing of the circuit device according to the first embodiment
  • It is a figure which shows the process which converts the analog output signal into a digital signal which concerns on 1st Embodiment.
  • It is a figure which shows the definition of the gain which concerns on 1st Embodiment.
  • 8 is a flowchart showing processing of the circuit device according to the second embodiment
  • 9 is a flowchart showing a process of calculating a measured value and setting gain and offset command values according to the second embodiment
  • FIG. 10 is a diagram showing the relationship between the amount of change in the voltage value of a digital signal and the setting of gain and offset voltage according to the second embodiment;
  • FIG. 1 is a block diagram showing the configuration of a circuit device 1 according to this embodiment.
  • the circuit device 1 includes a sensor 11, a gain adjustment circuit 12, an amplifier circuit 13, an A/D converter 14, an offset adjustment circuit 15, and a microcomputer 16.
  • the sensor 11 is composed of a temperature sensor, a pressure sensor, a flow sensor, etc., detects any physical quantity, and outputs an analog output signal as a detection result.
  • the gain adjustment circuit 12 is electrically connected to the sensor 11, resistor R2, amplifier circuit 13 and microcomputer 16.
  • Gain adjustment circuit 12 includes, for example, a digital potentiometer.
  • the gain adjustment circuit 12 adjusts the gain (amplification factor) of the analog output signal output from the sensor 11 by changing the resistance value of the variable resistor R1 with the digital potentiometer based on the gain adjustment command from the microcomputer 16. do. In this embodiment, it is assumed that the resistance value is uniquely determined with respect to the gain.
  • the amplifier circuit 13 is electrically connected to the gain adjustment circuit 12, the resistor R2, the A/D converter 14 and the offset adjustment circuit 15.
  • the amplifier circuit 13 adds the offset voltage adjusted by the offset adjustment circuit 15 to the analog output signal adjusted by the gain adjustment circuit 12 .
  • the amplifier circuit 13 amplifies the analog output signal to which the offset voltage has been added.
  • the amplifier circuit 13 outputs the amplified analog output signal to the A/D converter 14 .
  • the variable resistor R1, the resistor R2, and the amplifier circuit 13 constitute an inverting amplifier circuit, and the gain can be determined from the resistance values of the variable resistor R1 and the resistor R2.
  • the A/D converter 14 is electrically connected to the amplifier circuit 13 and the microcomputer 16.
  • the A/D converter 14 converts (A/D converts) the analog output signal amplified by the amplifier circuit 13 into a digital signal.
  • the A/D converter 14 outputs the A/D converted digital signal to the microcomputer 16 .
  • the offset adjustment circuit 15 is electrically connected to the amplifier circuit 13 and the microcomputer 16.
  • the offset adjustment circuit 15 includes, for example, a D/A converter, a digital potentiometer, and the like.
  • the offset adjustment circuit 15 adjusts the offset voltage of the analog output signal based on the offset adjustment command from the microcomputer 16 by adjusting the voltage division using a D/A converter, digital potentiometer, or the like.
  • the microcomputer 16 is electrically connected to the gain adjustment circuit 12, A/D converter 14 and offset adjustment circuit 15, and performs various control functions.
  • the microcomputer 16 also includes a control section 161 that controls the gain adjustment circuit 12 , the A/D converter 14 and the offset adjustment circuit 15 .
  • the control unit 161 sets the gain of the analog output signal in the gain adjustment circuit 12 and the offset voltage in the offset adjustment circuit 15 based on the voltage value of the digital signal that was converted immediately before by the A/D converter 14 .
  • the circuit device 1 according to the present embodiment dynamically changes the gain and offset voltage of the analog output signal, and A/D converts the changed analog output signal, thereby achieving a faster and higher gain than when the gain is fixed. A/D conversion can be achieved with resolution. Specific processing of the circuit device 1 according to the first embodiment and the second embodiment will be described below.
  • FIG. 2 is a flowchart showing processing of the circuit device 1 according to the first embodiment.
  • the circuit device 1 adjusts the gain and offset voltage for the first time.
  • V off_init is, for example, a value set at the time of shipment from the factory.
  • the sensor 11 outputs the analog output signal Va , and the gain adjustment circuit 12 adjusts the first gain G1 of the analog output signal Va based on the gain adjustment command.
  • the offset adjustment circuit 15 adjusts the first offset voltage Voff1 based on the offset adjustment command.
  • step S2 the circuit device 1 performs the first A/D conversion. Specifically, the amplifier circuit 13 adds the first offset voltage V off1 adjusted by the offset adjustment circuit 15 to the analog output signal whose gain is adjusted by the gain adjustment circuit 12 . Then, the amplifier circuit 13 amplifies the analog output signal to which the first offset voltage Voff1 has been added. The amplifier circuit 13 outputs the amplified analog output signal to the A/D converter 14 .
  • the A/D converter 14 converts the analog output signal amplified by the amplifier circuit 13 into a digital signal.
  • the A/D converter 14 outputs the A/D converted first digital signal Vb1 to the microcomputer 16 .
  • the A/D converter 14 may output to the microcomputer 16 information regarding the occurrence of overflow and/or underflow in A/D conversion.
  • step S3 the circuit device 1 acquires the first measurement information. Specifically, the control unit 161 calculates the first sensor voltage Vd1 in the first measurement based on the first digital signal Vb1 output from the A/D converter 14 .
  • the first sensor voltage Vd1 is calculated by using equation (1) below.
  • V upper_lim_max and V lower_lim_min are respectively the upper and lower limits of the measurement range when the gain is the minimum (when the gain and offset voltage are initial values), and these values can be known in advance.
  • V b1 is the voltage obtained from the A/D converter 14 and V b1 is a binary value.
  • N is the number of bits in Vb1 . (V b1 ) 10 in equation (1) indicates the decimal value of V b1 .
  • FIG. 3 is a diagram showing processing for converting an analog output signal into a digital signal according to the first embodiment.
  • the analog output signal V a is A/D converted by the A/D converter 14
  • the first sensor voltage V d1 is the first digital signal V b1 output from the A/D converter 14. calculated based on
  • Equation (2) is the setting of the gain when the Kbit resolution is made higher than the resolution in the first A/D conversion.
  • K is a predetermined value.
  • Equation (3) sets the second offset voltage V off2 to the first sensor voltage V d1 .
  • the measurement range becomes narrower in exchange for the higher resolution. Therefore, only the voltage near the first sensor voltage Vd1 obtained in the first measurement is measured.
  • the original resolution of the A/D converter 14 is Nbits
  • the resolution of the obtained measured value is N+Kbits.
  • FIG. 4 is a diagram showing the definition of gain according to the first embodiment.
  • step S5 the circuit device 1 performs the second adjustment of the second gain G2 and the second offset voltage Voff2 .
  • the circuit device 1 performs the second A/D conversion. Specifically, the amplifier circuit 13 adds the second offset voltage Voff2 adjusted by the offset adjustment circuit 15 to the analog output signal adjusted to the second gain G2 by the gain adjustment circuit 12 . Then, the amplifier circuit 13 amplifies the analog output signal to which the second offset voltage Voff2 has been added. The amplifier circuit 13 outputs the amplified analog output signal to the A/D converter 14 .
  • the A/D converter 14 converts the analog output signal amplified by the amplifier circuit 13 into a second digital signal Vb2 .
  • the A/D converter 14 outputs the A/D converted second digital signal Vb2 to the microcomputer 16 . Also, the A/D converter 14 outputs to the microcomputer 16 information regarding the occurrence of overflow and/or underflow in A/D conversion.
  • step S7 the circuit device 1 acquires the second measurement information. Specifically, the control unit 161 calculates the second sensor voltage Vd2 in the second measurement based on the second digital signal Vb2 output from the A/D converter 14 in step S6.
  • the second sensor voltage V d2 is calculated by using equations (4) through (6) below. (V b2 ) 10 in equation (4) indicates the decimal value of V b1 .
  • V upper_lim and V lower_lim are the maximum and minimum values of the measurement range in the second A/D conversion, respectively.
  • V upper_lim is calculated using equation (5) and V lower_lim is calculated using equation (6).
  • V upper_lim and V lower_lim are calculated based on the gain G2 and offset V off2 in the second measurement.
  • step S8 the control unit 161 controls the second sensor voltage V d2 calculated in step S7, the gain and offset voltage set during A/D conversion, and the occurrence of overflow and/or underflow in A/D conversion. Information about is sent to the upper system.
  • control unit 161 controls the first gain G1 and the first offset of the analog output signal so that the measurement range of the A/D converter 14 matches the voltage range of the analog output signal. Setting the voltage Voff1 , the A/D converter 14 converts the analog output signal adjusted by the first gain G1 and the first offset voltage Voff1 into a digital signal.
  • the control unit 161 calculates the first sensor voltage Vd1 based on the first digital signal Vb1 converted by the A/D converter, and the analog output in the offset adjustment circuit 15 based on the first sensor voltage Vd1 .
  • a second offset voltage Voff2 of the signal is set, and a second gain G2 of the analog output signal in the gain adjustment circuit 12 is set to a value larger than the first gain G1.
  • the A/D converter 14 converts the analog output signal adjusted by the second gain G2 and the second offset voltage Voff2 into a digital signal.
  • the circuit device 1 sets the first gain G1 and the first offset voltage Voff1 so that the maximum measurement range of the A/D converter 14 in the first A/D conversion is converts the analog output signal to a digital signal. Then, by setting the second gain G2 and the second offset voltage Voff2 , the circuit device 1 narrows the measurement range of the A/D converter 14 in the second A/D conversion, and performs analog conversion with high resolution. Converts the output signal to a digital signal.
  • the circuit device 1 can increase the resolution of the A/D converter 14 and narrow the measurement range.
  • the A/D converter 14 wide-range and high-resolution A/D conversion can be performed at high speed.
  • the control unit 161 further determines the second sensor voltage V based on the second digital signal V b2 converted by the A/D converter 14 and the upper limit value V upper_lim and the lower limit value V lower_lim of the measurement range in the A/D converter 14. d2 is calculated, and the calculated second sensor voltage Vd2 is transmitted to the host device. Thereby, the circuit device 1 calculates the second sensor voltage Vd2 from the second digital signal Vb2 obtained by wide-range and high-resolution A/D conversion, and transmits the second sensor voltage Vd2 to the host device. be able to. Therefore, the circuit device 1 can transmit the second sensor voltage Vd2 measured with high accuracy to the host device.
  • FIG. 5 is a flowchart showing processing of the circuit device 1 according to the second embodiment.
  • the circuit device 1 according to the second embodiment has the same configuration as that of the circuit device shown in FIG. 1, but differs in processing content from the circuit device 1 according to the first embodiment. Specifically, when the amount of change in the sensor voltage output from the A/D converter 14 is large, the circuit device 1 according to the second embodiment sets a wide measurement range in the A/D conversion, If the amount of change in the sensor voltage output from 14 is small, the measurement range in A/D conversion is set narrow.
  • step S11 the circuit device 1 adjusts the gain and offset voltage. Specifically, the control unit 161 outputs a gain adjustment command to the gain adjustment circuit 12, and the gain adjustment circuit 12 adjusts the gain G1 of the analog output signal based on the gain adjustment command.
  • control unit 161 outputs an offset adjustment command to the offset adjustment circuit 15, and the offset adjustment circuit 15 adjusts the offset voltage Voff1 of the analog output signal based on the offset adjustment command.
  • the gain G and offset voltage V off are adjusted to the gain and offset voltage used in the previous measurement (eg, the process corresponding to step S4 in FIG. 2).
  • step S12 the circuit device 1 performs A/D conversion. Specifically, the sensor 11 outputs an analog output signal Va , and the gain adjustment circuit 12 adjusts the gain of the analog output signal Va based on the gain adjustment command.
  • the amplifier circuit 13 adds the offset voltage adjusted by the offset adjustment circuit 15 to the analog output signal adjusted by the gain adjustment circuit 12 . Then, the amplifier circuit 13 amplifies the analog output signal to which the offset voltage has been added. The amplifier circuit 13 outputs the amplified analog output signal to the A/D converter 14 .
  • the A/D converter 14 converts the analog output signal amplified by the amplifier circuit 13 into a digital signal.
  • the A/D converter 14 outputs the A/D converted digital signal Vb2 to the microcomputer 16 .
  • the A/D converter 14 outputs information regarding the occurrence of overflow and/or underflow in the A/D conversion to the microcomputer 16 together with the digital signal Vb2 .
  • step S13 the circuit device 1 calculates the measured value and sets the gain and offset command values. Specifically, based on the digital signal V b (binary number) output from the A/D converter 14, the control unit 161 controls the sensor voltage V d , the gain G next at the time of the next A/D conversion, and the offset voltage Compute V off_next .
  • FIG. 6 is a flowchart showing a process of calculating measured values and setting gain and offset command values according to the second embodiment.
  • step S131 the control unit 161 determines whether an overflow has occurred in the A/D conversion. If overflow has occurred (YES), the process proceeds to step S132. On the other hand, if no overflow has occurred (NO), the process proceeds to step S133.
  • step S132 the control unit 161 sets the upper limit voltage V upper_lim of the measurement range as the sensor voltage V d as shown in the following equation (11).
  • V d V upper_lim (11)
  • step S133 the control unit 161 determines whether an underflow has occurred in the A/D conversion. If an underflow has occurred (YES), the process proceeds to step S134. On the other hand, if no underflow has occurred (NO), the process proceeds to step S136.
  • step S134 the control unit 161 sets the lower limit voltage V lower_lim of the measurement range as the sensor voltage V d as shown in the following equation (12).
  • Vd Vlower_lim ( 12)
  • step S136 the control unit 161 calculates the sensor voltage Vd based on the digital signal Vb (binary number) output from the A/ D converter 14 and the following equations (15), (16) and (17). calculate. Note that (V b ) 10 in equation (15) indicates the decimal value of V b .
  • step S137 the control unit 161 calculates the set values of the gain and offset voltage for the next A/D conversion.
  • the control unit 161 calculates the gain G next using the following equation (18).
  • control unit 161 compares the sensor voltage V d ⁇ 1 in the previous A/D conversion with the sensor voltage V d in the current A/D conversion. Then, when the amount of change between the sensor voltage V d ⁇ 1 and the sensor voltage V d is less than the threshold value ⁇ , the control unit 161 sets the gain G next to a value larger than the previous gain in order to increase the resolution. do.
  • the control unit 161 sets the gain G next to a value smaller than the previous gain in order to widen the measurement range. Further, when the amount of change is equal to or greater than the threshold value ⁇ or equal to or less than the threshold value ⁇ , the control unit 161 maintains the value of the gain G next at the previous value, that is, does not change the value of the gain G next .
  • the coefficients (2 and 1/2) multiplied by the gain are arbitrary values and are not limited to the above values.
  • the control unit 161 calculates the offset voltage V off_next using the following equation (19).
  • Voff_next Vd+(Vd-Vd -1 ) Equation (19) That is, the offset voltage V off_next is a value obtained by adding the difference between the previous sensor voltage V d ⁇ 1 and the current sensor voltage V d to the current sensor voltage V d .
  • the sensor voltage is set at the center of the measurement range when the amount of change in the sensor voltage is constant.
  • step S14 the control unit 161 controls the sensor voltage V d calculated in step S132, step S134, or step S136, the gain and offset voltage set at the time of A/D conversion, and the A/D conversion to send information about the occurrence of overflow and/or underflow to the host system.
  • control unit 161 stores the sensor voltage V d and the gain and offset voltage set at the time of A/D conversion in the storage area of the microcomputer 16 for use in subsequent measurements.
  • FIG. 7 is a diagram showing the relationship between the amount of change in the voltage value of the digital signal and the setting of the gain and offset voltage according to the second embodiment.
  • the control unit 161 sets the gain G next to a value greater than the previous gain.
  • the control unit 161 sets the gain G next to a value smaller than the previous gain in order to widen the measurement range.
  • the offset voltage V off_next is a value obtained by adding the difference between the previous sensor voltage V d ⁇ 1 and the current sensor voltage V d to the current sensor voltage V d .
  • the control unit 161 controls the sensor voltage V d ⁇ 1 based on the digital signal obtained by the previous A/D conversion and the digital signal obtained by the current A/D conversion. If the amount of change from the sensor voltage V d ⁇ 1 to the sensor voltage V d is less than the threshold value ⁇ , the gain G next of the analog output signal is set to a value larger than the previous gain and the amount of change exceeds the threshold value ⁇ , the gain G next of the analog output signal is set to a value smaller than the previous gain.
  • the circuit device 1 according to the second embodiment can widen the resolution by setting the gain to a value larger than the previous gain when the amount of change in the sensor voltage is less than the threshold value ⁇ .
  • the circuit device 1 can narrow the resolution by setting the gain to a value smaller than the previous gain. Therefore, the circuit device 1 can set the resolution in accordance with the amount of change in the sensor voltage, and can perform A/D conversion with a wide range and high resolution at high speed.
  • the control unit 161 also controls the sensor voltage V d ⁇ 1 based on the digital signal obtained by the previous A/D conversion and the sensor voltage V d based on the digital signal obtained by the current A/D conversion. , sets the offset voltage V off_next of the analog output signal. As a result, the circuit device 1 can set the sensor voltage to be the center of the measurement range when the amount of change in the sensor voltage is constant.
  • the A/D converter 14 In addition to the digital signal, the A/D converter 14 also outputs information regarding the occurrence of overflow and/or underflow in the A/D conversion to the control unit 161 .
  • the control unit 161 calculates the sensor voltage Vd as the upper limit value of the measurement range of the A/D converter 14 when overflow occurs in A/ D conversion, and sets the sensor voltage Vd to Vd is calculated as the lower limit of the measurement range of the A/ D converter 14, and when overflow or underflow occurs in A/D conversion, the gain and offset voltage in the next A/D conversion are set to initial values.
  • the circuit device 1 can set the sensor voltage, gain and offset voltage to appropriate values even when overflow and/or underflow occur.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)
  • Vehicle Body Suspensions (AREA)
  • Seal Device For Vehicle (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

A/D変換を高速かつ高い分解能で実現することができる回路装置を提供する。回路装置は、センサから出力されたアナログ出力信号のゲインを調整するゲイン調整回路と、前記アナログ出力信号のオフセット電圧を調整するオフセット調整回路と、前記アナログ出力信号をデジタル信号に変換するA/Dコンバータと、前記A/Dコンバータによって直前に変換されたデジタル信号の電圧値に基づいて、前記アナログ出力信号のゲイン及びオフセット電圧を設定する制御部と、を備える。

Description

回路装置
 本発明は、回路装置に関する。
 アナログ-デジタル変換(以下、A/D変換)を行う回路装置は、広い測定範囲かつ高精度な測定のために、高い分解能を有するA/Dコンバータを必要とする(例えば、特許文献1参照)。特許文献1に記載の集積回路装置は、増幅回路と、増幅回路の出力信号についてのA/D変換を行うA/D変換器とを含み、増幅回路は、増幅回路が有する演算増幅器のオフセット電圧をキャンセルするスイッチドキャパシター回路により構成される。
特開2012-44347号公報
 しかし、高い分解能を有するA/Dコンバータは、A/D変換に掛かる時間が長いため、所望の時間内にアナログ信号をデジタル信号に変換できない場合があった。そのため、A/D変換を高速かつ高い分解能で実現することができる回路装置が求められている。
 本開示の一態様に係る回路装置は、センサから出力されたアナログ出力信号のゲインを調整するゲイン調整回路と、前記アナログ出力信号のオフセット電圧を調整するオフセット調整回路と、前記アナログ出力信号をデジタル信号に変換するA/Dコンバータと、前記A/Dコンバータによって直前に変換されたデジタル信号の電圧値に基づいて、前記アナログ出力信号のゲイン及びオフセット電圧を設定する制御部と、を備える。
 本発明によれば、A/D変換を高速かつ高い分解能で実現することができる。
本実施形態に係る回路装置の構成を示すブロック図である。 第1実施形態に係る回路装置の処理を示すフローチャートである。 第1実施形態に係るアナログ出力信号をデジタル信号に変換する処理を示す図である。 第1実施形態に係るゲインの定義を示す図である。 第2実施形態に係る回路装置の処理を示すフローチャートである。 第2実施形態に係る、測定値の計算並びにゲイン及びオフセットの指令値の設定処理を示すフローチャートである。 第2実施形態に係る、デジタル信号の電圧値の変化量とゲイン及びオフセット電圧の設定との関係を示す図である。
 以下、本発明の実施形態の一例について説明する。
 図1は、本実施形態に係る回路装置1の構成を示すブロック図である。図1に示すように、回路装置1は、センサ11と、ゲイン調整回路12と、増幅回路13と、A/Dコンバータ14と、オフセット調整回路15と、マイクロコンピュータ16と、を備える。
 センサ11は、温度センサ、圧力センサ、流量センサ等で構成され、任意の物理量を検出し、検出結果としてアナログ出力信号を出力する。
 ゲイン調整回路12は、センサ11、抵抗R2、増幅回路13及びマイクロコンピュータ16と電気的に接続される。ゲイン調整回路12は、例えば、デジタルポテンショメータを含む。ゲイン調整回路12は、マイクロコンピュータ16からのゲイン調整指令に基づいて、デジタルポテンショメータにより可変抵抗R1の抵抗値を変更することによって、センサ11から出力されたアナログ出力信号のゲイン(増幅率)を調整する。なお、本実施形態において、抵抗値は、ゲインに対して一意に定まっているとする。
 増幅回路13は、ゲイン調整回路12、抵抗R2、A/Dコンバータ14及びオフセット調整回路15と電気的に接続される。増幅回路13は、オフセット調整回路15によって調整されたオフセット電圧を、ゲイン調整回路12によって調整されたアナログ出力信号に加える。そして、増幅回路13は、オフセット電圧を加えたアナログ出力信号を増幅する。増幅回路13は、増幅されたアナログ出力信号をA/Dコンバータ14へ出力する。このように可変抵抗R1、抵抗R2及び増幅回路13は、反転増幅回路を構成し、可変抵抗R1及び抵抗R2の抵抗値からゲインを決定することができる。
 A/Dコンバータ14は、増幅回路13及びマイクロコンピュータ16と電気的に接続される。A/Dコンバータ14は、増幅回路13によって増幅されたアナログ出力信号をデジタル信号に変換(A/D変換)する。A/Dコンバータ14は、A/D変換されたデジタル信号をマイクロコンピュータ16へ出力する。
 オフセット調整回路15は、増幅回路13及びマイクロコンピュータ16と電気的に接続される。オフセット調整回路15は、例えば、D/Aコンバータ、デジタルポテンショメータ等を備える。オフセット調整回路15は、D/Aコンバータ、デジタルポテンショメータ等により分圧を調整することによって、マイクロコンピュータ16からのオフセット調整指令に基づいてアナログ出力信号のオフセット電圧を調整する。
 マイクロコンピュータ16は、ゲイン調整回路12、A/Dコンバータ14及びオフセット調整回路15と電気的に接続され、各種の制御機能を実行する。また、マイクロコンピュータ16は、ゲイン調整回路12、A/Dコンバータ14及びオフセット調整回路15を制御する制御部161を備える。
 制御部161は、A/Dコンバータ14によって直前に変換されたデジタル信号の電圧値に基づいて、ゲイン調整回路12におけるアナログ出力信号のゲイン及びオフセット調整回路15におけるオフセット電圧を設定する。このように本実施形態に係る回路装置1は、アナログ出力信号のゲイン及びオフセット電圧を動的に変更し、変更したアナログ出力信号をA/D変換することによって、ゲイン固定時よりも高速かつ高い分解能でA/D変換を実現することができる。
 以下、第1実施形態及び第2実施形態に係る回路装置1の具体的な処理について説明する。
[第1実施形態]
 図2は、第1実施形態に係る回路装置1の処理を示すフローチャートである。
 ステップS1において、回路装置1は、1回目のゲイン及びオフセット電圧の調整を行う。具体的には、制御部161は、アナログ出力信号の第1ゲインGをG=1に設定するように、ゲイン調整回路12へゲイン調整指令を出力する。
 更に、制御部161は、アナログ出力信号の第1オフセット電圧Voff1をVoff1=Voff_initに設定するように、オフセット調整回路15へオフセット調整指令を出力する。
 ここで、ゲインGが1のとき、A/D変換における分解能は、最小となり、A/D変換における測定範囲は、最大となる。また、Voff_initは、例えば、工場出荷時に設定された値である。
 そして、センサ11は、アナログ出力信号Vを出力し、ゲイン調整回路12は、ゲイン調整指令に基づいてアナログ出力信号Vの第1ゲインGを調整する。オフセット調整回路15は、オフセット調整指令に基づいて、第1オフセット電圧Voff1を調整する。
 ステップS2において、回路装置1は、1回目のA/D変換を行う。
 具体的には、増幅回路13は、オフセット調整回路15によって調整された第1オフセット電圧Voff1を、ゲイン調整回路12によってゲインを調整されたアナログ出力信号に加える。そして、増幅回路13は、第1オフセット電圧Voff1を加えたアナログ出力信号を増幅する。増幅回路13は、増幅されたアナログ出力信号をA/Dコンバータ14へ出力する。
 A/Dコンバータ14は、増幅回路13によって増幅されたアナログ出力信号をデジタル信号に変換する。A/Dコンバータ14は、A/D変換された第1デジタル信号Vb1をマイクロコンピュータ16へ出力する。また、A/Dコンバータ14は、A/D変換においてオーバーフロー及び/又はアンダーフローの発生に関する情報をマイクロコンピュータ16へ出力してもよい。
 ステップS3において、回路装置1は、1回目の計測情報を取得する。
 具体的には、制御部161は、A/Dコンバータ14から出力された第1デジタル信号Vb1に基づいて、1回目の測定における第1センサ電圧Vd1を計算する。第1センサ電圧Vd1は、下記の式(1)を用いることによって計算される。
Figure JPOXMLDOC01-appb-M000001
 ここで、Vupper_lim_max及びVlower_lim_minは、それぞれ、ゲインが最小の場合(ゲイン及びオフセット電圧が初期値の場合)の測定範囲の上限値及び下限値であり、これらの値は、事前に知ることができる値である。Vb1は、A/Dコンバータ14から得られる電圧であり、Vb1は、2進数の値である。NはVb1のビット数である。なお、式(1)の(Vb110は、Vb1の10進数の値を示す。
 図3は、第1実施形態に係るアナログ出力信号をデジタル信号に変換する処理を示す図である。図3に示すように、アナログ出力信号Vは、A/Dコンバータ14によって、A/D変換され、第1センサ電圧Vd1は、A/Dコンバータ14から出力された第1デジタル信号Vb1に基づいて計算される。
 図2に戻り、ステップS4において、回路装置1は、A/D変換の第2ゲインG及び第2オフセット電圧Voff2を設定する。
 具体的には、制御部161は、第1センサ電圧Vd1、式(2)及び式(3)に基づいて、2回目の測定における第2ゲインG及び第2オフセットVoff2の設定値を計算する。
 G=2   (2)
 Voff2=Vd1   (3)
 ここで、式(2)は、1回目のA/D変換における分解能よりもKbit分解能を高くする場合のゲインの設定である。Kは事前に決定される値である。式(3)は、第2オフセット電圧Voff2を第1センサ電圧Vd1に設定する。2回目の測定では、分解能を高くした代わりに、測定範囲が狭くなる。そのため、1回目の測定で得られた第1センサ電圧Vd1付近の電圧のみが測定される。これにより、A/Dコンバータ14の本来の分解能をNbitとすると、得られる測定値の分解能は、N+Kbitとなる。
 図4は、第1実施形態に係るゲインの定義を示す図である。
 図4に示すように、ゲインGは、
G・(Vupper_lim-Vlower_lim)=ΔVma(=一定)
となるように、定義される。
 また、図4に示すように、1回目のA/D変換において、ゲインは、G1=1に設定され、測定範囲は、A/Dコンバータ14の最大測定可能範囲(フルレンジ)となる。そして、2回目のA/D変換において、ゲインは、式(2)においてK=1の場合、G2=2に設定され、分解能は、1回目のA/D変換における分解能よりも高くなり、測定範囲は、1回目のA/D変換における測定範囲の1/2となる。
 図2に戻り、ステップS5において、回路装置1は、2回目の第2ゲインG及び第2オフセット電圧Voff2の調整を行う。
 具体的には、制御部161は、ゲイン調整回路12へゲイン調整指令を出力し、ゲイン調整回路12は、ゲイン調整指令に基づいて、アナログ出力信号の第2ゲインGをG=2に調整する。更に、制御部161は、オフセット調整回路15へオフセット調整指令を出力し、オフセット調整回路15は、オフセット調整指令に基づいて、アナログ出力信号の第2オフセット電圧Voff2をVoff2=Vd1に調整する。
 ステップS6において、回路装置1は、2回目のA/D変換を行う。
 具体的には、増幅回路13は、オフセット調整回路15によって調整された第2オフセット電圧Voff2を、ゲイン調整回路12によって第2ゲインGに調整されたアナログ出力信号に加える。そして、増幅回路13は、第2オフセット電圧Voff2を加えたアナログ出力信号を増幅する。増幅回路13は、増幅されたアナログ出力信号をA/Dコンバータ14へ出力する。
 A/Dコンバータ14は、増幅回路13によって増幅されたアナログ出力信号を第2デジタル信号Vb2に変換する。A/Dコンバータ14は、A/D変換された第2デジタル信号Vb2をマイクロコンピュータ16へ出力する。また、A/Dコンバータ14は、A/D変換においてオーバーフロー及び/又はアンダーフローの発生に関する情報をマイクロコンピュータ16へ出力する。
 ステップS7において、回路装置1は、2回目の計測情報を取得する。
 具体的には、制御部161は、ステップS6において、A/Dコンバータ14から出力された第2デジタル信号Vb2に基づいて、2回目の測定における第2センサ電圧Vd2を計算する。第2センサ電圧Vd2は、下記の式(4)から式(6)を用いることによって計算される。なお、式(4)の(Vb210は、Vb1の10進数の値を示す。
Figure JPOXMLDOC01-appb-M000002
 ここで、Vupper_lim及びVlower_limは、それぞれ、2回目のA/D変換における測定範囲の最大値及び最小値である。Vupper_limは式(5)を用いて計算され、Vlower_limは式(6)を用いて計算される。上記のようにVupper_lim及びVlower_limは、2回目の測定におけるゲインG及びオフセットVoff2に基づいて計算される。
 ステップS8において、制御部161は、ステップS7において計算された第2センサ電圧Vd2、A/D変換時に設定されていたゲイン及びオフセット電圧、並びにA/D変換においてオーバーフロー及び/又はアンダーフローの発生に関する情報を上位システムへ送信する。
 このように第1実施形態によれば、制御部161は、A/Dコンバータ14の測定範囲をアナログ出力信号の電圧範囲と一致させるように、アナログ出力信号の第1ゲインG及び第1オフセット電圧Voff1を設定し、A/Dコンバータ14は、第1ゲインG及び第1オフセット電圧Voff1によって調整されたアナログ出力信号をデジタル信号に変換する。
 そして、制御部161は、A/Dコンバータによって変換された第1デジタル信号Vb1に基づいて第1センサ電圧Vd1を算出し、第1センサ電圧Vd1に基づいてオフセット調整回路15におけるアナログ出力信号の第2オフセット電圧Voff2を設定し、ゲイン調整回路12におけるアナログ出力信号の第2ゲインGを第1ゲインGよりも大きい値に設定する。A/Dコンバータ14は、第2ゲインG及び第2オフセット電圧Voff2によって調整されたアナログ出力信号をデジタル信号に変換する。
 これにより、第1実施形態に係る回路装置1は、第1ゲインG及び第1オフセット電圧Voff1を設定することによって、1回目のA/D変換において、A/Dコンバータ14の最大測定範囲においてアナログ出力信号をデジタル信号に変換する。そして、回路装置1は、第2ゲインG及び第2オフセット電圧Voff2を設定することによって、2回目のA/D変換において、A/Dコンバータ14の測定範囲を狭め、かつ高い分解能でアナログ出力信号をデジタル信号に変換する。
 したがって、回路装置1は、2回目のA/D変換において、A/Dコンバータ14の分解能を高くし、かつ測定範囲を狭くすることができるため、例えば、回路装置1は、低分解能で高速なA/Dコンバータ14を用いることによって、広範囲かつ高分解能なA/D変換を高速に行うことができる。
 制御部161は、更に、A/Dコンバータ14によって変換された第2デジタル信号Vb2、A/Dコンバータ14における測定範囲の上限値Vupper_lim及び下限値Vlower_limに基づいて、第2センサ電圧Vd2を計算し、計算された第2センサ電圧Vd2を上位装置に送信する。これにより、回路装置1は、広範囲かつ高分解能なA/D変換によって得られた第2デジタル信号Vb2から第2センサ電圧Vd2を計算し、第2センサ電圧Vd2を上位装置に送信することができる。よって、回路装置1は、高い精度で測定された第2センサ電圧Vd2を上位装置に送信することができる。
[第2実施形態]
 図5は、第2実施形態に係る回路装置1の処理を示すフローチャートである。
 第2実施形態に係る回路装置1は、図1に示す回路装置と同様の構成を有するが、第1実施形態に係る回路装置1とは処理内容が異なる。具体的には、第2実施形態に係る回路装置1は、A/Dコンバータ14から出力されたセンサ電圧の変化量が大きい場合、A/D変換における測定範囲を広く設定し、A/Dコンバータ14から出力されたセンサ電圧の変化量が小さい場合、A/D変換における測定範囲を狭く設定する。
 ステップS11において、回路装置1は、ゲイン及びオフセット電圧の調整を行う。
 具体的には、制御部161は、ゲイン調整回路12へゲイン調整指令を出力し、ゲイン調整回路12は、ゲイン調整指令に基づいて、アナログ出力信号のゲインGを調整する。
 更に、制御部161は、オフセット調整回路15へオフセット調整指令を出力し、オフセット調整回路15は、オフセット調整指令に基づいて、アナログ出力信号のオフセット電圧Voff1を調整する。ここで、ゲインG及びオフセット電圧Voffは、前回の測定(例えば、図2のステップS4の処理に相当する処理)において用いられたゲイン及びオフセット電圧に調整される。
 ステップS12において、回路装置1は、A/D変換を行う。
 具体的には、センサ11は、アナログ出力信号Vを出力し、ゲイン調整回路12は、ゲイン調整指令に基づいて、アナログ出力信号Vのゲインを調整する。増幅回路13は、オフセット調整回路15によって調整されたオフセット電圧を、ゲイン調整回路12によって調整されたアナログ出力信号に加える。そして、増幅回路13は、オフセット電圧を加えたアナログ出力信号を増幅する。増幅回路13は、増幅されたアナログ出力信号をA/Dコンバータ14へ出力する。
 A/Dコンバータ14は、増幅回路13によって増幅されたアナログ出力信号をデジタル信号に変換する。A/Dコンバータ14は、A/D変換されたデジタル信号Vb2をマイクロコンピュータ16へ出力する。また、A/Dコンバータ14は、A/D変換においてオーバーフロー及び/又はアンダーフローの発生に関する情報を、デジタル信号Vb2と共にマイクロコンピュータ16へ出力する。
 ステップS13において、回路装置1は、測定値の計算並びにゲイン及びオフセットの指令値を設定する。
 具体的には、制御部161は、A/Dコンバータ14から出力されたデジタル信号V(2進数)に基づいて、センサ電圧V、次回のA/D変換時のゲインGnext及びオフセット電圧Voff_nextを計算する。
 ステップS13の処理は、図6を用いて詳細に説明される。
 図6は、第2実施形態に係る、測定値の計算並びにゲイン及びオフセットの指令値の設定処理を示すフローチャートである。
 ステップS131において、制御部161は、A/D変換においてオーバーフローが発生したか否かを判定する。オーバーフローが発生した場合(YES)、処理は、ステップS132へ移る。一方、オーバーフローが発生しなかった場合(NO)、処理は、ステップS133へ移る。
 ステップS132において、制御部161は、下記の式(11)に示すように、測定範囲の上限電圧Vupper_limをセンサ電圧Vとして設定する。
=Vupper_lim   (11)
 ステップS133において、制御部161は、A/D変換においてアンダーフローが発生したか否かを判定する。アンダーフローが発生した場合(YES)、処理は、ステップS134へ移る。一方、アンダーフローが発生しなかった場合(NO)、処理は、ステップS136へ移る。
 ステップS134において、制御部161は、下記の式(12)に示すように、測定範囲の下限電圧Vlower_limをセンサ電圧Vとして設定する。
=Vlower_lim   (12)
 ステップS135において、制御部161は、次回のA/D変換におけるゲイン及びオフセット電圧の設定値を計算する。今回のA/D変換においてオーバーフロー又はアンダーフローが発生した場合、制御部161は、下記の式(13)及び(14)に示すように、次回のA/D変換のためにゲインGnext及びオフセット電圧Voff_nextを初期値に設定する。
next=1   (13)
off_next=Voff_init   (14)
 ステップS136において、制御部161は、A/Dコンバータ14から出力されたデジタル信号V(2進数)、下記の式(15)、(16)及び(17)に基づいて、センサ電圧Vを計算する。なお、式(15)の(V10は、Vの10進数の値を示す。
Figure JPOXMLDOC01-appb-M000003
 ステップS137において、制御部161は、次回のA/D変換におけるゲイン及びオフセット電圧の設定値を計算する。制御部161は、下記の式(18)を用いてゲインGnextを計算する。
Figure JPOXMLDOC01-appb-M000004
 すなわち、制御部161は、前回のA/D変換におけるセンサ電圧Vd-1と今回のA/D変換におけるセンサ電圧Vとを比較する。そして、制御部161は、センサ電圧Vd-1とセンサ電圧Vとの変化量が閾値α未満である場合、分解能を高くするために、ゲインGnextを前回のゲインよりも大きい値に設定する。
 一方、制御部161は、センサ電圧Vd-1とセンサ電圧Vとの変化量が閾値βを超える場合、測定範囲を広げるために、ゲインGnextを前回のゲインよりも小さい値に設定する。また、制御部161は、変化量が閾値α以上又は閾値β以下である場合、ゲインGnextの値を前回の値に維持する、すなわち、ゲインGnextの値を変化させない。なお、式(18)において、ゲインに乗算されている係数(2及び1/2)は、任意の値であり、上記の値に限定されない。
 更に、制御部161は、下記の式(19)を用いてオフセット電圧Voff_nextを計算する。
off_next=V+(V-Vd-1)   式(19)
 すなわち、オフセット電圧Voff_nextは、前回のセンサ電圧Vd-1と今回のセンサ電圧Vとの差を、今回のセンサ電圧Vに加えた値である。
 これにより、センサ電圧の変化量が一定の場合に、センサ電圧は、測定範囲の中心となるように設定される。
 ステップS138において、制御部161は、ステップS137において計算されたゲインGnextが、所定の範囲内であるか否かを判定する。そして、ゲインGnextが、所定の範囲内にない場合、制御部161は、下記の式(20)を用いて、ゲインGnextをゲインの上限値(Gnext=Gmax)又は下限値(Gnext=1)に設定する。
Figure JPOXMLDOC01-appb-M000005
 図5へ戻り、ステップS14において、制御部161は、ステップS132、ステップS134又はステップS136において計算されたセンサ電圧V、A/D変換時に設定されていたゲイン及びオフセット電圧、並びにA/D変換においてオーバーフロー及び/又はアンダーフローの発生に関する情報を上位システムへ送信する。
 また、制御部161は、センサ電圧V、A/D変換時に設定されていたゲイン及びオフセット電圧を、次回以降の測定に使用するために、マイクロコンピュータ16の記憶領域に記憶する。
 図7は、第2実施形態に係る、デジタル信号の電圧値の変化量とゲイン及びオフセット電圧の設定との関係を示す図である。
 図7に示すように、変化量が閾値α未満である場合、制御部161は、ゲインGnextを前回のゲインよりも大きい値に設定する。変化量が閾値βを超える場合、制御部161は、測定範囲を広げるために、ゲインGnextを前回のゲインよりも小さい値に設定する。
 変化量が閾値α以上又は閾値β以下である場合、制御部161は、ゲインGnextの値を前回の値に維持する、すなわち、ゲインGnextの値を変化させない。
 また、オフセット電圧Voff_nextは、前回のセンサ電圧Vd-1と今回のセンサ電圧Vとの差を、今回のセンサ電圧Vに加えた値である。
 このように第2実施形態によれば、制御部161は、前回のA/D変換によって得られたデジタル信号に基づくセンサ電圧Vd-1と、今回のA/D変換によって得られたデジタル信号に基づくセンサ電圧Vとを比較し、センサ電圧Vd-1からセンサ電圧Vへの変化量が閾値α未満である場合、前記アナログ出力信号のゲインGnextを前回のゲインよりも大きい値に設定し、変化量が閾値βを超える場合、アナログ出力信号のゲインGnextを前回のゲインよりも小さい値に設定する。
 これにより、第2実施形態に係る回路装置1は、センサ電圧の変化量が閾値α未満である場合、ゲインを前回のゲインよりも大きい値に設定することによって、分解能を広くすることができる。一方、回路装置1は、センサ電圧の変化量が閾値βを超える場合、ゲインを前回のゲインよりも小さい値に設定することによって、分解能を狭くすることができる。したがって、回路装置1は、センサ電圧の変化量に応じて、分解能を設定し、広範囲かつ高分解能なA/D変換を高速に行うことができる。
 また、制御部161は、前回のA/D変換によって得られたデジタル信号に基づくセンサ電圧Vd-1、及び今回のA/D変換によって得られたデジタル信号に基づくセンサ電圧Vに基づいて、アナログ出力信号のオフセット電圧Voff_nextを設定する。これにより、回路装置1は、センサ電圧の変化量が一定の場合、センサ電圧が、測定範囲の中心となるように設定することができる。
 また、A/Dコンバータ14は、デジタル信号と共に、A/D変換においてオーバーフロー及び/又はアンダーフローの発生に関する情報を制御部161へ出力する。制御部161は、A/D変換においてオーバーフローが発生した場合、センサ電圧VをA/Dコンバータ14の測定範囲の上限値として算出し、A/D変換においてアンダーフローが発生した場合、センサ電圧VをA/Dコンバータ14の測定範囲の下限値として算出し、A/D変換においてオーバーフロー又はアンダーフローが発生した場合、次回のA/D変換におけるゲイン及びオフセット電圧を初期値に設定する。これにより、回路装置1は、オーバーフロー及び/アンダーフローが発生した場合であっても、センサ電圧、ゲイン及びオフセット電圧を適切な値に設定することができる。
 また、上述した各実施形態は、本発明の好適な実施形態ではあるが、上記各実施形態のみに本発明の範囲を限定するものではなく、本発明の要旨を逸脱しない範囲において種々の変更を施した形態での実施が可能である。
 1 回路装置
 11 センサ
 12 ゲイン調整回路
 13 増幅回路
 14 A/Dコンバータ
 15 オフセット調整回路
 16 マイクロコンピュータ
 161 制御部

Claims (6)

  1.  センサから出力されたアナログ出力信号のゲインを調整するゲイン調整回路と、
     前記アナログ出力信号のオフセット電圧を調整するオフセット調整回路と、
     前記アナログ出力信号をデジタル信号に変換するA/Dコンバータと、
     前記A/Dコンバータによって直前に変換されたデジタル信号の電圧値に基づいて、前記アナログ出力信号のゲイン及びオフセット電圧を設定する制御部と、
    を備える回路装置。
  2.  前記制御部は、
     前記A/Dコンバータの測定範囲を前記アナログ出力信号の電圧範囲と一致させるように、前記アナログ出力信号の第1ゲイン及び第1オフセット電圧を設定し、
     前記制御部は、前記A/Dコンバータによって変換された第1デジタル信号に基づいて第1センサ電圧を算出し、前記第1センサ電圧に基づいて前記オフセット調整回路における前記アナログ出力信号の第2オフセット電圧を設定し、前記ゲイン調整回路における前記アナログ出力信号の第2ゲインを前記第1ゲインよりも大きい値に設定し、
    請求項1に記載の回路装置。
  3.  前記制御部は、更に、
     前記A/Dコンバータによって変換された第2デジタル信号、前記A/Dコンバータにおける前記測定範囲の上限値及び下限値に基づいて、第2センサ電圧を計算し、
     計算された前記第2センサ電圧を上位装置に送信する、
    請求項2に記載の回路装置。
  4.  前記制御部は、
     前回のA/D変換によって得られた前記デジタル信号に基づく第3センサ電圧と、今回のA/D変換によって得られた前記デジタル信号に基づく第4センサ電圧とを比較し、前記第3センサ電圧から前記第4センサ電圧への変化量が第1閾値未満である場合、前記アナログ出力信号の第3ゲインを前回のゲインよりも大きい値に設定し、
     前記変化量が第2閾値を超える場合、前記アナログ出力信号の前記第3ゲインを前回のゲインよりも小さい値に設定する、
    請求項1に記載の回路装置。
  5.  前記制御部は、前回のA/D変換によって得られた前記デジタル信号に基づく前記第3センサ電圧、及び今回のA/D変換によって得られた前記デジタル信号に基づく前記第4センサ電圧に基づいて、前記アナログ出力信号の第3オフセット電圧を設定する、請求項4に記載の回路装置。
  6.  前記A/Dコンバータは、前記デジタル信号と共に、A/D変換においてオーバーフロー及び/又はアンダーフローの発生に関する情報を前記制御部へ出力し、
     前記制御部は、
     A/D変換においてオーバーフローが発生した場合、前記第4センサ電圧(Vd)を前記A/Dコンバータの測定範囲の上限値として算出し、
     A/D変換においてアンダーフローが発生した場合、前記第4センサ電圧(Vd)を前記A/Dコンバータの測定範囲の下限値として算出し、
     A/D変換においてオーバーフロー又はアンダーフローが発生した場合、次回のA/D変換におけるゲイン及びオフセット電圧を初期値に設定する、
    請求項4又は5に記載の回路装置。
PCT/JP2021/028514 2021-07-30 2021-07-30 回路装置 WO2023007752A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US18/558,785 US20240243749A1 (en) 2021-07-30 2021-07-30 Circuit device
JP2021565802A JP7111913B1 (ja) 2021-07-30 2021-07-30 回路装置
CN202180100778.8A CN117652102A (zh) 2021-07-30 2021-07-30 电路装置
PCT/JP2021/028514 WO2023007752A1 (ja) 2021-07-30 2021-07-30 回路装置
DE112021007305.2T DE112021007305T5 (de) 2021-07-30 2021-07-30 Schaltungsvorrichtung
TW111125388A TWI813369B (zh) 2021-07-30 2022-07-06 電路裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/028514 WO2023007752A1 (ja) 2021-07-30 2021-07-30 回路装置

Publications (1)

Publication Number Publication Date
WO2023007752A1 true WO2023007752A1 (ja) 2023-02-02

Family

ID=82693728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028514 WO2023007752A1 (ja) 2021-07-30 2021-07-30 回路装置

Country Status (6)

Country Link
US (1) US20240243749A1 (ja)
JP (1) JP7111913B1 (ja)
CN (1) CN117652102A (ja)
DE (1) DE112021007305T5 (ja)
TW (1) TWI813369B (ja)
WO (1) WO2023007752A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165533A (ja) * 1984-09-06 1986-04-04 Ricoh Co Ltd アナログ信号のデジタル処理装置
JP2000009792A (ja) * 1998-06-23 2000-01-14 Ando Electric Co Ltd テストバーンインシステム、及びテストバーンインシステム校正方法
JP2003098002A (ja) * 2001-09-27 2003-04-03 Aichi Corp 荷重検出装置
WO2013168284A1 (ja) * 2012-05-11 2013-11-14 三菱電機株式会社 アナログ変換装置およびプログラマブルコントローラシステム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002135118A (ja) * 2000-10-19 2002-05-10 Yaskawa Electric Corp アナログ/デジタル信号変換方法および信号変換装置
US7215266B2 (en) * 2004-05-21 2007-05-08 Wionics Research Hybrid DC offset cancellation scheme for wireless receiver
JP4492713B2 (ja) * 2008-02-21 2010-06-30 セイコーエプソン株式会社 集積回路装置及び電子機器
JP2012044347A (ja) 2010-08-17 2012-03-01 Seiko Epson Corp 集積回路装置及び電子機器
JP6259581B2 (ja) * 2013-03-29 2018-01-10 Kyb株式会社 信号処理装置及び信号処理方法
JP6165533B2 (ja) 2013-07-18 2017-07-19 トヨタ紡織株式会社 乗物用シート
JP7113646B2 (ja) * 2018-04-03 2022-08-05 アズビル株式会社 増幅器及び当該増幅器のオフセット調整方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165533A (ja) * 1984-09-06 1986-04-04 Ricoh Co Ltd アナログ信号のデジタル処理装置
JP2000009792A (ja) * 1998-06-23 2000-01-14 Ando Electric Co Ltd テストバーンインシステム、及びテストバーンインシステム校正方法
JP2003098002A (ja) * 2001-09-27 2003-04-03 Aichi Corp 荷重検出装置
WO2013168284A1 (ja) * 2012-05-11 2013-11-14 三菱電機株式会社 アナログ変換装置およびプログラマブルコントローラシステム

Also Published As

Publication number Publication date
JPWO2023007752A1 (ja) 2023-02-02
US20240243749A1 (en) 2024-07-18
DE112021007305T5 (de) 2024-01-25
JP7111913B1 (ja) 2022-08-02
CN117652102A (zh) 2024-03-05
TWI813369B (zh) 2023-08-21
TW202306326A (zh) 2023-02-01

Similar Documents

Publication Publication Date Title
JP5050210B2 (ja) 自動利得制御回路、そのような回路を具備したシステム、及び自動利得制御方法
US10634570B2 (en) Systems and methods for switched multi-transducer pressure sensors and compensation thereof
US10374267B2 (en) Battery status detection method and network device using the same
US20090212860A1 (en) Integrated circuit device and electronic instrument
WO2023007752A1 (ja) 回路装置
CN112182493B (zh) 模拟量校准方法、装置、电子设备及存储介质
KR20080034687A (ko) 램프 발생기 및 그것의 램프신호 발생 방법
CN101753139B (zh) 根据数字式数据值产生输出电压的电路单元和校准电路单元的方法
JPH08122166A (ja) 温度測定方法および装置
JP2004294110A (ja) オフセット電圧補正装置
JP2005121418A (ja) 光強度測定装置及び光強度測定方法
KR101806893B1 (ko) 피드백 제어를 이용하는 변형률 측정 장치
EP1132715B1 (en) Signal processing circuit
KR101612739B1 (ko) 가변 해상도를 갖는 시간-디지털 변환기를 이용한 거리 측정 장치 및 방법
Jacobsen The building blocks of a smart sensor for distributed control networks
WO2023157548A1 (ja) 電圧測定装置、及び電圧測定方法
WO2023189429A1 (ja) 温度センサ、およびセンサ装置
EP4134647A1 (en) Signal processing circuit and load detection device
KR20190047556A (ko) 센서 측정 장치의 자율 캘리브레이션 방법
KR20230147468A (ko) 아날로그 디지털 컨버터를 위한 오차 보정장치 및 그 방법
JP4244895B2 (ja) 物理量センサおよびその製造方法
JP6439865B2 (ja) センサ信号変換器及びセンサ信号変換方法
JP3722525B2 (ja) 二重積分型a/d変換器を含むロードセル式秤
KR101975856B1 (ko) 스마트 전류 센서 및 이의 오프셋 보상 방법
JP2000214030A (ja) 圧力センサ回路

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021565802

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951947

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18558785

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112021007305

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 202180100778.8

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 21951947

Country of ref document: EP

Kind code of ref document: A1