WO2023005687A1 - 一种代谢谱检测试剂盒及使用方法与应用 - Google Patents

一种代谢谱检测试剂盒及使用方法与应用 Download PDF

Info

Publication number
WO2023005687A1
WO2023005687A1 PCT/CN2022/105905 CN2022105905W WO2023005687A1 WO 2023005687 A1 WO2023005687 A1 WO 2023005687A1 CN 2022105905 W CN2022105905 W CN 2022105905W WO 2023005687 A1 WO2023005687 A1 WO 2023005687A1
Authority
WO
WIPO (PCT)
Prior art keywords
metabolic
reagent
detection
quality control
mass spectrometer
Prior art date
Application number
PCT/CN2022/105905
Other languages
English (en)
French (fr)
Inventor
邬建敏
陈晓明
蒋巍
张金银
余捷凯
张秋美
Original Assignee
杭州汇健科技有限公司
杭州汇健智谱医学检验实验室有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州汇健科技有限公司, 杭州汇健智谱医学检验实验室有限公司 filed Critical 杭州汇健科技有限公司
Publication of WO2023005687A1 publication Critical patent/WO2023005687A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers

Definitions

  • the invention belongs to the technical field of mass spectrometry, and relates to a metabolic spectrum detection kit with low cost, high throughput, fast detection speed and simple pretreatment method, as well as its use method and application.
  • the metabolome composed of amino acids, fatty acids, urea, glucose, choline and their derivatives is located in the downstream of the systems biology network, which can reflect the common "end point" caused by changes in the genome and proteome, provide biological terminal information, and reflect It is a kind of sensitive biomarker that can detect the phenotypic changes, physiological and pathological conditions of organisms, so as to more sensitively predict disease progression.
  • neonatal metabolic abnormalities, hyperglycemia, hyperlipidemia, chronic kidney disease, non-alcoholic hepatitis, cancer and other diseases are closely related to abnormal metabolite composition and pathways in the human body.
  • Metabolomics research has become one of the most cutting-edge hotspots in the fields of chemistry, biology, and medicine.
  • Mass spectrometry is the best technical platform for the detection of metabolic small molecules. It can be both qualitative and quantitative. It has very strong advantages in detection sensitivity, specificity, analysis speed, and simultaneous detection of multiple indicators. Obtain the metabolic profile composed of multiple metabolic molecules in biological samples, reflecting the occurrence and development of diseases.
  • GC-MS Gas chromatography-mass spectrometry
  • LC-MS liquid chromatography-mass spectrometry
  • MALDI-MS matrix-assisted laser desorption ionization mass spectrometry
  • GC-MS needs to make the analytes form gaseous molecules through combustion and gasification, so it is suitable for the detection of volatile or semi-volatile small molecules, while a large number of metabolic molecules need to go through derivatization steps such as oximation and methylation In order to meet the detection requirements, the derivatization step increases the complexity of the analysis and detection;
  • LC-MS is the most commonly used in metabolomics analysis, but the requirements for sample pretreatment are high, and the detection throughput is low, and the detection cost is high. It is not suitable for the rapid and efficient detection of a large number of clinical samples, and it is difficult to promote clinically;
  • MALDI-MS is a high-throughput mass spectrometry detection technology, which has been widely used in the detection of proteins, peptides, nucleic acids and other macromolecules. Microbial identification technology under this platform has been gradually applied in clinical practice.
  • the patent CN109541012A that the applicant has applied for can realize rapid identification of microorganisms by using a universal nanochip.
  • conventional MALDI-MS is almost unable to accurately detect and reflect the metabolic molecular composition of small molecule segments (0-400Da), and the reliability of the results is not high.
  • the present invention discloses a metabolic profile detection kit and its use and application.
  • the metabolic profile detection kit includes a metabolic mass spectrometer chip, a pretreatment reagent, a calibrator, a quality control product, and a combination of biomarkers label to establish a rapid and high-throughput standardized biological sample pretreatment, detection, and analysis process.
  • the kit of the invention has the advantages of low cost, high throughput, fast detection speed and simple pretreatment method; it can be used for real-time regulation and control of detection parameters to ensure the stability and reliability of detection results.
  • a metabolic profile detection kit includes a metabolic mass spectrometry chip, a pretreatment reagent, a calibrator, a quality control product and a biomarker combination label; Site parallel detection function; the pretreatment reagent is used for pretreatment of metabolic molecules in biological samples; the calibrator is used for molecular weight calibration of metabolic profiles, and the quality control product is used for quality control of sample pretreatment and detection process ;
  • the characteristic molecular mass-to-charge ratio of the biomarker combination label is in the molecular weight range of 20-1000Da.
  • the metabolic profile detection kit of the present invention includes 1 metabolic mass spectrometry chip, 3 pretreatment reagents, 1 calibrator, 1 quality control product and 1 biomarker combination label.
  • the metabolic spectrum detection kit of the present invention combines the metabolic mass spectrometry chip with high-throughput mass spectrometry technology, and obtains the metabolic mass spectrograms in multiple biological samples in batches without matrix spraying.
  • the kit has low cost, high throughput, and can detect The speed is fast.
  • the metabolic profile data of 48 to 102 samples can be obtained at one time.
  • the detection speed is about 5s/single sample, which is suitable for the rapid detection of large samples.
  • the main body material of the metabolic mass spectrometer chip includes one of silicon-based materials, silicon-based materials covered with silicon oxide, and silicon-based materials covered with silicon nitride.
  • the host material of the metabolic mass spectrometer chip is single crystal silicon.
  • the shape of the detection site is a circular hole with a diameter of 1.5-3.5 mm.
  • the pretreatment reagent includes reagent A, reagent B, reagent C and reagent D; wherein, reagent A includes one or more of methanol, acetonitrile, ethanol, acetone or isopropanol A mixture of species, reagent B includes one of methyl tert-butyl ether, chloroform or dichloromethane, reagent C is ultrapure water, reagent D is a mixture of isopropanol and ultrapure water, isopropyl alcohol in reagent D The volume ratio of alcohol is 20%-80%.
  • the quality control substance is prepared by mixing biological samples, including 30-50 human saliva samples, urine samples or serum samples, with a volume of 20 ⁇ L/bottle.
  • the biomarker combination label includes: serine, cytosine, uracil, creatinine, proline, valine, succinic acid, nicotinic acid, pyroglutamic acid, malic acid , adenine, benzylformic acid, guanine, xanthine, gentisic acid, hydroxytyrosol, ⁇ -aminobutyric acid, betaine, pipecolic acid, aspartic acid, glutamine, glutamic acid, histamine One or a combination of acid or uric acid.
  • the calibration products and quality control products in the metabolic spectrum detection kit of the present invention need to be stored at -20°C, and the metabolic mass spectrometry chip and pretreatment reagents can be stored dry at room temperature.
  • the pretreatment reagent needs to be pre-cooled in crushed ice for 10 minutes before use.
  • the present invention also provides a method for using a metabolic profile detection kit, including the above-mentioned metabolic profile detection kit for the detection of biological samples, and the biological samples include saliva, urine, serum, plasma or tissue extracts.
  • the metabolic profile detection kit is used for the extraction and detection of metabolic molecules in saliva and urine, including the following steps:
  • the pretreatment reagent is pre-cooled for 10 minutes before use, and the biological samples are pretreated in batches with reagent A.
  • the volume ratio of reagent A to biological samples is 2:1-10:1. supernatant;
  • step (1) Take reagent C and add it to the supernatant obtained in step (1), the ratio of the amount added to the supernatant is 1:5 to 1:1 to obtain a sample solution;
  • step (3) Using the same step (1) and step (2) to complete the pretreatment of the quality control product to obtain the quality control product solution;
  • the metabolic profile detection kit is used for the extraction and detection of metabolic molecules in serum, plasma and tissue extracts, including the following steps:
  • the pretreatment reagent is pre-cooled for 10 minutes before use, and the biological samples are pretreated in batches with reagent A.
  • the volume ratio of reagent A to biological samples is 2:1-10:1. supernatant to obtain sample solution 1;
  • step (1) Add reagent B to the remaining liquid after taking the supernatant in step (1).
  • the volume ratio of reagent B to the original biological sample is 1:2 to 1:20. Vortex for 5 -15min, until the precipitate in the tube is broken; then add reagent C equivalent to 1/3-1/2 of the volume of reagent B, and shake for 5-10min;
  • step (3) The solution in step (2) is separated by centrifugation, and the organic phase is taken and dried to obtain dry powder; then redissolved with reagent D equivalent to 1 times the volume of the biological sample to obtain sample solution 2;
  • the mass spectrometer is a time-of-flight mass spectrometer.
  • the present invention also provides the application of the metabolic profile detection kit, the application of the mass spectrometry data generated by the metabolic profile detection kit of the present invention or the method of the present invention in the auxiliary discrimination of tumors or the monitoring and management of chronic diseases; wherein, applicable tumors include Lung cancer, gastric cancer, colorectal cancer, liver cancer, breast cancer, esophageal cancer or oral cancer, applicable chronic diseases include diabetes, gestational diabetes, high blood pressure, high blood fat or Alzheimer's disease.
  • the present invention has the following beneficial effects:
  • a metabolic spectrum detection kit provided by the present invention combines a metabolic mass spectrometry chip with high-throughput mass spectrometry technology to obtain metabolic mass spectrograms in multiple biological samples in batches without matrix spraying, and the cost of the kit is low.
  • the throughput is high and the detection speed is fast.
  • the metabolic profile data of 48 to 102 samples can be obtained at one time.
  • the detection speed is about 5s/single sample, which is suitable for the rapid detection of large samples;
  • a metabolic profile detection kit provided by the present invention contains calibration products and quality control products, which can be used to regulate detection parameters in real time to ensure the stability and reliability of detection results;
  • the mass spectrometry data obtained by a metabolic profiling detection kit provided by the present invention can be applied to the detection of various biological samples, and can be used for the pretreatment of metabolomics and the development of detection methodology. It is a universal metabolic profiling Detection kit;
  • a metabolic profile detection kit provided by the present invention is widely used in tumor auxiliary discrimination, chronic disease monitoring management and property judgment.
  • the modeling sensitivity and specificity are as high as 100%, which has potential application value.
  • Figure 1 is a representative metabolic profile of quality control products in the kit of the present invention.
  • Fig. 2 is a schematic diagram of the entire detection process of the kit of the present invention.
  • Fig. 3 is the sensitivity, specificity and accuracy indicators when the kit of the present invention is applied to the auxiliary discrimination of lung cancer.
  • Fig. 4 is the OPLS-DA diagram when the kit of the present invention is applied to the auxiliary discrimination of lung cancer.
  • Algorithms such as OPLS-DA analysis and two-sample t-test mentioned in the present invention can refer to another patent (CN201910577241.5) that the applicant has applied for.
  • Example 1 Preparation and detection of a quality control product in a metabolic profile detection kit
  • the preparation and detection method of the quality control substance in a metabolic profile detection kit are as follows:
  • Step 1 quality control product preparation
  • the reagent A includes one of methanol, acetonitrile, ethanol, acetone, isopropanol or methanol, acetonitrile, ethanol, acetone, isopropanol
  • the mixture of alcohol, as a kind of preference, the proportioning of methyl alcohol and acetonitrile in mixed pretreatment reagent A is 1:1;
  • Accompanying drawing 1 is the representative metabolic profile of this quality control product.
  • the abscissa is the mass-to-charge ratio (m/z), without unit, and the ordinate is the peak intensity, without unit.
  • the kit is a qualified kit; otherwise, it is an unqualified reagent box; for the construction of the quality inspection library and the setting method of the quality inspection threshold, please refer to another invention patent CN111239237A of the applicant.
  • Example 2 Metabolic profile detection kit for mass spectrometry automated detection of multiple samples
  • the quantity of the metabolic spectrum detection kit used for mass spectrometry automatic detection of multiple samples depends on the sample detection throughput on the metabolic mass spectrometry chip, and the detection throughput is 48-126 samples/chip.
  • the detection flux on the metabolic mass spectrometer chip is 108
  • the mass spectrograms that can be collected at one time are 102 people, and the remaining wells are used as the detection sites of the calibrator and quality control.
  • the biological samples obtained include saliva , urine, serum, plasma, tissue extract, the specific steps are as follows:
  • Step 1 pretreatment of saliva and urine samples
  • Reagent A includes one of methanol, acetonitrile, ethanol, acetone, isopropanol or methanol, acetonitrile , ethanol, acetone, the mixture of isopropanol, as a kind of preference, the proportioning of methanol, acetonitrile in mixed pretreatment reagent A is 1:1;
  • Step 2 pretreatment of serum, plasma and tissue extracts
  • Reagent A includes one of methanol, acetonitrile, ethanol, acetone, isopropanol or methanol, acetonitrile , ethanol, acetone, the mixture of isopropanol, as a kind of preference, the proportioning of methanol, acetonitrile in mixed pretreatment reagent A is 1:1;
  • pretreatment reagent B is a kind of in methyl tert-butyl ether, trichloromethane, dichloromethane, as One preference, when the pretreatment reagent is methyl tert-butyl ether, the amount added is 100-200 ⁇ L, vortexed and shaken for 5-15 minutes, until the precipitate in the tube is broken; then add 50-100 ⁇ L of pretreatment reagent C, the pretreatment reagent The component of C is ultrapure water, shake for 5-10min;
  • pretreatment reagent D is 20%-80% isopropanol solution
  • the biological sample is saliva or urine
  • the calibration detection site of the solution on the metabolic mass spectrometry chip usually the calibration detection site is located at the central detection site of the entire metabolic mass spectrometry chip;
  • the biological sample is serum, plasma or tissue
  • the solution is at the calibration detection site on the metabolic mass spectrometry chip, usually the calibration detection site is located at the central detection site of the entire metabolic mass spectrometry chip;
  • Example 3 The use of the saliva metabolic profile detection kit in the auxiliary discrimination of tumors
  • Step 1 collect saliva samples from healthy controls and cancer patients, and perform sample preprocessing in batches;
  • Step 2 collect the saliva metabolic profile data of each group as described in Example 2;
  • Step 3 performing batch normalization processing on the collected saliva metabolic profile data
  • Step 4 Carry out K-W test on the saliva metabolic profile data after step 3, and the molecules satisfying p ⁇ 0.05 (significant level) are used to participate in genetic algorithm modeling.
  • the model automatically calculates the modeling sensitivity, specificity and cross-validation accuracy.
  • the biomarker labels involved in the non-invasive discrimination of lung cancer include amino acids, organic acids, and fatty acids, and their m/z is y-aminobutyric acid , a combination of proline, betaine, niacin, pipecolic acid, aspartic acid, glutamine, glutamic acid, histidine, uric acid.
  • Accompanying drawing 3 is the lung cancer model sensitivity, specificity and accuracy rate data table of this embodiment.
  • Accompanying drawing 4 is the OPLS-DA graph (made in commercial software SIMCA) made based on these characteristic peaks.
  • the metabolic profile detection kit can be applied to the detection of metabolic molecules in various biological samples including lung cancer, gastric cancer, colorectal cancer, liver cancer, breast cancer, esophageal cancer, oral cancer, saliva, urine, serum, plasma, etc. Detection and judgment of sample properties are not limited to this embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

一种代谢谱检测试剂盒及使用方法与应用,包括代谢质谱芯片、预处理试剂、校准品、质控品与生物标志物组合标签,代谢谱检测试剂盒包括1份代谢质谱芯片、3份预处理试剂、1份校准品、1份质控品与1份生物标志物组合标签。代谢谱检测试剂盒将代谢质谱芯片与高通量质谱技术相结合,在无基质喷涂的情况下批量获取多个生物样本中的代谢质谱图,试剂盒成本低,通量高,检测速度快,在自动化检测模式下可一次性获得48~102个样本的代谢谱数据,检测速度在5s/单样本左右,适合大样本的快速检测。

Description

一种代谢谱检测试剂盒及使用方法与应用 技术领域
本发明属于质谱技术领域,涉及一种成本低,通量高,检测速度快,预处理方法简单的代谢谱检测试剂盒及使用方法与应用。
背景技术
由氨基酸、脂肪酸、尿素、葡萄糖、胆碱及其衍生物构成的代谢组,位于系统生物学网络中的下游,能够反映基因组和蛋白质组变化引起共同“终点”,提供生物学的终端信息,体现出生物的表型变化、生理和病理情况,从而更灵敏地预测疾病进展,是一类较为敏感的生物标志物。目前发现新生儿代谢异常、高血糖、高血脂、慢性肾病、非酒精性肝炎、癌症等多种疾病都与人体内代谢物组成及通路异常密切相关。
代谢组学的研究已经是化学、生物、医学等领域最为前沿的热点之一。质谱技术是一种适用于代谢小分子检测的最佳技术平台,既能定性又能定量,在检测灵敏度、特异性、分析速度、多指标同时检测等方面有非常强的优势,尤其能够一次性获取生物样本中由多个代谢分子组成的代谢谱,反映疾病的发生、发展情况。
气质联用(GC-MS)、液质联用(LC-MS)、基质辅助激光解吸离子化质谱技术(MALDI-MS)是常用的组学分析质谱技术平台。然而,这些组学分析质谱技术的缺点包括:
1)GC-MS需通过燃烧气化的方式使被分析物形成气态分子,故适合于挥发性或半挥发性的小分子检测,而大量代谢分子需要经过肟化、甲基化等衍生化步骤才能符合检测要求,衍生化步骤为分析检测增加了复杂性;
2)LC-MS在代谢组学分析中最为常用,但样本预处理要求较高,且检测通量低,检测成本高,不适合大量临床样本的快速高效检测,临床推广较难;
3)MALDI-MS是一种高通量质谱检测技术,其在蛋白、多肽、核酸等大分子的检测中已被广泛应用,该平台下的微生物鉴定技术已逐步在临床中进行应用。申请人已申请的专利CN109541012A利用一种通用性纳米芯片可实现微生物的快速鉴定。但常规的MALDI-MS因基质背景干扰、结晶不均匀等问题,几乎无法实现小分子区段(0-400Da)代谢分子的准确检测和反映代谢分子组成,其结果可靠性不高。
因此基于该高通量质谱平台用于代谢谱检测技术一直处于受限状态,无法构建可靠的代谢谱检测试剂盒。
发明内容
为解决现有技术的不足,本发明公开了一种代谢谱检测试剂盒及使用方法与应用,代谢谱检测试剂盒包含代谢质谱芯片、预处理试剂、校准品、质控品、生物标志物组合标签,以建立快速高通量的标准化生物样本预处理、检测、分析流程。本发明的试剂盒成本低,通量高,检测速度快,预处理方法简单;可用于实时调控检测参数,以保证检测结果的稳定性和可靠性。
为了实现上述目的,本发明采用以下技术方案:
一种代谢谱检测试剂盒,所述试剂盒包括代谢质谱芯片、预处理试剂、校准品、质控品与生物标志物组合标签;其中,所述代谢质谱芯片作为代谢谱检测的载体,具备多位点并行检测功能;所述预处理试剂用于生物样本中代谢分子的预处理;所述校准品用于代谢谱的分子量校准,所述质控品用于样本预处理与检测过程的质量控制;所述生物标志物组合标签的特征性分子质荷比在20-1000Da分子量范围内。
在本技术方案中,本发明的代谢谱检测试剂盒包括1份代谢质谱芯片、3份预处理试剂、1份校准品、1份质控品与1份生物标志物组合标签。本发明的代谢谱检测试剂盒将代谢质谱芯片与高通量质谱技术相结合,在无基质喷涂的情况下批量获取多个生物样本中的代谢质谱图,试剂盒成本低,通量高,检测速度快,在自动化检测模式下可一次性获得48~102个样本的代谢谱数据,检测速度在5s/单样本左右,适合大样本的快速检测。
作为本发明的一种优选方案,所述代谢质谱芯片的主体材料包括硅基材料、覆盖有氧化硅的硅基材料、覆盖有氮化硅的硅基材料中的一种,所述代谢质谱芯片上具有多个检测位点,均匀分布于代谢质谱芯片的同一水平面;检测位点形状为直径为0.5-5mm的圆孔或边长为0.5-5mm的方孔;其中,检测位点包括样本检测位点、校准品检测位点与质控品检测位点,校准品检测位点位于芯片的中心孔,检测位点内亲水,检测位点外疏水。
优选的,所述代谢质谱芯片的主体材料为单晶硅。
优选的,所述检测位点的形状为直径1.5-3.5mm的圆孔。
作为本发明的一种优选方案,所述的预处理试剂包括试剂A,试剂B,试剂C与试剂D;其中,试剂A包括甲醇、乙腈、乙醇、丙酮或异丙醇中的一种或多种的混合物,试剂B包括甲基叔丁基醚、三氯甲烷或二氯甲烷中的一种,试剂C为超纯水,试剂D为异丙醇和超纯水的混合物,试剂D中异丙醇的体积占比为20%-80%。
在本技术方案中,所述校准品包括代谢分子纯品或从生物样本中提取出来的代谢分子混合物;其中,所述纯品包括:丙氨酸m/z=88.0804、脯氨酸m/z=114.0561、缬氨酸m/z=116.0717、牛磺酸m/z=124.0074、苹果酸m/z=133.0142、谷氨酰胺m/z=145.0619、L-组氨酸m/z=154.0622、苯丙氨酸m/z=164.0717、尿酸m/z=167.0211、靛蓝m/z =262.0748、软脂酸m/z=255.2330、四苯硼钠m/z=319.1664,每种成分的浓度均为0.1-1mg/mL;所述生物样本中提取出的代谢分子混合物涵盖20-1000Da分子量范围。
作为本发明的一种优选方案,所述质控品为生物样本,包括30~50个人的唾液样本、尿液样本或血清样本混合制备得到,体积为20μL/瓶。
作为本发明的一种优选方案,所述生物标志物组合标签包括:丝氨酸、胞嘧啶、尿嘧啶、肌酸酐、脯氨酸、缬氨酸、琥珀酸、烟酸、焦麸胺酸、苹果酸、腺嘌呤、苄基甲酸、鸟嘌呤、黄嘌呤、龙胆酸、羟基酪醇、y-氨基丁酸、甜菜碱、哌啶酸、天冬氨酸、谷氨酰胺、谷氨酸、组氨酸或尿酸中的一种或几种组合。
本发明的代谢谱检测试剂盒中的校准品、质控品需在-20℃条件下保存,代谢质谱芯片、预处理试剂可常温干燥保存。预处理试剂在使用前需要在碎冰中预冷10min。
本发明还提供了一种代谢谱检测试剂盒的使用方法,包括上述的代谢谱检测试剂盒用于生物样本的检测,所述生物样本包括唾液、尿液、血清、血浆或组织提取液。
作为本发明的一种优选方案,所述代谢谱检测试剂盒用于唾液和尿液中的代谢分子的提取和检测,包括以下步骤:
(1)预处理试剂在使用前预冷10min,用试剂A批量预处理生物样本,试剂A和生物样本的体积比例为2:1~10:1,预处理过程包括振荡5-30min,离心取上清液;
(2)取试剂C加入到步骤(1)得到的上清液中,加入量与上清液的比例为1:5~1:1,得到样本溶液;
(3)采用相同的步骤(1)与步骤(2)完成对质控品的预处理,得到质控品溶液;
(4)在校准品中加入等量的试剂A和试剂C,体积10~30μL,涡旋振荡溶解,得到校准品溶液;
(5)将步骤(4)得到的校准品溶液点样0.05-5μL至代谢质谱芯片的校准品检测位点,将步骤(3)得到的质控品溶液分别点样0.05-5μL至代谢质谱芯片的质控品检测位点,将步骤(2)得到每管样本溶液点样0.05-5μL至试剂盒中的代谢质谱芯片的样本检测位点,点样结束后干燥10-30min;
(6)将步骤(5)得到的代谢质谱芯片送入质谱仪,启动质谱仪的数据采集过程;先采集校准品溶液的谱图,对谱图进行分子量校准,校准后对质控品进行检测,确认预处理过程满足质检要求,再自动化采集其余样本的谱图。
作为本发明的一种优选方案,所述代谢谱检测试剂盒用于血清、血浆和组织提取液中的代谢分子的提取和检测,包括以下步骤:
(1)预处理试剂在使用前预冷10min,用试剂A批量预处理生物样本,试剂A和生物样本 的体积比例为2:1~10:1,预处理过程包括振荡5-30min,离心取上清液,得到样本溶液1;
(2)取试剂B加入到步骤(1)中取完上清液后剩余的液体中,试剂B的加入量与原始生物样本的体积比例为1:2~1:20,涡旋振震荡5-15min,直至管内沉淀碎裂;随后加入相当于试剂B体积1/3-1/2的试剂C,振荡5-10min;
(3)用离心法使得步骤(2)中的溶液分层,取有机相并吹干,得到干粉;随后用相当于生物样本的1倍体积的试剂D进行重溶,得到样本溶液2;
(4)将步骤(1)得到的样本溶液1和步骤(3)得到的样本溶液2等体积混合,得到样本溶液;
(5)采用相同的步骤(1)~(4)完成对质控品的预处理,得到质控品溶液;
(6)在校准品中加入等量的试剂A和试剂D,体积10~30μL,涡旋振荡溶解,得到校准品溶液;
(7)将步骤(6)得到的校准品溶液点样0.05-5μL至代谢质谱芯片的校准品检测位点,将步骤(5)得到的质控品溶液分别点样0.05-5μL至代谢质谱芯片的质控品检测位点,将步骤(4)得到的每管样本溶液点样0.05-5μL至试剂盒中的代谢质谱芯片的样本检测位点,点样结束后干燥10-30min;
(8)将步骤(7)得到的代谢质谱芯片送入质谱仪,启动质谱仪的数据采集过程;先采集校准品溶液的谱图,对谱图进行分子量校准,校准后对质控品进行检测,确认预处理过程满足质检要求,再自动化采集其余样本的谱图。
作为本发明的一种优选方案,所述质谱仪为飞行时间质谱仪。
本发明还提供了代谢谱检测试剂盒的应用,通过本发明的代谢谱检测试剂盒或者本发明的使用方法产生的质谱数据在肿瘤辅助判别或慢性疾病监测管理上的应用;其中,适用肿瘤包括肺癌、胃癌、结直肠癌、肝癌、乳腺癌、食管癌或口腔癌,适用慢性疾病包括糖尿病、孕期糖尿病、高血压、高血脂或阿尔兹海默症。
与现有技术相比,本发明具有以下有益效果:
1.本发明提供的一种代谢谱检测试剂盒将代谢质谱芯片与高通量质谱技术相结合,在无基质喷涂的情况下批量获取多个生物样本中的代谢质谱图,试剂盒成本低,通量高,检测速度快,在自动化检测模式下可一次性获得48~102个样本的代谢谱数据,检测速度在5s/单样本左右,适合大样本的快速检测;
2.本发明提供的一种代谢谱检测试剂盒中包含校准品和质控品,可用于实时调控检测参数,以保证检测结果的稳定性和可靠性;
3.本发明提供的一种代谢谱检测试剂盒获取的质谱数据能够适用于多种生物样本的检测,可 用于代谢组学的预处理及检测方法学开发,是一种普适性的代谢谱检测试剂盒;
4.本发明提供的一种代谢谱检测试剂盒,广泛应用于肿瘤辅助判别、慢病监测管理和性质判断,尤其的,通过对肺癌患者和健康人群的唾液样本的代谢谱检测和建模,建模敏感性和特异性高达100%,具有潜在应用价值。
附图说明
图1是本发明试剂盒中的质控品的代表性代谢谱图。
图2是本发明试剂盒的整个检测流程示意图。
图3是本发明试剂盒应用于肺癌辅助判别时的敏感性、特异性和准确性指标。
图4是本发明试剂盒应用于肺癌辅助判别时的OPLS-DA图。
具体实施方式
下面将结合附图详细描述本发明的具体实施例,应当注意,这里描述的实施例只用于举例说明,并不用于限制本发明。在以下描述中,为了便于对本发明的透彻理解,阐述了大量特定细节。然而,本领域普通技术人员可以理解,这些特定细节并非为实施本发明所必需。
本发明中提及的OPLS-DA分析和双样本t检验等算法可参考申请人已经申请的另一专利(CN201910577241.5)。
本发明中其余所用试剂均可从市场购得。
实施例1.一种代谢谱检测试剂盒中的质控品的制备及检测
一种代谢谱检测试剂盒中的质控品制备及检测方法具体如下:
步骤一,质控品制备;
(1)采集多人的唾液样本,被采集人员包括15~25位男性和15~25位女性;
(2)将采集的唾液等量混合均匀,组成唾液混合物;
(3)将唾液混合物按照1:2加入该试剂盒中的预处理试剂A,试剂A包括甲醇、乙腈、乙醇、丙酮、异丙醇中的一种或甲醇、乙腈、乙醇、丙酮、异丙醇的混合物,作为一种优选,混合预处理试剂A中甲醇、乙腈的配比为1:1;
(4)将加入预处理试剂A后的唾液样本经振荡5~10min后低温高速离心,收集上清液。作为一种实施例,用于预处理的唾液混合物为20μL时,可收集上清液为15~30μL,并补加上清液体积1/3的预处理试剂C,得到该试剂盒中的质控品,同个质控品平行预处理3份。
步骤二,质控品检测:
(1)将0.05-5μL质控品点样在代谢质谱芯片上,常温自然干燥10~30min;
(2)将代谢质谱芯片送入质谱仪,启动质谱仪的数据采集过程。
附图1为该质控品的代表性代谢谱图。横坐标为质荷比(m/z),无单位,纵坐标为峰 强度,无单位。
(3)将质控品的代谢谱图导入质检库,若3个平行质控样本的数据均在质检库的通过区域,则该试剂盒为合格试剂盒,否则,则为不合格试剂盒;具体质检库的构建、质检阈值的设定方法具体参考申请人的另一项发明专利CN111239237A。
实施例2.代谢谱检测试剂盒用于多样本的质谱自动化检测
代谢谱检测试剂盒用于多样本的质谱自动化检测的数量根据代谢质谱芯片上的样本检测通量而定,检测通量为48~126样本/芯片。作为一种实施例,代谢质谱芯片上的检测通量为108时,一次性可采集的质谱图为102人份,其余孔作为校准品和质控品的检测位点,获取的生物样本包括唾液、尿液、血清、血浆、组织提取液,其具体步骤如下:
步骤一,唾液及尿液样本的预处理;
(1)将每例生物样本取20μL/份,按照1:2加入该试剂盒中的预处理试剂A,试剂A包括甲醇、乙腈、乙醇、丙酮、异丙醇中的一种或甲醇、乙腈、乙醇、丙酮、异丙醇的混合物,作为一种优选,混合预处理试剂A中甲醇、乙腈的配比为1:1;
(2)将加入预处理试剂A和后的生物样本经振荡5~10min后低温高速离心,收集上清液。作为一种实施例,用于预处理的生物样本混合物为20μL时,可收集上清液为15~30μL,并补加上清液体积1/3的预处理试剂C,涡旋振荡均匀,得到样本溶液。
步骤二、血清、血浆及组织提取液的预处理;
(1)将每例生物样本取20μL/份,按照1:2加入该试剂盒中的预处理试剂A,试剂A包括甲醇、乙腈、乙醇、丙酮、异丙醇中的一种或甲醇、乙腈、乙醇、丙酮、异丙醇的混合物,作为一种优选,混合预处理试剂A中甲醇、乙腈的配比为1:1;
(2)将加入预处理试剂A和后的生物样本经振荡5~10min后低温高速离心,收集上清液。作为一种实施例,用于预处理的生物样本混合物为20μL时,可收集上清液为15~30μL,得到样本溶液1;
(3)取预处理试剂B加入到(1)中取完上清液后剩余的液体中,预处理试剂B为甲基叔丁基醚、三氯甲烷、二氯甲烷中的一种,作为一种优选,预处理试剂为甲基叔丁基醚时,加入量为100-200μL,涡旋振震荡5-15min,直至管内沉淀碎裂;随后加入预处理试剂C 50-100μL,预处理试剂C的组分为超纯水,振荡5-10min;
(4)用离心法使得(3)中的溶液分层,取有机相100-150μL并吹干,得到干粉;随后加入预处理试剂D 20-40μL进行重溶,得到样本溶液2,作为一种优选,预处理试剂D的组分为20%-80%的异丙醇溶液;
(5)将(2)中的样本溶液1和(4)中的样本溶液2等体积混合,得到样本溶液。
步骤三,质谱检测;
(1)将每个检测对象的生物样本和质控品依次点样在代谢质谱芯片上,0.05-5μL/样本,常温自然干燥10~30min;
(2)若生物样本为唾液或尿液时,在试剂盒中的校准品中加入等量的预处理试剂A和预处理试剂C,体积10~30μL,涡旋振荡使其溶解,并点该溶液于代谢质谱芯片上的校准检测位点,通常校准检测位点位于整个代谢质谱芯片的中心检测位点位置;
(3)若生物样本为血清、血浆或组织时,在试剂盒中的校准品中加入等量的预处理试剂A和预处理试剂D,体积10~30μL,涡旋振荡使其溶解,并点该溶液于代谢质谱芯片上的校准检测位点,通常校准检测位点位于整个代谢质谱芯片的中心检测位点位置;
(4)将代谢质谱芯片送入质谱仪中;
(5)检测校准位点的谱图,对谱图分子量进行校准,并固定质谱检测参数;
(6)检测质控位点的谱图,验证试剂盒的性能;
(7)将质谱方法其设定为自动化检测方法,并确认仪器定位系统能定位每个检测位点的位置,调用自动化质谱检测方法,完成整个代谢质谱芯片上所有样本的自动化检测过程。
附图2为试剂盒的整个检测流程示意图。
实施例3.唾液代谢谱检测试剂盒在肿瘤辅助判别中的用途
代谢谱检测试剂盒在肿瘤辅助判别中的用途的具体步骤如下:
步骤一,收集健康对照和癌症患者的唾液样本,批量进行样本预处理;
步骤二,按照实施例2所述采集各组的唾液代谢谱数据;
步骤三,对采集的唾液代谢谱数据进行批量归一化处理;
步骤四,对经过步骤三后的唾液代谢谱数据进行K-W检验,满足p<0.05(有显著性水平)的分子用于参与遗传算法建模。模型自动对建模敏感性、特异性和交叉验证准确率进行计算。作为一种实施例,收集样本为肺癌患者和健康对照的唾液样本时,参与肺癌无创判别的生物标志物标签包括氨基酸、有机酸、脂肪酸中的几种,其m/z为y-氨基丁酸,脯氨酸,甜菜碱,烟酸,哌啶酸,天冬氨酸,谷氨酰胺,谷氨酸,组氨酸,尿酸的组合。
附图3为该实施例的肺癌模型敏感性、特异性和准确率数据表。附图4为基于这些特征峰所作的OPLS-DA图(在商业化软件SIMCA中所作)。
结果表明,代谢谱检测试剂盒用于唾液样本的预处理和检测时,具有良好的肺癌辅助判别功能。
值得说明的,代谢谱检测试剂盒可适用于包括肺癌、胃癌、结直肠癌、肝癌、乳腺癌、食管癌、口腔癌的唾液、尿液、血清、血浆等多种生物样本中的代谢分子的检测和样本性质 判别,并不仅局限于该实施例。
以上所述,仅为本发明的较佳实施例,并非对本发明任何形式上和实质上的限制,应当指出,对于本技术领域的普通技术人员,在不脱离本发明方法的前提下,还将可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。凡熟悉本专业的技术人员,在不脱离本发明的精神和范围的情况下,当可利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对上述实施例所作的任何等同变化的更动、修饰与演变,均仍属于本发明的技术方案的范围内。

Claims (11)

  1. 一种代谢谱检测试剂盒,其特征在于,所述试剂盒包括代谢质谱芯片、预处理试剂、校准品、质控品与生物标志物组合标签;其中,所述代谢质谱芯片作为代谢谱检测的载体,具备多位点并行检测功能;所述预处理试剂用于生物样本中代谢分子的预处理;所述校准品用于代谢谱的分子量校准,所述质控品用于样本预处理与检测过程的质量控制;所述生物标志物组合标签的特征性分子质荷比在20-1000Da分子量范围内。
  2. 根据权利要求1所述的一种代谢谱检测试剂盒,其特征在于,所述代谢质谱芯片的主体材料包括硅基材料、覆盖有氧化硅的硅基材料、覆盖有氮化硅的硅基材料中的一种,所述代谢质谱芯片上具有多个检测位点,均匀分布于代谢质谱芯片的同一水平面;检测位点形状为直径为0.5-5mm的圆孔或边长为0.5-5mm的方孔;其中,检测位点包括样本检测位点、校准品检测位点与质控品检测位点,校准品检测位点位于芯片的中心孔,检测位点内亲水,检测位点外疏水。
  3. 根据权利要求1所述的一种代谢谱检测试剂盒,其特征在于,所述的预处理试剂包括试剂A,试剂B,试剂C与试剂D;其中,试剂A包括甲醇、乙腈、乙醇、丙酮或异丙醇中的一种或多种的混合物,试剂B包括甲基叔丁基醚、三氯甲烷或二氯甲烷中的一种,试剂C为超纯水,试剂D为异丙醇和超纯水的混合物,试剂D中异丙醇的体积占比为20%-80%。
  4. 根据权利要求1所述的一种代谢谱检测试剂盒,其特征在于,所述校准品包括代谢分子纯品或从生物样本中提取出来的代谢分子混合物;其中,所述纯品包括:丙氨酸m/z=88.0804、脯氨酸m/z=114.0561、缬氨酸m/z=116.0717、牛磺酸m/z=124.0074、苹果酸m/z=133.0142、谷氨酰胺m/z=145.0619、L-组氨酸m/z=154.0622、苯丙氨酸m/z=164.0717、尿酸m/z=167.0211、靛蓝m/z=262.0748、软脂酸m/z=255.2330、四苯硼钠m/z=319.1664,每种成分的浓度均为0.1-1mg/mL;所述生物样本中提取出的代谢分子混合物涵盖20-1000Da分子量范围。
  5. 根据权利要求1所述的一种代谢谱检测试剂盒,其特征在于,所述质控品为生物样本,包括30~50个人的唾液样本、尿液样本或血清样本混合制备得到,体积为20μL/瓶。
  6. 根据权利要求1所述的一种代谢谱检测试剂盒,其特征在于,所述生物标志物组合标签包括:丝氨酸、胞嘧啶、尿嘧啶、肌酸酐、脯氨酸、缬氨酸、琥珀酸、烟酸、焦麸胺酸、苹果酸、腺嘌呤、苄基甲酸、鸟嘌呤、黄嘌呤、龙胆酸、羟基酪醇、y-氨基丁酸、甜菜碱、哌啶酸、天冬氨酸、谷氨酰胺、谷氨酸、组氨酸或尿酸中的一种或几种组合。
  7. 一种代谢谱检测试剂盒的使用方法,其特征在于,包括权利要求1-6任一项所述的代谢谱检测试剂盒用于生物样本的检测,所述生物样本包括唾液、尿液、血清、血浆或组织提取液。
  8. 根据权利要求7所述的一种代谢谱检测试剂盒的使用方法,其特征在于,所述代谢谱检测试剂盒用于唾液和尿液中的代谢分子的提取和检测,包括以下步骤:
    (1)预处理试剂在使用前预冷10min,用试剂A批量预处理生物样本,试剂A和生物样本的体积比例为2:1~10:1,预处理过程包括振荡5-30min,离心取上清液;
    (2)取试剂C加入到步骤(1)得到的上清液中,加入量与上清液的比例为1:5~1:1,得到样本溶液;
    (3)采用相同的步骤(1)与步骤(2)完成对质控品的预处理,得到质控品溶液;
    (4)在校准品中加入等量的试剂A和试剂C,体积10~30μL,涡旋振荡溶解,得到校准品溶液;
    (5)将步骤(4)得到的校准品溶液点样0.05-5μL至代谢质谱芯片的校准品检测位点,将步骤(3)得到的质控品溶液分别点样0.05-5μL至代谢质谱芯片的质控品检测位点,将步骤(2)得到每管样本溶液点样0.05-5μL至试剂盒中的代谢质谱芯片的样本检测位点,点样结束后干燥10-30min;
    (6)将步骤(5)得到的代谢质谱芯片送入质谱仪,启动质谱仪的数据采集过程;先采集校准品溶液的谱图,对谱图进行分子量校准,校准后对质控品进行检测,确认预处理过程满足质检要求,再自动化采集其余样本的谱图。
  9. 根据权利要求7所述的一种代谢谱检测试剂盒的使用方法,其特征在于,所述代谢谱检测试剂盒用于血清、血浆和组织提取液中的代谢分子的提取和检测,包括以下步骤:
    (1)预处理试剂在使用前预冷10min,用试剂A批量预处理生物样本,试剂A和生物样本的体积比例为2:1~10:1,预处理过程包括振荡5-30min,离心取上清液,得到样本溶液1;
    (2)取试剂B加入到步骤(1)中取完上清液后剩余的液体中,试剂B的加入量与原始生物样本的体积比例为1:2~1:20,涡旋振震荡5-15min,直至管内沉淀碎裂;随后加入相当于试剂B体积1/3-1/2的试剂C,振荡5-10min;
    (3)用离心法使得步骤(2)中的溶液分层,取有机相并吹干,得到干粉;随后用相当于生物样本的1倍体积的试剂D进行重溶,得到样本溶液2;
    (4)将步骤(1)得到的样本溶液1和步骤(3)得到的样本溶液2等体积混合,得到样本溶液;
    (5)采用相同的步骤(1)~(4)完成对质控品的预处理,得到质控品溶液;
    (6)在校准品中加入等量的试剂A和试剂D,体积10~30μL,涡旋振荡溶解,得到校准品溶液;
    (7)将步骤(6)得到的校准品溶液点样0.05-5μL至代谢质谱芯片的校准品检测位点,将步骤(5)得到的质控品溶液分别点样0.05-5μL至代谢质谱芯片的质控品检测位点,将步骤(4)得到的每管样本溶液点样0.05-5μL至试剂盒中的代谢质谱芯片的样本检测位点,点样结束后干燥10-30min;
    (8)将步骤(7)得到的代谢质谱芯片送入质谱仪,启动质谱仪的数据采集过程;先采集校准品溶液的谱图,对谱图进行分子量校准,校准后对质控品进行检测,确认预处理过程满足质检要求,再自动化采集其余样本的谱图。
  10. 根据权利要求8所述的一种代谢谱检测试剂盒的使用方法,其特征在于,所述质谱仪为飞行时间质谱仪。
  11. 一种代谢谱检测试剂盒的应用,其特征在于,权利要求1-6任一项所述的代谢谱检测试剂盒或者权利要求7-10任一项所述的使用方法产生的质谱数据在肿瘤辅助判别或慢性疾病监测管理上的应用;其中,适用肿瘤包括肺癌、胃癌、结直肠癌、肝癌、乳腺癌、食管癌或口腔癌,适用慢性疾病包括糖尿病、孕期糖尿病、高血压、高血脂或阿尔兹海默症。
PCT/CN2022/105905 2021-07-27 2022-07-15 一种代谢谱检测试剂盒及使用方法与应用 WO2023005687A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110851823.5A CN113702550A (zh) 2021-07-27 2021-07-27 一种代谢谱检测试剂盒及使用方法与应用
CN202110851823.5 2021-07-27

Publications (1)

Publication Number Publication Date
WO2023005687A1 true WO2023005687A1 (zh) 2023-02-02

Family

ID=78650790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105905 WO2023005687A1 (zh) 2021-07-27 2022-07-15 一种代谢谱检测试剂盒及使用方法与应用

Country Status (2)

Country Link
CN (1) CN113702550A (zh)
WO (1) WO2023005687A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113702550A (zh) * 2021-07-27 2021-11-26 杭州汇健科技有限公司 一种代谢谱检测试剂盒及使用方法与应用
CN114113290A (zh) * 2021-12-31 2022-03-01 杭州汇健科技有限公司 一种生物样本脂质质谱检测试剂盒、方法和应用
WO2024108604A1 (zh) * 2022-11-25 2024-05-30 中国科学院深圳先进技术研究院 基于血液代谢物的神经退行性疾病标志物及其应用
CN117250354B (zh) * 2023-09-25 2024-05-10 西安交通大学医学院第一附属医院 十一种代谢标志物的检测试剂在制备乳腺癌诊断和预后产品中的应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041459A1 (ja) * 2008-10-08 2010-04-15 積水メディカル株式会社 薬物代謝物の定量分析方法及び分析装置
CN101769910A (zh) * 2008-12-30 2010-07-07 中国科学院大连化学物理研究所 一种从血清代谢轮廓筛选恶性卵巢肿瘤标志物的方法
CN109154610A (zh) * 2016-05-24 2019-01-04 切除生物治疗公司 代谢物组学和病毒诊断套件
CN109298115A (zh) * 2018-10-19 2019-02-01 深圳市绘云生物科技有限公司 生物样品中多种代谢物定量检测方法及代谢芯片
CN109541012A (zh) * 2018-11-23 2019-03-29 杭州汇健科技有限公司 一种用于质谱分析的通用型纳米芯片及其制备方法与应用
CN110954590A (zh) * 2019-11-01 2020-04-03 杭州汇健科技有限公司 一种基于硅纳米线芯片的唾液样本检测方法
US20200326352A1 (en) * 2019-04-09 2020-10-15 Peking University Method and a kit for simultaneous analyses of thyroid hormones and related metabolites in serum
CN112540139A (zh) * 2020-12-16 2021-03-23 杭州汇健科技有限公司 一种代谢谱检测用的分子量校准品试剂盒及其制备方法、使用方法
CN113138275A (zh) * 2020-01-20 2021-07-20 中国科学院大连化学物理研究所 血清脂质代谢物组合物及试剂盒和应用
CN113138249A (zh) * 2021-04-12 2021-07-20 北京蛋白质组研究中心 基于微孔阵列芯片的微量样本代谢组、蛋白质组和磷酸化蛋白质组多组学分析方法
CN113702550A (zh) * 2021-07-27 2021-11-26 杭州汇健科技有限公司 一种代谢谱检测试剂盒及使用方法与应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103776911A (zh) * 2012-10-22 2014-05-07 中国科学院大连化学物理研究所 一种用于微量组织中代谢物组和脂质组同时提取分析的方法
CN108287207A (zh) * 2017-04-24 2018-07-17 麦特绘谱生物科技(上海)有限公司 生物样本制备方法及其应用以及代谢物定性定量分析方法
CN109187806A (zh) * 2018-10-22 2019-01-11 嘉兴迈维代谢生物科技有限公司 一种液相色谱-质谱联用代谢组学检测通用质控方法
CN112748191A (zh) * 2019-10-30 2021-05-04 深圳脉图精准技术有限公司 诊断急性疾病的小分子代谢物生物标志物及其筛选方法和应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041459A1 (ja) * 2008-10-08 2010-04-15 積水メディカル株式会社 薬物代謝物の定量分析方法及び分析装置
CN101769910A (zh) * 2008-12-30 2010-07-07 中国科学院大连化学物理研究所 一种从血清代谢轮廓筛选恶性卵巢肿瘤标志物的方法
CN109154610A (zh) * 2016-05-24 2019-01-04 切除生物治疗公司 代谢物组学和病毒诊断套件
CN109298115A (zh) * 2018-10-19 2019-02-01 深圳市绘云生物科技有限公司 生物样品中多种代谢物定量检测方法及代谢芯片
CN109541012A (zh) * 2018-11-23 2019-03-29 杭州汇健科技有限公司 一种用于质谱分析的通用型纳米芯片及其制备方法与应用
US20200326352A1 (en) * 2019-04-09 2020-10-15 Peking University Method and a kit for simultaneous analyses of thyroid hormones and related metabolites in serum
CN110954590A (zh) * 2019-11-01 2020-04-03 杭州汇健科技有限公司 一种基于硅纳米线芯片的唾液样本检测方法
CN113138275A (zh) * 2020-01-20 2021-07-20 中国科学院大连化学物理研究所 血清脂质代谢物组合物及试剂盒和应用
CN112540139A (zh) * 2020-12-16 2021-03-23 杭州汇健科技有限公司 一种代谢谱检测用的分子量校准品试剂盒及其制备方法、使用方法
CN113138249A (zh) * 2021-04-12 2021-07-20 北京蛋白质组研究中心 基于微孔阵列芯片的微量样本代谢组、蛋白质组和磷酸化蛋白质组多组学分析方法
CN113702550A (zh) * 2021-07-27 2021-11-26 杭州汇健科技有限公司 一种代谢谱检测试剂盒及使用方法与应用

Also Published As

Publication number Publication date
CN113702550A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
WO2023005687A1 (zh) 一种代谢谱检测试剂盒及使用方法与应用
Rafii et al. High-throughput and simultaneous measurement of homocysteine and cysteine in human plasma and urine by liquid chromatography–electrospray tandem mass spectrometry
ES2392629T3 (es) Métodos de distinción de isómeros mediante espectrometría de masas
EP3511973A1 (en) Quantitation of insulin by mass spectrometry
BRPI0819605B1 (pt) métodos para detecção de metabolitos de di-hidroxivitamina d através de espectrometria de massa
CN105651901A (zh) 干血片样品中25羟基维生素d的液相色谱串联质谱检测方法及试剂盒
JP5749493B2 (ja) eIF4EおよびeIF4Eレギュロン活性のための質量分析アッセイ
CA3058642A1 (en) Methods for quantitation of insulin and c-peptide
BR112015005887B1 (pt) Método para a determinação da quantidade de tiroglobulina em uma amostra de teste
US20140361156A1 (en) Methods for Simultaneous Quantification of Thyroid Hormones and Metabolites Thereof by Mass Spectrometry
Samejima et al. Identification and determination of urinary acetylpolyamines in cancer patients by electrospray ionization and time-of-flight mass spectrometry
Wang et al. Simultaneous determination of creatine phosphate, creatine and 12 nucleotides in rat heart by LC–MS/MS
CN114689771A (zh) 一种同时测定血清中三种游离雄激素含量的方法及试剂盒
CN116087373B (zh) 红细胞中叶酸和5-甲基四氢叶酸的检测方法及前处理方法
CN106537139A (zh) 通过质谱法定量他莫昔芬及其代谢物
CN108318594A (zh) 一种液相色谱串联质谱法测定腺苷脱氨酶活性及筛选其抑制剂的方法
CN105445468A (zh) 苯丙氨酸检测试剂盒
US20100317043A1 (en) MASS SPECTROMETRY ASSAY FOR eIF4E AND eIF4E REGULON ACTIVITY
Martens-Lobenhoffer et al. Quantification of arginine and its mono-and dimethylated analogs NMMA, ADMA and SDMA in biological fluids by LC–MS/MS: Is LC superfluous?
CN114397379A (zh) 一种液质联用测定血浆中奥硝唑浓度的方法
Yu et al. Determination of thiol-containing drugs in human plasma by stable isotope labeling coupled with high performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis
Min et al. Rapid and sensitive determination of diacetylpolyamines in human fingernail by ultraperformance liquid chromatography coupled with electrospray ionization tandem mass spectrometry
Kuo et al. Dual-column cation-exchange chromatographic method for beta-aminoisobutyric acid and beta-alanine in biological samples.
EP2095129B1 (en) Direct mass spectrometric analysis of self-aggregates of therapeutic proteins
Albayrak et al. A novel, rapid and sensitive UPLC–MS/MS method for the determination of macitentan in patients with pulmonary arterial hypertension

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE