CN109541012A - 一种用于质谱分析的通用型纳米芯片及其制备方法与应用 - Google Patents

一种用于质谱分析的通用型纳米芯片及其制备方法与应用 Download PDF

Info

Publication number
CN109541012A
CN109541012A CN201811403743.8A CN201811403743A CN109541012A CN 109541012 A CN109541012 A CN 109541012A CN 201811403743 A CN201811403743 A CN 201811403743A CN 109541012 A CN109541012 A CN 109541012A
Authority
CN
China
Prior art keywords
main part
nano chips
loading wells
nano
spectral analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811403743.8A
Other languages
English (en)
Inventor
邬建敏
陈晓明
陈锡胜
钟巧玲
栾春燕
余捷凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Jian Jian Technology Co Ltd
Original Assignee
Hangzhou Jian Jian Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Jian Jian Technology Co Ltd filed Critical Hangzhou Jian Jian Technology Co Ltd
Priority to CN201811403743.8A priority Critical patent/CN109541012A/zh
Publication of CN109541012A publication Critical patent/CN109541012A/zh
Priority to KR1020217016489A priority patent/KR102533281B1/ko
Priority to EP19886491.0A priority patent/EP3872486A4/en
Priority to JP2021529106A priority patent/JP7213595B2/ja
Priority to PCT/CN2019/099604 priority patent/WO2020103497A1/zh
Priority to US17/303,218 priority patent/US11764047B2/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0409Sample holders or containers
    • H01J49/0418Sample holders or containers for laser desorption, e.g. matrix-assisted laser desorption/ionisation [MALDI] plates or surface enhanced laser desorption/ionisation [SELDI] plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/64Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using wave or particle radiation to ionise a gas, e.g. in an ionisation chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • G01N27/623Ion mobility spectrometry combined with mass spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0009Calibration of the apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明公开了一种用于质谱分析的通用型纳米芯片,涉及质谱分析技术领域。纳米芯片的主体材料为硅基半导体材料,所述主体材料的表面分布有阵列式点样孔,所述点样孔的内表面为纳米结构;所述主体材料的表面具有区域性疏水修饰,阵列式点样孔内为亲水区,点样孔外为疏水区;或者点样孔内为疏水区,点样孔外为亲水区。本发明还公开了这种纳米芯片的制备方法与临床应用。本发明的纳米结构还可萃取待测生物组织样本表面的分子,并提高了激光能量吸收和利用率,进而提高离子化效率,增强质谱信号。该通用型纳米芯片可广泛应用于临床检验领域。

Description

一种用于质谱分析的通用型纳米芯片及其制备方法与应用
技术领域
本发明涉及质谱分析技术领域,尤其涉及一种用于质谱分析的通用型纳米芯片及其制备方法与应用。
背景技术
基质辅助激光解吸离子化飞行时间质谱(MALDI-TOF-MS)的原理是将能吸收激光能量的基质化合物与待测样品混合形成共结晶,基质吸收能量传递给待测样品,使待测样品进行离子化,离子在电场中加速飞过飞行管道,根据到达检测器的飞行时间不同而被检测出不同的质荷比(m/z)。MALDI-TOF作为一种软电离技术,是一种在药物筛选及临床诊断中重要的检测手段,可应用于蛋白、多肽、微生物、SNP基因检测等。
样品靶板是MALDI-TOF质谱仪最重要的耗材之一,商业化普通靶板采用不锈钢材质,虽然可以重复使用,但存在的问题是:(1)使用后需要丙酮、乙腈、乙醇等有机试剂超声清洗,过程繁琐;(2)易在靶板表面造成样品残留和划痕,产生交叉污染,影响靶板平整度和基质结晶效果,进而影响临床样本鉴定准确度;(3)检测小分子样本时易受基质峰干扰,检测核酸样本时基质结晶不均匀,信噪比较低、无法直接进行组织样本质谱成像,应用范围窄;(4)制备成本较高,难以在高通量临床质谱检测领域进行大规模推广。目前一次性靶板大多采用不导电的塑料、纤维制成,不利于样本离子化和质谱出峰。专利CN107907585以纤维性滤纸为靶板基体材料,滤纸表面的涂蜡层以实现疏水性能;专利CN202230053以导电塑料为靶板主体,表面覆一层疏水性膜,这两种一次性靶板虽成本较低,但靶板表面不具备微结构,靶板表面样品孔只起到样品载体的作用,对质谱信号的出峰贡献较小,与不锈钢靶板相比,质谱信号没有明显的提高。专利CN107515243在不锈钢靶板表面烧结二氧化钛纳米结晶层,对20K Da以上的质谱信号强度有所提高,而微生物鉴定、多肽及核酸测试分子量区域为20K Da以下;专利CN106884156在不锈钢靶板表面沉积一层二氧化钛纳米薄膜,仅应用于纯化磷酸化肽领域。以金属为导电材料进行掺杂或表面修饰纳米材料的一次性靶板,制作工艺复杂,成本进一步增加,检测样本单一且应用领域有限。
发明内容
本发明的目的在于提供一种用于质谱分析的通用型纳米芯片及其制备方法与应用,提高了能量吸收和利用率,提高了离子化效率,增强质谱信号且可广泛应用于临床检验领域。
为实现上述目的,本发明提供如下技术方案:
一种用于质谱分析的通用型纳米芯片,其特征在于,纳米芯片的主体材料为硅基半导体材料,所述主体材料的表面分布有阵列式点样孔,所述点样孔的内表面为纳米结构;所述主体材料的表面具有区域性疏水修饰,疏水区为阵列式点样孔内或阵列式点样孔外的主体材料表面。
进一步的,所述纳米结构的厚度为0.2-5μm。
进一步的,所述纳米结构包括纳米线、纳米纤维、纳米柱、纳米金字塔、纳米颗粒和纳米多孔。
进一步的,所述硅基半导体材料包括单晶硅、多晶硅、硅基底外延金属、非金属单质和氧化物。
进一步的,所述疏水区的表面修饰采用化学气相沉积或液相化学修饰,采用的试剂为硅烷类、硅氧烷类、硫醇类或末端烯烃类。
进一步的,所述阵列式点样孔的形状为圆形或方形。
一种用于质谱分析的通用型纳米芯片的制备方法,其特征在于,包括以下步骤:
S1:主体材料的划片,在无尘室中利用激光或砂轮对主体材料进行划片;
S2:主体材料的清洗,将划片后的主体材料放置在浓硫酸/过氧化氢混合溶液中进行超声清洗,再用去离子水冲吸主体材料表面的溶液;然后,将主体材料依次放置在乙醇、异丙醇溶液中进行超声清洗;
S3:阵列式点样孔的图形化,采用金属印章法、光刻法、蓝膜法、丝网印刷法在主体材料的表面实现图形化设计;
S4:阵列式点样孔内表面纳米结构的构建,根据主体材料表面的图形,采用反应离子刻蚀、化学气相沉积、物理气相沉积、原子层沉积、湿法化学刻蚀、模板法、水热法、滴涂法在对应阵列式点样孔的位置制备纳米结构;
S3:主体材料表面的疏水修饰;
一种用于质谱分析的通用型纳米芯片的应用,其特征在于,包括以下方面:临床微生物、真菌等样本的快速鉴定;汗液、唾液、指纹、细胞、组织等生物样本中小分子代谢物快速检测;抗生素的药敏试验;组织样本快速质谱成像;SNP基因检测;血清中蛋白、多肽检测。
与现有技术相比,本发明的有益效果是:
1、本发明的阵列式点样孔内表面为纳米结构,纳米结构具备顶端增强效应,其表面的针尖形貌容易产生高能电场,促进被分析物离子化;因此点样孔内的纳米结构提高了质谱出峰信噪比,增强了质谱信号;
2、传统的质谱金属靶板需要依赖基质将能量传递给待测样品,基质与待测样品共结晶,无法避免基质对低分子量物质测试的干扰。本发明的纳米芯片点样孔内的纳米结构具有显著的电磁场增强效应及电荷转移能力,因而无需额外添加有机基质,可实现对小分子量物质(<1000Da)如抗生素(药物小分子)、脂质体、氨基酸、维生素等的免基质检测;
3、传统的商业金属靶板一般重复利用,易引起残留的样本影响,且对临床测试来说需要不断清洗,这样耗时耗力,检测通量下降,不能满足临床的需求,而本发明所用的原材料及使用的设备都很常见,且制备方法简单,因此人力物力成本较低,实现了芯片的一次性可抛性能,省去了清洗靶板的繁琐步骤,还能避免样品测试的交叉污染,提高质谱检测简便性与通量;
4、本发明的临床应用广,可用于临床微生物、真菌等样本的快速鉴定、小分子代谢物快速检测、低分子量抗生素的药敏试验、组织样本快速质谱成像和SNP基因检测等。
附图说明
图1为本发明一实施例的纳米芯片的结构示意图。
图2为本发明的纳米芯片在临床微生物鉴定中的测试结果图。
图3为本发明的纳米线靶板与传统金属靶板对鲍曼不动杆菌质谱对比图。
图4为大肠杆菌在纳米芯片同靶55孔内的鉴定得分图。
图5为纳米芯片峰位置变异率示意图。
图6为相同浓度核酸在纳米芯片和不锈钢靶板上的质谱对比图。
图7a为环丙沙星在不锈钢靶板和纳米芯片上测试得到的质谱对比图。
图7b为红霉素在不锈钢靶板和纳米芯片上测试得到的质谱对比图。
图8a为手指汗液中小分子代谢物在纳米芯片上测试得到的质谱图。
图8b为小鼠肾脏组织脂质体在纳米芯片上测试得到的质谱图。
图9a为纳米芯片获得的小鼠肾组织脂质体负离子模式质谱图。
图9b为小鼠肾组织的6个质谱峰的MSI成像图。
图10为纳米芯片测得的血清肽谱。
图中:1-阵列式点样孔;2-主体材料。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供一种用于质谱分析的通用型纳米芯片,纳米芯片的主体材料为硅基半导体材料,包括单晶硅、多晶硅、硅基底外延金属、非金属单质和氧化物。进一步的,硅基底外延金属又包括铁、铜、铝和金等;非金属单质又包括石墨烯、碳纳米结构材料;氧化物又包括SiO2、Al2O3、TiO2和ZnO等。所述主体材料的表面分布有阵列式点样孔,点样孔的形状为圆形或方形,阵列式点样孔内放置待测样品,某些测试应用中需添加基质。
所述点样孔的内表面为纳米结构,包括纳米线、纳米纤维、纳米柱、纳米金字塔、纳米颗粒和纳米多孔,纳米结构的厚度为0.2-5μm;纳米结构表面的针尖形貌具有增强的电场和电子转移的功能,在吸收激光能量后电荷分离而产生高能电场,促进被分析物离子化,极大地增强了信号的强度和敏感度;纳米结构的尖端可以被视为微萃提取头,当其与分析物接触时可对分析物表面的分子进行取样。因此从测试微生物数据看,信号强度要优于传统的不锈钢靶,从抗生素和代谢小分子数据可以看出在没有基质辅助的情况下在激光下直接电离解析,所提取的化学物质可以更加有效地被检测到;纳米结构还具有较大的比表面积,样品和基质溶液在纳米结构的表面更易挥发,加速干燥过程,进而提高检测通量。
为了实现限域,所述主体材料的表面具有区域性疏水修饰,如图1所示,疏水区阵列式点样孔1内或阵列式点样孔外的主体材料2表面;所述疏水区的表面修饰采用化学气相沉积或液相化学修饰,采用的试剂为硅烷类、硅氧烷类、硫醇类或末端烯烃类。
实施例一:
本实施例中,纳米芯片的主体材料采用硅基底外延金属,具体采用铝。主体材料的表面分布有8×12的阵列式点样孔,点样孔的形状为圆形。该纳米线结构的厚度为0.2μm,阵列式点样孔外的主体材料2表面为疏水区。疏水区的修饰方法采用化学气相沉积法。
实施例二:
本实施例中,纳米芯片的主体材料采用非金属单质,具体采用石墨烯。主体材料的表面分布有8×12的阵列式点样孔,点样孔的形状为圆形。该纳米线结构的厚度为1.5μm,阵列式点样孔1的内表面为疏水区,疏水区的修饰方法采用液相化学修饰法。
实施例三:
本实施例还提供一种用于质谱分析的通用型纳米芯片的制备方法,包括以下步骤:
S1:主体材料的划片,在无尘室中利用激光或砂轮对主体材料进行划片;划片尺寸根据质谱仪靶托大小及样品孔数(96孔或384孔)不定,一般尺寸为54mm*36mm。
S2:主体材料的清洗,将划片后的主体材料放置在浓硫酸/过氧化氢混合溶液中进行超声清洗,溶液中,浓硫酸与过氧化氢的比例在1:1-10:1之间;再用去离子水冲吸主体材料表面的溶液;然后,将主体材料依次放置在乙醇、异丙醇溶液中进行超声清洗;除去主体材料表面的有机物、灰尘等;最后用氮气对主体材料的表面进行吹干。
S3:阵列式点样孔的图形化,采用金属印章法、光刻法、蓝膜法、丝网印刷法在主体材料的表面实现图形化设计;其中点样孔的直径尺寸根据需要在20微米至3毫米范围。如蓝膜法,按照需求定制带有合适尺寸、形状的点样孔图案的蓝膜,在加热至60℃温度下将蓝膜紧密贴在主体材料的表面即可。再称取0.01-0.2g的AgNO3固体溶于10-50ml的HF溶液中,HF溶液的浓度为3~5M,将图形化完毕的单晶硅片置于上述溶液中反应10~60min。刻蚀结束后将硅片转移至硝酸溶液中除银,反应时间为30~60min。完毕后用去离子水冲洗硅片并用氮气吹干即得到阵列式点样孔。
S4:阵列式点样孔内表面纳米结构的构建,根据主体材料表面的图形,采用反应离子刻蚀、化学气相沉积、物理气相沉积、原子层沉积、湿法化学刻蚀、模板法、水热法、滴涂法在对应阵列式点样孔的位置制备纳米结构。如化学气相沉积法,在管式炉内800-950℃温度下通入硅烷气体,反应5min-1h,主体材料的点样孔内即生长纳米线结构。
S5:主体材料表面的疏水修饰;修饰方法采用液相化学修饰法,采用甲苯或丙酮作为溶剂,十一碳烯酸的浓度为1-20%,加热回流5-30min。
实施例四:纳米芯片在临床微生物鉴定中的应用
涂菌法,用10μL枪头从平板中挑取少量菌落,分别轻轻涂在纳米芯片和不锈钢靶上,加入2μL 50%的甲酸溶液,待其干燥后滴加1μL CHCA基质,室温下置于干燥器中干燥。使用MALDI-TOF质谱仪进行测试,测试采用线性正离子模式,测试分子量为2-20KDa,采用延迟提取。测试结果如附图2所示,9株常见临床致病菌在商业化不锈钢靶板和纳米芯片上的鉴定情况,可以看到纳米芯片鉴定结果准确率高,且得分比不锈钢靶高,体现了纳米芯片在微生物鉴定上的优势。
从附图3可以看到同为鲍曼不动杆菌的质谱图,纳米芯片上的出峰数目明显多于不锈钢靶,较高的出峰效率使得纳米芯片的微生物鉴定得分与准确率高于不锈钢靶。利用大肠杆菌测试了纳米芯片点样孔间的鉴定重复性,结果如附图4所示,纳米芯片上55孔,鉴定分均在2.0以上,孔间重复性非常好。如图5所示,进一步利用大肠杆菌的5个标准峰位置评估了纳米芯片孔内与孔间的分子量变异率,与金属靶相比,纳米芯片孔内峰位置变异率更低,在300ppm以下。纳米芯片孔间峰位置变异率在600ppm以下。虽然分子量大于5000的四个峰位置变异率略高,但总体上看纳米芯片孔内与孔间的分子量变异率均在600ppm以下,满足微生物鉴定需求。
实施例五:纳米芯片在SNP检测中的应用
通过PCR扩增含有SNP位点的DNA片段后纯化DNA以除去体系中游离的dNTP。然后进行单碱基延伸反应,进一步地,进行树脂纯化去除盐等杂质。完毕后即可进行将扩增后的DNA试样滴于本发明所述的靶板点样区,测试采用线性正离子或负离子模式,测试分子量为2-10KDa,采用延迟提取。如附图6所示,受试核酸(序列:CTA CAG GTG AAG GTG;分子量:4657.09Da)在负离子模式下采用本发明所述的纳米芯片检测到的质谱峰强度远远高于商业金属靶,证实了纳米芯片质谱靶的检测灵敏度显著提高。
实施例六:纳米芯片在抗生素药敏实验中的应用
首先把抗生素环丙沙星和红霉素分别与LB液体培养基混合,浓度为0.05mg/ml,在不锈钢金属靶上先点抗生素与LB混合液,干燥后再滴加CHCA基质,在纳米芯片上直接滴加抗生素与LB混合液,无需基质,干燥后进行质谱测试,测试采用线性正离子模式,测试分子量为<1000Da,采用延迟提取。如附图7a和图7b所示,无论是环丙沙星还是红霉素在纳米芯片上的相对信号强于金属靶,降低了培养基的干扰,且不需要基质就可以获得高质量的抗生素图谱。
实施例七:纳米芯片在小分子检测中的应用
通过纳米芯片上纳米线顶端微萃提取作用可以获取汗液和组织样本中的代谢信息。手指尖用去离子水清洁并干燥,紧握拳头5min以得到指纹汗液,然后指尖轻轻按压纳米芯片15s后直接进行质谱测试,测试采用反射负离子模式,测试分子量为<1000Da,采用延迟提取。如图8a,免基质的情况可获得汗液中的代谢物小分子信息。
纳米芯片按压在小鼠肾组织实体或切片表面30s后用去离子水冲洗以去掉多余的组织实体,干燥后直接进行质谱测试,测试采用反射负离子模式,测试分子量为<1000Da,采用延迟提取。如图8b,免基质的情况可获得小鼠肾脏组织表面的脂质体信息。
实施例八:纳米芯片在质谱成像中的应用
纳米芯片可以快速获取活体组织表面的代谢物信息并实现质谱成像。本发明的纳米芯片直接在组织上按压取样即可,无需花数小时制作复杂的冰冻切片,测试过程不需要基质。例举的具体过程如下:将裸鼠肾组织置于玻璃片上,纳米芯片的正面直接接触并按压在肾组织表面30秒,然后用纯水彻底清洗芯片表面,干燥后直接进行质谱测试,测试采用反射负离子模式,测试分子量为<1000Da,激光脉冲500shots,采用延迟提取。得到如图9a所示的小鼠肾组织脂质体负离子模式质谱图及图9b所示的六个质谱峰的成像图,肾组织表面的代谢物被有效地检测到,信号清晰,质谱峰776.5和778.5主要分布局于肾皮质层区域,质谱峰856.5,878.5,和906.6主要聚集在肾髓质层,从质谱成像图可以得到特征代谢物的组织分布特征。
实施例九:纳米芯片在血清肽谱检测中的应用
将血清样本用缓冲溶液稀释10倍后,取适量滴加至纳米芯片上,待自然风干后覆盖1μL CHCA(α-氰基-4-羟基肉桂酸)质谱基质进行共结晶,自然晾干后直接进行MALDI-TOF质谱检测,测试采用线性正离子模式,测试分子量为1-10KDa,激光脉冲1000shots,采用延迟提取。图10是在纳米芯片测得的血清肽谱,信号强度强,信噪比高。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。

Claims (8)

1.一种用于质谱分析的通用型纳米芯片,其特征在于,纳米芯片的主体材料为硅基半导体材料,所述主体材料的表面分布有阵列式点样孔,所述点样孔的内表面为纳米结构;所述主体材料的表面具有区域性疏水修饰,疏水区为阵列式点样孔内或阵列式点样孔外的主体材料表面。
2.根据权利要求1所述的用于质谱分析的通用型纳米芯片,其特征在于,所述纳米结构的厚度为0.2-5μm。
3.根据权利要求1所述的用于质谱分析的通用型纳米芯片,其特征在于,所述纳米结构包括纳米线、纳米纤维、纳米柱、纳米金字塔、纳米颗粒和纳米多孔。
4.根据权利要求1所述的用于质谱分析的通用型纳米芯片,其特征在于,所述硅基半导体材料包括单晶硅、多晶硅、硅基底外延金属、非金属单质和氧化物。
5.根据权利要求1所述的用于质谱分析的通用型纳米芯片,其特征在于,所述疏水区的表面修饰采用化学气相沉积或液相化学修饰,采用的试剂为硅烷类、硅氧烷类、硫醇类或末端烯烃类。
6.根据权利要求1所述的用于质谱分析的通用型纳米芯片,其特征在于,所述阵列式点样孔的形状为圆形或方形。
7.一种基于权利要求1所述的用于质谱分析的通用型纳米芯片的制备方法,其特征在于,包括以下步骤:
S1:主体材料的划片,在无尘室中利用激光或砂轮对主体材料进行划片;
S2:主体材料的清洗,将划片后的主体材料放置在浓硫酸/过氧化氢混合溶液中进行超声清洗,再用去离子水冲吸主体材料表面的溶液;然后,将主体材料依次放置在乙醇、异丙醇溶液中进行超声清洗;
S3:阵列式点样孔的图形化,采用金属印章法、光刻法、蓝膜法、丝网印刷法在主体材料的表面实现图形化设计;
S4:阵列式点样孔内表面纳米结构的构建,根据主体材料表面的图形,采用反应离子刻蚀、化学气相沉积、物理气相沉积、原子层沉积、湿法化学刻蚀、模板法、水热法、滴涂法在对应阵列式点样孔的位置制备纳米结构;
S5:主体材料表面的疏水修饰。
8.一种基于权利要求1所述的用于质谱分析的通用型纳米芯片的应用,其特征在于,包括以下方面:临床微生物、真菌等样本的快速鉴定;汗液、唾液、指纹、细胞、组织等生物样本中小分子代谢物快速检测;抗生素的药敏试验;组织样本快速质谱成像;SNP基因检测;血清中蛋白、多肽检测。
CN201811403743.8A 2018-11-23 2018-11-23 一种用于质谱分析的通用型纳米芯片及其制备方法与应用 Pending CN109541012A (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201811403743.8A CN109541012A (zh) 2018-11-23 2018-11-23 一种用于质谱分析的通用型纳米芯片及其制备方法与应用
KR1020217016489A KR102533281B1 (ko) 2018-11-23 2019-08-07 질량분석을 위한 범용 나노칩 및 이의 제조 방법과 사용방법
EP19886491.0A EP3872486A4 (en) 2018-11-23 2019-08-07 UNIVERSAL NANOCHIP FOR MASS SPECTRUM ANALYSIS, PROCESS FOR ITS PREPARATION AND ITS APPLICATION
JP2021529106A JP7213595B2 (ja) 2018-11-23 2019-08-07 質量分析用汎用型ナノチップおよびその調製方法と応用
PCT/CN2019/099604 WO2020103497A1 (zh) 2018-11-23 2019-08-07 一种用于质谱分析的通用型纳米芯片及其制备方法与应用
US17/303,218 US11764047B2 (en) 2018-11-23 2021-05-24 General-purpose nanochip for mass spectrum analysis, preparation method therefor, and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811403743.8A CN109541012A (zh) 2018-11-23 2018-11-23 一种用于质谱分析的通用型纳米芯片及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN109541012A true CN109541012A (zh) 2019-03-29

Family

ID=65849741

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811403743.8A Pending CN109541012A (zh) 2018-11-23 2018-11-23 一种用于质谱分析的通用型纳米芯片及其制备方法与应用

Country Status (6)

Country Link
US (1) US11764047B2 (zh)
EP (1) EP3872486A4 (zh)
JP (1) JP7213595B2 (zh)
KR (1) KR102533281B1 (zh)
CN (1) CN109541012A (zh)
WO (1) WO2020103497A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110243921A (zh) * 2019-06-28 2019-09-17 浙江大学 一种基于组织表面脂质指纹谱图的快速肿瘤组织判别方法
CN110530965A (zh) * 2019-10-08 2019-12-03 浙江大学 一种硅纳米线阵列芯片检测细胞代谢物、脂质的方法
CN110887892A (zh) * 2019-12-23 2020-03-17 复旦大学 一种针对少量样品的质谱检测方法
CN110954590A (zh) * 2019-11-01 2020-04-03 杭州汇健科技有限公司 一种基于硅纳米线芯片的唾液样本检测方法
WO2020103497A1 (zh) * 2018-11-23 2020-05-28 杭州汇健科技有限公司 一种用于质谱分析的通用型纳米芯片及其制备方法与应用
WO2020259186A1 (zh) * 2019-06-28 2020-12-30 杭州汇健科技有限公司 一种硅纳米线芯片及基于硅纳米线芯片的质谱检测方法
CN113008973A (zh) * 2021-01-29 2021-06-22 融智生物科技(青岛)有限公司 一种适用于低丰度蛋白检测的蛋白芯片及其制备方法和应用
WO2021142783A1 (zh) * 2020-01-17 2021-07-22 杭州汇健科技有限公司 一种高通量质谱检测试剂盒及其质检方法
CN113588770A (zh) * 2021-08-03 2021-11-02 吉林大学 一种高密度硅纳米锥结构及其在检测小分子中的应用
CN114113289A (zh) * 2021-12-10 2022-03-01 中元汇吉生物技术股份有限公司 硅基靶板及其生产工艺
CN114113290A (zh) * 2021-12-31 2022-03-01 杭州汇健科技有限公司 一种生物样本脂质质谱检测试剂盒、方法和应用
CN114377736A (zh) * 2022-01-11 2022-04-22 中科新芯纳米技术(常州)有限公司 一种亲疏水图案化阵列芯片、制备方法及其应用
WO2023005687A1 (zh) * 2021-07-27 2023-02-02 杭州汇健科技有限公司 一种代谢谱检测试剂盒及使用方法与应用

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1695055A (zh) * 2002-08-26 2005-11-09 林崎良英 使用激光烧蚀技术的蛋白质分析方法
CN101401002A (zh) * 2005-12-20 2009-04-01 俄亥俄州立大学研究基金会 用于分析方法的纳米多孔基底
CN102011192A (zh) * 2010-09-21 2011-04-13 南京航空航天大学 载有功能基团的GaN纳米线阵列及其制法和用途
CN102809599A (zh) * 2011-06-03 2012-12-05 国家纳米科学中心 一种检测铁调素的方法和试剂盒
CN103227096A (zh) * 2012-01-30 2013-07-31 华中师范大学 一种激光诱导电子捕获质谱解析离解脂质分子方法
CN104251878A (zh) * 2014-09-09 2014-12-31 武汉品生科技有限公司 一种高通量、高灵敏度、表面激光解析质谱纳米靶板及其制作方法和应用
CN204359748U (zh) * 2014-09-09 2015-05-27 武汉品生科技有限公司 一种应用于小分子高通量、高灵敏度、表面激光解析质谱纳米靶板
CN106404879A (zh) * 2008-01-15 2017-02-15 基纳生物技术有限公司 用于改进的质谱分析的组合物和方法
CN106483191A (zh) * 2016-10-27 2017-03-08 吉林大学 一种通过消除甜点效应提高质谱检测重复性的方法
CN106814130A (zh) * 2015-11-30 2017-06-09 上海交通大学 一种用于质谱检测的新型纳米芯片及其制备与应用
CN106872562A (zh) * 2017-03-01 2017-06-20 北京毅新博创生物科技有限公司 质谱基片及制备方法与用途
CN106885839A (zh) * 2017-04-27 2017-06-23 吉林大学 一种通过将分析物富集到金属纳米锥阵列尖端提高解吸电离效率的方法
CN107192757A (zh) * 2017-07-05 2017-09-22 北京毅新博创生物科技有限公司 一种质谱两用检测试剂盒
CN107490615A (zh) * 2016-06-13 2017-12-19 清华大学 用于基质辅助激光解析电离质谱的阵列芯片及其制备方法与应用
CN107741453A (zh) * 2017-09-29 2018-02-27 浙江和谱生物科技有限公司 载样靶板的制备方法及其载样靶板和质谱仪
CN108106994A (zh) * 2017-12-15 2018-06-01 中国科学院光电技术研究所 一种扫描式局域增强生化传感装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000054309A1 (en) * 1999-03-09 2000-09-14 The Scripps Research Institute Improved desorption/ionization of analytes from porous light-absorbing semiconductor
GB0712795D0 (en) * 2007-07-02 2007-08-08 Ecole Polytechnique Federale De Solid phase extraction and ionization device
JP2012007891A (ja) 2010-06-22 2012-01-12 Kansai Univ 質量分析用基板及びその製造方法
CN202230053U (zh) 2011-07-28 2012-05-23 马庆伟 质谱检测用的一次性靶板
US9305756B2 (en) 2013-03-13 2016-04-05 Agena Bioscience, Inc. Preparation enhancements and methods of use for MALDI mass spectrometry
CN106884156A (zh) 2017-02-08 2017-06-23 复旦大学 一种靶板上修饰二氧化钛纳米薄膜的方法及其应用
CN107167512A (zh) 2017-06-29 2017-09-15 浙江和谱生物科技有限公司 用于基质辅助激光解吸离子化质谱仪的一次性靶板
CN107515243A (zh) 2017-09-29 2017-12-26 浙江和谱生物科技有限公司 靶板及其制备方法和质谱仪
CN107907585A (zh) 2017-11-09 2018-04-13 广州禾信康源医疗科技有限公司 靶板及其制作方法
CN207689423U (zh) * 2017-12-19 2018-08-03 亿纳谱(浙江)生物科技有限公司 用于质谱检测的芯片及质谱仪
CN109541012A (zh) 2018-11-23 2019-03-29 杭州汇健科技有限公司 一种用于质谱分析的通用型纳米芯片及其制备方法与应用

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1695055A (zh) * 2002-08-26 2005-11-09 林崎良英 使用激光烧蚀技术的蛋白质分析方法
CN101401002A (zh) * 2005-12-20 2009-04-01 俄亥俄州立大学研究基金会 用于分析方法的纳米多孔基底
CN106404879A (zh) * 2008-01-15 2017-02-15 基纳生物技术有限公司 用于改进的质谱分析的组合物和方法
CN102011192A (zh) * 2010-09-21 2011-04-13 南京航空航天大学 载有功能基团的GaN纳米线阵列及其制法和用途
CN102809599A (zh) * 2011-06-03 2012-12-05 国家纳米科学中心 一种检测铁调素的方法和试剂盒
CN103227096A (zh) * 2012-01-30 2013-07-31 华中师范大学 一种激光诱导电子捕获质谱解析离解脂质分子方法
CN104251878A (zh) * 2014-09-09 2014-12-31 武汉品生科技有限公司 一种高通量、高灵敏度、表面激光解析质谱纳米靶板及其制作方法和应用
CN204359748U (zh) * 2014-09-09 2015-05-27 武汉品生科技有限公司 一种应用于小分子高通量、高灵敏度、表面激光解析质谱纳米靶板
CN106814130A (zh) * 2015-11-30 2017-06-09 上海交通大学 一种用于质谱检测的新型纳米芯片及其制备与应用
CN107490615A (zh) * 2016-06-13 2017-12-19 清华大学 用于基质辅助激光解析电离质谱的阵列芯片及其制备方法与应用
CN106483191A (zh) * 2016-10-27 2017-03-08 吉林大学 一种通过消除甜点效应提高质谱检测重复性的方法
CN106872562A (zh) * 2017-03-01 2017-06-20 北京毅新博创生物科技有限公司 质谱基片及制备方法与用途
CN106885839A (zh) * 2017-04-27 2017-06-23 吉林大学 一种通过将分析物富集到金属纳米锥阵列尖端提高解吸电离效率的方法
CN107192757A (zh) * 2017-07-05 2017-09-22 北京毅新博创生物科技有限公司 一种质谱两用检测试剂盒
CN107741453A (zh) * 2017-09-29 2018-02-27 浙江和谱生物科技有限公司 载样靶板的制备方法及其载样靶板和质谱仪
CN108106994A (zh) * 2017-12-15 2018-06-01 中国科学院光电技术研究所 一种扫描式局域增强生化传感装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
XIAO LI ET AL: "Palladium modified porous silicon as multifunctionalMALDI chip for serum peptide detection", 《THE ROYAL SOCIETY OF CHEMISTRY》 *
XIAO LI ET AL: "Use of a porous silicon–gold plasmonic nanostructure to enhance serum peptide signals in MALDI-TOF analysis", 《ANALYTICA CHIMICA ACTA》 *
XIAOMING CHEN ET: "Tip-Enhanced Photoinduced Electron Transfer and Ionization on Vertical Silicon Nanowires", 《ACS APPL. MATER. INTERFACES》 *
李霄: "贵金属-多孔硅芯片对MALDI-TOF-MS的信号增强作用及其应用", 《中国优秀硕士学位论文全文数据库工程科技I辑》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020103497A1 (zh) * 2018-11-23 2020-05-28 杭州汇健科技有限公司 一种用于质谱分析的通用型纳米芯片及其制备方法与应用
US11764047B2 (en) 2018-11-23 2023-09-19 Hangzhou Well-Healthcare Technologies Co., Ltd General-purpose nanochip for mass spectrum analysis, preparation method therefor, and application thereof
WO2020259187A1 (zh) * 2019-06-28 2020-12-30 杭州汇健科技有限公司 一种基于组织表面脂质指纹谱图的快速肿瘤组织判别方法
WO2020259186A1 (zh) * 2019-06-28 2020-12-30 杭州汇健科技有限公司 一种硅纳米线芯片及基于硅纳米线芯片的质谱检测方法
CN110243921A (zh) * 2019-06-28 2019-09-17 浙江大学 一种基于组织表面脂质指纹谱图的快速肿瘤组织判别方法
CN110530965A (zh) * 2019-10-08 2019-12-03 浙江大学 一种硅纳米线阵列芯片检测细胞代谢物、脂质的方法
CN110530965B (zh) * 2019-10-08 2021-05-11 浙江大学 一种硅纳米线阵列芯片检测细胞代谢物、脂质的方法
CN110954590B (zh) * 2019-11-01 2023-05-05 杭州汇健科技有限公司 一种基于硅纳米线芯片的唾液样本检测方法
CN110954590A (zh) * 2019-11-01 2020-04-03 杭州汇健科技有限公司 一种基于硅纳米线芯片的唾液样本检测方法
CN110887892A (zh) * 2019-12-23 2020-03-17 复旦大学 一种针对少量样品的质谱检测方法
WO2021142783A1 (zh) * 2020-01-17 2021-07-22 杭州汇健科技有限公司 一种高通量质谱检测试剂盒及其质检方法
CN113008973A (zh) * 2021-01-29 2021-06-22 融智生物科技(青岛)有限公司 一种适用于低丰度蛋白检测的蛋白芯片及其制备方法和应用
WO2023005687A1 (zh) * 2021-07-27 2023-02-02 杭州汇健科技有限公司 一种代谢谱检测试剂盒及使用方法与应用
CN113588770A (zh) * 2021-08-03 2021-11-02 吉林大学 一种高密度硅纳米锥结构及其在检测小分子中的应用
CN114113289A (zh) * 2021-12-10 2022-03-01 中元汇吉生物技术股份有限公司 硅基靶板及其生产工艺
CN114113290A (zh) * 2021-12-31 2022-03-01 杭州汇健科技有限公司 一种生物样本脂质质谱检测试剂盒、方法和应用
CN114377736A (zh) * 2022-01-11 2022-04-22 中科新芯纳米技术(常州)有限公司 一种亲疏水图案化阵列芯片、制备方法及其应用

Also Published As

Publication number Publication date
US20210280406A1 (en) 2021-09-09
US11764047B2 (en) 2023-09-19
WO2020103497A1 (zh) 2020-05-28
JP7213595B2 (ja) 2023-01-27
KR102533281B1 (ko) 2023-05-16
KR20210088612A (ko) 2021-07-14
JP2022509632A (ja) 2022-01-21
EP3872486A1 (en) 2021-09-01
EP3872486A4 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
CN109541012A (zh) 一种用于质谱分析的通用型纳米芯片及其制备方法与应用
US20220359180A1 (en) Silicon nanowire chip and silicon nanowire chip-based mass spectrum detection method
CN106807942B (zh) 一种核壳结构纳米基质及其制备与应用
CN109580583A (zh) 一种致密型表面增强拉曼光谱基底及其制备方法与应用
CN103012806A (zh) 一种聚多巴胺修饰的碳纳米管复合材料的合成方法及其应用
Jiang et al. Ti 3 C 2 MXene as a novel substrate provides rapid differentiation and quantitation of glycan isomers with LDI-MS
CN110530965A (zh) 一种硅纳米线阵列芯片检测细胞代谢物、脂质的方法
CN106338542A (zh) 一种利用质谱检测血清小分子代谢物的方法
CN106814128A (zh) 一种利用质谱检测外泌体小分子代谢物的方法
CN110174459A (zh) 金簇在基质辅助激光解吸电离飞行时间质谱检测中的应用
CN106324072B (zh) 一种铁氧化物基质在脑脊液质谱分析中的应用
US8435449B2 (en) Chemical substance sensing element, chemical substance sensing apparatus, and method of manufacturing chemical substance sensing element
CN111398367B (zh) 一种采用铌改善二硫化钼气体传感器的方法及传感设备
Hamdi et al. Fast and facile preparation of nanostructured silicon surfaces for laser desorption/ionization mass spectrometry of small compounds
CN116148340A (zh) 一种具有强稳定性和重用性的金纳米粒子阵列及其制备与应用
CN108344793A (zh) 一种基质及其制备方法、代谢分子的质谱分析检测方法
CN114487084A (zh) 一种垂直纳米线基板及其制备方法和应用
CN109765202B (zh) 一种快速检测细菌内毒素的方法
CN113138186A (zh) 一种超疏水自动定位sers光谱检测平台及其制备方法和应用
Dou et al. One-step fabrication of high-density Si nanotips as SALDI-MS substrate for highly sensitive detection
CN114577776B (zh) 一种检测液体中新型冠状病毒Spike蛋白的SERS芯片的制备方法和使用方法
Dhahi et al. Gold nanogap impedimetric biosensor for precise and selective Ganoderma boninense detection
CN109520992B (zh) 一种溴化银纳米线的sers衬底及其制备方法
Liang et al. TA@ Au Nanoflower-assisted Laser Desorption/Ionization Mass Spectrometry for Metabolite Detection
Wang et al. Plastic probe electrospray ionization mass spectrometry developed for rapid fingerprint profile of biological samples without pretreatment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190329

RJ01 Rejection of invention patent application after publication