WO2023005263A1 - 树脂组合物、树脂膜及显示器件 - Google Patents

树脂组合物、树脂膜及显示器件 Download PDF

Info

Publication number
WO2023005263A1
WO2023005263A1 PCT/CN2022/086798 CN2022086798W WO2023005263A1 WO 2023005263 A1 WO2023005263 A1 WO 2023005263A1 CN 2022086798 W CN2022086798 W CN 2022086798W WO 2023005263 A1 WO2023005263 A1 WO 2023005263A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal crosslinking
resin composition
crosslinking agent
carbon atoms
resin
Prior art date
Application number
PCT/CN2022/086798
Other languages
English (en)
French (fr)
Inventor
王辉
李建行
Original Assignee
吉林奥来德光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉林奥来德光电材料股份有限公司 filed Critical 吉林奥来德光电材料股份有限公司
Priority to KR1020227024070A priority Critical patent/KR20230018355A/ko
Priority to DE112022000006.6T priority patent/DE112022000006T5/de
Priority to JP2022542928A priority patent/JP2023538470A/ja
Priority to US17/785,839 priority patent/US20230104913A1/en
Publication of WO2023005263A1 publication Critical patent/WO2023005263A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/037Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/0226Quinonediazides characterised by the non-macromolecular additives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0755Non-macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • the present invention relates to a resin composition, a resin film formed from the resin composition, and a display device formed from the resin composition and/or the resin film.
  • organic electroluminescent (hereinafter referred to as "organic EL”) display devices have been widely used in many electronic devices.
  • an organic EL display device has a driving circuit, a planarization layer, a first electrode, an insulating layer, a light-emitting layer, and a second electrode on a substrate, and by applying a voltage between the first electrode and the second electrode oppositely arranged, Or glow by the flow of electricity.
  • a photosensitive resin composition capable of patterning by ultraviolet irradiation is generally used as the material for the planarizing layer and the material for the insulating layer.
  • Resins such as polyimide, polybenzoxazole, and polyamideimide have excellent properties such as heat resistance and electrical insulation, and photosensitive resin compositions containing such resins are suitable for use as organic EL display devices. Materials for insulating or planarizing layers.
  • the material for the insulating layer or the planarizing layer is required to have better flatness and bending properties, so the flatness and bending properties of the photosensitive resin composition should be improved. Performance also has important implications.
  • Patent Document 1 phenolic hydroxyl compounds can be introduced into the polyimide precursor to solve the problem of inability to develop in a short time, thereby improving the resolution of fine patterns, but there are problems such as compound scattering and thermal shrinkage during the curing process.
  • Patent Document 2 introducing a thermal crosslinking agent in the photosensitive resin precursor composition can reduce thermal shrinkage, but the obtained photosensitive resin precursor composition has problems such as poor bending resistance and easy formation of creases
  • Patent Document 1 CN1246389C
  • Patent Document 2 CN100362429C
  • the technical solution of the present invention mainly aims to solve the problems mentioned above.
  • a resin composition can be provided, containing at least three components (a), (b) and (c); wherein, the (a) component has the following formula ( 1) The polymer of the represented structure, the (b) component comprises a thermal crosslinking agent (b1) and a thermal crosslinking agent (b2), and the (c) component is a photosensitizer,
  • R 1 and R 2 are independently selected from at least one atom other than hydrogen;
  • R 3 and R 4 are independently selected from hydrogen atoms or organic groups with 1 to 20 carbon atoms, and n is selected from 1 to 20 carbon atoms. Integer of 10.
  • the thermal crosslinking agent (b1) is an aromatic ester thermal crosslinking agent
  • the thermal crosslinking agent (b2) is a thermal crosslinking agent containing unsaturated bonds .
  • the thermal crosslinking agent (b1) is selected from low temperature thermal crosslinking compounds with a thermal crosslinking temperature of 120-180°C, more specifically selected from the following formula (2 ) represents the structure,
  • R 8 is selected from organic groups containing 2 to 30 carbon atoms
  • R 9 is selected from organic groups containing 1 to 10 carbon atoms
  • s is selected from integers from 1 to 4
  • p is selected from integers from 1 to 16 , and s+p>2.
  • the thermal crosslinking agent (b2) is selected from thermal crosslinking compounds with a thermal crosslinking temperature of 180-400°C, more specifically selected from the following formula (3) And/or one or more of the structures represented by formula (4),
  • R 6 and R 7 are independently selected from organic groups containing at least 2-30 carbon atoms; y and q are independently selected from integers of 1-10.
  • the structure represented by the formula (3) contains an acrylic structure, more specifically one or more selected from the structures represented by the following formula (5) ,
  • R 10 is selected from an organic group containing 2 to 25 carbon atoms, and z is selected from an integer of 1 to 10.
  • the (a) component is a polymer having a structure represented by the following formula (6),
  • R 1 and R 2 are independently selected from other atoms containing at least one hydrogen;
  • R 3 and R 4 are independently selected from hydrogen atoms or organic groups with 1 to 20 carbon atoms, and R 5 is selected from halogen and /or a halogenated hydrocarbon group and/or an organic group with 1 to 10 carbon atoms;
  • n and m are independently selected from an integer of 1 to 10.
  • polyamide, polyimide, polyimide precursor, polybenzoxazole, polybenzoxazole precursor, or their copolymers can also be included one or more of .
  • the photosensitizer of the (c) component is a photoacid generator.
  • it further contains a phenolic hydroxyl compound.
  • a resin film prepared from the photosensitive resin composition of the present invention can be provided.
  • a display device prepared from the resin composition of the present invention, or comprising the resin film of the present invention can be provided.
  • the (a1) component can be further included, and the (a1) component contains an aliphatic group of a siloxane structure; preferably, the (a1) Component is to contain the structure represented by formula (7),
  • R 11 is an organic group containing at least 1 to 20 Si-O repeating units, and also contains an aliphatic group.
  • R 11 is selected from one or more of the following structures:
  • the weight ratio of the component (a1) to the component (a) is 0.01-10 wt%.
  • residue comprising R can be selected from one or more of the following structures:
  • residue comprising R can be further selected from one or more of the following structures:
  • residue comprising R can be selected from one or more of the following structures:
  • the residue containing R2 preferably has the structure represented below :
  • thermal crosslinking agent (b1) can be specifically selected from one or more of the following compounds:
  • thermal crosslinking agent (b1) can be more specifically selected from one or more of the following compounds:
  • thermal crosslinking agent (b2) can be specifically selected from one or more of the following compounds:
  • the inventors found that by using the resin composition of the present invention, better flatness and bending recovery properties can be obtained, and an organic EL display device with good luminous efficiency and flexibility can be obtained.
  • the resin composition of the present invention may contain at least three components (a), (b), and (c), wherein (a) component is a polymer having a structure represented by formula (1), and (b) component Contain thermal crosslinking agent (b1) and thermal crosslinking agent (b2), (c) component is photosensitizer.
  • the (a) component is a polymer having a structure represented by formula (1), containing alkali-soluble groups such as hydroxyl groups, and can be called an alkali-soluble polymer.
  • R 1 and R 2 are independently selected from at least one atom other than hydrogen;
  • R 3 and R 4 are independently selected from hydrogen atoms or organic groups with 1 to 20 carbon atoms, and n is selected from 1 to 20 carbon atoms. Integer of 10.
  • R 1 and R 2 For the atoms other than hydrogen contained in R 1 and R 2 , one or more of them are independently preferably selected from O, S, N, P, B, Si1 ⁇ Si20, and C1 ⁇ 30; from the flexibility of the polymer
  • R 1 is further preferably selected from a group that does not contain an aromatic hydrocarbon group, but contains one or more of O, S, N, and C atoms.
  • R2 is further preferably selected from groups containing aromatic groups and/or heterocyclic aromatic groups, and it is further preferred that the aromatic groups and/or heterocyclic aromatic groups in R2 are in the main chain of the polymer On;
  • R 2 It is further preferred that hydroxyl group is directly linked with aromatic group and/or heterocyclic aromatic group;
  • polymkeric substance can also comprise the expression of formula (6) Structure polymer, wherein, R 2 can also be connected with R 5 ; wherein, R 5 can be selected from halogen and/or halogenated hydrocarbon groups and/or organic groups with 1 to 10 carbon atoms; refined from the formed graphics
  • R 5 is preferably selected from halogen and/or halogenated hydrocarbon groups with electron-withdrawing groups; n and m are independently selected from the integers of 1-10.
  • the polymer of the structure represented by formula (1) and/or formula (6) provided by the present invention can be obtained by polymerizing acid dianhydride and diamine as raw materials, for example, making acid dianhydride and diamine compound The method of reacting in a solvent.
  • R preferably has the group structure with following steric hindrance less:
  • the diamine residue of the included R2 structure preferably has the following structure:
  • the molar ratio of the acid dianhydride to the diamine is preferably 35:65 to 65:35, more preferably 40:60 to 60: 40, more preferably 45:55-55:45.
  • the resin composition may also contain polyamide, polyimide, polyimide precursor, polybenzoxazole, polybenzoxazole precursor, or their One or more of the copolymers.
  • acid dianhydride and diamine can be used alone or in combination, and can be synthesized by known methods unless otherwise specified.
  • the (a1) component containing an aliphatic group containing a siloxane structure can also be introduced into the resin composition, wherein the aliphatic group containing a siloxane structure used
  • the compound of the group is not particularly limited; From the perspective of the dispersibility effect after adding and the effect of improving flexibility, it is preferably selected from the structure represented by formula (7):
  • R 11 is an organic group containing at least 1 to 20 Si-O repeating units; in addition, R 11 may also contain aliphatic groups, and the aliphatic groups are copolymerized with siloxane; preferably aliphatic groups
  • the number of carbon atoms is C1 to C30.
  • the weight molecular weight of R 11 is in the range of 10-5000.
  • R 11 can be listed as one or more of the following structures:
  • R preferably has the structure represented.
  • the structure represented by the formula (7) contained in the component (a1) can be derived from a compound whose terminal is a diamine, and its addition method is not particularly limited. It can be directly mixed into the polymer (a) or introduced through a polymerization reaction. (a) into the main chain and/or branch of the polymer, that is, participate in the polymerization reaction as a raw material of diamine, and thus be introduced into the macromolecular chain of the (a) polymer.
  • the added amount of the compound containing the aliphatic group of the siloxane structure is 0.01 ⁇ 10 wt % based on the weight ratio of the total polymer.
  • the (b) component contained in the resin composition of the present invention is (b1) an aromatic ester thermal crosslinking agent and (b2) an unsaturated bond-containing thermal crosslinking agent.
  • cross-linking agent can enhance the heat resistance and the chemical resistance of the cured film that is formed by resin composition;
  • thermal cross-linking agent can improve the planar property of cured film, to reach preparation device better performance and better yield.
  • the aromatic ester thermal crosslinking agent used in the present invention is preferably a low-temperature thermal crosslinking compound with a self-thermal crosslinking temperature of 120-180°C. Specifically, it can be as shown in the following formula (2): indicated compound.
  • R 8 is selected from organic groups containing 2 to 30 carbon atoms; R 9 is selected from organic groups containing 1 to 10 carbon atoms; s is selected from the integers of 1 to 4, and p is selected from 1 An integer of ⁇ 16, and s+p>2.
  • formula (2) can be further preferably defined, preferably, s is an integer of 2 to 4; preferably p is an integer of 2 to 6; preferably, R 8 is an aromatic base, heterocyclic aryl structure.
  • the phenolic hydroxyl group mentioned in formula (2) can be protected by esterification without affecting the performance of thermal crosslinking, which also belongs to a part of the present invention.
  • aromatic ester thermal crosslinking agent of the thermal crosslinking agent (b1) can be listed as one or more of the compounds shown below:
  • aromatic ester thermal crosslinking agent of the thermal crosslinking agent (b1) is preferably selected from one or more of the compounds of the following structures:
  • the thermal crosslinking agent (b2) used in the present invention is an unsaturated bond thermal crosslinking agent, preferably a thermal crosslinking compound with a self-thermal crosslinking temperature of 180-400°C. Specifically, it can be selected from the following formula (3): And/or one or more of the compounds represented by formula (4):
  • R 6 and R 7 are independently selected from organic groups containing 2 to 30 carbon atoms; y and q are independently selected from integers of 1 to 10.
  • R In addition to carbon atoms, other heteroatoms can also be contained, such as heteroatoms such as O and N; preferably, the compound represented by formula (3) contains an acrylic acid structure, specifically expressed as the following formula (5 )
  • R 10 is selected from an organic group containing 2 to 25 carbon atoms, and z is selected from an integer of 1 to 10. Considering the thermal crosslinking effect, z is more preferably an integer from 2 to 8; in addition, R 10 may or may not contain an aromatic group structure, and both have good thermal crosslinking performance.
  • q is preferably an integer from 1 to 6
  • R7 is preferably selected from an aromatic ring structure.
  • thermal crosslinking agents containing unsaturated bonds in the thermal crosslinking agent (b2) the compounds represented by formula (3) and/or formula (4) can be specifically listed as one or more of the following compounds kind:
  • the present invention has no special limitation on the synthesis method of the thermal crosslinking agent, and known methods can be used for synthesis unless otherwise specified.
  • the content of the thermal crosslinking agent is not particularly limited, and the thermal crosslinking agent is preferably 10 to 40 parts by mass, more preferably 12 to 35 parts by mass relative to 100 parts by mass of the total amount of component (a) in the resin composition , more preferably 14-30 parts by mass, particularly preferably 16-26 parts by mass.
  • the ratio of parts by mass of (b1) to (b2) is preferably 25:1 to 5:1, more preferably 22:1 to 8:1, even more preferably 20:1 to 10:1.
  • the (c) photosensitizer contained in the resin composition of the present invention is not particularly limited.
  • a photopolymerization initiator and/or a photoacid generator that generate radicals by absorbing specific wavelengths and decomposing them can be used.
  • a photoacid generator is preferred.
  • a photoacid generator of a photosensitive agent of a resin composition a quinone diazide compound, a sulfonium salt, a phosphonium salt, a diazonium salt, an iodonium salt, etc. are mentioned. From the viewpoint of long-term reliability of an organic EL device, etc., a photoacid generator containing a quinonediazide compound is preferable.
  • Examples of the quinonediazide compound include compounds in which sulfonic acid of quinonediazido is ester-bonded to a polyhydroxy compound; sulfonic acid of quinonediazido is bonded to a polyamine compound in a sulfonamide manner.
  • All the functional groups of these polyhydroxy compounds, polyamino compounds, and polyhydroxy polyamino compounds may not be completely substituted by quinonediazide, but preferably 40 mol% or more of all the functional groups are substituted by quinonediazide on average.
  • a quinonediazide compound By containing such a quinonediazide compound, the affinity of the quinonediazide compound to an alkaline aqueous solution is lowered, the ratio of the dissolution rate of the exposed part of the composition to that of the unexposed part is increased, and a high resolution can be obtained.
  • a positive photosensitive resin precursor composition having photosensitivity to i-rays (wavelength 365nm), h-rays (wavelength 405nm), and g-rays (wavelength 436nm) of a common ultraviolet mercury lamp can be obtained.
  • the present invention has no special limitation on the type and synthesis method of the quinonediazide compound used as a photosensitizer, and known quinonediazide compounds and synthesis methods can be used unless otherwise specified.
  • the quinonediazide compound may be used alone or in combination of multiple types, thereby further increasing the ratio of the dissolution rate of the exposed portion to the unexposed portion, and obtaining a highly sensitive photosensitive resin precursor composition.
  • the content of the photosensitizer is not particularly limited, but is preferably 10 to 50 parts by mass, more preferably 20 to 40 parts by mass relative to 100 parts by mass of the total amount of the component (a) in the resin composition. By setting the content of the photosensitizer within this range, high sensitivity can be achieved, and a sensitizer or the like may be further contained as necessary.
  • the resin composition of the present invention may contain the following additives in addition to the (a) polymer, (b) thermal crosslinking agent, and (c) photosensitizer.
  • the resin composition of the present invention may also include an organic solvent.
  • an organic solvent By adding a solvent, the three components (a), (b) and (c) can be better dispersed and uniform, and each component can be dissolved in the solvent and made into a varnish, which further improves the coating of the resin composition. Cloth and other properties.
  • the organic solvent of the resin composition is not particularly limited, and examples thereof include compounds of ethers, acetates, esters, ketones, aromatic hydrocarbons, amides, or alcohols. More specifically, ⁇ -butyrolactone, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-n-butyl ether, diethylene glycol monomethyl ether, Diethylene glycol, monoethyl ether, diethylene glycol mono-n-propyl ether, diethylene glycol mono-n-butyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n-propyl ether Ether, propylene glycol mono-n-butyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethy
  • the content of the solvent is not particularly limited, but in order to dissolve the composition, it is preferably 100 to 2000 parts by mass, more preferably 300 to 1700 parts by mass, more preferably 400 to 1200 parts by mass, particularly preferably 600 to 1100 parts by mass.
  • the content of the polymer can be adjusted to make resin composition solutions with different viscosities, which can better obtain resin films with excellent performance; preferably, the viscosity of the resin composition solution ranges from 0.1 to 12000cP, more preferably 0.5 to 10000cP, still more preferably 1 to 8000cP.
  • both ends can be blocked with a blocking agent.
  • Monoamine, monohydric alcohol, etc. are mentioned as a terminal blocker which reacts with an acid dianhydride compound.
  • a terminal blocking agent which reacts with a diamine compound an acid anhydride, a monocarboxylic acid, a monoacid chloride compound (monoacid chloride compound), a monoactive ester compound, a dicarbonate compound, a vinyl ether compound etc. are mentioned.
  • the capping agent contains aromatic functional groups.
  • various functional organic groups can also be introduced into the end-capping agent as terminal groups.
  • alkali-soluble functional groups such as hydroxyl and carboxyl groups
  • the introduction of unsaturated bonds can improve its thermal crosslinking performance
  • various functional organic groups introduced are connected with aromatic rings in the end-capping agent to obtain better performance.
  • the content of the end-blocking agent is not particularly limited, but it is preferably 0.1 to 20 parts by mass, more preferably 0.8 to 15 parts by mass, and even more preferably The ground is 1.0-10. By setting the content of the end-capping agent within this range, a good end-capping effect can be obtained, and at the same time, too much organic matter will not remain in the resin composition.
  • the compound which has a phenolic hydroxyl group can also be contained.
  • the alkali solubility of the polymer can be better improved, so that the developing time can be shortened.
  • the compound containing a phenolic hydroxyl group allows the obtained resin composition to be substantially insoluble in an alkaline developer before exposure, but is easily dissolved in an alkaline developer after exposure, and can be developed easily in a short time. , so the film loss caused by development is less. Therefore, a finer concave-convex pattern can be obtained.
  • phenolic hydroxyl compound From the viewpoint of the heat resistance of the phenolic hydroxy compound, bisphenols are preferable. It is preferable that content of a phenolic hydroxyl compound is 1-50 mass parts with respect to 100 mass parts of resin composition whole quantities. Thereby, the alkali developability of a photosensitive resin precursor composition can be improved, maintaining high heat resistance.
  • polyamide, polyimide, polyimide precursor, polybenzoxazole, polybenzoxazole precursor, or their copolymers may also be included. species or more.
  • the first step is the synthesis of the polymer.
  • the diamine and acid dianhydride required by the present invention are put into the solvent respectively, and under the condition of -20-150°C, the stirring reaction is carried out for 1-10 hours, and the polymerization reaction is carried out.
  • an end-capping agent is added to form (a) polymer of target molecular weight.
  • the molecular weight range of the polymer is preferably 5,000-500,000, more preferably 8,000-350,000, and still more preferably 10,000-250,000.
  • diamine and/or acid dianhydride of the present invention in addition to the above-mentioned diamine and/or acid dianhydride, it can also be used together with other common common diamines and/or acid dianhydride, the purpose of which is to regulate polymerization The performance of the material to obtain a resin film with better performance.
  • the esterifying agent is not particularly limited, and can be synthesized by a known method unless otherwise specified. Specific examples can be cited as:
  • esterifying agent is preferably selected from the compound of following structure:
  • the solvent used in the polymerization process is not particularly limited as long as it can dissolve acid dianhydrides and diamines as raw material monomers.
  • the second step is the preparation of the varnish.
  • the obtained target polymer is added to the solvent to dissolve, and then (b) thermal crosslinking agent and (c) photosensitive agent are added to the solution system; according to other functional requirements, it can also be Add some other additives, such as adding phenolic hydroxyl compounds to improve alkali solubility, etc., to finally obtain a varnish, which is also called a resin composition.
  • the content is preferably 5-55%, more preferably 6-35%, still more preferably 7-25%, and still more preferably 8-15%.
  • the viscosity of the resin composition solution ranges from 0.1 to 12000 cP, more preferably from 0.5 to 10000 cP, and still more preferably from 1 to 8000 cP.
  • the resin film of the present invention can be prepared from the above resin composition. Specifically, the resin composition can be coated on a substrate, dried, exposed, developed, heat-treated and cured to obtain a resin film with a fixed pattern, which is called a photosensitive resin film. Ordinary resin films can be directly obtained without exposing and developing processes. If the ordinary resin films are further laminated, a protective film can be formed.
  • silicon wafers, ceramics, gallium arsenide, organic circuit boards, inorganic circuit boards, and substrates obtained by arranging circuit constituent materials on these substrates can be used, but are not limited thereto.
  • the coating method may include a spin coating method, a slit coating method, a dip coating method, a spray coating method, a printing method, etc.; preferably a slit coating method.
  • the drying method can be one or more combinations of oven, heating plate or infrared method, the heating temperature is preferably 50°C-180°C, and the heating time is preferably longer than 30 seconds.
  • the exposure method is to apply a mask having a desired pattern on the dried resin composition, and then irradiate chemical rays to perform exposure.
  • chemical rays used for exposure there are ultraviolet rays, visible rays, electron rays, X-rays, etc., and the present invention preferably uses i-rays (365nm), h-rays (405nm), and g-rays (436nm) of mercury lamps.
  • the exposed portion is removed with a developer after exposure. After image development, a photosensitive resin film can be obtained by heating and hardening.
  • a generally known developer can be used as the developer, and a generally known method can also be used as the developing method.
  • the heat treatment curing method can be one and/or a combination of methods that can use ovens, heating plates, and infrared rays; from the perspective of planarization, the heat treatment stage is divided into the first stage and the second stage; in the first stage When curing by heat treatment, the curing temperature is 120-180°C, and the curing time is 2 minutes to 4 hours; in this stage of heat treatment and curing, the thermal crosslinking agent (b1) aromatic ester thermal crosslinking agent starts the main crosslinking reaction; Through the first stage of heat treatment and curing, the resin film can be pre-crosslinked to a controllable degree to reduce the deformation of the resin film due to the crosslinking reaction; then, in the second stage of heat treatment and curing, the curing temperature is 180-400°C , the curing time is 2 minutes to 4 hours; in this heat treatment curing stage, the thermal crosslinking agent (b2) containing unsaturated bond type thermal crosslinking agent starts the main crosslinking reaction; through the second stage of heat treatment curing,
  • the highest temperature is preferably below 380°C, more preferably below 350°C; also preferably, in the temperature rising program, preferably multi-stage gentle temperature rise .
  • the resin film of the present invention includes photosensitive resin films, ordinary resin films, and protective films, and can be applied not only to organic EL display devices but also to electronic components such as semiconductor devices and multilayer wiring boards.
  • the thickness of the resin film is preferably 0.4-25 ⁇ m, more preferably 1.0-18 ⁇ m, even more preferably 1.5-12 ⁇ m.
  • the present invention also provides a display device; specifically, it comprises a common resin film and/or a photosensitive resin film and/or a protective film obtained from the resin composition involved in the present invention, which can be used to have a drive circuit on a substrate , a planarization layer, a first electrode, an insulating layer, a light-emitting layer, and a planarization layer and/or an insulating layer in an organic EL display device of a second electrode.
  • a display device specifically, it comprises a common resin film and/or a photosensitive resin film and/or a protective film obtained from the resin composition involved in the present invention, which can be used to have a drive circuit on a substrate , a planarization layer, a first electrode, an insulating layer, a light-emitting layer, and a planarization layer and/or an insulating layer in an organic EL display device of a second electrode.
  • the display device of the present invention can realize bending and folding in a suitable manner. For example, it can be bent at the central part of the photosensitive device, or it can be bent at the end of the photosensitive device; according to the specific application and basic configuration, it can be bent multiple times in a specific part of the display device and maintain long-term effective display characteristics.
  • Compound 8 Thermal crosslinking agent (b1)-1(4,4′,4′′-(ethane-1,1,1-triyl)tris(2,6-bis(methoxymethyl)phenol) , CAS number: 672926-26-0)
  • thermal crosslinking agent (b2)-1 polydipentaerythritol hexaacrylate, CAS number: 29570-58-9)
  • Compound 15 Capping Agent 1 (MAP, CAS No.: 591-27-5)
  • Diamine 1 N,N′-((perfluoropropane-2,2-diyl)bis(6-hydroxy-3,1-phenylene)bis(3-aminobenzamide)
  • Step 1 Add 22g (0.06mol) of 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane, 20.91g (0.36mol) of propylene oxide and 120mL of acetone into a 1L reaction flask, Stir at low temperature until completely dissolved, and cool down the reaction system to -15°C. Then, 120 ml of a solution of 24.49 g (0.132 mol) of m-nitrobenzoyl chloride in acetone was added thereto, and after the dropwise addition was completed, it was kept stirring at -15° C. for 5 hours, and then naturally rose to room temperature. The resulting reaction solution was filtered under reduced pressure to obtain an off-white solid, which was dried in a vacuum oven at 60° C. for 20 hours.
  • Step 2 20g (0.03mol) of off-white solid obtained, 2.58g of 5% palladium carbon and 170mL of ethylene glycol methyl ether are added in a 500mL autoclave, and hydrogen is replaced, pressurized with hydrogen, so that the internal pressure of the kettle reaches 10kgf/cm 2 , stirred at 35°C for 2 hours. Then, the pressure was slowly released, and the reaction solution was filtered under reduced pressure to obtain a transparent solution.
  • diamine 1 namely N,N'-((perfluoropropane-2, 2-diyl)bis(6-hydroxy-3,1-phenylene)bis(3-aminobenzamide).
  • Step 1 Add 22g (0.06mol) of 2,2-bis(3-amino-5-hydroxyphenyl)hexafluoropropane, 20.91g (0.36mol) of propylene oxide and 120ml of acetone into a 1L reaction flask, Stir at low temperature until completely dissolved, and cool down the reaction system to -15°C. Then, a solution of 24.49 g (0.132 mol) of 3-nitrobenzoyl chloride in acetone (120 ml) was slowly added dropwise thereto. After the dropwise addition, the mixture was kept stirring at -15° C. for 5 hours, and then naturally rose to room temperature. The resulting reaction solution was filtered under reduced pressure to obtain an off-white solid, which was dried in a vacuum oven at 60° C. for 20 hours.
  • Step 2 20g (0.03mol) of the off-white solid obtained, 2.58g of 5% palladium carbon and 170ml ethylene glycol methyl ether are added in a 500ml autoclave, and the hydrogen is replaced, pressurized with hydrogen, and the pressure in the kettle reaches 10kgf/cm2, stirred at 35°C for 2 hours. Then, the pressure was slowly released, and the reaction solution was filtered under reduced pressure to obtain a transparent solution.
  • Step 1 Add 22.1g (0.06mol) of bis(3-trifluoromethyl-4-hydroxyl-5amino)phenyl ether, 20.91g (0.36mol) of propylene oxide and 120ml of acetone to the 1L reaction flask, Stir at low temperature until completely dissolved, and cool down the reaction system to -15°C. Then, a solution of 24.49 g (0.132 mol) of 3-nitrobenzoyl chloride in acetone (120 ml) was slowly added dropwise thereto. After the dropwise addition, the mixture was kept stirring at -15° C. for 5 hours, and then naturally rose to room temperature. The resulting reaction solution was filtered under reduced pressure to obtain an off-white solid, which was dried in a vacuum oven at 60° C. for 20 hours.
  • Step 2 20g (0.03mol) of off-white solid obtained, 2.58g of 5% palladium carbon and 170ml ethylene glycol methyl ether are added in a 500ml autoclave, and hydrogen is replaced, pressurized with hydrogen, and the pressure in the kettle reaches 10kgf/cm2, stirred at 35°C for 2 hours. Then, the pressure was slowly released, and the reaction solution was filtered under reduced pressure to obtain a transparent solution.
  • Step 1 Into a 1L reaction flask, add 15.5g (0.06mol) of 2,2-bis(3-amino-4-hydroxyphenyl)-dimethylpropane, 20.91g (0.36mol) of propylene oxide and 140ml Acetone was stirred at room temperature until it was completely dissolved, and the temperature of the reaction system was lowered to -15°C. Then, a solution of 24.49 g (0.132 mol) of m-nitrobenzoyl chloride in 140 ml of acetone was slowly added dropwise thereto. After the dropwise addition, the mixture was kept stirring at -15° C. for 5 hours, and then naturally rose to room temperature. The obtained reaction solution was filtered under reduced pressure to obtain a white solid, which was dried in a vacuum oven at 60° C. for 20 hours.
  • Step 2 14.9g (0.03mol) of the white solid obtained, 2.58g of 5% palladium carbon and 170ml ethylene glycol methyl ether are added in a 500ml autoclave, and the hydrogen is replaced, pressurized with hydrogen, and the internal pressure of the kettle reaches 10kgf/cm2, stirred at 40°C for 2 hours. Then, the pressure was slowly released, and the reaction solution was filtered under reduced pressure to obtain a transparent solution.
  • Sensitizer 1 naphthoquinone diazide compound
  • esterifying agent N,N-dimethylformamide diethyl acetal was added, stirred for 3 hours, poured into 2 L of water, filtered, and washed 3 times. It dried at 50 degreeC for 72 hours using the vacuum dryer, and obtained resin (a-1).
  • esterifying agent N,N-dimethylformamide diethyl acetal stir for 3 hours, put into It was filtered in 2 L of water, washed 3 times, and dried at 50° C. for 72 hours using a vacuum dryer to obtain resin (a-2).
  • N,N'-((perfluoropropane-2,2-diyl)bis(6-hydroxyl-3,1-phenylene)bis(3- Aminobenzamide) (diamine 1) 0.085mol, SiDA 0.005mol and MAP (capping agent 1) 0.05mol are dissolved in NMP 500mL, after stirring and dissolving, carry out 60 °C oil bath heating. Phenyl-bis trimellitic acid dianhydride (acid dianhydride 3) 0.1mol, react for 2 hours.
  • esterification agent N,N-dimethylformamide diethyl acetal 5.0mol, stir for 3 hours , poured into 2 L of water, filtered, washed 3 times, and dried at 50° C. for 72 hours using a vacuum dryer to obtain resin (a-4).
  • Amide) (diamine 2) 0.085mol, SiDA 0.005mol and capping agent MAP (capping agent 1) 0.05mol were dissolved in NMP 500mL, stirred and dissolved, and heated in an oil bath at 60°C.
  • esterification agent N,N-dimethylformamide diethyl acetal 5.0 mol, stirred for 3 hours, poured into 2 L of water, filtered, washed 3 times, and dried at 50° C. for 72 hours using a vacuum dryer to obtain resin (a-5).
  • esterifying agent N,N-dimethylformamide diethyl acetal was added, stirred for 3 hours, poured into 2 L of water, filtered, and washed 3 times. It dried at 50 degreeC for 72 hours using the vacuum dryer, and obtained resin (a-7).
  • alkali-soluble resin (a-2) 10g obtained in the above synthesis example 7 join in the GBL solvent 150g, then poly dipentaerythritol hexaacrylate (thermal crosslinking agent (b2)-1) 2.11g, and quinone di 3 g of azide photosensitive agent was stirred for 1 hour to obtain slurry 14. The resulting slurry was evaluated for its effect, and the results are shown in Table 3.
  • the molecular weight of the resin composition in the examples can be tested by ordinary GPC, the viscosity can be tested by an E-type viscometer, and the film thickness can be tested by an ordinary film thickness meter; the evaluation of the resin film formed by the resin composition is carried out according to the following method.
  • the present invention uses thermomechanical analysis (Thermal mechanical analysis, TMA) to test the glass transition temperature Tg (equipment model of Netzsch: DSC3500); in addition, dynamic mechanical analysis (Dynamic mechanical analysis, DMA) can also be used ), Differential scanning calorimeter (DSC) and other methods for testing.
  • TMA Thermal mechanical analysis
  • DMA Dynamic mechanical analysis
  • DSC Differential scanning calorimeter
  • the specific method is as follows: spin-coat, dry, expose, develop, and heat-treat the prepared varnish to obtain a photosensitive resin film with a film thickness of 5 ⁇ m ⁇ 0.1 ⁇ m; then prepare the photosensitive resin film into a thermal
  • T g value can be obtained.
  • T g represents the movement performance of molecular chain fragments.
  • T g ⁇ 335°C the degree of thermal crosslinking is good, rated as ⁇ ; when T g is 325 ⁇ 335°C, the degree of thermal crosslinking is good, rated as ⁇ ; when T g ⁇ 325°C, the degree of thermal crosslinking is poor, It was rated as x.
  • the present invention uses a CD-SEM (equipment of Hitachi-High technology company, model: SU3500) to test the flatness index.
  • the specific method is as follows: Spin coating and pre-baking the prepared varnish so that the film thickness is 4 ⁇ m ⁇ 0.1 ⁇ m; then after the exposure and development process, test the film thickness h 1 , and then test the film thickness after heat treatment and curing process.
  • the film thickness is h 2 ; h 1 and h 2 are tested using CD-SEM. Calculate the flatness index (%) according to the following formula (1).
  • the flatness index ⁇ 25% it is evaluated as excellent and marked as ⁇ ; when the flatness index is 25% to 35%, it is evaluated as good and marked as ⁇ ; when the flatness index ⁇ 35%, it is evaluated as poor and marked as ⁇ .
  • the present invention uses a tensile testing machine (equipment model of Tensilon Company: RTG1210) to test the mechanical properties of the film.
  • the specific method is as follows: Spin-coat, dry, and heat-treat the prepared varnish to obtain an ordinary resin film with a film thickness of 5 ⁇ m ⁇ 0.1 ⁇ m; then prepare the ordinary resin film into a spline for stretching Experiments were performed to obtain data on tensile strength, elongation and Young's modulus.
  • Tensile strength represents the degree of easy breakage when stress deformation occurs, so the greater the tensile strength, the better; elongation represents the degree of molecular chain elongation and movement when stress deformation occurs.
  • the elongation is only conducive to bending recovery within a certain range; Young's modulus Quantity, which characterizes the rigidity of the material, that is, when the rigidity is too large, it is difficult to undergo stress deformation, and when the rigidity is too small, plastic deformation is prone to occur, and it is difficult to recover after deformation, so the Young's modulus is within a certain range.
  • the quality of the index also reflects the quality of the bending recovery performance.
  • the tensile strength is ⁇ 120MPa
  • the range of elongation is 5-28%
  • the range of Young's modulus is 0.5-9.0GPa
  • the flexibility index is excellent, rated as ⁇ ; when the range of tensile strength is 90-120MPa, the range of elongation is 0.5-9.0GPa.
  • the flexibility index is good and rated as ⁇ ; when the tensile strength is ⁇ 90MPa, the elongation is ⁇ 28% or the elongation is ⁇ 2%, the Young's modulus When ⁇ 9.0GPa or Young’s modulus ⁇ 0.5GPa, the flexibility index is average, rated as ⁇ ; when the tensile strength ⁇ 90MPa, the flexibility index is poor, rated as ⁇ .
  • Table 3 shows the evaluation results of Examples 1 to 11 and Comparative Examples 1 to 3.
  • Examples 2-4 and Example 6 have excellent thermal crosslinking degree grades, flatness index grades and flexibility indexes. That is to say, the resin compositions in Examples 2 to 4 and Example 6 above can obtain better flatness and bending recovery performance, which is ideal.
  • Examples 1, 5, and 7 to 9 have thermal crosslinking grades that are excellent, flatness index grades that are excellent or good, and flexibility index evaluations that are good, and are slightly worse than ideal implementations in terms of flatness index grade performance and flexibility index.
  • Examples 10 and 11 have good thermal crosslinking grades, excellent flatness index grades, and excellent flexibility index evaluations. The thermal crosslinking degree grades are worse than those of the ideal Examples 1 to 9, but they remain superior. the flexibility index. Therefore, compared with embodiments 2-4 and embodiment 6, embodiments 1, 5, 7-11 are less ideal.
  • Comparative examples 1 to 3 are rated as good or poor in thermal crosslinking degree, good or poor in planar elasticity index, and average in flexibility index. Compared with Examples 1 to 11, the overall performance is poor, which is Not ideal.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Photolithography (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种树脂组合物,至少含有(a)、(b)和(c)三种组分;其中(a)组分是具有下述式(1)所表示的结构的聚合物, (b)组分包含热交联剂(b1)和热交联剂(b2),(c)组分是感光剂,其中,R 1、R 2独立地选自至少含有1种除氢以外的其他原子;R 3、R 4独立地选自氢原子或碳原子为1~20的有机基团,n选自1~10的整数。树脂组合物可以得到更好的平坦性和弯曲回复性能。

Description

树脂组合物、树脂膜及显示器件 技术领域
本发明涉及一种树脂组合物,以及由该树脂组合物形成的树脂膜,还包括由树脂组合物和/或树脂膜形成的显示器件。
背景技术
近年来,有机电致发光(以下称为“有机EL”)显示装置被广泛应用于许多电子设备中。一般来说,有机EL显示装置在基板上具有驱动电路、平坦化层、第一电极、绝缘层、发光层和第二电极,通过在相对设置的第一电极和第二电极之间施加电压,或者通过电流流动而发光。其中,作为平坦化层用材料及绝缘层用材料,通常使用能够通过紫外线照射进行图案化的感光性树脂组合物。
伴随着电子设备的小型化、高功能化、高集成化,对于这些电子设备中使用的电子元件的性能需求也在不断提高。聚酰亚胺、聚苯并噁唑、聚酰胺酰亚胺等树脂由于具有耐热性、电绝缘性等方面优良的性能,含有这类树脂的感光性树脂组合物适合作为有机EL显示装置的绝缘层或平坦化层用材料。
另一方面,在包括弯曲部分的柔性有机EL显示装置中,要求绝缘层或平坦化层用材料具有较好的平坦性和弯折性能,因此,提升感光性树脂组合物的平坦性和弯折性能也具有重要的意义。
目前,已知可以在聚酰亚胺前驱体中引入酚羟基化合物,以解决短时间内不能显影的问题,进而提高微细图案的分辨率,但是在固化过程中存在化合物飞散、发生热收缩等问题(专利文献1)。另外,已知在感光性树脂前体组合物中引入热交联剂,可以减小热缩率,但是得到的感光性树脂前体组合物存在抗弯性能差、容易形成印折痕等问题(专利文献2)。
现有技术文献
专利文献
专利文献1:CN1246389C
专利文献2:CN100362429C
发明内容
将上述专利文献中记载的感光性树脂前体组合物用于有机EL显示装置中时,会存在长期可靠性不足、柔性差、平坦性差等诸多问题。因此,本发明的技术方案主要旨在解决上述提到的问题。
根据本发明的一种实施方式,可以提供一种树脂组合物,至少含有(a)、(b)和(c)三种组分;其中,所述(a)组分是具有下述式(1)所表示的结构的聚合物,所述(b)组分包含热交联剂(b1)和热交联剂(b2),所述(c)组分是感光剂,
Figure PCTCN2022086798-appb-000001
其中,R 1、R 2独立地选自至少含有1种除氢以外的其他原子;R 3、R 4独立地选自氢原子或碳原子为1~20的有机基团,n选自1~10的整数。
在本发明的另一种实施方式中,其中,所述热交联剂(b1)为芳香酯类热交联剂,所述热交联剂(b2)为含有不饱和键的热交联剂。
在本发明的另一种实施方式中,其中,所述热交联剂(b1)选自热交联温度在120~180℃的低温热交联化合物,更具体地选自下述式(2)所表示的结构,
Figure PCTCN2022086798-appb-000002
其中,R 8选自含有2~30碳原子的有机基团;R 9选自含有1~10个碳原子的有机基团;s选自1~4的整数,p选自1~16的整数,且s+p>2。
在本发明的另一种实施方式中,其中,所述热交联剂(b2)选自热交联温度在180~400℃的热交联化合物,更具体地选自下述式(3)和/或式(4)所表示的结构中的一种或多种,
Figure PCTCN2022086798-appb-000003
Figure PCTCN2022086798-appb-000004
其中,R 6、R 7独立地选自至少含有2~30碳原子的有机基团;y、q独立地选自1~10的整数。
在本发明的另一种实施方式中,其中,所述式(3)所表示的结构为含有丙烯酸结构,更具体的选自下述式(5)所表示的结构中的一种或多种,
Figure PCTCN2022086798-appb-000005
其中,R 10选自含有2~25碳原子的有机基团,z选自1~10的整数。
在本发明的另一种实施方式中,其中,所述(a)组分是具有下述式(6)所表示的结构的聚合物,
Figure PCTCN2022086798-appb-000006
其中,R 1、R 2独立地选自至少含有1种氢以外的其他原子;R 3、R 4独立地选自氢原子或碳原子为1~20的有机基团,R 5选自卤素和/或卤代烃基和/或1~10碳原子的有机基团;n、m独立地选自1~10的整数。
在本发明的另一种实施方式中,还可以包含有聚酰胺、聚酰亚胺、聚酰亚胺前体、聚苯并噁唑、聚苯并噁唑前体、或他们的共聚物中的一种或多种。
在本发明的另一种实施方式中,其中,所述(c)组分的感光剂,为光酸产生剂。
在本发明的另一种实施方式中,其中,还含有酚羟基化合物。
根据本发明的另一种实施方式,可以提供一种树脂膜,由本发明的感光性树脂组合物制备而得。
根据本发明的另一种实施方式,可以提供一种显示器件,由本发明的树脂组合物制备而得,或包含有由本发明的树脂膜。
在本发明的另一种实施方式中,其中,还可以进一步包含有(a1)组分,所述(a1)组分含有硅氧烷结构的脂肪族基团;优选地,所述(a1)组分为含有式(7)所表示的结构,
Figure PCTCN2022086798-appb-000007
其中,R 11为至少含有1~20个Si-O重复单元的有机基团,还含有脂肪族基团。
在本发明的另一种实施方式中,其中,R 11选自以下所表示的结构中的一种或多种:
Figure PCTCN2022086798-appb-000008
在本发明的另一种实施方式中,其中,所述(a1)组分占所述(a)组分的重量比为0.01~10wt%。
在本发明的另一种实施方式中,其中,包含R 1的残基可以选自以下所表示的结构中的一种或多种:
-O-、-SO 2-、-NH-、-CO-、-Si-O-、
Figure PCTCN2022086798-appb-000009
Figure PCTCN2022086798-appb-000010
Figure PCTCN2022086798-appb-000011
在本发明的另一种实施方式中,其中,包含R 1的残基可以进一步选自以下所表示的结构中的一种或多种:
-O-、-SO 2-、-NH-、-CO-、-Si-O-、
Figure PCTCN2022086798-appb-000012
Figure PCTCN2022086798-appb-000013
在本发明的另一种实施方式中,其中,包含R 2的残基可以选自有以下所表示的结构中的一种或多种:
Figure PCTCN2022086798-appb-000014
从图形精细化程度考虑,包含R 2的残基优选具有以下所表示的结构:
Figure PCTCN2022086798-appb-000015
在本发明的另一种实施方式中,其中,所述热交联剂(b1)可以具体地选自下述化合物中的一种或多种:
Figure PCTCN2022086798-appb-000016
Figure PCTCN2022086798-appb-000017
在本发明的另一种实施方式中,其中,所述热交联剂(b1)可以更具体地选自下述化合物中的一种或多种:
Figure PCTCN2022086798-appb-000018
在本发明的另一种实施方式中,其中,所述热交联剂(b2)可以具体选自下述化合物中的一种或多种:
Figure PCTCN2022086798-appb-000019
Figure PCTCN2022086798-appb-000020
Figure PCTCN2022086798-appb-000021
本发明人深入研究后发现,通过使用本发明的树脂组合物,能够获得更好的平坦性和弯曲回复性能,获得良好发光效率及柔性性能的有机EL显示器件。
具体实施方式
为了使本发明的目的及优点更加清楚明白,下面将结合本发明的实施例,对本发明的技术方案进一步清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,是帮助本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。基于本发明中的实施例,对本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护的范围。
<树脂组合物>
本发明的树脂组合物至少可以含有(a)、(b)、(c)三种组分,其中(a)组分为具有式(1)所表示的结构的聚合物、(b)组分包含热交联剂(b1)和热交联剂(b2),(c)组分为感光剂。
所述(a)组分为具有式(1)所表示的结构的聚合物,含有羟基等具有碱可溶性的基团,可称之为碱溶性聚合物。
Figure PCTCN2022086798-appb-000022
其中,R 1、R 2独立地选自至少含有1种除氢以外的其他原子;R 3、R 4独立地选自氢原子或碳原子为1~20的有机基团,n选自1~10的整数。
对于R 1、R 2中含有的除氢以外的其他原子,独立地优选自O、S、N、P、B、Si1~Si20、C1~30中的一种或多种;从聚合物的柔性方面考虑,R 1进一步优选自不含有芳香烃基团,而含有O、S、N、C原子中的一种或多种的基团。从聚合物的耐热性方面考虑,R 2进一步优选自含有芳香基和/或杂环芳香基的基团,更进一步优选R 2中的芳香基和/或杂环芳香基在聚合物主链上;从聚合物的溶解性方面考虑,R 2再进一步优选羟基基团直接与芳香基和/或杂环芳香基相链接;所述(a)聚合物还可以包含有式(6)所表示结构的聚合物,其中,R 2上还可以连接有R 5;其中,R 5可以选自卤素和/或卤代烃基和/或1~10碳原子的有机基团;从形成的图形精细化程度考虑,R 5优选自具有吸电子基团的卤素和/或卤代烃基基团;n、m独立地选自1~10的整数。
Figure PCTCN2022086798-appb-000023
本发明所提供的式(1)和/或式(6)所表示的结构的聚合物可以以例如酸二酐和二胺为原料聚合来得到,例如可举出使酸二酐与二胺化合物在溶剂中反应的方法。
作为(a)聚合物中使用包含有R 1的酸二酐的残基,可以具体地列举为以下所表示的结构:
-O-、-SO 2-、-NH-、-CO-、-Si-O-、
Figure PCTCN2022086798-appb-000024
Figure PCTCN2022086798-appb-000025
从获得聚合物的柔性方面考虑,R 1优选具有以下空间阻较小的基团结构:
-O-、-SO 2-、-NH-、-CO-、-Si-O-、
Figure PCTCN2022086798-appb-000026
Figure PCTCN2022086798-appb-000027
作为包含有R 1的酸二酐,可具体地列举为以下所表示的化合物:
Figure PCTCN2022086798-appb-000028
作为(a)聚合物中使用包含有R 2的二胺的残基,可以具体地列举为以下所表示的结构:
Figure PCTCN2022086798-appb-000029
从图形精细化程度考虑,包含的R 2结构的二胺残基优选具有以下所表示的结构:
Figure PCTCN2022086798-appb-000030
作为包含有R 2的二胺,可具体地列举为以下所表示的化合物:
Figure PCTCN2022086798-appb-000031
Figure PCTCN2022086798-appb-000032
在本发明的另一种实施方式中,从控制聚合物的分子量及其分布方面考虑,优选酸二酐与二胺的摩尔比为35:65~65:35,进一步优选40:60~60:40,更进一步优选45:55~55:45。
在本发明的另一种实施方式中,树脂组合物中还可以包含有聚酰胺、聚酰亚胺、聚酰亚胺前体、聚苯并噁唑、聚苯并噁唑前体、或他们的共聚物中的一种或多种。
本发明中酸二酐和二胺可以单独使用或组合使用,如无特别说明,均可应用已知的方法合成。
另外,出于进一步增加树脂组合物柔性的目的,还可以在树脂组合物中引入包含硅氧烷结构的脂肪族基团的(a1)组分,其中,使用的包含硅氧烷结构的脂肪族基团的化合物没有特别限定;从添加后的分散性效果以及改善柔性效果方面考虑,优选自含有式(7)所表示的结构的:
Figure PCTCN2022086798-appb-000033
其中,R 11为至少含有1~20个Si-O重复单元的有机基团;另外,R 11中还可以含有脂肪族基团,脂肪族基团与硅氧烷共聚相连;优选脂肪族基团为碳原子数为C1~C30。从聚合物的翘曲性能考虑,R 11的重量分子量范围在10~5000。
具体地,R 11可列举为以下所表示的结构中的一种或多种:
Figure PCTCN2022086798-appb-000034
其中,R 11优选地具有
Figure PCTCN2022086798-appb-000035
Figure PCTCN2022086798-appb-000036
所表示的结构。
(a1)组分中包含式(7)所表示的结构可以来源于末端为二胺的化合物,具体地可以列举为以下化合物:
Figure PCTCN2022086798-appb-000037
Figure PCTCN2022086798-appb-000038
(a1)组分中包含式(7)所表示的结构可以来源于末端为二胺的化合物,其添加方法也没有特别的限制,可以直接混入(a)聚合物中,也可以通过聚合反应引入到(a)聚合物的主链和/或支链中,即作为一种二胺的原料参与到聚合反应中,从而引入到(a)聚合物的大分子链中。
出于进一步增加树脂组合物的柔性的目的,优选地,包含硅氧烷结构的脂肪族基团的化合物的添加量占总聚合物的重量比为0.01~10wt%。
(b)热交联剂
本发明的树脂组合物含有的(b)组分为(b1)芳香酯类热交联剂和(b2)含有不饱和键类的热交联剂。通常交联剂能够增强由树脂组合物形成的固化膜的耐热性和耐化学药品性;在本发明中所要指出的是,使用热交联剂来提高固化膜的平坦性能,以达到制备器件时获得更优的性能以及更好的良率。
本发明中使用热交联剂(b1)的芳香酯类热交联剂,优选自热交联温度在120~180℃的低温热交联化合物,具体地,可以是如下述式(2)所表示的化合物。
Figure PCTCN2022086798-appb-000039
式(2)中,R 8选自含有2~30碳原子的有机基团;R 9选自含有1~10个碳原子的有机基团;s选自1~4的整数,p选自1~16的整数,且s+p>2。为了达到更好的热交联效果,可以对式(2)作进一步优选限定,优选地,s为2~4的整数;优选地p为2~6的整 数;优选地,R 8为含有芳香基、杂环芳香基结构。另外,式(2)所提及的酚羟基,可以被酯化保护,不影响热交联的性能,也属于本发明的一部分。
具体地,热交联剂(b1)的芳香酯类热交联剂可以列举为以下所示的化合物中的一种或多种:
Figure PCTCN2022086798-appb-000040
其中,热交联剂(b1)的芳香酯类热交联剂优选地选自以下结构的化合物中的一种或多种:
Figure PCTCN2022086798-appb-000041
本发明中使用热交联剂(b2)的不饱和键类热交联剂,优选自热交联温度在180~400℃的热交联化合物,具体地,可以选自下述式(3)和/或式(4)所表示的化合物中的一种或多种:
Figure PCTCN2022086798-appb-000042
Figure PCTCN2022086798-appb-000043
其中,R 6、R 7独立地选自含有2~30碳原子的有机基团;y、q独立地选自1~10的整数。其中,R 6中,除碳原子以外,还可以含有其他杂原子,例如O、N等杂原子;优选地,式(3)所表示的化合物含有丙烯酸结构,具体地表示为下述式(5)所表示的化合物中的一种或多种:
Figure PCTCN2022086798-appb-000044
其中,R 10选自含有2~25碳原子的有机基团,z选自1~10的整数。从热交联效果考虑,z进一步优选自2~8的整数;另外,R 10中可以含有芳香基结构,也可以不含有芳香基结构,均具有良好的热交联性能。
从热交联效果考虑,式(4)所表示的化合物中,q优选自1~6的整数,R 7优选自含有芳香环结构。
具体地,热交联剂(b2)含有不饱和键类的热交联剂中,式(3)和/或式(4)所表示的化合物可以具体地列举为以下化合物中的一种或多种:
Figure PCTCN2022086798-appb-000045
Figure PCTCN2022086798-appb-000046
Figure PCTCN2022086798-appb-000047
本发明对于热交联剂的合成方法没有特别限定,如无特别说明,可应用已知的方法合成。
热交联剂的含量没有特别限定,相对于树脂组合物中(a)组分总量100质量份而言,热交联剂优选为10~40质量份,更优选地为12-35质量份,进一步优选地为14-30质量份,特别优选地为16~26质量份。(b1)与(b2)的质量份之比优选地为25:1~5:1,更优选地为22:1~8:1,进一步优选地为20:1~10:1。
(c)感光剂
本发明的树脂组合物所含有的(c)感光剂,没有特别的限定。感光剂可以使用通过吸收特定波长并分解而产生自由基的光聚合引发剂和/或光酸产生剂。在本发明中,优选地为光酸产生剂。
作为树脂组合物感光剂的光酸产生剂,可列举出醌二叠氮化合物、锍盐、鏻盐、重氮鎓盐、碘鎓盐等。从有机EL装置的长期可靠性等方面出发,优选含有醌二叠氮化合物的光酸产生剂。
作为醌二叠氮化合物,可列举出二叠氮基醌的磺酸以酯方式键合于聚羟基化合物而得到的化合物;二叠氮基醌的磺酸以磺酰胺方式键合于多胺化合物而得到的化合物;二叠氮基醌的磺酸以酯方式及/或磺酰胺方式键合于聚羟基多胺化合物而得到的化合物等。这些聚羟基化合物、聚氨基化合物、聚羟基聚氨基化合物的全部的官能团可以不完全被二叠氮基醌取代,但优选平均地官能团全体的40摩尔%以上被二叠氮基醌取代。通过含有这样的醌二叠氮化合物,从而使醌二叠氮化合物对碱性水溶液的亲和性降低,组合物曝光部与未曝光部的溶解速度之比增大,能够以高的分辨率得到图案,并能够得到对作为通常的紫外线的汞灯的i射线(波长365nm)、h射线(波长405nm)、g射线(波长436nm)具有感光性的正型感光性树脂前驱体组合物。
本发明对作为感光剂的醌二叠氮化合物的种类及合成方法没有特别限定,如无特别说明,可采用已知的醌二叠氮化合物及合成方法。醌二叠氮化合物可以单独使用,也可以多种组合使用,由此,能够进一步增大曝光部与未曝光部的溶解速度之比,能够得到高敏感度的感光性树脂前驱体组合物。
感光剂的含量没有特别限定,相对于树脂组合物中(a)组分总量100质量份而言,优选地为10~50质量份,更优选地为20~40质量份。通过将感光剂的含量设置在该范围,能够实现高敏感度化,也可以根据需要进一步含有敏化剂等。
本发明的树脂组合物除了(a)聚合物、(b)热交联剂和(c)感光剂以外,还可以含有下述添加剂。
(d)溶剂
本发明的树脂组合物还可以包括有机溶剂。通过添加溶剂,可以更好地将(a)、(b)、(c)三种组分充分分散均匀,并将各成分溶解于溶剂中,并制成清漆状,进一步提高树脂组合物的涂布性等性能。
作为树脂组合物的有机溶剂,没有特别限定,可列举出醚类、乙酸酯类、酯类、酮类、芳香族烃类、酰胺类或醇类的化合物。更具体而言,可列举出γ-丁内酯、乙二醇单甲醚、乙二醇单乙醚、乙二醇单正丙醚、乙二醇单正丁醚、二甘醇单甲醚、二甘醇、单乙醚、二甘醇单正丙醚、二甘醇单正丁醚、三甘醇单甲醚、三甘醇单乙醚、丙二醇单甲醚、丙二醇单乙醚、丙二醇单正丙醚醚、丙二醇单正丁醚、二丙二醇单甲醚、二丙二醇单乙醚、二丙二醇单正丙醚、二丙二醇单正丁醚、三丙二醇单甲醚、三丙烯醚、四氢呋喃、二恶烷、丙酮、甲乙酮、二异丁基酮、环己酮、2-庚酮、3-庚酮、双丙酮醇、乙二醇单甲醚乙酸酯、乙二醇单乙醚乙酸酯、二乙二醇单甲醚乙酸酯、二乙二醇单乙醚乙酸酯、丙二醇单甲醚乙酸酯、丙二醇单乙醚乙酸酯、乳酸乙酯、2-羟基-2-甲基丙酸乙酯、3-甲氧基丙酸甲酯、3-甲氧基丙酸乙酯、3-乙氧基丙酸甲酯、3-乙氧基丙酸乙酯、乙氧基乙酸乙酯、羟乙酸乙酯、2-羟基-3-甲基丁酸甲酯、3-甲氧基丁基乙酸酯、3-甲基-3-乙酸甲氧基丁酯、丙酸3-甲基-3-甲氧基丁酯、乙酸乙酯、乙酸正丙酯、乙酸异丙酯、乙酸正丁酯、乙酸异丁酯、甲酸正戊酯、乙酸异戊酯戊酸丙酯正丁酯、丁酸乙酯、丁酸正丙酯、丁酸酯异丁酸、丁酸正丁酯、丙酮酸甲酯、丙酮酸乙酯、丙酮酸正丙酯、乙酰乙酸甲酯、乙酰乙酸乙酯、2-氧代丁酸乙酯、芳香族化合物(如甲苯和/或二甲苯)、酰胺(例如烃基,N-甲基吡咯烷酮,N,N-二甲基甲酰胺和N,N-二甲基乙酰胺中的一种或几种)。可以含有其中的一种或几种。
溶剂的含量没有特别限定,为了使组合物溶解,相对于除溶剂外的树脂组合物中(a)组分总量100质量份而言,优选为100~2000质量份,更优选地为300~1700质量份,进一步优选地为400~1200质量份,特别优选地为600~1100质量份。还可以根据涂布工艺的需要,能过调聚合物的含量制成粘度不同的树脂组合物溶液,可以更好地获得性能优 异的树脂膜;优选地,树脂组合物溶液的粘度范围为0.1~12000cP,进一步优选0.5~10000cP,更进一步优选1~8000cP。
(e)封端剂
对于树脂组合物而言,为了将分子量调节至优选范围,可以利用封端剂将两末端封端。作为与酸二酐化合物反应的封端剂,可举出单胺、一元醇等。另外,作为与二胺化合物反应的封端剂,可举出酸酐、单羧酸、单酰氯化合物(monoacid chloride compounds)、单活性酯化合物、二碳酸酯化合物、乙烯醚化合物等。从封端效果以及耐热性考虑,优选地,封端剂中含有芳香基官能团。另外,通过获得其他良好的效果,还可以在封端剂导入各种功能性有机基团作为末端基团存在。例如,引入羟基、羧基等碱溶性官能团,可提高其碱可溶性能;引入不饱和键,可提高其热交联性能等。进一步优选所导入的各种功能性有机基团与封端剂中的芳香环相连接,以获得更优的性能。
封端剂的含量没有特别限定,相对于树脂组合物中(a)组分总量100质量份而言,优选地为0.1~20质量份,更优选地为0.8~15质量份,更进一步优选地为1.0~10。通过将封端剂的含量设置在该范围,能够获得良好的封端效果,同时也不会有过多的有机质残留于树脂组合物中。
(f)酚羟基化合物
作为本发明的树脂组合物的添加剂,还可以含有具有酚羟基的化合物。通过含有具有酚羟基的化合物,可以更好的提高聚合物的碱溶性能,从而能够缩短显影时间。详细地说明,通过含有酚羟基的化合物,得到的树脂组合物在曝光前基本不溶解于碱性显影液中,若曝光则容易地溶解于碱性显影液中,并且容易在短时间内进行显影,因此由显影导致的膜减损少。因此,可以获得更精细的凹凸图形。
作为这些酚羟基化合物,除上述提及的含有酚羟基的化合物的种类以外,还可以列举出Bis-Z、BisOC-Z、BisOPP-Z、BisP-CP、Bis26X-Z、BisOTPB-Z、BisOCHP-Z、BisOCR-CP、BisP-MZ、BisP-EZ、Bis26X-CP、BisP-PZ、BisP-IPZ、BisCR-IPZ、BisOCP-IPZ、BisOIPP-CP、Bis26X-IPZ、BisOTPB-CP、TekP-4HBPA、TrisP-HAP、TrisP-PA、BisOFP-Z、BisRS-2P、BisPG-26X、BisRS-3P、BisOC-OCHP、BisPG-26X、BisPC-OCHP、Bis26X-OCHP、BisPG-26X、BisOCHP-OC、Bis236T-OCHP、BisRS-26X、BIR-OC、BIP-PC、BIR-PC、BIR-PTBP、BIR-PCHP、BIP-BIOC-F、BIR-BIPC-F、TEP-BIP-A等;优选为Bis-Z、BisP-EZ、TekP-4HBPA、TrisP-HAP、TrisP-PA、BisOCHP-Z、BisP-MZ、BisP-PZ、BisP-IPZ、BisOCP-IPZ、BisP-CP、BisRS-2P、BisRS- 3P、BisP-OCHP、BisRS-26X、BIP-PC、BIR-PC、BIR-PTBP和BIR-BIPC-F。可以含有其中的一种或几种。本发明中,提及的其他带有酚羟基的结构或物质,也可以作为一种酚羟基化合物存在。
从酚羟基化合物的耐热性的观点考虑,优选为双酚类。酚羟基化合物的含量相对于树脂组合物总量100质量份而言,优选地为1~50质量份。由此,能够在维持高的耐热性的同时提高感光性树脂前驱体组合物的碱显影性。
本发明的树脂组合物中,还可以包括聚酰胺、聚酰亚胺、聚酰亚胺前体、聚苯并噁唑、聚苯并噁唑前体、或他们的共聚物中的至少一两种或更多种。
<树脂组合物的制备>
第一步为聚合物的合成,先将本发明所需要的二胺和酸二酐分别投入到溶剂中,并在-20~150℃的条件下,搅拌反应1~10小时,进行聚合反应,在反应中途加入封端剂,形成目标分子量的(a)聚合物。然后再将酯化剂加入到溶液体系中反应1分钟~3小时,最后将聚合物投入到水中,即得到目标聚合物。
从溶解均一性考虑,(a)聚合物的分子量范围优选为5000~500000,进一步优选为8000~350000,更进一步优选为10000~250000。
作为本发明的二胺和/或酸二酐,除上述提及的二胺和/或酸二酐以外,还可以配合其他普通常见二胺和/或酸二酐共同使用,其目的是调节聚合物的性能,以获得性能更优异的树脂膜。
作为酯化剂,没有特别限定,如无特别说明,可应用已知的方法合成。可以具体地列举例为:
Figure PCTCN2022086798-appb-000048
从酯化效果以及形成树脂膜的性能方面考虑,优选为分子量较小的酯化剂,以形成小分子量的酯化保护基团。其中,酯化剂优选地选自以下结构的化合物:
Figure PCTCN2022086798-appb-000049
作为聚合过程中所使用的溶剂,没有特别限定,只要能够溶解作为原料单体的酸二酐类和二胺类即可。具体而言,可列举出N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基-2-吡咯烷酮、1,3-二甲基-2-咪唑啉酮、N,N′-二甲基丙烯基脲、N,N-二甲基异丁酰胺、甲氧基-N,N-二甲基丙酰胺等酰胺类;γ-丁内酯、γ-戊内酯、δ-戊内酯、γ-己内酯、ε-己内酯、α-甲基-γ-丁内酯等环状酯类;碳酸亚乙酯、碳酸亚丙酯等碳酸酯类;三乙二醇等二醇类;间甲酚、对甲酚等酚类;苯乙酮、环丁砜、二甲基亚砜、四氢呋喃、二甲基亚砜、丙二醇单甲醚乙酸酯,乳酸乙酯等。
第二步为清漆的配制,先将所得目标聚合物加入到溶剂中溶解,然后再将(b)热交联剂、(c)感光剂加入到溶液体系中;根据其他功能性需求,还可以加入一些其他添加剂,例如加入酚羟基化合物以提高碱溶性等,最终得到清漆,也称之为一种树脂组合物。从清漆的稳定性考虑,优选地含量为5~55%,进一步优选6~35%,更进一步优选7~25%,再进一步优选8~15%。从涂布性能考虑,优选地,树脂组合物溶液的粘度范围为0.1~12000cP,进一步优选0.5~10000cP,更进一步优选1~8000cP。
<树脂膜>
本发明的树脂膜可由上述树脂组合物制备得到。具体而言,可以在基板上涂布树脂组合物,并干燥、曝光、显影、热处理固化,得到赋有固定图形的树脂膜,称之为感光性树脂膜。也可以不进行曝光、显影工序,而直接获得普通的树脂膜,若此普通的树脂膜再进一步层叠可形成保护膜。
作为基板,可以使用硅晶片、陶瓷类、砷化镓、有机系电路基板、无机系电路基板、及在这些基板上配置电路的构成材料而得到的基板等,但并不限定于这些。
涂布方法可以包括旋涂法、狭缝涂布法、浸涂法、喷涂法、印刷法等;优选为狭缝涂布法。
干燥的方法可以是采用烘箱、加热板或红外线方法中的一种或多种组合使用,加热温度优选为50℃~180℃,加热时间优选大于30秒。
曝光方法为,将干燥好的树脂组合物上赋盖具有所希望的图形的掩模,照射化学线进行曝光。作为曝光使用的化学线,有紫外线、可见光线、电子射线、X射线等,本发明优选使用水银灯的i线(365nm)、h线(405nm)、g线(436nm)。为了形成耐热性树脂的 图形,曝光后用显影液除去曝光部分。显影后,通过加热固化可以得到感光性树脂膜。显影液可用一般公知的显影液,显影方法也可用一般的公知方法。
热处理固化方法,可以是可使用烘箱、加热板、红外线中的一种和/或多种组合的方法;从平坦化程度方面考虑,热处理阶段分为第一阶段和第二阶段;在第一阶段的热处理固化时,固化温度为120~180℃,固化时间为2分钟~4小时;在这个热处理固化阶段,热交联剂(b1)芳香酯类热交联剂开始起主要的交联反应;通过第一阶段热处理固化,可以将树脂膜进行可控程度的预交联,减少树脂膜因交联反应而产生的形变;然后,在第二段的热处理固化时,固化温度为180~400℃,固化时间为2分钟~4小时;在这个热处理固化阶段,热交联剂(b2)含有不饱和键类的热交联剂开始起主要的交联反应;通过第二阶段热处理固化,可以将树脂膜进一步交联固化,形成稳定的树脂膜;因为第一阶段的交联反应,使得第二阶段的交联反应不会很剧烈,从而有效控制了显影后的树脂膜因热处理固化而产生巨大形变,因此更好的控制了热处理固化后感光性树脂膜的平坦化程度。从所得感光性树脂膜的平坦化程度考虑,第二阶段的热处理固化条件中,最高温度优选在380℃以下,进一步优选在350℃以下;还优选地,在升温程序中,优选多段平缓地升温。
本发明的树脂膜,包括感光性树脂膜、普通树脂膜、保护膜,不仅可以应用于有机EL显示器件,还可以应用于半导体器件、多层布线板等电子部件。为得到良好的器件性能,树脂膜的厚度优选为0.4~25μm,更优选为1.0-18μm,进一步优选为1.5~12μm。
<显示器件>
本发明还提供了一种显示器件;具体而言,包含由本发明所涉及的树脂组合物获得普通的树脂膜和/或感光性树脂膜和/或保护膜,可以用于在基板上具有驱动电路、平坦化层、第一电极、绝缘层、发光层和第二电极的有机EL显示装置中的平坦化层和/或绝缘层。以得到长期可靠且弯曲回复性能优秀的有机EL显示装置。
本发明的显示器件能够以合适的方式实现弯曲折叠。例如,可以如在感光器件的中央部分弯曲,也可以在感光器件的端部弯曲;根据具体用途以及基本配置,可以在显示器件的特定部分实现多次弯曲,并保持长期有效的显示特性。
<实施例>
以下列举出实施例对本发明进行说明,但本发明并不限于这些例子。首先,对实施例中涉及到的部分单体对应的简称进行说明。
化合物1:二胺5(3,3′-二羟基联苯胺,CAS号:2373-98-0)
Figure PCTCN2022086798-appb-000050
化合物2:酸二酐1(4,4′-氧双邻苯二甲酸酐,CAS号:1823-59-2)
Figure PCTCN2022086798-appb-000051
化合物3:酸二酐2(六氟二酐,CAS号:1107-00-2)
Figure PCTCN2022086798-appb-000052
化合物4:酸二酐3(对-亚苯基-双苯偏三酸酯二酐,CAS号:2770-49-2)
Figure PCTCN2022086798-appb-000053
化合物5:酸二酐4(3,3,4,4-二苯基砜四羧酸酸二酐,CAS号:2540-99-0)
Figure PCTCN2022086798-appb-000054
化合物6:酸二酐5(4,4′-对苯二氧双邻苯二甲酸酐,CAS号:17828-53-4)
Figure PCTCN2022086798-appb-000055
化合物7:酸二酐6(3,3′,4,4′-联苯四羧酸二酐,CAS号:2420-87-3)
Figure PCTCN2022086798-appb-000056
化合物8:热交联剂(b1)-1(4,4′,4″-(乙烷-1,1,1-三基)三(2,6-双(甲氧基甲基)苯酚),CAS号:672926-26-0)
Figure PCTCN2022086798-appb-000057
化合物9:热交联剂(b2)-1(聚二季戊四醇六丙烯酸酯,CAS号:29570-58-9)
Figure PCTCN2022086798-appb-000058
化合物10:热交联剂(b2)-2((甲基-1,3-亚苯基)二[亚氨基甲酰氧基[2,2-二[[(1-氧代烯丙基)氧基]甲基]]-3,1-丙烷二基]二丙烯酸酯,CAS号:51160-64-6)
Figure PCTCN2022086798-appb-000059
化合物11:热交联剂(b2)-3(4-(三异丙硅乙炔基)苯乙炔,CAS号:75345-90-1)
Figure PCTCN2022086798-appb-000060
化合物12:硅氧烷化合物1(SiDA,CAS号:2469-55-8)
Figure PCTCN2022086798-appb-000061
化合物13:硅氧烷化合物2(2,2′-(1,1-二乙基-3,3-二甲基二硅氧烷-1,3-二基)双(乙烷-1-胺),CAS号:2152657-68-4)
Figure PCTCN2022086798-appb-000062
化合物14:酯化剂1(N,N-二甲基甲酰胺二乙基缩醛,CAS号:1188-33-6)
Figure PCTCN2022086798-appb-000063
化合物15:封端剂1(MAP,CAS号:591-27-5)
Figure PCTCN2022086798-appb-000064
化合物16:封端剂2(4-乙炔基苯胺,CAS号:14235-81-5)
Figure PCTCN2022086798-appb-000065
化合物17:溶剂1(NMP,CAS号:872-50-4)
化合物18:溶剂2(GBL,CAS号:96-48-0)
合成例1
二胺1:N,N′-((全氟丙烷-2,2-二基)双(6-羟基-3,1-亚苯基)双(3-氨基苯甲酰胺)
Figure PCTCN2022086798-appb-000066
步骤一:1L反应瓶内,向其中加入2,2-双(3-氨基-4-羟基苯基)六氟丙烷22g(0.06mol)、环氧丙烷20.91g(0.36mol)和丙酮120mL,常温下搅拌至完全溶解,将反应 体系降温至-15℃。然后,向其中加入间硝基苯甲酰氯的24.49g(0.132mol)丙酮溶液120ml,滴加完毕后在-15℃下保持搅拌5小时,然后自然升至室温。将得到的反应液减压过滤,得到类白色固体,将固体在真空烘箱内60℃干燥20小时。
步骤二:将得到的类白色固体20g(0.03mol)、5%钯碳2.58g和乙二醇甲醚170mL加入到500mL高压反应釜中,并置换氢气,用氢气加压,使釜内压达到10kgf/cm 2,在35℃下搅拌2小时。然后,缓慢释放压力,将反应液减压过滤,得到透明溶液。向溶液中加入乙醇和石油醚,搅拌6小时后过滤,得到白色固体,将固体在真空烘箱中50℃干燥20小时,得到二胺1,即N,N′-((全氟丙烷-2,2-二基)双(6-羟基-3,1-亚苯基)双(3-氨基苯甲酰胺)。
合成例2
二胺2:N,N′-((全氟丙烷-2,2-二基)双(5-羟基-3,1-亚苯基)双(3-氨基苯甲酰胺)
Figure PCTCN2022086798-appb-000067
步骤一:1L反应瓶内,向其中加入2,2-双(3-氨基-5-羟基苯基)六氟丙烷22g(0.06mol)、环氧丙烷20.91g(0.36mol)和120ml丙酮,常温下搅拌至完全溶解,将反应体系降温至-15℃。然后,向其中缓慢滴加3-硝基苯甲酰氯24.49g(0.132mol)的丙酮(120ml)溶液,滴加完毕后在-15℃下保持搅拌5小时,然后自然升至室温。将得到的反应液减压过滤,得到类白色固体,将固体在真空烘箱内60℃干燥20小时。
步骤二:将得到的类白色固体20g(0.03mol)、5%钯碳2.58g和170ml乙二醇甲醚加入到500ml高压反应釜中,并置换氢气,用氢气加压,使釜内压力达到10kgf/cm2,在35℃下搅拌2小时。然后,缓慢释放压力,将反应液减压过滤,得到透明溶液。向此溶液中加入乙醇和石油醚,搅拌6小时析出固体沉淀,过滤,得到白色固体,将固体在真空烘箱中50℃干燥20小时,得到二胺2,即N,N′-((全氟丙烷-2,2-二基)双(5-羟基-3,1-亚苯基)双(3-氨基苯甲酰胺)。
合成例3
二胺3:N,N′-(氧基双(6-羟基-5-(三氟甲基)-3,1-亚苯基)双(3-氨基苯甲酰胺)
Figure PCTCN2022086798-appb-000068
步骤一:1L反应瓶内,向其中加入二(3-三氟甲基-4-羟基-5氨基)苯醚22.1g(0.06mol)、环氧丙烷20.91g(0.36mol)和120ml丙酮,常温下搅拌至完全溶解,将反应体系降温至-15℃。然后,向其中缓慢滴加3-硝基苯甲酰氯24.49g(0.132mol)的丙酮(120ml)溶液,滴加完毕后在-15℃下保持搅拌5小时,然后自然升至室温。将得到的反应液减压过滤,得到类白色固体,将固体在真空烘箱内60℃干燥20小时。
步骤二:将得到的类白色固体20g(0.03mol)、5%钯碳2.58g和170ml乙二醇甲醚加入到500ml高压反应釜中,并置换氢气,用氢气加压,使釜内压力达到10kgf/cm2,在35℃下搅拌2小时。然后,缓慢释放压力,将反应液减压过滤,得到透明溶液。向此溶液中加入乙醇和石油醚,搅拌6小时析出固体沉淀,过滤,得到白色固体,将固体在真空烘箱中50℃干燥20小时,获得二胺3,即N,N′-(氧基双(6-羟基-5-(三氟甲基)-3,1-亚苯基))双(3-氨基苯甲酰胺)。
合成例4
二胺4:5,5′-(全氟丙烷-2,2-二基)双(2-(4-氨基苯氧基)苯酚)
Figure PCTCN2022086798-appb-000069
步骤一:1L反应瓶内,向其中加入2,2-双(3-氨基-4-羟基苯基)-二甲基丙烷15.5g(0.06mol)、环氧丙烷20.91g(0.36mol)和140ml丙酮,常温下搅拌至完全溶解,使反应体系降温至-15℃。然后,向其中缓慢滴加间硝基苯甲酰氯的24.49g(0.132mol)丙酮140ml溶液,滴加完毕后在-15℃下保持搅拌5小时,然后自然升至室温。将得到的反应液减压过滤,得到白色固体,将固体在真空烘箱内60℃干燥20小时。
步骤二:将得到的白色固体14.9g(0.03mol)、5%钯碳2.58g和170ml乙二醇甲醚加入到500ml高压反应釜中,并置换氢气,用氢气加压,使釜内压达到10kgf/cm2,在40℃下搅拌2小时。然后,缓慢释放压力,将反应液减压过滤,得到透明溶液。向溶液中加入乙醇和石油醚,搅拌6小时析出固体,过滤,得到白色固体,将固体在真空烘箱 中50℃干燥20小时,获得二胺4,即5,5′-(全氟丙烷-2,2-二基)双(2-(4-氨基苯氧基)苯酚)。
合成例5
感光剂1:二叠氮萘醌类化合物
Figure PCTCN2022086798-appb-000070
在氮气保护体系下,将30.6g的1,1,1-三(4-羟基苯基)乙烷和80.5g的5-二叠氮萘醌磺酰氯溶液于1,4-二氧六环中,将反应体系升温至30℃,滴加100g的1,4-二氧六环和13.3g的三乙胺的混合溶液,保持体系温度30℃,搅拌3小时,将反应液过滤,除去三乙胺盐,将滤液滴加入纯净水中,有固体析出,过滤溶液,收集析出沉淀,用真空烘箱干燥,制得感光剂1,即二叠氮萘醌类化合物。
合成例6树脂(a-1)的合成
在氮气保护体系下,将合成例4中得到的5,5′-(全氟丙烷-2,2-二基)双(2-(4-氨基苯氧基)苯酚)(二胺4)0.09mol和MAP(封端剂1)0.05mol溶解在NMP 500mL中,搅拌溶解后,进行60℃油浴加热。在反应液油浴加中加入4,4′-氧双邻苯二甲酸酐(酸二酐1)0.1mol,反应2小时。随后,加入酯化剂N,N-二甲基甲酰胺二乙基缩醛5.0mol,搅拌3小时,投入水2L中,过滤,洗涤3次。使用真空干燥机于50℃干燥72小时,得到树脂(a-1)。
合成例7树脂(a-2)的合成
在氮气保护体系下,将合成例1中得到的N,N′-((全氟丙烷-2,2-二基)双(6-羟基-3,1-亚苯基)双(3-氨基苯甲酰胺)(二胺1)0.085mol、SiDA 0.005mol和MAP(封端剂1)0.05mol溶解在NMP 500mL中,搅拌溶解后,进行60℃油浴加热。在反应液中加入4,4′-氧双邻苯二甲酸酐(酸二酐1)0.1mol,反应2小时。随后,加入酯化剂N,N-二甲基甲酰胺二乙基缩醛5.0mol,搅拌3小时,投入水2L中,过滤,洗涤3次。使用真空干燥机于50℃干燥72小时,得到树脂(a-2)。
合成例8树脂(a-3)的合成
在氮气保护体系下,将合成例1中得到的N,N′-((全氟丙烷-2,2-二基)双(6-羟基-3,1-亚苯基)双(3-氨基苯甲酰胺)(二胺1)0.085mol、SiDA 0.005mol和MAP(封端剂1)0.05mol溶解在NMP 500mL中,搅拌溶解后,进行60℃油浴加热。在反应液中加入六氟二酐(酸二酐2)0.1mol,反应2小时。随后,加入酯化剂N,N-二甲基甲酰胺二乙基缩醛5.0mol,搅拌3小时,投入水2L中,过滤,洗涤3次。使用真空干燥机于50℃干燥72小时,得到树脂(a-3)。
合成例9树脂(a-4)的合成
在氮气保护体系下,,将合成例1中得到的N,N′-((全氟丙烷-2,2-二基)双(6-羟基-3,1-亚苯基)双(3-氨基苯甲酰胺)(二胺1)0.085mol、SiDA 0.005mol和MAP(封端剂1)0.05mol溶解在NMP 500mL中,搅拌溶解后,进行60℃油浴加热。在反应液中对-亚苯基-双苯偏三酸酯二酐(酸二酐3)0.1mol,反应2小时。随后,加入酯化剂N,N-二甲基甲酰胺二乙基缩醛5.0mol,搅拌3小时,投入水2L中,过滤,洗涤3次。使用真空干燥机于50℃干燥72小时,得到树脂(a-4)。
合成例10树脂(a-5)的合成
在氮气保护体系下,将合成例2中N,N′-((全氟丙烷-2,2-二基)双(5-羟基-3,1-亚苯基)双(3-氨基苯甲酰胺)(二胺2)0.085mol、SiDA 0.005mol和封端剂MAP(封端剂1)0.05mol溶解在NMP 500mL中,搅拌溶解后,进行60℃油浴加热。在反应液中加入3,3,4,4-二苯基砜四羧酸酸二酐(酸二酐4)0.1mol,反应2小时。随后,加入酯化剂N,N-二甲基甲酰胺二乙基缩醛5.0mol,搅拌3小时,投入水2L中,过滤,洗涤3次。使用真空干燥机于50℃干燥72小时,得到树脂(a-5)。
合成例11树脂(a-6)的合成
在氮气保护体系下,将合成例3得到的N,N′-(氧基双(6-羟基-5-(三氟甲基)-3,1-亚苯基)双(3-氨基苯甲酰胺)(二胺3)0.085mol、SiDA 0.005mol和封端剂MAP 0.05mol溶解在NMP 500mL中,搅拌溶解后,进行60℃油浴加热。在反应液中加入4,4′-对苯二氧双邻苯二甲酸酐(酸二酐5)0.1mol,反应2小时。随后,加入酯化剂N,N-二甲基甲酰胺二乙基缩醛5.0mol,搅拌3小时,投入水2L中,过滤,洗涤3次。使用真空干燥机于50℃干燥72小时,得到树脂(a-6)。
合成例12树脂(a-7)的合成
在氮气保护体系下,将合成例4得到的5,5′-(全氟丙烷-2,2-二基)双(2-(4-氨基苯氧基)苯酚)(二胺4)0.085mol、SiDA 0.005mol和封端剂MAP 0.05mol溶解在NMP 500mL 中,搅拌溶解后,进行60℃油浴加热。在反应液中加入4,4′-对苯二氧双邻苯二甲酸酐(酸二酐5)0.1mol,反应2小时。随后,加入酯化剂N,N-二甲基甲酰胺二乙基缩醛5.0mol,搅拌3小时,投入水2L中,过滤,洗涤3次。使用真空干燥机于50℃干燥72小时,得到树脂(a-7)。
合成例13树脂(a-8)的合成
在氮气保护体系下,将合成例1中得到的N,N′-((全氟丙烷-2,2-二基)双(6-羟基-3,1-亚苯基)双(3-氨基苯甲酰胺)(二胺1)0.085mol、SiDA 0.005mol和4-乙炔基苯胺(封端剂2)0.05mol溶解在NMP 500mL中,搅拌溶解后,进行60℃油浴加热。在反应液中加入4,4′-氧双邻苯二甲酸酐(酸二酐1)0.1mol,反应2小时。随后,加入酯化剂N,N-二甲基甲酰胺二乙基缩醛5.0mol,搅拌3小时,投入水2L中,过滤,洗涤3次。使用真空干燥机于50℃干燥72小时,得到树脂(a-8)。
合成例14树脂(a-9)的合成
在氮气保护体系下,将合成例1中得到的N,N′-((全氟丙烷-2,2-二基)双(6-羟基-3,1-亚苯基)双(3-氨基苯甲酰胺)(二胺1)0.085mol、2,2′-(1,1-二乙基-3,3-二甲基二硅氧烷-1,3-二基)双(乙烷-1-胺)(硅氧烷化合物2)0.005mol和封端剂MAP 0.05mol溶解在NMP 500mL中,搅拌溶解后,进行60℃油浴加热。在反应液中加入4,4′-氧双邻苯二甲酸酐(酸二酐1)0.1mol,反应2小时。随后,加入酯化剂N,N-二甲基甲酰胺二乙基缩醛5.0mol,搅拌3小时,投入水2L中,过滤,洗涤3次。使用真空干燥机于50℃干燥72小时,得到树脂(a-9)。
合成例15树脂(a-10)的合成
在氮气保护体系下,将3,3′-二羟基联苯胺(二胺5)0.085mol和封端剂MAP 0.05mol溶解在NMP 500mL中,搅拌溶解后,进行60℃油浴加热。在反应液中加入3,3′,4,4′-联苯四羧酸二酐(酸二酐6)0.1mol,反应2小时。随后,加入酯化剂N,N-二甲基甲酰胺二乙基缩醛5.0mol,搅拌3小时,投入水2L中,过滤,洗涤3次。使用真空干燥机于50℃干燥72小时,得到树脂(a-10)。
合成例6~15中(a)聚合物的合成配比如表1所示。
[表1]
Figure PCTCN2022086798-appb-000071
Figure PCTCN2022086798-appb-000072
实施例1
称取上述合成例6中得到的树脂(a-1)10g,加入到GBL溶剂150g中,再分别加入4,4′,4″-(乙烷-1,1,1-三基)三(2,6-双(甲氧基甲基)苯酚)(热交联剂(b1)-1)2g和聚二季戊四醇六丙烯酸酯(热交联剂(b2)-1)0.11g,以及醌二叠氮化合物感光剂3g,搅拌1小时,得到浆料1。对所得的浆料进行效果评价,结果如表3所示。
实施例2
称取上述合成例7中得到的树脂(a-2)10g,加入到GBL溶剂150g中,再分别加入4,4′,4″-(乙烷-1,1,1-三基)三(2,6-双(甲氧基甲基)苯酚)(热交联剂(b1)-1)2g和聚二季戊四醇六丙烯酸酯(热交联剂(b2)-1)0.11g,以及醌二叠氮化合物感光剂3g,搅拌1小时,得到浆料2。对所得的浆料进行效果评价,结果如表3所示。
实施例3
称取上述合成例7中得到的碱溶性树脂(a-2)10g,加入到GBL溶剂150g中,再分别加入4,4′,4″-(乙烷-1,1,1-三基)三(2,6-双(甲氧基甲基)苯酚)(热交联剂(b1)-1)2g和(甲基-1,3-亚苯基)二[亚氨基甲酰氧基[2,2-二[[(1-氧代烯丙基)氧基]甲基]]-3,1-丙烷二基]二丙烯酸酯(热交联剂(b2)-2)0.11g,以及醌二叠氮化合物感光剂3g,搅拌1小时,得到浆料3。对所得的浆料进行效果评价,结果如表3所示。
实施例4
称取上述合成例8中得到的树脂(a-3)10g,加入到GBL溶剂150g中,再分别加入4,4′,4″-(乙烷-1,1,1-三基)三(2,6-双(甲氧基甲基)苯酚)(热交联剂(b1)-1)2g和聚二季戊四醇六丙烯酸酯(热交联剂(b2)-1)0.11g,以及醌二叠氮化合物感光剂3g,搅拌1小时,得到浆料4。对所得的浆料进行效果评价,结果如表3所示。
实施例5
称取上述合成例9中得到的树脂(a-4)10g,加入到GBL溶剂150g中,再分别加入4,4′,4″-(乙烷-1,1,1-三基)三(2,6-双(甲氧基甲基)苯酚)(热交联剂(b1)-1)2g和聚二季戊四醇六丙烯酸酯(热交联剂(b2)-1)0.11g,以及醌二叠氮化合物感光剂3g,搅拌1小时,得到浆料5。对所得的浆料进行效果评价,结果如表3所示。
实施例6
称取上述合成例10中得到的树脂(a-5)10g,加入到GBL溶剂150g中,再分别加入4,4′,4″-(乙烷-1,1,1-三基)三(2,6-双(甲氧基甲基)苯酚)(热交联剂(b1)-1)2g和(甲基-1,3-亚苯基)二[亚氨基甲酰氧基[2,2-二[[(1-氧代烯丙基)氧基]甲基]]-3,1-丙烷二基]二丙烯酸酯(热交联剂(b2)-2)0.11g,以及醌二叠氮化合物感光剂3g,搅拌1小时,得到浆料6。对所得的浆料进行效果评价,结果如表3所示。
实施例7
称取上述合成例11中得到的树脂(a-6)10g,加入到GBL溶剂150g中,再分别加入4,4′,4″-(乙烷-1,1,1-三基)三(2,6-双(甲氧基甲基)苯酚)(热交联剂(b1)-1)2g和聚二季戊四醇六丙烯酸酯(热交联剂(b2)-1)0.11g,以及醌二叠氮化合物感光剂3g,搅拌1小时,得到浆料7。对所得的浆料进行效果评价,结果如表3所示。
实施例8
称取上述合成例12中得到的树脂(a-7)10g,加入到GBL溶剂150g中,再分别加入4,4′,4″-(乙烷-1,1,1-三基)三(2,6-双(甲氧基甲基)苯酚)(热交联剂(b1)-1)2g和(甲基-1,3-亚苯基)二[亚氨基甲酰氧基[2,2-二[[(1-氧代烯丙基)氧基]甲基]]-3,1-丙烷二基]二丙烯酸酯(热交联剂(b2)-2)0.11g,以及醌二叠氮化合物感光剂3g,搅拌1小时,得到浆料8。对所得的浆料进行效果评价,结果如表3所示。
实施例9
称取上述合成例12中得到的树脂(a-7)10g,加入到GBL溶剂150g中,再分别加入4,4′,4″-(乙烷-1,1,1-三基)三(2,6-双(甲氧基甲基)苯酚)(热交联剂(b1)-1)2g和聚二季戊四 醇六丙烯酸酯(热交联剂(b2)-1)0.11g,以及醌二叠氮化合物感光剂3g,搅拌1小时,得到浆料9。对所得的浆料进行效果评价,结果如表3所示。
实施例10
称取上述合成例13中得到的树脂(a-8)10g,加入到GBL溶剂150g中,再分别加入4,4′,4″-(乙烷-1,1,1-三基)三(2,6-双(甲氧基甲基)苯酚)(热交联剂(b1)-1)2g和4-(三异丙硅乙炔基)苯乙炔(热交联剂(b2)-3)0.11g,以及醌二叠氮化合物感光剂3g,搅拌1小时,得到浆料10。对所得的浆料进行效果评价,结果如表3所示。
实施例11
称取上述合成例14中得到的树脂(a-9)10g,加入到GBL溶剂150g中,再分别加入4,4′,4″-(乙烷-1,1,1-三基)三(2,6-双(甲氧基甲基)苯酚)(热交联剂(b1)-1)2g和4-(三异丙硅乙炔基)苯乙炔(热交联剂(b2)-3)0.11g,以及醌二叠氮化合物感光剂3g,搅拌1小时,得到浆料11。对所得的浆料进行效果评价,结果如表3所示。
比较例1
称取上述合成例15中得到的树脂(a-10)10g,加入到GBL溶剂150g中,再分别加入4,4′,4″-(乙烷-1,1,1-三基)三(2,6-双(甲氧基甲基)苯酚)(热交联剂(b1)-1)2g和聚二季戊四醇六丙烯酸酯(热交联剂(b2)-1)0.11g,以及醌二叠氮化合物感光剂3g,搅拌1小时,得到浆料12。对所得的浆料进行效果评价,结果如表3所示。
比较例2
称取上述合成例7中得到的树脂(a-2)10g,加入到GBL溶剂150g中,再加入4,4′,4″-(乙烷-1,1,1-三基)三(2,6-双(甲氧基甲基)苯酚)(热交联剂(b1)-1)2.11g,以及醌二叠氮化合物感光剂3g,搅拌1小时,得到浆料13。对所得的浆料进行效果评价,结果如表3所示。
比较例3
称取上述合成例7中得到的碱溶性树脂(a-2)10g,加入到GBL溶剂150g中,再聚二季戊四醇六丙烯酸酯(热交联剂(b2)-1)2.11g,以及醌二叠氮化合物感光剂3g,搅拌1小时,得到浆料14。对所得的浆料进行效果评价,结果如表3所示。
实施例1~11、比较例1~3中浆料的合成配比如表2所示。
[表2]
Figure PCTCN2022086798-appb-000073
Figure PCTCN2022086798-appb-000074
性能测试方法
实施例中树脂组合物的分子量可以用普通GPC测试,粘度可以用E型粘度仪测试,膜厚可用普通的膜厚仪测试;对于由树脂组合物形成的树脂膜的评价按照以下的方法进行。
1、热交联等组评定方法:
本发明使用热机械分析法(Thermal mechanical analysis,TMA)测试玻璃化转变温度T g(耐驰公司的设备型号:DSC3500);除此以外,也可使用动态热机械分析法(Dynamic mechanical analysis,DMA)、差示扫描量热仪法(Differential scanning calorimeter,DSC)等方法进行测试。具体方法如下:将调配好的清漆,进行旋涂、烘干、曝光、显影、热处理固化工艺后,得到感光性树脂膜,其膜厚度为5μm±0.1μm;然后将感光性树脂膜制备成热机械分析法测试用样品,进行测试,即可得T g数值。T g 代表分子链片断的运动性能,T g值越大,说明分子链片断的运动性能越小,也即说明热交联程度越优。T g≧335℃时,热交联程度优良,评定为○;T g为325~335℃时,热交联程度良好,评定为△;T g≦325℃时,热交联程度较差,评定为×。
2、平坦性指数的评价方法:
本发明使用CD-SEM(日立高新技术(Hitachi-Hightechnology)公司的设备、型号:SU3500)测试平坦性指数。具体方法如下:将调配好的清漆,进行旋涂、预烘,使得膜厚度为4μm±0.1μm;然后进行曝光、显影工艺后,测试其膜厚度为h 1,再进行热处理固化工艺后测试其膜厚度为h 2;使用CD-SEM进行h 1、h 2测试。按照以下公式(1)计算平坦性指数(%),平坦性指数越大,说明膜在热处理固化时收缩变形大,则平坦化程度越差;平坦性指数越小,说明膜在热处理固化时收缩变形越小,则平坦化程度越好,平坦化程度最终影响器件的效率、良率、寿命等性能。平坦性指数≦25%时,评定为优良,标记为○;平坦性指数在25%~35%时,评定为良好,标记为△;平坦性指数≧35%时,评定为较差,标记为×。
平坦化指数(%)=(h 1-h 2)/h 1×100%公式(1)
3、柔性指数评价:
本发明使用拉伸试验机(Tensilon公司的设备型号:RTG1210)测试膜的机械性能。具体方法如下:将调配好的清漆,进行旋涂、烘干、热处理固化工艺后,得到普通的树脂膜,其膜厚度为5μm±0.1μm;再将普通的树脂膜制备成样条进行拉伸试验,得到抗拉强度、伸度及杨氏模量的数据。抗拉强度,表征在发生应力变形时,容易破断的程度,因此抗拉强度越大越好;伸度,表征在发生应力变形时,分子链伸长运动的程度,伸度太小时,分子链伸长运动极小/极困难,即难以发生弹性形变,伸度太大时,容易产生塑性形变,发生应力变形时,则难以回复,所以伸度在一定范围内才有利于弯曲回复;杨氏模量,表征材料的刚性,即刚性太大时,难以发生应力形变,刚性太小时,容易发生塑性形变,造成形变后难以回复,所以杨氏模量在一定范围内才有利于弯曲回复;即柔性指数的好坏也反应了弯曲回复性能的好坏。当在抗拉强度≧120MPa,伸度范围在5~28%,杨氏模量范围在0.5~9.0GPa时,柔性指数优越,评定为◎;当抗拉强度范围在90~120MPa,伸度范围在5~28%,杨氏模量范围在0.5~9.0GPa时,柔性指数良好,评定为○;当抗拉强度在≧90MPa,伸度≧28%或伸度≦2%,杨氏模量≧9.0GPa或杨氏模量≦0.5GPa时,柔性指数一般,评定为△;当抗拉强度≦90MPa时,柔性指数较差,评定为×。
实施例1~11、比较例1~3的评价结果如表3所示。
[表3]
Figure PCTCN2022086798-appb-000075
根据上述表3中实施例1~11、比较例1~3的评价结果,实施例2~4、实施例6具有优秀的热交联程度等级、平坦性指数等级和柔性指数。也就是说,上述实施例2~4、实施例6中的树脂组合物能够获得更好的平坦性和弯曲回复性能,是理想的。
实施例1、5、7~9的热交联程度等级为优良、平坦性指数等级为优良或良好、柔性指数评价为良好,在平坦性指数等级性能和柔性指数两方面略差于理想的实施例2~4、实施例6。实施例10、实施例11的热交联程度等级为良好、平坦性指数等级为优良、柔性指数评价为优越,在热交联程度等级上差于理想的实施例1~9,但保持了优越的柔性指数。因此,相较于实施例2~4和实施例6,实施例1、5、7~11是次理想的。
比较例1~3的热交联程度等级评价为良好或较差、平弹性指数等级评价为良好或较差、柔性指数评价为一般,相较于实施例1~11,综合性能较差,是不理想的。

Claims (11)

  1. 一种树脂组合物,至少含有(a)、(b)和(c)三种组分;其中,所述(a)组分是具有下述式(1)所表示的结构的聚合物,所述(b)组分包含热交联剂(b1)和热交联剂(b2),所述(c)组分是感光剂,
    Figure PCTCN2022086798-appb-100001
    其中,R 1、R 2独立地选自至少含有1种除氢以外的其他原子;R 3、R 4独立地选自氢原子或碳原子为1~20的有机基团,n选自1~10的整数。
  2. 根据权利要求1所述的树脂组合物,其中,所述热交联剂(b1)为芳香酯类热交联剂,所述热交联剂(b2)为含有不饱和键的热交联剂。
  3. 根据权利要求2所述的树脂组合物,其中,所述热交联剂(b1)选自热交联温度在120~180℃的低温热交联化合物,更具体地选自下述式(2)所表示的结构,
    Figure PCTCN2022086798-appb-100002
    其中,R 8选自含有2~30碳原子的有机基团;R 9选自含有1~10个碳原子的有机基团;s选自1~4的整数,p选自1~16的整数,且s+p>2。
  4. 根据权利要求2所述的树脂组合物,其中,所述热交联剂(b2)选自热交联温度在180~400℃的热交联化合物,更具体地选自下述式(3)和/或式(4)所表示的结构中的一种或多种,
    Figure PCTCN2022086798-appb-100003
    Figure PCTCN2022086798-appb-100004
    其中,R 6、R 7独立地选自至少含有2~30碳原子的有机基团;y、q独立地选自1~10的整数。
  5. 根据权利要求4所述的树脂组合物,其中,所述式(3)所表示的结构为含有丙烯酸结构,更具体的选自下述式(5)所表示的结构中的一种或多种,
    Figure PCTCN2022086798-appb-100005
    其中,R 10选自含有2~25碳原子的有机基团,z选自1~10的整数。
  6. 根据权利要求1~5任意一项所述的树脂组合物,其中,所述(a)组分是具有下述式(6)所表示的结构的聚合物,
    Figure PCTCN2022086798-appb-100006
    其中,R 1、R 2独立地选自至少含有1种氢以外的其他原子;R 3、R 4独立地选自氢原子或碳原子为1~20的有机基团,R 5选自卤素和/或卤代烃基和/或1~10碳原子的有机基团;n、m独立地选自1~10的整数。
  7. 根据权利要求1~6任意一项所述的树脂组合物,其中,还包含有聚酰胺、聚酰亚胺、聚酰亚胺前体、聚苯并噁唑、聚苯并噁唑前体、或他们的共聚物中的一种或多种。
  8. 根据权利要求1~7任意一项所述的树脂组合物,其中,所述(c)组分的感光剂,为光酸产生剂。
  9. 根据权利要求1~8任意一项所述的树脂组合物,其中,还含有酚羟基化合物。
  10. 一种感光性树脂膜,由1~9任意一项所述树脂组合物制备而得。
  11. 一种显示器件,由1~9任意一项所述感光性树脂前驱体组合物制备而得,或包含有权利要利10所述的感光性树脂膜。
PCT/CN2022/086798 2021-07-27 2022-04-14 树脂组合物、树脂膜及显示器件 WO2023005263A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227024070A KR20230018355A (ko) 2021-07-27 2022-04-14 수지 조성물, 수지 필름 및 표시 장치
DE112022000006.6T DE112022000006T5 (de) 2021-07-27 2022-04-14 Harzzusammensetzung, Harzfilm und Anzeigevorrichtung
JP2022542928A JP2023538470A (ja) 2021-07-27 2022-04-14 樹脂組成物、樹脂フィルム、および表示装置
US17/785,839 US20230104913A1 (en) 2021-07-27 2022-04-14 Resin composition, resin film and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110851447.XA CN113467187B (zh) 2021-07-27 2021-07-27 树脂组合物、树脂膜及显示器件
CN202110851447.X 2021-07-27

Publications (1)

Publication Number Publication Date
WO2023005263A1 true WO2023005263A1 (zh) 2023-02-02

Family

ID=77882615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086798 WO2023005263A1 (zh) 2021-07-27 2022-04-14 树脂组合物、树脂膜及显示器件

Country Status (7)

Country Link
US (1) US20230104913A1 (zh)
JP (1) JP2023538470A (zh)
KR (1) KR20230018355A (zh)
CN (2) CN115685681A (zh)
DE (1) DE112022000006T5 (zh)
TW (1) TWI844874B (zh)
WO (1) WO2023005263A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114621437B (zh) * 2022-04-01 2023-08-18 吉林奥来德光电材料股份有限公司 用于制备感光树脂薄膜的化合物、其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1577088A (zh) * 2003-07-09 2005-02-09 东丽株式会社 感光性树脂前体组合物
CN102471664A (zh) * 2009-06-30 2012-05-23 日立化成工业株式会社 感光性粘接剂、以及使用该粘接剂的膜状粘接剂、粘接片、粘接剂图形、带有粘接剂层的半导体晶片和半导体装置
JP2013174843A (ja) * 2012-02-27 2013-09-05 Sumitomo Bakelite Co Ltd 感光性樹脂組成物、保護膜および半導体装置
JP2015129791A (ja) * 2014-01-06 2015-07-16 日立化成デュポンマイクロシステムズ株式会社 ポジ型感光性樹脂組成物及びそれを用いたパターン硬化膜の製造方法
CN105579500A (zh) * 2013-09-27 2016-05-11 东丽株式会社 耐热性树脂膜及其制造方法、加热炉及图像显示装置的制造方法
CN110892326A (zh) * 2018-02-28 2020-03-17 株式会社Lg化学 光敏树脂组合物和固化膜
CN112424289A (zh) * 2018-08-01 2021-02-26 东丽株式会社 树脂组合物、树脂片、固化膜、固化膜的制造方法、半导体装置及显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1246389A (zh) 1998-08-31 2000-03-08 皇甫拴劳 一种片状与粒状矿物选分法
JP4665333B2 (ja) 2000-11-27 2011-04-06 東レ株式会社 ポジ型感光性樹脂前駆体組成物
TW574620B (en) 2001-02-26 2004-02-01 Toray Industries Precursor composition of positive photosensitive resin and display device using it
JP2007264028A (ja) * 2006-03-27 2007-10-11 Toray Ind Inc 感光性樹脂組成物およびそれを用いた金属樹脂複合体
WO2018029746A1 (ja) * 2016-08-08 2018-02-15 東レ株式会社 ジアミン化合物、それを用いた耐熱性樹脂または耐熱性樹脂前駆体
JP7013872B2 (ja) * 2016-10-05 2022-02-15 東レ株式会社 樹脂組成物、硬化膜、半導体装置およびそれらの製造方法
US20210191264A1 (en) * 2017-10-31 2021-06-24 Toray Industries, Inc. Negative photosensitive resin composition, cured film, and organic el display and manufacturing method therefor
KR102699266B1 (ko) * 2018-10-12 2024-08-28 도레이 카부시키가이샤 감광성 수지 조성물, 경화막, 및 해당 경화막을 사용한 표시 장치
JP7210999B2 (ja) * 2018-10-22 2023-01-24 東レ株式会社 樹脂組成物、樹脂シート、硬化膜、硬化膜の製造方法、半導体装置および表示装置
TWI836067B (zh) * 2019-06-06 2024-03-21 日商富士軟片股份有限公司 負型硬化性組成物、硬化膜、積層體、硬化膜的製造方法及半導體器件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1577088A (zh) * 2003-07-09 2005-02-09 东丽株式会社 感光性树脂前体组合物
CN102471664A (zh) * 2009-06-30 2012-05-23 日立化成工业株式会社 感光性粘接剂、以及使用该粘接剂的膜状粘接剂、粘接片、粘接剂图形、带有粘接剂层的半导体晶片和半导体装置
JP2013174843A (ja) * 2012-02-27 2013-09-05 Sumitomo Bakelite Co Ltd 感光性樹脂組成物、保護膜および半導体装置
CN105579500A (zh) * 2013-09-27 2016-05-11 东丽株式会社 耐热性树脂膜及其制造方法、加热炉及图像显示装置的制造方法
JP2015129791A (ja) * 2014-01-06 2015-07-16 日立化成デュポンマイクロシステムズ株式会社 ポジ型感光性樹脂組成物及びそれを用いたパターン硬化膜の製造方法
CN110892326A (zh) * 2018-02-28 2020-03-17 株式会社Lg化学 光敏树脂组合物和固化膜
CN112424289A (zh) * 2018-08-01 2021-02-26 东丽株式会社 树脂组合物、树脂片、固化膜、固化膜的制造方法、半导体装置及显示装置

Also Published As

Publication number Publication date
TWI844874B (zh) 2024-06-11
TW202307089A (zh) 2023-02-16
US20230104913A1 (en) 2023-04-06
KR20230018355A (ko) 2023-02-07
CN113467187A (zh) 2021-10-01
DE112022000006T5 (de) 2023-03-23
CN115685681A (zh) 2023-02-03
JP2023538470A (ja) 2023-09-08
CN113467187B (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
US8669038B2 (en) Polyimide-based polymers, copolymers thereof and positive type photoresist compositions comprising the same
TWI589999B (zh) Positive photosensitive resin composition and method for producing semiconductor device including cured film using the same
CN114315686B (zh) 含炔基的二胺及其制备方法和在制备感光树脂组合物中的应用
US20060269868A1 (en) Ester group-containing poly (imide-azomethine) copolymer, ester group-containing poly (amide acid-azomethine) copolymer, and positive photosensitive resin composition
CN111812943B (zh) 一种感光性树脂组合物、感光性树脂膜及图案形成方法
TWI413865B (zh) 正型光敏樹脂組成物
KR20040040662A (ko) 감광성 폴리이미드 전구체용 가용성 폴리이미드 및, 이를포함하는 감광성 폴리이드 전구체 조성물
JP2013205801A (ja) 感光性樹脂組成物及びその硬化膜、保護膜、絶縁膜並びに半導体装置及び表示体装置
TW201011464A (en) Photosensitive resin composition
WO2014045434A1 (ja) ポジ型感光性樹脂組成物
TWI844874B (zh) 樹脂組合物、樹脂膜及顯示器件
KR101202012B1 (ko) 감광성 폴리이미드 수지 조성물
CN115010924B (zh) 光敏聚酰亚胺树脂组合物及包含其的聚酰亚胺树脂膜与应用
KR101750463B1 (ko) 포지티브형 감광성 수지 조성물, 감광성 수지막, 및 표시 소자
CN114836033B (zh) 一种树脂前体组合物及其树脂膜和制备方法与应用
JP2024510332A (ja) ポジ型感光性樹脂組成物、絶縁膜及びそれを含む表示装置
KR20190143715A (ko) 가지형 공중합체, 이를 이용한 감광성 수지 조성물, 감광성 수지 필름 및 광학 장치
KR102260889B1 (ko) 가용성 폴리이미드 수지 및 이를 포함하는 포지티브 감광성 수지 조성물
JP4281460B2 (ja) 感光性樹脂組成物及び樹脂層の形成方法
TWI454457B (zh) 新型酚化合物和包含其的正性光敏樹脂組合物
KR20200109598A (ko) 폴리이미드 공중합체, 폴리이미드 공중합체의 제조방법, 이를 이용한 감광성 수지 조성물, 감광성 수지 필름 및 광학 장치
KR101333690B1 (ko) 포지티브형 감광성 수지 조성물
CN110874015B (zh) 感光性树脂组合物、使用其的感光性树脂层和电子装置
JP2024530705A (ja) 感光性樹脂組成物及びこれを含む表示装置
KR102275345B1 (ko) 감광성 수지 조성물, 이를 이용한 감광성 수지막 및 전자 소자

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022542928

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22847882

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 22847882

Country of ref document: EP

Kind code of ref document: A1