WO2023002903A1 - ガラス繊維強化再生ポリフェニレンスルフィド樹脂組成物の製造方法、およびガラス繊維強化再生ポリフェニレンスルフィド樹脂組成物を成形してなる成形品 - Google Patents
ガラス繊維強化再生ポリフェニレンスルフィド樹脂組成物の製造方法、およびガラス繊維強化再生ポリフェニレンスルフィド樹脂組成物を成形してなる成形品 Download PDFInfo
- Publication number
- WO2023002903A1 WO2023002903A1 PCT/JP2022/027656 JP2022027656W WO2023002903A1 WO 2023002903 A1 WO2023002903 A1 WO 2023002903A1 JP 2022027656 W JP2022027656 W JP 2022027656W WO 2023002903 A1 WO2023002903 A1 WO 2023002903A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pps resin
- resin composition
- glass fiber
- weight
- reinforced
- Prior art date
Links
- 239000004734 Polyphenylene sulfide Substances 0.000 title claims abstract description 393
- 229920000069 polyphenylene sulfide Polymers 0.000 title claims abstract description 393
- 239000011342 resin composition Substances 0.000 title claims abstract description 268
- 239000011521 glass Substances 0.000 title claims abstract description 94
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 43
- 238000000465 moulding Methods 0.000 title claims description 25
- 239000003365 glass fiber Substances 0.000 claims abstract description 218
- 229920005989 resin Polymers 0.000 claims abstract description 173
- 239000011347 resin Substances 0.000 claims abstract description 173
- 238000000034 method Methods 0.000 claims abstract description 41
- 238000002156 mixing Methods 0.000 claims abstract description 30
- 229920001577 copolymer Polymers 0.000 claims description 59
- -1 silane compound Chemical class 0.000 claims description 54
- 239000000835 fiber Substances 0.000 claims description 48
- 239000008188 pellet Substances 0.000 claims description 46
- 125000003700 epoxy group Chemical group 0.000 claims description 37
- 229920000089 Cyclic olefin copolymer Polymers 0.000 claims description 33
- 239000000203 mixture Substances 0.000 claims description 33
- 229910000077 silane Inorganic materials 0.000 claims description 27
- 239000002245 particle Substances 0.000 claims description 26
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 22
- 238000004898 kneading Methods 0.000 claims description 20
- 238000005406 washing Methods 0.000 claims description 16
- 125000000524 functional group Chemical group 0.000 claims description 13
- 125000003277 amino group Chemical group 0.000 claims description 11
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims description 8
- 239000002904 solvent Substances 0.000 claims description 8
- 238000004064 recycling Methods 0.000 abstract description 18
- 239000000463 material Substances 0.000 description 32
- 238000012360 testing method Methods 0.000 description 28
- 150000001875 compounds Chemical class 0.000 description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 25
- 229910001868 water Inorganic materials 0.000 description 22
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 21
- JWZZKOKVBUJMES-UHFFFAOYSA-N (+-)-Isoprenaline Chemical compound CC(C)NCC(O)C1=CC=C(O)C(O)=C1 JWZZKOKVBUJMES-UHFFFAOYSA-N 0.000 description 20
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 20
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 238000000576 coating method Methods 0.000 description 14
- 239000002994 raw material Substances 0.000 description 14
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- 230000006866 deterioration Effects 0.000 description 12
- 229910000019 calcium carbonate Inorganic materials 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 238000006116 polymerization reaction Methods 0.000 description 10
- 229910052783 alkali metal Inorganic materials 0.000 description 9
- 238000005470 impregnation Methods 0.000 description 9
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 238000001746 injection moulding Methods 0.000 description 9
- 150000001491 aromatic compounds Chemical class 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 239000004593 Epoxy Substances 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 6
- 229910052977 alkali metal sulfide Inorganic materials 0.000 description 6
- 150000001336 alkenes Chemical class 0.000 description 6
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 6
- 230000000704 physical effect Effects 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 239000012765 fibrous filler Substances 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 238000005227 gel permeation chromatography Methods 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- UORVGPXVDQYIDP-UHFFFAOYSA-N trihydridoboron Substances B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000010306 acid treatment Methods 0.000 description 4
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 238000001739 density measurement Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 239000011256 inorganic filler Substances 0.000 description 4
- 229910003475 inorganic filler Inorganic materials 0.000 description 4
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 4
- 239000000347 magnesium hydroxide Substances 0.000 description 4
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 4
- 239000002798 polar solvent Substances 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 125000003396 thiol group Chemical group [H]S* 0.000 description 4
- PBKONEOXTCPAFI-UHFFFAOYSA-N 1,2,4-trichlorobenzene Chemical compound ClC1=CC=C(Cl)C(Cl)=C1 PBKONEOXTCPAFI-UHFFFAOYSA-N 0.000 description 3
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 229910001514 alkali metal chloride Inorganic materials 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000010425 asbestos Substances 0.000 description 3
- 229910000085 borane Inorganic materials 0.000 description 3
- 150000007942 carboxylates Chemical class 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000007822 coupling agent Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000001879 gelation Methods 0.000 description 3
- 150000004677 hydrates Chemical class 0.000 description 3
- 239000012948 isocyanate Substances 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 229910052895 riebeckite Inorganic materials 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- 239000001632 sodium acetate Substances 0.000 description 3
- 235000017281 sodium acetate Nutrition 0.000 description 3
- 239000010456 wollastonite Substances 0.000 description 3
- 229910052882 wollastonite Inorganic materials 0.000 description 3
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- LULAYUGMBFYYEX-UHFFFAOYSA-N 3-chlorobenzoic acid Chemical compound OC(=O)C1=CC=CC(Cl)=C1 LULAYUGMBFYYEX-UHFFFAOYSA-N 0.000 description 2
- XRHGYUZYPHTUJZ-UHFFFAOYSA-N 4-chlorobenzoic acid Chemical compound OC(=O)C1=CC=C(Cl)C=C1 XRHGYUZYPHTUJZ-UHFFFAOYSA-N 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 2
- 208000015943 Coeliac disease Diseases 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229920001431 Long-fiber-reinforced thermoplastic Polymers 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 125000004018 acid anhydride group Chemical group 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000000071 blow moulding Methods 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 2
- VPKDCDLSJZCGKE-UHFFFAOYSA-N carbodiimide group Chemical group N=C=N VPKDCDLSJZCGKE-UHFFFAOYSA-N 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 229910052570 clay Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 239000010459 dolomite Substances 0.000 description 2
- 229910000514 dolomite Inorganic materials 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910003472 fullerene Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 239000001095 magnesium carbonate Substances 0.000 description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- UTOPWMOLSKOLTQ-UHFFFAOYSA-N octacosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O UTOPWMOLSKOLTQ-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 150000002903 organophosphorus compounds Chemical class 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 229910052903 pyrophyllite Inorganic materials 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000001542 size-exclusion chromatography Methods 0.000 description 2
- HYHCSLBZRBJJCH-UHFFFAOYSA-M sodium hydrosulfide Chemical compound [Na+].[SH-] HYHCSLBZRBJJCH-UHFFFAOYSA-M 0.000 description 2
- 229910052979 sodium sulfide Inorganic materials 0.000 description 2
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000005486 sulfidation Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- JHBKHLUZVFWLAG-UHFFFAOYSA-N 1,2,4,5-tetrachlorobenzene Chemical compound ClC1=CC(Cl)=C(Cl)C=C1Cl JHBKHLUZVFWLAG-UHFFFAOYSA-N 0.000 description 1
- BBOLNFYSRZVALD-UHFFFAOYSA-N 1,2-diiodobenzene Chemical compound IC1=CC=CC=C1I BBOLNFYSRZVALD-UHFFFAOYSA-N 0.000 description 1
- XKEFYDZQGKAQCN-UHFFFAOYSA-N 1,3,5-trichlorobenzene Chemical compound ClC1=CC(Cl)=CC(Cl)=C1 XKEFYDZQGKAQCN-UHFFFAOYSA-N 0.000 description 1
- ZPQOPVIELGIULI-UHFFFAOYSA-N 1,3-dichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1 ZPQOPVIELGIULI-UHFFFAOYSA-N 0.000 description 1
- SWJPEBQEEAHIGZ-UHFFFAOYSA-N 1,4-dibromobenzene Chemical compound BrC1=CC=C(Br)C=C1 SWJPEBQEEAHIGZ-UHFFFAOYSA-N 0.000 description 1
- UTGSRNVBAFCOEU-UHFFFAOYSA-N 1,4-dichloro-2,5-dimethylbenzene Chemical group CC1=CC(Cl)=C(C)C=C1Cl UTGSRNVBAFCOEU-UHFFFAOYSA-N 0.000 description 1
- QKMNFFSBZRGHDJ-UHFFFAOYSA-N 1,4-dichloro-2-methoxybenzene Chemical compound COC1=CC(Cl)=CC=C1Cl QKMNFFSBZRGHDJ-UHFFFAOYSA-N 0.000 description 1
- KFAKZJUYBOYVKA-UHFFFAOYSA-N 1,4-dichloro-2-methylbenzene Chemical compound CC1=CC(Cl)=CC=C1Cl KFAKZJUYBOYVKA-UHFFFAOYSA-N 0.000 description 1
- LFMWZTSOMGDDJU-UHFFFAOYSA-N 1,4-diiodobenzene Chemical compound IC1=CC=C(I)C=C1 LFMWZTSOMGDDJU-UHFFFAOYSA-N 0.000 description 1
- JTPNRXUCIXHOKM-UHFFFAOYSA-N 1-chloronaphthalene Chemical compound C1=CC=C2C(Cl)=CC=CC2=C1 JTPNRXUCIXHOKM-UHFFFAOYSA-N 0.000 description 1
- JYYLQSCZISREGY-UHFFFAOYSA-N 2-amino-4-chlorobenzoic acid Chemical compound NC1=CC(Cl)=CC=C1C(O)=O JYYLQSCZISREGY-UHFFFAOYSA-N 0.000 description 1
- LSVPCSOPJGPTNA-UHFFFAOYSA-N 2-benzoyl-5-chlorobenzoic acid Chemical compound OC(=O)C1=CC(Cl)=CC=C1C(=O)C1=CC=CC=C1 LSVPCSOPJGPTNA-UHFFFAOYSA-N 0.000 description 1
- AKCRQHGQIJBRMN-UHFFFAOYSA-N 2-chloroaniline Chemical compound NC1=CC=CC=C1Cl AKCRQHGQIJBRMN-UHFFFAOYSA-N 0.000 description 1
- IKCLCGXPQILATA-UHFFFAOYSA-N 2-chlorobenzoic acid Chemical compound OC(=O)C1=CC=CC=C1Cl IKCLCGXPQILATA-UHFFFAOYSA-N 0.000 description 1
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 1
- PNPCRKVUWYDDST-UHFFFAOYSA-N 3-chloroaniline Chemical compound NC1=CC=CC(Cl)=C1 PNPCRKVUWYDDST-UHFFFAOYSA-N 0.000 description 1
- HORNXRXVQWOLPJ-UHFFFAOYSA-N 3-chlorophenol Chemical compound OC1=CC=CC(Cl)=C1 HORNXRXVQWOLPJ-UHFFFAOYSA-N 0.000 description 1
- QSNSCYSYFYORTR-UHFFFAOYSA-N 4-chloroaniline Chemical compound NC1=CC=C(Cl)C=C1 QSNSCYSYFYORTR-UHFFFAOYSA-N 0.000 description 1
- WXNZTHHGJRFXKQ-UHFFFAOYSA-N 4-chlorophenol Chemical compound OC1=CC=C(Cl)C=C1 WXNZTHHGJRFXKQ-UHFFFAOYSA-N 0.000 description 1
- DFXQXFGFOLXAPO-UHFFFAOYSA-N 96-99-1 Chemical compound OC(=O)C1=CC=C(Cl)C([N+]([O-])=O)=C1 DFXQXFGFOLXAPO-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- ITIONVBQFUNVJV-UHFFFAOYSA-N Etomidoline Chemical compound C12=CC=CC=C2C(=O)N(CC)C1NC(C=C1)=CC=C1OCCN1CCCCC1 ITIONVBQFUNVJV-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229920006983 PPS-GF Polymers 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910000318 alkali metal phosphate Inorganic materials 0.000 description 1
- 229910052936 alkali metal sulfate Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- OJMOMXZKOWKUTA-UHFFFAOYSA-N aluminum;borate Chemical compound [Al+3].[O-]B([O-])[O-] OJMOMXZKOWKUTA-UHFFFAOYSA-N 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- IBSGAWQJFSDRBJ-UHFFFAOYSA-M cesium sulfanide Chemical compound [SH-].[Cs+] IBSGAWQJFSDRBJ-UHFFFAOYSA-M 0.000 description 1
- 238000012668 chain scission Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000003484 crystal nucleating agent Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- QTNDMWXOEPGHBT-UHFFFAOYSA-N dicesium;sulfide Chemical compound [S-2].[Cs+].[Cs+] QTNDMWXOEPGHBT-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N ethyl ethylene Natural products CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010097 foam moulding Methods 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- HGPXWXLYXNVULB-UHFFFAOYSA-M lithium stearate Chemical compound [Li+].CCCCCCCCCCCCCCCCCC([O-])=O HGPXWXLYXNVULB-UHFFFAOYSA-M 0.000 description 1
- GLNWILHOFOBOFD-UHFFFAOYSA-N lithium sulfide Chemical compound [Li+].[Li+].[S-2] GLNWILHOFOBOFD-UHFFFAOYSA-N 0.000 description 1
- KDDRURKXNGXKGE-UHFFFAOYSA-M lithium;pentanoate Chemical compound [Li+].CCCCC([O-])=O KDDRURKXNGXKGE-UHFFFAOYSA-M 0.000 description 1
- HXQGSILMFTUKHI-UHFFFAOYSA-M lithium;sulfanide Chemical compound S[Li] HXQGSILMFTUKHI-UHFFFAOYSA-M 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000010128 melt processing Methods 0.000 description 1
- 229910001463 metal phosphate Inorganic materials 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 208000026438 poor feeding Diseases 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- ZOCLAPYLSUCOGI-UHFFFAOYSA-M potassium hydrosulfide Chemical compound [SH-].[K+] ZOCLAPYLSUCOGI-UHFFFAOYSA-M 0.000 description 1
- DPLVEEXVKBWGHE-UHFFFAOYSA-N potassium sulfide Chemical compound [S-2].[K+].[K+] DPLVEEXVKBWGHE-UHFFFAOYSA-N 0.000 description 1
- DKEYEXQVFHUPLU-UHFFFAOYSA-M potassium;4-methylbenzoate Chemical compound [K+].CC1=CC=C(C([O-])=O)C=C1 DKEYEXQVFHUPLU-UHFFFAOYSA-M 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000001175 rotational moulding Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- LXOXXUIVMOYGST-UHFFFAOYSA-M rubidium(1+);sulfanide Chemical compound [SH-].[Rb+] LXOXXUIVMOYGST-UHFFFAOYSA-M 0.000 description 1
- AHKSSQDILPRNLA-UHFFFAOYSA-N rubidium(1+);sulfide Chemical compound [S-2].[Rb+].[Rb+] AHKSSQDILPRNLA-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 1
- 239000004299 sodium benzoate Substances 0.000 description 1
- 235000010234 sodium benzoate Nutrition 0.000 description 1
- 229960003885 sodium benzoate Drugs 0.000 description 1
- 229940006198 sodium phenylacetate Drugs 0.000 description 1
- JXKPEJDQGNYQSM-UHFFFAOYSA-M sodium propionate Chemical compound [Na+].CCC([O-])=O JXKPEJDQGNYQSM-UHFFFAOYSA-M 0.000 description 1
- 239000004324 sodium propionate Substances 0.000 description 1
- 235000010334 sodium propionate Nutrition 0.000 description 1
- 229960003212 sodium propionate Drugs 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- FRGPKMWIYVTFIQ-UHFFFAOYSA-N triethoxy(3-isocyanatopropyl)silane Chemical compound CCO[Si](OCC)(OCC)CCCN=C=O FRGPKMWIYVTFIQ-UHFFFAOYSA-N 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L81/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
- C08L81/02—Polythioethers; Polythioether-ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L81/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
- C08L81/04—Polysulfides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B17/00—Recovery of plastics or other constituents of waste material containing plastics
- B29B17/04—Disintegrating plastics, e.g. by milling
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J11/00—Recovery or working-up of waste materials
- C08J11/04—Recovery or working-up of waste materials of polymers
- C08J11/06—Recovery or working-up of waste materials of polymers without chemical reactions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/203—Solid polymers with solid and/or liquid additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/043—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/06—Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
- C08J5/08—Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials glass fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/14—Glass
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D181/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur, with or without nitrogen, oxygen, or carbon only; Coating compositions based on polysulfones; Coating compositions based on derivatives of such polymers
- C09D181/02—Polythioethers; Polythioether-ethers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J181/00—Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur, with or without nitrogen, oxygen, or carbon only; Adhesives based on polysulfones; Adhesives based on derivatives of such polymers
- C09J181/02—Polythioethers; Polythioether-ethers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B17/00—Recovery of plastics or other constituents of waste material containing plastics
- B29B2017/001—Pretreating the materials before recovery
- B29B2017/0015—Washing, rinsing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B17/00—Recovery of plastics or other constituents of waste material containing plastics
- B29B17/04—Disintegrating plastics, e.g. by milling
- B29B2017/042—Mixing disintegrated particles or powders with other materials, e.g. with virgin materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B17/00—Recovery of plastics or other constituents of waste material containing plastics
- B29B17/04—Disintegrating plastics, e.g. by milling
- B29B2017/0424—Specific disintegrating techniques; devices therefor
- B29B2017/0468—Crushing, i.e. disintegrating into small particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2081/00—Use of polymers having sulfur, with or without nitrogen, oxygen or carbon only, in the main chain, as moulding material
- B29K2081/04—Polysulfides, e.g. PPS, i.e. polyphenylene sulfide or derivatives thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
- B29K2105/12—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2309/00—Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
- B29K2309/08—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2381/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
- C08J2381/02—Polythioethers; Polythioether-ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2381/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
- C08J2381/04—Polysulfides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/004—Additives being defined by their length
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/22—Mixtures comprising a continuous polymer matrix in which are dispersed crosslinked particles of another polymer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/20—Recycled plastic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Definitions
- the present invention relates to the recycling of waste plastics, and a method for producing a glass fiber-reinforced recycled PPS resin composition in which the deterioration of the mechanical properties of a molded article made of a glass fiber-containing polyphenylene sulfide resin is extremely small, and the obtained method.
- the present invention relates to a glass fiber reinforced recycled PPS resin composition.
- Polyphenylene sulfide (hereinafter sometimes abbreviated as PPS) resin is an engineering plastic with excellent heat resistance, chemical resistance, flame retardancy, and electrical properties. Mainly used for electronic parts.
- thermoplastic resins have been accelerating toward the realization of a circular economy, and the demand for closed recycling, in which used products are recycled as the same products, is increasing.
- GFR-PPS glass fiber reinforced PPS resin composition
- recycled materials recycled resin compositions
- a cyclic PPS compound is added as a melt stabilizer to a PPS resin composition containing a linear PPS resin and a filler as a method of suppressing the deterioration of PPS during melt processing and the deterioration of the mechanical properties of recycled materials.
- Studies on addition have been reported (see Patent Literature 1, for example).
- a method for improving the strength of recycled glass fiber reinforced resin a mixture containing a raw material resin and a resin additive is formed without pelletizing the pulverized product of the recovered molding generated in the molding of the recycled resin composition, A melt-kneaded recycled resin composition has been proposed (see, for example, Patent Document 2).
- a technique for improving the strength of a recycled resin composition by mixing recycled resin and long fiber-reinforced thermoplastic resin pellets has been proposed (see, for example, Patent Document 3).
- the PPS resin composition described in Patent Document 1 is a technique for suppressing deterioration in physical properties due to molecular chain scission of PPS, and the problem of deterioration in mechanical properties due to breakage of glass fibers cannot be solved.
- the manufacturing method described in Patent Document 2 is a technique for reducing the heat history of the recovered molded product, and can suppress further breakage of the glass fibers of the recycled resin composition, but the glass fibers have already broken and can be used by machines. It is hard to say that it is a technology for regenerating things whose characteristics have deteriorated. Furthermore, there is no description of PPS features.
- Patent Document 3 is capable of regenerating the glass fiber length in the recycled resin composition, since the glass fiber amount and specific gravity of the long fiber reinforced thermoplastic resin pellet are different from those of the recycled resin, the composition of the obtained recycled resin composition cannot be made to have the same composition as recycled resin, and cannot be applied to closed recycling. Furthermore, since PPS has a small amount of functional groups, it is inferior in adhesiveness to glass fibers, but there is no disclosure of a method for solving this problem, and there is a description of blending an olefinic copolymer resin used for modifying PPS. Nor.
- the present inventors found that the crushed molded product obtained by crushing the molded product containing the PPS resin and the glass fiber has a specific weight average molecular weight.
- the inventors have found that the above problems can be solved by mixing a PPS resin having the above-mentioned properties and a PPS resin composition composed of glass fibers. Furthermore, the present inventors have found that the purpose can be achieved more efficiently by mixing a specific long glass fiber-reinforced PPS resin composition as the PPS resin composition, and have completed the present invention.
- the present invention has the following configurations.
- a molded product obtained by blending polyphenylene sulfide (hereinafter sometimes referred to as "PPS") resin and glass fiber is crushed to obtain (A) crushed molded product, and (A) crushed molded product and
- B) A PPS resin composition (hereinafter referred to as "( B) A method for producing a glass fiber-reinforced recycled PPS resin composition, characterized by mixing B) with a PPS resin composition.
- PPS resin composition hereinafter referred to as "( B) A method for producing a glass fiber-reinforced recycled PPS resin composition, characterized by mixing B) with a PPS resin composition.
- the glass according to item 1 or 2 wherein the (A) crushed molded product is blended with 40 to 90% by weight of a PPS resin having an Mw of 20,000 to 60,000 and 10 to 60% by weight of glass fiber.
- a method for producing a fiber-reinforced recycled PPS resin composition 4.
- the (A) crushed molded product contains 1 to 20% by weight of an olefinic copolymer
- the (B) PPS resin composition contains 1 to 20% by weight of an olefinic copolymer.
- the method for producing a glass fiber reinforced recycled PPS resin composition according to any one of items 1 to 3, characterized in that it consists of: 5. 5.
- the crushed molded article (A) according to any one of items 1 to 4, wherein the crushed molded article is pellets obtained by crushing the crushed molded article and then melt-kneading it with an extruder.
- a method for producing a glass fiber reinforced recycled PPS resin composition 6.
- a method for producing a recycled PPS resin composition 8.
- Part or all of the PPS resin composition contains 10 to 80% by weight of glass fiber bundles aligned in the length direction of the pellets in the (C) PPS resin, and the length of the pellets is 3.0%.
- the method for producing a glass fiber-reinforced recycled PPS resin composition according to any one of items 1 to 7, wherein a long glass fiber-reinforced PPS resin composition having a length of 0 to 50 mm is used.
- 9. 9 The glass according to item 8, wherein the (C) long glass fiber-reinforced PPS resin composition contains 40 to 90% by weight of a PPS resin having an Mw of 20,000 to 60,000 and 10 to 60% by weight of glass fiber bundles.
- a method for producing a fiber-reinforced recycled PPS resin composition 10.
- any one of items 8 to 11, wherein the (A) crushed molded product, (B) the PPS resin composition, and (C) the long glass fiber-reinforced PPS resin composition have substantially the same composition.
- Any one of items 8 to 12, wherein the (C) long glass fiber-reinforced PPS resin composition has a core-sheath structure in which the PPS resin composition is arranged so as to cover the periphery of the glass fiber bundle.
- the (C) long glass fiber-reinforced PPS resin composition contains 0.01 to 5% by weight of an organic silane compound having at least one functional group selected from an epoxy group, an amino group, and an isocyanate group.
- the method for producing a glass fiber reinforced recycled PPS resin composition according to any one of items 8 to 13, characterized in that: 15.
- the glass fiber-reinforced recycled PPS resin composition obtained by the method of the present invention can be used in a wide range of fields such as injection molding while maintaining the original mechanical strength and moldability even after recycling. It becomes possible.
- a glass fiber reinforced recycled PPS resin composition having these properties will be a material that contributes to the realization of a circular economy.
- a molded product obtained by blending a PPS resin and glass fibers is crushed to obtain (A) crushed molded product, and the (A) crushed molded product is obtained. and (B) a PPS resin composition containing 40 to 90% by weight of PPS resin having an Mw of 20,000 to 60,000 and 10 to 60% by weight of glass fiber.
- the mixing of (A) the crushed molded article and (B) the PPS resin composition in the present invention includes melt-kneading (A) the crushed molded article and (B) the PPS resin composition with an extruder or the like.
- (A) mixing without melt-kneading from the viewpoint of suppressing breakage of the glass fiber of the crushed molded product for example, (A) crushed molded product and (B) PPS resin composition pellets are pellet blended. is preferred.
- the PPS resin composition does not include (A) the crushed product.
- Crushed molded products include, for example, crushed molded products obtained by molding GFR-PPS, which is a mixture of PPS resin and glass fiber, by injection molding, etc., as well as sprues recovered during injection molding. / Includes shredded items such as runners.
- GFR-PPS may contain two or more types of PPS resins, and if it is 30% by weight or less of the total weight of crushed molded products, crushed molded products composed of resins other than PPS resin It doesn't matter if things are mixed in.
- crushed molded articles are preferably crushed molded articles collected after being used in the market as products, and such molded articles are produced by the production method of the present invention. More preferably, it is composed of the obtained glass fiber-reinforced recycled PPS resin composition.
- the crushed molded product is preferably composed of 40 to 90% by weight of PPS resin having an Mw of 20,000 to 60,000 and 10 to 60% by weight of glass fiber. Preferred PPS resins and glass fibers will be described later.
- the crushed molded product preferably contains 1 to 20% by weight of an olefin copolymer.
- an olefin copolymer A preferred olefinic copolymer will be described later.
- the crushed molded product is a crushed molded product collected after being used in the market as a product, from the viewpoint of suppressing the deterioration of mechanical properties and odor due to dirt components, before or after crushing It is preferable to wash with a solvent to remove deposits.
- the solvent include water and organic polar solvents. Water is preferable from the viewpoint of cost, organic polar solvents are preferable from the viewpoint of efficiently removing stain components, and N-methyl-2- Pyrrolidone (NMP) is preferred.
- NMP N-methyl-2- Pyrrolidone
- a plurality of types of solvents may be mixed and used, and washing may be performed in two stages, such as washing with an organic polar solvent and then washing with water.
- the cleaning method is not particularly limited as long as it is a method that can remove deposits with a solvent.
- a batch type cleaning method in which the molded product is immersed in a tank and taken out after stirring, a belt conveyor or rotary cleaning method.
- a continuous cleaning method in which a solvent is applied to the molded product while it is being conveyed through a screen is exemplified. Also, for the purpose of improving the washing efficiency, it is possible to preliminarily crush coarsely before washing.
- Crushed molded products are easy to handle if they are made of only resin material, but in the present invention, insert molded products of resin and metal can be used if metal removal is performed. In addition, it may contain a small amount of metal parts, and in that case, removing the metal parts at the time of recovery leads to a decrease in productivity, so it is preferable to use a metal removal device in the manufacturing process of the crushed molded product.
- the metal removing device include a method of removing metal by adhering to a magnet, and a magnetic force type or eddy current type sorting device.
- the crushed article may be pellets obtained by crushing the article and then melt-kneading the crushed article.
- (A) the crushed article and ( B) It is preferable because it can solve the problem of classification that occurs when the PPS resin composition is mixed and the problem of poor feeding to extruders and molding machines.
- the glass fiber-reinforced recycled PPS resin composition of the present invention uses a PPS resin, which has high heat resistance and chemical resistance and is essentially resistant to heat history, as a matrix resin, and further has a weight average molecular weight within a specific range. It is characterized by selecting a PPS resin having By having such characteristics, even if such a method is used, the original mechanical strength and moldability of the PPS resin can be maintained.
- Melt-kneading for obtaining pellets of crushed molded articles is carried out by supplying raw materials to a commonly known melt-kneader such as a single-screw or twin-screw extruder, a Banbury mixer, a kneader, and a mixing roll, until the resin temperature is 280°C to 380°C.
- a representative example is a method of melt-kneading to a temperature of 0° C., but this leads to breakage of the glass fiber and deterioration of the physical properties of the GFR-PPS.
- Melt-kneading by an extruder is preferred.
- the temperature conditions for melt-kneading at that time are preferably 300° C. or higher and 360° C. or lower for the purpose of suppressing breakage of the glass fibers.
- the resin temperature here is a value obtained by directly measuring the temperature of the resin discharged from the extruder.
- the crushed molded product preferably has a size that can be supplied to an extruder or a molding machine, and more preferably has a long axis dimension of 1 to 20 mm or less.
- the lower limit of the amount of (A) crushed molded product in the glass fiber reinforced recycled PPS resin composition is preferably 10% by weight or more, more preferably 20% by weight or more, and still more preferably 40% by weight or more, from the viewpoint of low environmental load. 50% by weight or more is particularly preferable, and 60% by weight or more is particularly preferable.
- the upper limit of the compounding amount of (A) crushed molded product is more preferably 90% by weight or less, more preferably 80% by weight or less, from the viewpoint of expressing various properties equivalent to those of unused materials.
- the PPS resin used in the present invention is a polymer having repeating units represented by the following structural formula.
- a polymer containing 70 mol% or more, more preferably 90 mol% or more of a polymer containing repeating units represented by the above structural formula is preferred.
- the PPS resin about less than 30 mol % of the repeating units may be composed of at least one repeating unit represented by the following formula.
- the weight average molecular weight of the PPS resin to be blended in the (B) PPS resin composition used in the present invention is (A) in order to suppress further breakage of the glass fiber when various moldings are performed by mixing with the crushed molded product. must be between 20,000 and 60,000. In order to further suppress breakage of the glass fiber, it is preferably 50,000 or less, more preferably 45,000 or less.
- a PPS resin having such a weight-average molecular weight can be obtained by adjusting the molar ratio between the polyhalogenated aromatic compound and the sulfidating agent, which will be described later, and by adjusting the amount of the polymerization aid added.
- the weight average molecular weight here is the value calculated by gel permeation chromatography (GPC) in terms of polystyrene.
- the carboxyl group content of the PPS resin blended in the (B) PPS resin composition used in the present invention forms a bond between the PPS resin and the glass fiber, and (A) is mixed with the crushed molded product to perform various moldings. It is preferably 20 to 400 ⁇ mol/g in order to suppress further breakage of the glass fiber during the operation. When it is 20 ⁇ mol/g or more, breakage is suppressed and the toughness of the PPS resin composition is improved. When it is 400 ⁇ mol/g or less, generation of gas during melt-kneading can be suppressed, and inclusion of voids in the molded article can be suppressed, which is preferable.
- It is preferably 40 ⁇ mol/g or more, more preferably 60 ⁇ mol/g or more, from the viewpoint of forming more bonds with glass fibers and obtaining toughness. Furthermore, from the viewpoint of improving heat resistance and chemical resistance, it is more preferably 100 ⁇ mol/g or more, and particularly preferably 150 ⁇ mol/g or more.
- the upper limit is preferably 350 ⁇ mol/g or less, more preferably 300 ⁇ mol/g or less, in order to prevent voids from entering the molded article and reducing mechanical properties.
- Such a PPS resin having a carboxyl group content can be obtained by adjusting the molar ratio of a polyhalogenated aromatic compound, a sulfidating agent and a polymerization stabilizer, which will be described later, or It is obtained by copolymerizing a halogenated compound.
- the carboxyl group content in the present invention is measured by an infrared spectrophotometer (FT-IR), with respect to the absorption around 1,900 cm ⁇ 1 derived from the benzene ring, and the absorption around 1,730 cm ⁇ 1 derived from the carboxyl group. It is a value calculated by comparison.
- FT-IR infrared spectrophotometer
- the blending amount of the PPS resin in the PPS resin composition must be 40 to 90% by weight from the viewpoint of achieving both mechanical properties and fluidity. They may be used together.
- the PPS resin used in the present invention is produced by a method of desalting polycondensation using a polyhalogenated aromatic compound and a sulfidating agent in an organic polar solvent, a method of synthesizing under melting conditions using diiodobenzene and sulfur, and the like. , a PPS resin obtained by a known method can be used. The details of the raw material and the post-treatment process of the PPS resin are described below.
- a polyhalogenated aromatic compound is an aromatic compound having two or more halogen atoms in one molecule.
- Specific examples include p-dichlorobenzene, m-dichlorobenzene, o-dichlorobenzene, 1,3,5-trichlorobenzene, 1,2,4-trichlorobenzene, 1,2,4,5-tetrachlorobenzene, hexa
- Dihaloaromatic compounds such as chlorobenzene, 2,5-dichlorotoluene, 2,5-dichloro-p-xylene, 1,4-dibromobenzene, 1,4-diiodobenzene, 1-methoxy-2,5-dichlorobenzene and p-dichlorobenzene is preferably used.
- the amount of the polyhalogenated aromatic compound to be added is 0.9 to 2.0 mol, preferably 0.95 to 1.5 mol, per 1 mol of the sulfidating agent, from the viewpoint of obtaining a PPS resin having an appropriate weight average molecular weight. More preferably, the range of 1.005 to 1.2 mol can be exemplified.
- a monohalogenated compound refers to a compound having one halogen atom in one molecule. It may be used in combination with a polyhalogenated aromatic compound in order to control the molecular weight of the PPS resin to be produced and to form a reactive functional group at the terminal.
- monohalogenated compounds include 2-chlorobenzoic acid, 3-chlorobenzoic acid, 4-chlorobenzoic acid, 2-amino-4-chlorobenzoic acid, 4-chloro-3-nitrobenzoic acid. , 4-chlorobenzophenone-2-carboxylic acid, 2-chloroaniline, 3-chloroaniline, 4-chloroaniline, 2-chlorophenol, 3-chlorophenol, 4-chlorophenol. can.
- 4-chlorobenzoic acid is more preferable from the viewpoint of reactivity during polymerization and versatility.
- These monohalogenated compounds may be used singly or in combination of two or more without any problem.
- Sulfidation agents include alkali metal sulfides and alkali metal hydrosulfides.
- alkali metal sulfides include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, cesium sulfide, and mixtures of two or more of these, with sodium sulfide being preferred.
- These alkali metal sulfides can be used as hydrates or aqueous mixtures, or in anhydrous form.
- alkali metal hydrosulfides include sodium hydrosulfide, potassium hydrosulfide, lithium hydrosulfide, rubidium hydrosulfide, cesium hydrosulfide, and mixtures of two or more of these. It is preferably used. These alkali metal hydrosulfides can be used as hydrates or aqueous mixtures, or in anhydrous form.
- polymerization aid In order to obtain a PPS resin with a relatively high degree of polymerization in a shorter time, it is also one of preferred embodiments to use a polymerization aid.
- the term "polymerization aid" as used herein means a substance that acts to increase the viscosity of the resulting PPS resin.
- Specific examples of such polymerization aids include organic carboxylates, water, alkali metal chlorides, organic sulfonates, alkali metal sulfates, alkaline earth metal oxides, alkali metal phosphates and alkaline earth metal salts. metal phosphates and the like. These may be used alone or in combination of two or more. Among them, organic carboxylates, water, and alkali metal chlorides are preferable, and more preferable organic carboxylates are alkali metal carboxylates, and alkali metal chlorides are lithium chloride.
- the alkali metal carboxylate has the general formula R(COOM) n (wherein R is an alkyl group, cycloalkyl group, aryl group, alkylaryl group or arylalkyl group having 1 to 20 carbon atoms).
- M is an alkali metal selected from lithium, sodium, potassium, rubidium and cesium, n is an integer of 1 to 3).
- Alkali metal carboxylates can also be used as hydrates, anhydrous or aqueous solutions. Specific examples of alkali metal carboxylates include lithium acetate, sodium acetate, potassium acetate, sodium propionate, lithium valerate, sodium benzoate, sodium phenylacetate, potassium p-toluate, and mixtures thereof. can be mentioned.
- the amount used is usually in the range of 0.01 mol to 2 mol per 1 mol of the charged alkali metal sulfide.
- a range of 0.1 mol to 0.6 mol is preferred, and a range of 0.2 mol to 0.5 mol is more preferred.
- the acid used for the acid treatment of the PPS resin is not particularly limited as long as it does not decompose the PPS resin.
- Acetic acid and hydrochloric acid are more preferably used.
- the acid treatment method includes a method such as immersing the PPS resin in an acid or an aqueous solution of acid, and it is also possible to appropriately stir or heat as necessary.
- a sufficient effect can be obtained by immersing the PPS resin powder in an aqueous solution of pH 4 heated to 80° C. to 200° C. and stirring for 30 minutes.
- the pH after the treatment may be 4 or higher, eg, about pH 4-8. It is preferable to wash the acid-treated PPS resin several times with water or hot water in order to remove residual acids or salts.
- the water used for washing is preferably distilled water or deionized water in the sense that the preferable chemical modification effect of the PPS resin by acid treatment is not impaired.
- the PPS resin constituting the PPS resin composition and (A) the PPS resin constituting the crushed molded product preferably contain the same PPS resin.
- the same PPS resin means that the ratio of the weight average molecular weight of the PPS resin constituting (B) the PPS resin composition to the weight average molecular weight of the PPS resin constituting (A) the crushed molded product is 0.8. It means that it is within the range of ⁇ 1.2. It is also preferable from the viewpoint of realizing a circular economy to use (A) a PPS resin separated and recovered from crushed molded products using a technique such as solid-liquid separation. Two or more PPS resins may be appropriately used in combination to adjust the properties.
- the glass fibers that make up the PPS resin composition and (A) the glass fibers that make up the crushed molded product preferably contain the same glass fibers.
- the same glass fiber means that (A) the glass fiber constituting the crushed molded product and (B) the glass fiber constituting the PPS resin composition are treated as having the same composition, such as E glass. It means that it is a glass fiber within the range specified. It is also possible to use two or more kinds of glass fibers together.
- the PPS resin composition is most preferably an unused material of (A) the crushed molded article in order to easily use the same raw material.
- "(A) Unused material of crushed molded article” is a resin composition that constitutes a molded article that is a raw material of (A) crushed molded article, and is not recycled. point to
- the glass fiber constituting the (B) PPS resin composition in the present invention is a glass fiber whose surface is pretreated with an epoxy compound or the like to improve the bundling property of the glass fiber and the dispersibility at the time of resin blending.
- Such a glass fiber is preferably used in combination with a PPS resin having a carboxyl group content of 20 to 400 ⁇ mol/g to improve the adhesion of the interface and provide excellent strength improvement effect, heat resistance, and chemical resistance. You get sex.
- the glass fibers used in the present invention may be partially pretreated with a coupling agent such as an isocyanate compound, an organic silane compound, an organic titanate compound, or an organic borane compound to improve dispersibility and interface adhesion. preferable from this point of view.
- a coupling agent such as an isocyanate compound, an organic silane compound, an organic titanate compound, or an organic borane compound to improve dispersibility and interface adhesion. preferable from this point of view.
- fibrous fillers such as ceramic fibers, asbestos fibers, gypsum fibers, and metal fibers is also effective in the present invention for suppressing breakage of fibrous fillers.
- the fiber diameter is preferably 1 to 50 ⁇ m, more preferably 3 to 30 ⁇ m, and more preferably 5 to 20 ⁇ m.
- the fiber length is preferably 30 ⁇ m to 10 mm, more preferably 50 ⁇ m to 5 mm.
- the blending amount of the glass fiber in the PPS resin composition must be in the range of 10 to 60% by weight from the viewpoint of achieving both strength improvement effect and fluidity.
- the content is preferably 20% by weight or more, more preferably 30% by weight or more, and particularly preferably 40% by weight or more. is most preferable.
- the (B) PPS resin composition in the present invention preferably contains an olefin copolymer to improve the toughness of the resin composition.
- olefinic copolymers include at least one functional group selected from the group consisting of epoxy groups, carboxyl groups, acid anhydride groups, amino groups, hydroxyl groups and mercapto groups, which can improve compatibility with PPS resins. and unmodified olefin copolymers capable of dramatically improving toughness, and their combined use is also effective.
- Such an olefin copolymer is preferably blended in an amount of 1 to 20% by weight based on the total weight of the PPS resin composition from the viewpoint of achieving both toughness and heat resistance in the glass fiber reinforced recycled PPS resin composition.
- the crushed molded product when an olefin copolymer is blended in (A) the crushed molded product, it is preferable to blend the olefin copolymer in (B) the PPS resin composition as well.
- the "same olefinic copolymer” means (A) an olefinic copolymer composed of the same monomer components as those of the olefinic copolymer constituting the crushed molded product. say. It is also possible to use two or more olefinic copolymers together.
- the (B) PPS resin composition of the present invention preferably contains an organic silane compound.
- the organic silane compound preferably has at least one functional group selected from an epoxy group, an isocyanate group, an amino group, a hydroxyl group, a mercapto group, a ureido group and an alkoxy group.
- an organic silane compound having at least one functional group selected from an epoxy group, an amino group, and an isocyanate group is preferable from the viewpoint of assisting the bond formation between the PPS resin and the glass fiber.
- the blending amount of such an organic silane compound is preferably 0.01 to 2% by weight based on the total weight of the (B) PPS resin composition.
- a part or all of the PPS resin composition uses the long glass fiber-reinforced PPS resin composition to reduce the amount of broken glass. It is particularly preferable from the viewpoint of recovering the fiber length and dramatically improving the mechanical properties.
- the long glass fiber reinforced PPS resin composition contains glass fiber bundles arranged in the length direction of the pellet in the PPS resin, and the length of the pellet is substantially the fiber length of the glass fiber bundle. It is a resin composition.
- the content of the glass fiber bundles in the PPS resin is preferably 10 to 80% by weight from the viewpoint of the strength reinforcing effect and the dispersibility of the fiber bundles, and (A) the viewpoint of efficiently compensating for the broken glass fibers in the crushed molded product. Therefore, it is preferably 20% by weight or more, more preferably 30% by weight or more, and even more preferably 40% by weight or more. From the viewpoint of insufficient supply to the extruder due to fluffing of the long glass fiber-reinforced PPS resin composition, the amount is preferably 70% by weight or less, more preferably 60% by weight or less.
- the PPS resin constituting (C) the long glass fiber-reinforced PPS resin composition contains the same PPS resin as the PPS resin constituting (A) the crushed product.
- the Mw is in the range of 20000 to 60000
- (A) the PPS constituting the crushed molded product It is preferable to use a low-molecular-weight PPS resin rather than a resin.
- the PPS resin preferably has a carboxyl group, an amino group, a hydroxyl group, an epoxy group, a carbodiimide structure, a urea structure, a urethane structure, or the like so as to facilitate the formation of a bond with the glass fiber. From the viewpoint, it is more preferable to have at least one selected from a carboxyl group, an epoxy group, and a carbodiimide structure, and a PPS resin containing 20 to 400 ⁇ mol/g of carboxyl groups is particularly preferable.
- the glass fibers constituting the long glass fiber-reinforced PPS resin composition are preferably glass fibers whose surface is pretreated with an epoxy compound or the like to improve the bundling property of the glass fibers and the dispersibility when blending with the resin. Such a glass fiber has improved adhesiveness and dispersibility at the interface with the PPS resin having a functional group, so that high strength improvement effect, heat resistance, and chemical resistance can be obtained.
- the glass fibers constituting the long glass fiber-reinforced PPS resin composition preferably contain the same glass fibers as the glass fibers constituting (A) the crushed product from the viewpoint of closed recycling efficiency.
- the glass fiber diameter is preferably 1 to 50 ⁇ m, more preferably 3 to 30 ⁇ m, particularly preferably 5 to 20 ⁇ m.
- the smaller the glass fiber diameter the better the tensile strength and bending strength.
- the impregnability of the resin is improved by increasing the By setting the fiber diameter within the above range, both mechanical strength and impregnability can be achieved, which is preferable.
- the long glass fiber-reinforced PPS resin composition preferably contains an olefin-based copolymer when the crushed product of (A) contains an olefin-based copolymer.
- the system copolymer include compounds similar to those blended in the (B) PPS resin composition.
- the olefinic copolymer preferably contains the same olefinic copolymer as that contained in (A) the crushed molded article.
- the long glass fiber reinforced PPS resin composition preferably contains 1 to 20% by weight of an olefin copolymer, more preferably 3% by weight or more, and 5% by weight or more from the viewpoint of obtaining excellent toughness. is more preferred.
- the PPS resin composition contains an olefin copolymer
- the PPS resin forms a continuous phase
- the olefin copolymer is dispersed with a number average dispersed particle size of 500 nm or less. It is preferred to form a dispersed phase.
- the number average dispersed particle size of the olefinic copolymer is more preferably 300 nm or less.
- a PPS resin and an olefinic resin having at least one functional group selected from the group consisting of an epoxy group, a carboxyl group, an acid anhydride group, an amino group, a hydroxyl group and a mercapto group are required.
- Proper reaction of the copolymer is effective. For example, when the amount of functional groups is too small, the reaction between the PPS resin and the olefin copolymer becomes insufficient, resulting in a number average dispersed particle size of 500 nm or more. Also, if the temperature for reacting the PPS resin and the olefinic copolymer is too high, gelation occurs and the number average dispersed particle size becomes 500 nm or more.
- the number average dispersed particle size is obtained by the following method.
- C An ultrathin section is cut from a pellet of the long glass fiber-reinforced PPS resin composition using an ultramicrotome, and an unstained sample of the ultrathin section is examined with a transmission electron microscope at a magnification of 5,000 to 10,000 times. to observe.
- Select 10 arbitrarily different dispersed phases from the obtained image calculate the major diameter and minor diameter of each dispersed phase, take the average value, and use the number average value of the average values as the number average dispersed particle size of the dispersed phase. can be calculated.
- the identity of the components that make up the dispersed phase can be determined by phase contrast differences in unstained samples.
- the crushed molded product, (B) the PPS resin composition, and (C) the glass long fiber-reinforced PPS resin composition have substantially the same composition.
- substantially the same composition means that (A) the crushed molded product and (B) the PPS resin composition are substantially the same composition, and (A) the crushed molded product and (C) the glass length It means that the fiber-reinforced PPS resin composition has substantially the same composition, and when (C) long glass fiber-reinforced PPS resin composition is used for all of (B) PPS resin compositions, It is sufficient that the crushed material and (C) the long glass fiber-reinforced PPS resin composition have substantially the same composition.
- (A) crushed molded article and (B) PPS resin composition are substantially the same composition
- (A) the amount of ash in the crushed molded article and (B) ash in the PPS resin composition The percentage (%) of the value obtained by dividing the value obtained by subtracting the amount by the ash content in the (B) PPS resin composition is -20% to 20%
- the lower limit of each is preferably -15% or more, more preferably -10% or more, and the upper limit is 15% or less. Preferably, 10% or less is more preferable. Further, from the viewpoint of suppressing changes in moldability, the lower limit is more preferably -5% or more, and the upper limit is more preferably 5% or less.
- the ash content is the percentage of the value calculated by dividing the weight of the residue obtained by firing (A) the crushed molded product or (B) the PPS resin composition at 550 ° C. for 3 hours by the weight before firing. (%).
- the length of the pellets of the long glass fiber reinforced PPS resin composition is preferably 3.0 to 50 mm from the viewpoint of strength improvement effect and handleability. It is preferably 20 mm or less, more preferably 10 mm or less, and particularly preferably 7 mm or less from the viewpoint of suppressing classification.
- Such a (C) long glass fiber reinforced PPS resin composition can be produced by a direct roving method in which a continuous glass fiber bundle is directly fed into an extruder, a pultrusion method in which a continuous glass fiber bundle is impregnated with a resin, or a continuous glass fiber bundle. It is obtained by a method of coating resin on. Since it is preferable to use the same PPS resin as the PPS resin constituting (A) the crushed molded product or a PPS resin having the same degree of fluidity as the PPS resin that serves as the matrix, (C) the long glass fiber reinforced PPS resin composition The product is preferably manufactured by a method that is less likely to impose restrictions on the fluidity of the matrix resin.
- the pultrusion method of impregnating a continuous glass fiber bundle with a resin is not preferable.
- the olefinic copolymer has a high molecular weight and a high viscosity, resulting in poor impregnation.
- the production temperature is raised to increase the fluidity of the PPS resin, thermal deterioration and gelation of the olefinic copolymer will occur.
- the long glass fiber-reinforced PPS resin composition is arranged such that a glass fiber bundle is used as a core structure, and the periphery thereof is covered with a resin composition containing a PPS resin and, if necessary, an olefin-based copolymer. It is preferably manufactured as a core-sheath structure. Generally, in a core-sheath structure manufactured in the manner of electric wire coating, since the dispersibility of continuous fibers is poor, the molded articles obtained by various moldings are often found to have poor fiber distribution.
- an organic silane compound to the resin composition obtained by blending the PPS resin as the coating layer and, if necessary, the olefinic copolymer.
- the organic silane compound preferably has at least one functional group selected from an epoxy group, an isocyanate group, an amino group, a hydroxyl group, a mercapto group, a ureido group and an alkoxy group.
- an organic silane compound having at least one functional group selected from an epoxy group, an amino group, and an isocyanate group from the viewpoint of assisting the improvement of dispersibility by forming glass fiber bonds starting from the carboxyl group of the PPS resin. It preferably has an amino group or an isocyanate group from the viewpoint of rapidly dispersing the glass fibers in the PPS resin during various molding processes.
- the blending amount of such an organic silane compound is preferably 0.01 to 5% by weight based on the total weight of the (C) long glass fiber-reinforced PPS resin composition.
- the lower limit is preferably 0.1% by weight or more from the viewpoint of improving the adhesion and dispersibility between the PPS resin and the glass fiber. 0.5% by weight or more is more preferable.
- the upper limit is preferably 3.0% by weight or less, more preferably 1.5% by weight or less, from the viewpoint of suppressing an excessive increase in viscosity and improving the dispersibility of the glass fibers.
- the (C) long glass fiber-reinforced PPS resin composition having a core-sheath structure and containing an olefinic copolymer not only has excellent dispersibility of the glass fibers, but also has excellent dispersibility of the olefinic copolymer.
- the PPS resin forms a continuous phase, and the olefin copolymer easily forms a dispersed phase with a number average dispersed particle size of 500 nm or less, which dramatically improves the properties of the glass fiber reinforced recycled PPS resin composition. can do.
- the (A) crushed molded article, (B) PPS resin composition, and (C) long glass fiber-reinforced PPS resin composition of the present invention contain fullerene, talc, wollastonite, zeolite, sericite, Mica, kaolin, clay, pyrophyllite, silica, bentonite, asbestos, silicates such as alumina silicate, metal compounds such as silicon oxide, magnesium oxide, alumina, zirconium oxide, titanium oxide, and iron oxide, calcium carbonate, magnesium carbonate, Carbonates such as dolomite, sulfates such as calcium sulfate and barium sulfate, hydroxides such as calcium hydroxide, magnesium hydroxide, and aluminum hydroxide, glass beads, glass flakes, glass powder, ceramic beads, boron nitride, silicon carbide , carbon black, silica, graphite, etc., may be blended, and these inorganic fillers may be hollow, and two or more of them may be used in combination
- these inorganic fillers may be pretreated with a coupling agent such as an isocyanate-based compound, an organic silane-based compound, an organic titanate-based compound, an organic borane-based compound, and an epoxy compound before use.
- a coupling agent such as an isocyanate-based compound, an organic silane-based compound, an organic titanate-based compound, an organic borane-based compound, and an epoxy compound before use.
- magnesium hydroxide, calcium carbonate, silica, and carbon black are preferable from the viewpoint of electrical properties, anti-corrosion properties, lubricants, and effects of imparting electrical conductivity.
- the pultrusion method of impregnating continuous glass fiber bundles with resin is not preferable. This is because the addition of the non-fiber filler increases the viscosity, resulting in poor impregnation.
- the long glass fiber-reinforced PPS resin composition has a continuous glass fiber bundle as a core structure, and the periphery thereof is coated with a resin composition containing a PPS resin and a non-fiber filler.
- the PPS resin as the coating layer and the non-fiber-filled PPS resin It is preferable to blend an organic silane compound into a resin composition composed of a material.
- the organic silane compound compounds preferably used in the above-mentioned (C) long glass fiber-reinforced PPS resin composition are preferred.
- the (A) crushed molded product, (B) PPS resin composition, and (C) long-fiber-reinforced PPS resin composition of the present invention contain a phenol-based antioxidant, a phosphorus-based antioxidant, and a sulfur-based antioxidant.
- plasticizers such as organic phosphorus compounds, organic phosphorus compounds, crystal nucleating agents such as polyetheretherketone, montanic acid waxes, metal soaps such as lithium stearate and aluminum stearate, polycondensation of ethylenediamine/stearic acid/sebacic acid release agents such as silicone compounds, water, lubricants, UV inhibitors, coloring agents, foaming agents, and other common additives.
- Such additives are preferably blended in an amount of 0.01 to 5% by weight.
- the glass-fiber-reinforced recycled PPS resin composition obtained by the production method of the present invention comprises 40-90% by weight of PPS resin having a weight-average molecular weight of 20,000-60,000 and 10-60% by weight of glass fiber.
- the molded article obtained by molding the glass fiber reinforced recycled PPS resin composition has a ratio of the weight average fiber length (Lw) to the number average fiber length (Ln) of the glass fiber contained (hereinafter, Lw/Ln). , 1.3 or more and 4.0 or less.
- the blending amount of the glass fiber in the glass fiber-reinforced recycled PPS resin composition is preferably 20% by weight or more, more preferably 30% by weight or more, and even more preferably 40% by weight or more, in order to obtain excellent strength.
- Molded articles obtained by molding the glass fiber reinforced recycled PPS resin composition obtained in the present invention are: (A) the broken glass fiber length of the crushed molded article is restored; Not only does it have the characteristic of less deterioration in mechanical properties compared to other materials, but it also provides a molded product with Lw/Ln within a certain range. The larger the Lw/Ln, the longer the glass fiber remains relative to the short glass fiber. (A) It is possible to exhibit properties surpassing even the properties of virgin crushed molded products. Lw/Ln is preferably 1.5 or more, more preferably 1.7 or more, and even more preferably 2.0 or more from the viewpoint of achieving both mechanical properties and fluidity.
- Lw/Ln is preferably 3.5 or less, more preferably 3.0 or less.
- Lw/Ln was obtained by adjusting and mixing (A) the crushed molded product and (B) the PPS resin composition having a glass fiber length distribution different from that of the crushed molded product. It is possible to adjust the fiber length distribution of the glass fibers of the molded product to be multimodal. In particular, Lw/Ln can be increased by using (C) the long glass fiber-reinforced PPS resin composition for part or all of the (B) PPS resin composition.
- the weight-average fiber length of the glass fiber in the molded product obtained by molding the glass fiber-reinforced recycled PPS resin composition is preferably 50 to 5000 ⁇ m from the viewpoint of ensuring excellent mechanical properties and fluidity. From the viewpoint of obtaining excellent mechanical properties, it is preferably 100 ⁇ m or more, more preferably 200 ⁇ m or more, and further preferably 300 ⁇ m or more from the viewpoint of use as a metal substitute. Further, when Lw/Ln is in a preferable range, it is more preferably 400 ⁇ m or more, particularly preferably 500 ⁇ m or more, because it is possible to achieve both mechanical properties and fluidity. From the viewpoint of obtaining excellent fluidity, the thickness is preferably 4000 ⁇ m or less, more preferably 3000 ⁇ m or less, and particularly preferably 2000 ⁇ m or less.
- the glass fiber-reinforced recycled PPS resin composition obtained in the present invention preferably contains an olefinic copolymer in order to exhibit excellent toughness.
- the olefinic copolymer include (B ) Compounds similar to those blended in the PPS resin composition.
- the olefinic copolymer is preferably blended in an amount of 1 to 20% by weight, and the upper limit thereof is preferably 10% by weight or less.
- the phase structure of the glass fiber reinforced recycled PPS resin composition obtained in the present invention and the molded article formed by molding the glass fiber reinforced recycled PPS resin composition is such that the PPS resin forms a continuous phase and the olefin copolymer It is preferable to form a dispersed phase having an average dispersed particle size of 500 nm or less, and more preferably 300 nm or less from the viewpoint of high toughness.
- an olefin copolymer is added to each of (A) the crushed molded product, (B) the PPS resin composition, and (C) the glass long fiber reinforced PPS resin composition. It is preferable that the number-average dispersed particle size when blended is within the above range.
- the long glass fiber-reinforced PPS resin composition preferably has the aforementioned core-sheath structure in order to suppress an increase in the number average dispersed particle size due to gelation of the olefin copolymer.
- the glass fiber reinforced recycled PPS resin composition obtained in the present invention contains fullerene, talc, wollastonite, zeolite, sericite, mica, kaolin, clay, pyrophyllite, silica, bentonite, asbestos and alumina as non-fiber fillers.
- Silicates such as silicate, metal compounds such as silicon oxide, magnesium oxide, alumina, zirconium oxide, titanium oxide and iron oxide, carbonates such as calcium carbonate, magnesium carbonate and dolomite, sulfates such as calcium sulfate and barium sulfate, water Hydroxides such as calcium oxide, magnesium hydroxide, and aluminum hydroxide, glass beads, glass flakes, glass powder, ceramic beads, boron nitride, silicon carbide, carbon black and silica, graphite, and the like may be blended.
- the inorganic fillers may be hollow, and two or more types may be used in combination.
- these inorganic fillers may be pretreated with a coupling agent such as an isocyanate-based compound, an organic silane-based compound, an organic titanate-based compound, an organic borane-based compound, and an epoxy compound before use.
- a coupling agent such as an isocyanate-based compound, an organic silane-based compound, an organic titanate-based compound, an organic borane-based compound, and an epoxy compound before use.
- magnesium hydroxide, calcium carbonate, silica, and carbon black are preferable from the viewpoint of electrical properties, anti-corrosion properties, lubricants, and effects of imparting electrical conductivity.
- the (A) crushed molded article constituting the glass fiber-reinforced recycled PPS resin composition of the present invention may be a crushed molded article that has been recycled multiple times as long as it has the above characteristics.
- the molded article is collected after being used in the market as a product, and is composed of a molded article obtained by molding the glass fiber reinforced recycled PPS resin composition of the present invention.
- the glass fiber reinforced recycled PPS resin composition obtained by the production method of the present invention depends on the composition ratio and raw material species, so it cannot be said unconditionally, but from the viewpoint of ensuring excellent mechanical properties and fluidity, it is measured according to ISO 178 (2010). It is preferable that the bending strength is 150 MPa or more and 400 MPa or less. 200 MPa or more is preferable from the viewpoint of obtaining better mechanical properties, 230 MPa or more is more preferable, 250 MPa or more is particularly preferable from the viewpoint of use as a metal substitute, and 270 MPa or more is particularly preferable. Moreover, 350 MPa or less is preferable from the viewpoint of obtaining more excellent fluidity.
- the flexural strength can be increased by increasing the blending amount of the glass fiber or by suppressing breakage of the glass fiber.
- the glass fiber reinforced recycled PPS resin composition obtained by the production method of the present invention depends on the composition ratio and raw material species, so it cannot be said unconditionally, but from the viewpoint of ensuring excellent mechanical properties and fluidity, ISO 527-1, -2 (2012), the tensile strength is preferably 100 MPa or more and 350 MPa or less. From the viewpoint of obtaining better mechanical properties, it is preferably 150 MPa or more, more preferably 160 MPa or more, particularly preferably 180 MPa or more from the viewpoint of use as a metal substitute, and particularly preferably 200 MPa or more. Moreover, 300 MPa or less is preferable from the viewpoint of obtaining more excellent fluidity.
- the tensile strength can be increased by increasing the blending amount of the glass fiber, suppressing breakage of the glass fiber, and increasing the interfacial adhesion by forming a bond between the PPS resin and the glass fiber.
- the glass fiber reinforced recycled PPS resin composition obtained by the production method of the present invention depends on the composition ratio and raw material species, so it cannot be said unconditionally, but from the viewpoint of ensuring excellent mechanical properties and fluidity, it is measured according to ISO 179 (2010).
- Charpy impact strength (with notch) is preferably 3 kJ/m 2 or more and 40 kJ/m 2 or less. From the viewpoint of obtaining better mechanical properties, it is preferably 7 kJ/m 2 or more, more preferably 10 kJ/m 2 or more, particularly preferably 15 kJ/m 2 or more from the viewpoint of use as a metal substitute, and particularly preferably 20 kJ/m 2 or more. preferable.
- the Charpy impact strength (with notch) can be increased by increasing the blending amount of the glass fiber, suppressing breakage of the glass fiber, or blending an olefin copolymer.
- the tensile strength, bending strength, and Charpy impact strength of the glass fiber reinforced recycled PPS resin composition are in the range of (A) 0.80 to 2.00 times the mechanical properties of the unused material of the crushed molded product. is preferred. In order to expand the application range of recycled materials, it is preferably 0.85 times or more, more preferably 0.90 times or more, and particularly preferably 0.95 times or more from the viewpoint of using it for the same purpose as virgin materials, and 0.98 times The above are particularly preferred. In addition, from the viewpoint of obtaining moldability equivalent to that of virgin materials, it is preferably 1.80 times or less, more preferably 1.60 times or less, and particularly 1.40 times or less from the viewpoint of using the same applications as virgin materials. Preferably, 1.20 times or less is particularly preferable.
- the glass fiber reinforced recycled PPS resin composition obtained by the production method of the present invention can be applied to various molding methods such as extrusion molding, injection molding, blow molding, calendar molding, compression molding, vacuum molding, foam molding, Examples include blow molding and rotational molding.
- the glass fiber reinforced recycled PPS resin composition obtained by the production method of the present invention has excellent heat resistance and mechanical properties, it can be applied to known uses found in many patents relating to PPS resin compositions. It is preferable to apply it to automobile parts where the demand for Qura economy is increasing.
- the carboxyl group content of the PPS resin was determined by preparing an amorphous film of the PPS resin under the following conditions and measuring the FT-IR (IR-810 type infrared light manufactured by JASCO Corporation). It was estimated by comparing the absorption around 1,730 cm ⁇ 1 derived from the carboxyl group with the absorption around 1,900 cm ⁇ 1 derived from the benzene ring.
- FT-IR IR-810 type infrared light manufactured by JASCO Corporation
- 4 A difference in odor is sensed at a position of 1 m, but no difference in odor is sensed at a position of 2 m.
- Scion Corporation's image analysis software "Scion Image” is used to select 10 arbitrarily different dispersed particles of the olefin copolymer present in the electron micrograph, and the major axis and minor axis of each dispersed particle are measured. was obtained, and the average value was taken as the particle diameter of the dispersed particles, and the number average value of the particle diameters of ten dispersed particles was taken as the number average dispersed particle diameter. The identification of the components constituting the dispersed phase was determined by phase contrast in unstained samples.
- the amount of water remaining in the system per 1 mol of the charged alkali metal sulfide was 1.06 mol including the water consumed for hydrolysis of NMP.
- the amount of hydrogen sulfide scattered was 0.02 mol per 1 mol of the charged alkali metal sulfide.
- the content was diluted with about 35 liters of NMP to form a slurry, which was stirred at 85°C for 30 minutes and then filtered through an 80-mesh wire mesh (opening 0.175 mm) to obtain a solid.
- the obtained solid matter was similarly washed with about 35 liters of NMP and separated by filtration.
- the obtained solid matter was diluted with 70 liters of deionized water, stirred at 70° C. for 30 minutes, filtered through an 80-mesh wire mesh to recover the solid matter, and the operation was repeated three times in total.
- the obtained solid matter and 32 g of acetic acid were diluted with 70 liters of ion-exchanged water, stirred at 70° C.
- the obtained PPS resin (b-1) had a weight average molecular weight of 40000 and a carboxyl group content of 40 ⁇ mol/g.
- the obtained PPS resin (b-2) had a weight average molecular weight of 40000 and a carboxyl group content of 0 ⁇ mol/g.
- the obtained PPS resin (b-3) had a weight average molecular weight of 75000 and a carboxyl group content of 30 ⁇ mol/g.
- (c-1) Glass fiber Chopped glass bundled with a novolak epoxy compound having a fiber length of 3 mm and an average fiber diameter of 10.5 ⁇ m was used (manufactured by Nippon Electric Glass Co., Ltd., T-747H).
- (d-1) Olefin-based copolymer containing an epoxy group: using an ethylene/glycidyl methacrylate copolymer ("Bond First" E manufactured by Sumitomo Chemical Co., Ltd.)
- (d-2) Unmodified olefin-based copolymer: An ethylene/1-butene copolymer was used (“Tafmer” A4085 manufactured by Mitsui Chemicals).
- Examples 1 to 3, Comparative Example 1, Reference Examples 4 to 7 Each raw material was dry-blended at the ratio shown in Table 1. The resulting resin composition was then injection molded under the conditions described in item (3) above to obtain an ISO (1A) dumbbell test piece. The obtained ISO (1A) dumbbell test piece was measured for glass fiber length (glass fiber length of molded product) and mechanical properties.
- Example 1 deterioration in mechanical properties is suppressed as compared with the unused material of Reference Example 4.
- Comparative Example 1 has lower mechanical properties than the unused material of Reference Example 7, indicating that a resin composition using a PPS resin with a specific Mw is effective.
- Example 3 the deterioration of mechanical properties was not suppressed compared to Example 1 with respect to the unused material of Reference Example 6, and a resin composition using a PPS resin having a specific carboxyl group content It turns out that things work.
- Example 4-6 Each raw material was dry blended at the ratio shown in Table 2, and then the resin composition was injection molded. Levels were measured and evaluated.
- Example 4 Compared to the unused material of Reference Example 4, Example 4 has lower mechanical properties and an odor, indicating that it is difficult to recycle due to market use. In contrast, in Examples 5 and 6, the reduction in mechanical properties and odor were improved, indicating that solvent washing of crushed molded products is effective.
- C-2 Long glass fiber reinforced PPS resin composition (coating method)
- a continuous glass fiber bundle (c-2) was continuously fed into the crosshead die to obtain a strand in which the perimeter of the glass fiber bundle was coated with a certain amount of the PPS resin composition per unit length of the glass fiber bundle in the same manner as the wire coating method. .
- the coated strand was cooled in a water-cooled bath and cut into 5 mm lengths to obtain pellets of the core-sheath structure long glass fiber reinforced PPS resin composition (C-2).
- the amount of the PPS resin composition pellets is 40% by weight of the glass fiber, 60% by weight of the PPS resin, and 0.2 parts by weight of the organic silane compound per 100 parts by weight of the total of the glass fiber and the PPS resin.
- the blending amount and the thickness of the coating layer were adjusted.
- Example 7 to 11 Each raw material was dry-blended at the ratio shown in Table 3, and then the resulting resin composition was injection molded under the conditions described in item (3) above to obtain an ISO (1A) dumbbell test piece.
- the obtained ISO (1A) dumbbell test pieces were subjected to dispersibility test, density measurement, glass fiber length (glass fiber length of molded article), and mechanical properties.
- Examples 8 to 11 increased the average fiber length of the glass fibers while maintaining the same density, and improved the physical properties of the glass fiber-reinforced recycled PPS resin composition. It was shown that adding a fiber-reinforced PPS resin composition is effective. On the other hand, in Examples 10 and 11, as compared with Examples 8 and 9, poor dispersion of glass fibers was slightly found in the molded articles. It was shown that the long glass fiber-reinforced PPS resin composition obtained by the coating method improves the dispersibility of the glass fibers by using a PPS resin containing a carboxyl group and an organic silane compound together.
- PPS resin composition pellets were obtained by melt-kneading at a screw rotation speed of 200 rpm. The pellets thus obtained were melt-kneaded at 320° C. in a single-screw extruder to obtain a molten state, which was supplied to an impregnation tank attached to the tip of the extruder.
- the glass fiber bundle (c-2) is continuously taken up and passed through the impregnation tank to impregnate the glass fiber bundle with a certain amount of PPS resin per unit length, thereby obtaining 30 weight of the glass fiber bundle. % was cooled in a water-cooled bath and cut into 5 mm lengths, but the glass fiber bundle could not be impregnated with the PPS resin composition.
- (C-5) Long glass fiber reinforced PPS resin composition (impregnation method) Pellets of the long glass fiber-reinforced PPS resin composition (C-5) were obtained in the same manner as in Reference Example 21, except that the PPS resin composition was melt-kneaded with a single-screw extruder at a temperature of 360°C.
- the composition of (C-5) is 65% by weight of PPS resin (b-1), 30% by weight of glass fiber bundle (c-2), and 2.5% of epoxy group-containing olefinic copolymer (d-1).
- the glass fiber bundle By continuously supplying to the glass fiber bundle, a certain amount of the PPS resin composition per unit length of the glass fiber bundle is coated around the glass fiber bundle in the same manner as the wire coating method, and the glass fiber bundle is 30% by weight.
- the contained coated strand was cooled in a water-cooled bath and cut into 5 mm lengths to obtain pellets of a core-sheath structured long glass fiber reinforced PPS resin composition (C-6).
- the composition of (C-6) is 65% by weight of the PPS resin (b-1), 30% by weight of the glass fiber bundle (c-2), and 2.5% of the epoxy group-containing olefinic copolymer (d-1).
- Example 12 to 20 Each raw material was dry-blended at the ratio shown in Table 4, and then the resulting resin composition was injection molded under the conditions described in item (3) above to obtain an ISO (1A) dumbbell test piece.
- the obtained ISO (1A) dumbbell test piece was subjected to dispersibility test, density measurement, phase structure observation, glass fiber length (glass fiber length of molded product), and mechanical properties.
- Examples 13 to 17 increased the average fiber length of the glass fiber and improved the physical properties of the glass fiber-reinforced recycled PPS resin composition while maintaining the same density. It was shown that adding a fiber-reinforced PPS resin composition is effective. On the other hand, in Example 13, the number-average dispersed particle size of the olefin copolymer was large, and deterioration in physical properties was observed. It can be seen that the olefin copolymer gelled as a result of forcibly impregnating the glass fiber bundle with the high-viscosity PPS resin composition at a high temperature. In Example 17, compared with Examples 14-16, poor dispersion of glass fibers was slightly observed in the molded article. It was shown that the long glass fiber reinforced PPS resin composition obtained by the coating method has improved dispersibility of the glass fibers by adding an organic silane compound.
- pellets of a core-sheath structure glass long fiber reinforced PPS resin composition (C-10) were obtained in the same manner as in Reference Example 23, except that the obtained pellets were used.
- the composition of (C-10) is 45% by weight of PPS resin (b-1), 30% by weight of glass fiber bundle (c-2), and 2.5% of epoxy group-containing olefinic copolymer (d-1).
- the average fiber length of the glass fibers was increased and the physical properties of the glass fiber-reinforced recycled PPS resin composition were improved even when the crushed product after use with an unknown composition ratio was used.
- the resulting glass fiber-reinforced recycled PPS resin composition has a density equivalent to that of crushed molded products, indicating that closed recycling is possible.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Environmental & Geological Engineering (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- Sustainable Development (AREA)
- Wood Science & Technology (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
Abstract
Description
1.ポリフェニレンスルフィド(以下、「PPS」ということがある)樹脂およびガラス繊維を配合してなる成形品を破砕し、(A)成形品破砕物を得て、該(A)成形品破砕物と、(B)重量平均分子量(以下、「Mw」ということがある)が20000~60000のPPS樹脂40~90重量%およびガラス繊維10~60重量%を配合してなるPPS樹脂組成物(以下、「(B)PPS樹脂組成物」ということがある)とを、混合することを特徴とするガラス繊維強化再生PPS樹脂組成物の製造方法。
2.前記(B)PPS樹脂組成物が、カルボキシル基を20~400μmol/g含有するPPS樹脂を配合してなることを特徴とする1項に記載のガラス繊維強化再生PPS樹脂組成物の製造方法。
3.前記(A)成形品破砕物が、Mwが20000~60000のPPS樹脂40~90重量%およびガラス繊維10~60重量%を配合してなることを特徴とする1項または2項に記載のガラス繊維強化再生PPS樹脂組成物の製造方法。
4.前記(A)成形品破砕物が、オレフィン系共重合体1~20重量%を配合してなり、かつ前記(B)PPS樹脂組成物が、オレフィン系共重合体1~20重量%を配合してなることを特徴とする1~3項のいずれかに記載のガラス繊維強化再生PPS樹脂組成物の製造方法。
5.前記(A)成形品破砕物が、成形品破砕物を破砕した後、さらに押出機で溶融混練して得た成形品破砕物ペレットであることを特徴とする1~4項のいずれかに記載のガラス繊維強化再生PPS樹脂組成物の製造方法。
6.前記(A)成形品破砕物が、製品として使用後に回収された成形品を破砕して得られたことを特徴とする1~5項のいずれかに記載のガラス繊維強化再生PPS樹脂組成物の製造方法。
7.前記(A)成形品破砕物が、製品として使用後に回収された成形品を溶媒で洗浄した後、破砕して得られたことを特徴とする1~6項のいずれかに記載のガラス繊維強化再生PPS樹脂組成物の製造方法。
8.(B)PPS樹脂組成物の一部または全てに、(C)PPS樹脂中にペレットの長さ方向に揃えられたガラス繊維束を10~80重量%含有し、かつペレットの長さが3.0~50mmであるガラス長繊維強化PPS樹脂組成物を使用する、1~7項のいずれかに記載のガラス繊維強化再生PPS樹脂組成物の製造方法。
9.前記(C)ガラス長繊維強化PPS樹脂組成物が、Mwが20000~60000のPPS樹脂40~90重量%およびガラス繊維束10~60重量%を含有することを特徴とする8項に記載のガラス繊維強化再生PPS樹脂組成物の製造方法。
10.前記(C)ガラス長繊維強化PPS樹脂組成物が、オレフィン系共重合体1~20重量%を配合してなることを特徴とする8項または9項に記載のガラス繊維強化再生PPS樹脂組成物の製造方法。
11.前記(C)ガラス長繊維強化PPS樹脂組成物の相構造において、PPS樹脂が連続相を形成し、オレフィン系共重合体が、数平均分散粒子径500m以下で分散した分散相を形成することを特徴とする10項に記載のガラス繊維強化再生PPS樹脂組成物の製造方法。
12.前記(A)成形品破砕物と、(B)PPS樹脂組成物と(C)ガラス長繊維強化PPS樹脂組成物が、実質的に同一組成であることを特徴とする8~11項のいずれかに記載のガラス繊維強化再生PPS樹脂組成物の製造方法。
13.前記(C)ガラス長繊維強化PPS樹脂組成物が、前記ガラス繊維束の周囲を被覆するようにPPS樹脂組成物が配置されている芯鞘構造であることを特徴とする8~12項のいずれかに記載のガラス繊維強化再生PPS樹脂組成物の製造方法。
14.前記(C)ガラス長繊維強化PPS樹脂組成物が、エポキシ基、アミノ基、およびイソシアネート基から選択される少なくとも1種の官能基を有する有機シラン化合物を0.01~5重量%配合してなることを特徴とする8~13項のいずれかに記載のガラス繊維強化再生PPS樹脂組成物の製造方法。
15.Mwが20000~60000のPPS樹脂40~90重量%およびガラス繊維10~60重量%を配合してなるガラス繊維強化再生PPS樹脂組成物を成形してなる成形品であって、該ガラス繊維の重量平均繊維長(Lw)と数平均繊維長(Ln)の比(Lw/Ln)が、1.3以上、4.0以下である成形品。
16.前記ガラス繊維強化再生PPS樹脂組成物が、オレフィン系共重合体を1~20重量%配合してなることを特徴とする15項に記載の成形品。
17.PPS樹脂が連続相を形成し、オレフィン系共重合体が、数平均分散粒子径500nm以下で分散した分散相を形成することを特徴とする16項に記載の成形品。
ポリハロゲン化芳香族化合物とは、1分子中にハロゲン原子を2個以上有する芳香族化合物をいう。具体例としては、p-ジクロロベンゼン、m-ジクロロベンゼン、o-ジクロロベンゼン、1,3,5-トリクロロベンゼン、1,2,4-トリクロロベンゼン、1,2,4,5-テトラクロロベンゼン、ヘキサクロロベンゼン、2,5-ジクロロトルエン、2,5-ジクロロ-p-キシレン、1,4-ジブロモベンゼン、1,4-ジヨードベンゼン、1-メトキシ-2,5-ジクロロベンゼンなどのジハロ芳香族化合物が挙げられ、好ましくはp-ジクロロベンゼンが用いられる。
モノハロゲン化化合物は、1分子中にハロゲン原子を1個有する化合物をいう。生成するPPS樹脂の分子量の制御や、末端に反応性官能基を形成させるために、ポリハロゲン化芳香族化合物と併用して用いてもよい。
スルフィド化剤としては、アルカリ金属硫化物、アルカリ金属水硫化物が挙げられる。
比較的高重合度のPPS樹脂をより短時間で得るために、重合助剤を用いることも好ましい態様の一つである。ここで重合助剤とは、得られるPPS樹脂の粘度を増大させる作用を有する物質を意味する。このような重合助剤の具体例としては、例えば有機カルボン酸塩、水、アルカリ金属塩化物、有機スルホン酸塩、硫酸アルカリ金属塩、アルカリ土類金属酸化物、アルカリ金属リン酸塩およびアルカリ土類金属リン酸塩などが挙げられる。これらは単独であっても、また2種以上を同時に用いることもできる。なかでも、有機カルボン酸塩、水、およびアルカリ金属塩化物が好ましく、さらに有機カルボン酸塩としてはアルカリ金属カルボン酸塩が、アルカリ金属塩化物としては塩化リチウムが好ましい。
特定量のカルボキシル基含有量を有するPPS樹脂を得るために、重合後、酸処理が施されることが好ましい。
数平均繊維長(Ln)=Σ(Li×ni)/Σni
重量平均繊維長(Lw)=Σ(Li2×ni)/Σ(Li×ni)
Li:ガラス繊維の繊維長
ni:繊維長Liのガラス繊維の本数。
PPS樹脂の分子量は、サイズ排除クロマトグラフィー(SEC)の一種であるゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレン換算で重量平均分子量(Mw)を測定した。GPC測定条件を以下に記す。
装置 : (株)センシュー科学製SSC-7100
カラム名 : (株)センシュー科学製GPC3506
溶離液 : 1-クロロナフタレン
検出器 : 示差屈折率検出器
カラム温度 : 210℃
検出器温度 : 210℃
流量 : 1.0mL/min。
PPS樹脂のカルボキシル基量はPPS樹脂の非晶フィルムを以下の条件で作成し、FT-IR(日本分光(株)製IR-810型赤外分光光度計)測定し、ベンゼン環由来の1,900cm-1付近における吸収に対する、カルボキシル基由来の1,730cm-1付近における吸収を比較することにより見積もった。
(a)試料をポリイミドフィルムで挟み、340℃に加熱したプレスの金型に挟む。
(b)1分間滞留させた後、荷重10kgfで加圧し、3分間滞留させた後、荷重40kgfで加圧する。
(c)ポリイミドフィルムごと取出して水で急冷し、厚みが約50~300μmの非晶フィルムを得る。
各実施例および比較例により得られた樹脂組成物について、130℃熱風乾燥機中で3時間乾燥し、住友重機械製射出成形機SE75-DUZを用い、シリンダー温度310℃、金型温度140℃、スクリュー回転数100rpmの条件で、ISO(1A)ダンベル試験片を射出成形した。また、このときの射出圧を樹脂組成物の流動性指標とした。
上記(3)項で得たISO(1A)ダンベル試験片について、23℃条件下、オートグラフAG-Xplus20kN試験機を用い、ISO527-1,-2(2012)に従い、支点間距離114mm、引張速度5mm/minの条件で引張特性を評価した。
上記(3)項で得たISO(1A)ダンベル試験片を切削して中心部から1cm角片を取り出し、サンプルとして秤量後、ルツボに入れ550℃に設定した電気炉内で3時間焼成することにより、ガラス繊維の残渣を得た。この残渣を秤量し、焼成前のサンプル重量に対するガラス繊維の重量割合を算出して灰分量を求めた。その残渣を光学顕微鏡にて50~100倍に拡大した画像を観察し、無作為に選んだ1000本のガラス繊維の長さを測定し、その測定値(μm)を用いて以下の式に基づき計算した。
数平均繊維長(Ln)=Σ(Li×ni)/Σni
重量平均繊維長(Lw)=Σ(Li2×ni)/Σ(Li×ni)
Li:繊維状充填材の繊維長
ni:繊維長Liの繊維状充填材の本数。
130℃熱風乾燥機中で3時間乾燥したガラス繊維強化再生PPS樹脂組成物ペレットを、シリンダー温度310℃に設定した住友重機械製射出成形機SE75-DUZに充填し、スクリュー後退位置が80mmになるまで計量後にパージする操作を3回繰り返し、塊状の溶融樹脂を得た。得られた溶融樹脂を即刻、溶融樹脂と被験者との距離が50cm、1mおよび2mのそれぞれの位置において、成形品破砕物を含まない樹脂ペレット(下記参考例4記載のPPS樹脂組成物(B-1))を用いた場合との臭気の違いを評価した。評価は、5人の被験者に以下の5段階で採点して貰い、5人の採点の平均値を臭気レベルとした。
1:50cmの位置でも未使用材との臭気差を感じない。
2:50cmの位置では臭気差を僅かに感じるが、1mの位置では臭気差を感じない。
3:50cmの位置では臭気差を感じるが、1mの位置では臭気差を感じない。
4:1mの位置では臭気差を感じるが、2mの位置では臭気差を感じない。
5:2mの位置でも未使用材との臭気差を感じる。
各実施例および比較例により得られた樹脂組成物ペレット、または上記(3)項で得られたISO(1A)ダンベル試験片を用いて、ISO1183(2019)に従い求めた(単位:g/cm3)。
上記(3)項で得られたISO(1A)ダンベル試験片を目視で評価し、1cm以上のガラス繊維束の分散不良が認められた試験片の本数に応じて、以下の3段階で評価した。
best:試験片50本の内0本
good:試験片50本の内1~3本。
bad:試験片50本の内4本以上。
上記(3)項で得られたISO(1A)ダンベル試験片の中央部を樹脂の流れ方向に対して垂直方向に切断し、その断面の中心部から、温度-20℃の条件下で厚さ0.1μm以下の薄片を、ウルトラミクロトームを用いて切削した。日立製作所製H-7100型透過型電子顕微鏡(分解能(粒子像)0.38nm、倍率50~60万倍)を用いて、これらのサンプルの任意の異なる10箇所を1000~10000倍に拡大して写真撮影を行った。Scion Corporation製画像解析ソフト「Scion Image」を用いて、電子顕微鏡写真中に存在するオレフィン系共重合体の分散粒子について、任意の異なる分散粒子を10個選び、それぞれの分散粒子について長径および短径を求めて平均値を取ったものをその分散粒子の粒子径とし、それらの分散粒子10個の粒子径の数平均値を数平均分散粒子径とした。なお、分散相を構成する成分の同定は、無染色のサンプルにおける相のコントラストで決定した。
撹拌機および底栓弁付きの70リットルオートクレーブに、47.5%水硫化ナトリウム8.27kg(70.00モル)、96%水酸化ナトリウム2.94kg(70.63モル)、N-メチル-2-ピロリドン(NMP)11.45kg(115.50モル)、酢酸ナトリウム0.513kg(6.25モル)、及びイオン交換水3.82kgを仕込み、常圧で窒素を通じながら245℃まで約3時間かけて徐々に加熱し、水8.09kgおよびNMP0.28kgを留出した後、反応容器を200℃に冷却した。仕込みアルカリ金属硫化物1モル当たりの系内残存水分量は、NMPの加水分解に消費された水分を含めて1.06モルであった。また、硫化水素の飛散量は、仕込みアルカリ金属硫化物1モル当たり0.02モルであった。
洗浄に酢酸を用いなかったこと以外は参考例1と同様にしてPPSを得た。
用いる酢酸ナトリウムを2.24kg(27.3モル)としたこと以外は参考例1と同様にしてPPSを得た。
(c-2)ガラス繊維束:平均繊維径17μmのエポキシ系化合物で集束されたロービングガラスを用いた(日本電気硝子社製T-739N)。
(d-2)未変性オレフィン系共重合体:エチレン・1-ブテン共重合体を用いた(三井化学製“タフマー”A4085)。
(e-2)アミノ基を含有する有機シラン化合物:3-アミノプロピルトリエトキシシランを用いた(信越シリコーン製:KBE903)
(e-3)イソシアネート基を含有する有機シラン化合物:3-イソシアネートプロピルトリエトキシシランを用いた(信越シリコーン製:KBE9007)。
PPS樹脂(b-1)60重量%、ガラス繊維(c-1)40重量%、ならびにPPS樹脂(b-1)およびガラス繊維(c-1)の合計を100重量部としてエポキシ基を含有する有機シラン化合物(e-1)0.3重量部を、真空ベントを具備した日本製鋼所製TEX30α型二軸押出機(L/D=45、ニーディング部3箇所)を用い、シリンダー温度300℃、スクリュー回転数200rpmにて溶融混練し、PPS樹脂組成物(B-1)を得た。
PPS樹脂(b-1)65重量%、ガラス繊維(c-1)30重量%、エポキシ基を含有するオレフィン系共重合体(d-1)2.5重量%、未変性オレフィン系共重合体(d-2)2.5重量、ならびにPPS樹脂(b-1)、ガラス繊維(c-1)、エポキシ基を含有するオレフィン系共重合体(d-1)、および未変性オレフィン系共重合体(d-2)の合計100重量部に対しエポキシ基を含有する有機シラン化合物(e-1)0.3重量部を混合したこと以外は参考例4と同様にして、PPS樹脂組成物(B-2)を得た。
用いるPPS樹脂をb-2としたこと以外は参考例4と同様にしてPPS樹脂組成物(B-3)を得た。
用いるPPS樹脂をb-3としたこと以外は参考例4と同様にして樹脂組成物(B-4)を得た。
(B-1)PPS樹脂組成物を130℃熱風乾燥機中で3時間乾燥し、住友重機械製射出成形機SE75-DUZを用い、シリンダー温度310℃、金型温度140℃、スクリュー回転数100rpmの条件で、ISO(1A)ダンベル試験片を射出成形した。その際に発生したスプルー/ランナー(成形品に相当する)を長軸寸法が20mm以下になるように破砕機で破砕して成形品破砕物(A-1)を得た。
用いるPPS樹脂組成物を(B-2)としたこと以外は参考例8と同様にして成形品破砕物(A-2)を得た。
用いるPPS樹脂組成物を(B-3)としたこと以外は参考例8と同様にして成形品破砕物(A-3)を得た。
用いるPPS樹脂組成物を(B-4)としたこと以外は参考例8と同様にして成形品破砕物(A-4)を得た。
各原料を表1に示す割合でドライブレンドした。次いで得られた樹脂組成物を上記(3)項に記載の条件で射出成形し、ISO(1A)ダンベル試験片を得た。得られたISO(1A)ダンベル試験片について、ガラス繊維長(成形品のガラス繊維長)、機械特性を測定した。
実施例1は参考例4の未使用材に対して機械特性の低下が抑制されている。一方、比較例1は参考例7の未使用材に対して機械特性が低下しており、特定のMwのPPS樹脂を用いた樹脂組成物が有効であることがわかる。また、実施例3は参考例6の未使用材に対して、実施例1と比較して、機械特性の低下が抑制されておらず、特定のカルボキシル基含有量のPPS樹脂を用いた樹脂組成物が有効であることがわかる。
PPS樹脂組成物(B-1)で構成された樹脂部を有する自動車用金属インサート部品について、市場での使用後に回収された自動車用金属インサート部品から樹脂部を粉砕して取り外した後、長軸寸法が100mm以下になるよう破砕機で粗く破砕し、洗浄せずに、長軸寸法が10mm以下になるように破砕機で破砕して得た成形品破砕物(A-5)を得た。
樹脂部を長軸寸法が100mm以下になるよう破砕機で粗く破砕し、得られた破砕品をメッシュドラム式洗浄装置内にて50℃の温水を用いて洗浄し、エアブローにより水切りを行った後、長軸寸法が10mm以下になるようにさらに破砕機で破砕したこと以外は参考例12同様にして成形品破砕物(A-6)を得た。
樹脂部を長軸寸法が100mm以下になるよう破砕機で粗く破砕し、破砕品をメッシュドラム式洗浄装置内にて100℃のNMPを用いて洗浄した後、続けて50℃の温水を用いて洗浄し、エアブローにより水切りを行った後、長軸寸法が10mm以下になるように破砕機で破砕したこと以外は参考例12と同様にして成形品破砕物(A-7)を得た。
各原料を表2に示す割合でドライブレンドし、次いで樹脂組成物を射出成形し、得られたISO(1A)ダンベル試験片について、ガラス繊維長(成形品のガラス繊維長)、機械特性および臭気レベルを測定、評価した。
参考例8で得られた成形品破砕物(A-1)を、真空ベントを具備した日本製鋼所製TEX30α型二軸押出機(L/D=45、ニーディング部3箇所)を用い、シリンダー温度300℃、スクリュー回転数200rpmにて溶融混練し、成形品破砕物ペレット(A’-1)を得た。
PPS樹脂(b-1)を320℃で単軸押出機にて溶融混練して、溶融状態とし、これを押出機の先端に取り付けた含浸槽に供給した。さらに、ガラス繊維束(c-2)を連続的に引き取り、前記含浸槽内を通過させることで、ガラス繊維束の単位長さあたりに一定量のPPS樹脂を含浸させた含浸ストランドを得た。前記含浸ストランドを、水冷バスで冷却して5mmの長さに切断することでガラス長繊維強化PPS樹脂組成物(C-1)を得た。配合量はガラス繊維が40重量%、PPS樹脂が60重量%となるように調整した。
PPS樹脂(b-1)とエポキシ基を含有する有機シラン化合物(e-1)を、真空ベントを具備した日本製鋼所製TEX30α型二軸押出機(L/D=45、ニーディング部3箇所)を用いて、シリンダー温度300℃、スクリュー回転数200rpmにて溶融混練しPPS樹脂組成物ペレットを得た。次いで得られたペレットを、300℃で単軸押出機にて溶融混練して溶融状態とし、押出機の先端に取り付けたクロスヘッドダイ中に押し出すと同時に、連続したガラス繊維束(c-2)をクロスヘッドダイ中に連続的に供給することによって、電線被覆法の要領で、ガラス繊維束の単位長さあたりに一定量のPPS樹脂組成物をガラス繊維束の周囲に被覆したストランドを得た。前記被覆ストランドを、水冷バスで冷却して、5mmの長さに切断することで芯鞘構造のガラス長繊維強化PPS樹脂組成物(C-2)のペレットを得た。配合量はガラス繊維が40重量%、PPS樹脂が60重量%、ならびにガラス繊維およびPPS樹脂の合計を100重量部に対し有機シラン化合物0.2重量部となるように、PPS樹脂組成物ペレットの配合量と、被覆層の厚みを調整した。
用いるPPS樹脂を(b-2)としたこと以外は参考例17と同様にして芯鞘構造のガラス長繊維強化PPS樹脂組成物(C-3)のペレットを得た。
有機シラン化合物を配合しなかったこと以外は参考例17と同様にして芯鞘構造のガラス長繊維強化PPS樹脂組成物(C-4)のペレットを得た。
各原料を表3に示す割合でドライブレンドし、次いで得られた樹脂組成物を上記(3)項に記載の条件で射出成形し、ISO(1A)ダンベル試験片を得た。得られたISO(1A)ダンベル試験片について、分散性試験、密度測定、ガラス繊維長(成形品のガラス繊維長)、機械特性を測定した。
用いる成形品破砕物を(A-2)としたこと以外は、参考例15と同様にして成形品破砕物ペレット(A’-2)を得た。
PPS樹脂(b-1)93重量%、エポキシ基を含有するオレフィン系共重合体(d-1)3.5重量%、未変性オレフィン系共重合体(d-2)3.5重量%、ならびにPPS樹脂(b-1)、エポキシ基を含有するオレフィン系共重合体(d-1)、および未変性オレフィン系共重合体(d-2)の合計100重量部に対しエポキシ基を含有する有機シラン化合物(e-1)0.43重量部を、真空ベントを具備した日本製鋼所製TEX30α型二軸押出機(L/D=45、ニーディング部3箇所)を用い、シリンダー温度300℃、スクリュー回転数200rpmにて溶融混練して得たPPS樹脂組成物ペレットを得た。次いで得られたペレットを、320℃で単軸押出機にて溶融混練して、溶融状態とし、これを押出機の先端に取り付けた含浸槽に供給した。さらに、ガラス繊維束(c-2)を連続的に引き取り、前記含浸槽内を通過させることで、ガラス繊維束の単位長さあたりに一定量のPPS樹脂を含浸させてガラス繊維束を30重量%含有した含浸ストランドを水冷バスで冷却して5mmの長さに切断して得ようとしたが、PPS樹脂組成物はガラス繊維束に含浸できなかった。
PPS樹脂組成物を単軸押出機で溶融混練する温度を360℃としたこと以外は、参考例21と同様にしてガラス長繊維強化PPS樹脂組成物(C-5)のペレットを得た。(C-5)の組成は、PPS樹脂(b-1)65重量%、ガラス繊維束(c-2)30重量%、エポキシ基を含有するオレフィン系共重合体(d-1)2.5重量%、未変性オレフィン系共重合体(d-2)2.5重量%、ならびにPPS樹脂(b-1)、ガラス繊維束(c-2)、エポキシ基を含有するオレフィン系共重合体(d-1)、および未変性オレフィン系共重合体(d-2)の合計100重量部に対しエポキシ基を含有する有機シラン化合物(e-1)0.3重量部であり、参考例5で得られた(B-2)ポリフェニレンスルフィド樹脂組成物(未使用材)と同様の組成であった。
PPS樹脂(b-1)93重量%、エポキシ基を含有するオレフィン系共重合体(d-1)3.5重量%、未変性オレフィン系共重合体(d-2)3.5重量%、ならびにPPS樹脂(b-1)、エポキシ基を含有するオレフィン系共重合体(d-1)、および未変性オレフィン系共重合体(d-2)の合計100重量部に対しエポキシ基を含有する有機シラン化合物(e-1)0.43重量部を、真空ベントを具備した日本製鋼所製TEX30α型二軸押出機(L/D=45、ニーディング部3箇所)を用い、シリンダー温度300℃、スクリュー回転数200rpmにて溶融混練して得たPPS樹脂組成物ペレットを得た。次いで得られたペレットを、300℃で単軸押出機にて溶融混練して溶融状態とし、押出機の先端に取り付けたクロスヘッドダイ中に押し出すと同時に、連続したガラス繊維束をクロスヘッドダイ中に連続的に供給することによって、電線被覆法の要領で、ガラス繊維束の単位長さあたりに一定量のPPS樹脂組成物をガラス繊維束の周囲に被覆させて、ガラス繊維束を30重量%含有した被覆ストランドを水冷バスで冷却して5mmの長さに切断することで芯鞘構造のガラス長繊維強化PPS樹脂組成物(C-6)のペレットを得た。(C-6)の組成は、PPS樹脂(b-1)65重量%、ガラス繊維束(c-2)30重量%、エポキシ基を含有するオレフィン系共重合体(d-1)2.5重量%、未変性オレフィン系共重合体(d-2)2.5重量%、ならびにPPS樹脂(b-1)、ガラス繊維束(c-2)、エポキシ基を含有するオレフィン系共重合体(d-1)、および未変性オレフィン系共重合体(d-2)の合計100重量部に対しエポキシ基を含有する有機シラン化合物(e-1)0.3重量部であり、参考例5で得られた(B-2)ポリフェニレンスルフィド樹脂組成物(未使用材)と同様の組成であった。
用いる有機シラン化合物を(e-2)としたこと以外は、参考例23と同様にしてガラス長繊維強化PPS樹脂組成物(C-7)のペレットを得た。
用いる有機シラン化合物を(e-3)としたこと以外は、参考例23と同様にしてガラス長繊維強化PPS樹脂組成物(C-8)のペレットを得た。
有機シラン化合物を配合しなかったこと以外は、参考例23と同様にしてガラス長繊維強化PPS樹脂組成物(C-9)のペレットを得た。
各原料を表4に示す割合でドライブレンドし、次いで得られた樹脂組成物を上記(3)項に記載の条件で射出成形し、ISO(1A)ダンベル試験片を得た。得られたISO(1A)ダンベル試験片について、分散性試験、密度測定、相構造観察、ガラス繊維長(成形品のガラス繊維長)、機械特性を測定した。
PPS樹脂(b-1)45重量%、ガラス繊維(c-1)30重量%、エポキシ基を含有するオレフィン系共重合体(d-1)2.5重量%、未変性オレフィン系共重合体(d-2)2.5重量%、炭酸カルシウム(カルファイン社製、KSS-1000)20重量%、ならびにPPS樹脂(b-1)、ガラス繊維(c-1)、エポキシ基を含有するオレフィン系共重合体(d-1)、未変性オレフィン系共重合体(d-2)、および炭酸カルシウムの合計100重量部に対し(e-1)エポキシ基を含有する有機シラン化合物0.3重量部を混合したこと以外は参考例4と同様にして、PPS樹脂組成物(B-5)を得た。
用いるPPS樹脂組成物を(B-5)としたこと以外は、参考例8と同様にして(A-8)成形品破砕物を得た。次いで得られた成形品破砕物(A-8)を使用して、参考例15と同様にして(A’-8)成形品破砕物ペレットを得た。
PPS樹脂(b-1)65重量%、エポキシ基を含有するオレフィン系共重合体(d-1)3.5重量%、未変性オレフィン系共重合体(d-2)3.5重量%、炭酸カルシウム(カルファイン社製、KSS-1000)28重量%、ならびにPPS樹脂(b-1)、エポキシ基を含有するオレフィン系共重合体(d-1)、および未変性オレフィン系共重合体(d-2)、炭酸カルシウムの合計100重量部に対しエポキシ基を含有する有機シラン化合物(e-1)0.43重量部を、真空ベントを具備した日本製鋼所製TEX30α型二軸押出機(L/D=45、ニーディング部3箇所)を用い、シリンダー温度300℃、スクリュー回転数200rpmにて溶融混練して得たPPS樹脂組成物ペレットを得た。次いで得られたペレットを用いたこと以外は、参考例23と同様に、芯鞘構造のガラス長繊維強化PPS樹脂組成物(C-10)のペレットを得た。(C-10)の組成は、PPS樹脂(b-1)45重量%、ガラス繊維束(c-2)30重量%、エポキシ基を含有するオレフィン系共重合体(d-1)2.5重量%、未変性オレフィン系共重合体(d-2)2.5重量%、炭酸カルシウム20重量%、ならびにPPS樹脂(b-1)、ガラス繊維束(c-2)、エポキシ基を含有するオレフィン系共重合体(d-1)、および未変性オレフィン系共重合体(d-2)、炭酸カルシウムの合計100重量部に対しエポキシ基を含有する有機シラン化合物(e-1)0.3重量部であった。あり、参考例27で得られた(B-5)ポリフェニレンスルフィド樹脂組成物(未使用材)と同様の組成であった。
各原料を表5に示す割合でドライブレンドし、次いで得られた樹脂組成物を上記(3)項に記載の条件で射出成形し、ISO(1A)ダンベル試験片を得た。得られたISO(1A)ダンベル試験片について、分散性試験、密度測定、相構造観察、ガラス繊維長(成形品のガラス繊維長)、機械特性を測定した。
市場での使用後に回収された自動車用金属インサート部品から、成形品にPPS-GFと印字された組成比が不明なPPS樹脂組成物を粉砕して取り外した後、長軸寸法が100mm以下になるよう破砕機で粗く破砕し、破砕品をメッシュドラム式洗浄装置内にて50℃の温水を用いて洗浄し、エアブローにより水切りを行った後、長軸寸法が10mm以下になるように破砕機で破砕して得た成形品破砕物を得た(A-9)。A-9の灰分量は、38重量%で、密度は1.62g/cm3であった。
参考例4で得られたPPS樹脂組成物(B-1)(密度1.67g/cm3:A-9との密度の差は-3.0%である。灰分量40%:A-9との灰分量の差は-6.3%である。)、参考例17で得られたガラス長繊維強化PPS樹脂組成物(C-2)(密度1.67g/cm3:A-9との密度の差は-3.0%である。灰分量:40%で、A-9との灰分量の差は-6.3%である。)、および成形品破砕物(A-9)を表6に示す割合でドライブレンドし、次いで得られた樹脂組成物を上記(3)項に記載の条件で射出成形し、ISO(1A)ダンベル試験片を得た。得られたISO(1A)ダンベル試験片について、密度測定、ガラス繊維長(成形品のガラス繊維長)、機械特性を測定した。
Claims (17)
- ポリフェニレンスルフィド(以下、「PPS」ということがある)樹脂およびガラス繊維を配合してなる成形品を破砕し、(A)成形品破砕物を得て、該(A)成形品破砕物と、(B)重量平均分子量(以下、「Mw」ということがある)が20000~60000のPPS樹脂40~90重量%およびガラス繊維10~60重量%を配合してなるPPS樹脂組成物(以下、「(B)PPS樹脂組成物」ということがある)とを、混合することを特徴とするガラス繊維強化再生PPS樹脂組成物の製造方法。
- 前記(B)PPS樹脂組成物が、カルボキシル基を20~400μmol/g含有するPPS樹脂を配合してなることを特徴とする請求項1に記載のガラス繊維強化再生PPS樹脂組成物の製造方法。
- 前記(A)成形品破砕物が、Mwが20000~60000のPPS樹脂40~90重量%およびガラス繊維10~60重量%を配合してなることを特徴とする請求項1または2に記載のガラス繊維強化再生PPS樹脂組成物の製造方法。
- 前記(A)成形品破砕物が、オレフィン系共重合体1~20重量%を配合してなり、かつ前記(B)PPS樹脂組成物が、オレフィン系共重合体1~20重量%を配合してなることを特徴とする請求項1~3のいずれかに記載のガラス繊維強化再生PPS樹脂組成物の製造方法。
- 前記(A)成形品破砕物が、成形品を破砕した後、さらに押出機で溶融混練して得られた成形品破砕物ペレットであることを特徴とする請求項1~4のいずれかに記載のガラス繊維強化再生PPS樹脂組成物の製造方法。
- 前記(A)成形品破砕物が、製品として使用後に回収された成形品を破砕して得られたことを特徴とする請求項1~5のいずれかに記載のガラス繊維強化再生PPS樹脂組成物の製造方法。
- 前記(A)成形品破砕物が、製品として使用後に回収された成形品を溶媒で洗浄した後、破砕して得られたことを特徴とする請求項1~6のいずれかに記載のガラス繊維強化再生PPS樹脂組成物の製造方法。
- (B)PPS樹脂組成物の一部または全てに、(C)PPS樹脂中にペレットの長さ方向に揃えられたガラス繊維束を10~80重量%含有し、かつペレットの長さが3.0~50mmであるガラス長繊維強化PPS樹脂組成物(以下、「(C)ガラス長繊維強化PPS樹脂組成物」ということがある)を使用する、請求項1~7のいずれかに記載のガラス繊維強化再生PPS樹脂組成物の製造方法。
- 前記(C)ガラス長繊維強化PPS樹脂組成物が、Mwが20000~60000のPPS樹脂40~90重量%およびガラス繊維束10~60重量%を含有することを特徴とする請求項8に記載のガラス繊維強化再生PPS樹脂組成物の製造方法。
- 前記(C)ガラス長繊維強化PPS樹脂組成物が、オレフィン系共重合体1~20重量%を配合してなることを特徴とする請求項8または9に記載のガラス繊維強化再生PPS樹脂組成物の製造方法。
- 前記(C)ガラス長繊維強化PPS樹脂組成物の相構造において、PPS樹脂が連続相を形成し、オレフィン系共重合体が、数平均分散粒子径500m以下で分散した分散相を形成することを特徴とする請求項10に記載のガラス繊維強化再生PPS樹脂組成物の製造方法
- 前記(A)成形品破砕物と、(B)PPS樹脂組成物と(C)ガラス長繊維強化PPS樹脂組成物が、実質的に同一組成であることを特徴とする請求項8~11のいずれかに記載のガラス繊維強化再生PPS樹脂組成物の製造方法。
- 前記(C)ガラス長繊維強化PPS樹脂組成物が、前記ガラス繊維束の周囲を被覆するようにPPS樹脂が配置されている芯鞘構造であることを特徴とする請求項8~12のいずれかに記載のガラス繊維強化再生PPS樹脂組成物の製造方法。
- 前記(C)ガラス長繊維強化PPS樹脂組成物が、エポキシ基、アミノ基、およびイソシアネート基から選択される少なくとも1種の官能基を有する有機シラン化合物を0.01~5重量%配合してなることを特徴とする請求項8~13のいずれかに記載のガラス繊維強化再生PPS樹脂組成物の製造方法。
- Mwが20000~60000のPPS樹脂40~90重量%およびガラス繊維10~60重量%を配合してなるガラス繊維強化再生PPS樹脂組成物を成形してなる成形品であって、該ガラス繊維の重量平均繊維長(Lw)と数平均繊維長(Ln)の比(Lw/Ln)が1.3以上、4.0以下である成形品。
- 前記ガラス繊維強化再生PPS樹脂組成物が、オレフィン系共重合体を1~20重量%配合してなることを特徴とする請求項15に記載の成形品。
- PPS樹脂が連続相を形成し、オレフィン系共重合体が、数平均分散粒子径500nm以下で分散した分散相を形成することを特徴とする請求項16に記載の成形品。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22845837.8A EP4375316A1 (en) | 2021-07-19 | 2022-07-14 | Method for producing glass fiber-reinforced recycled polyphenylene sulfide resin composition, and molded article obtained by molding glass fiber-reinforced recycled polyphenylene sulfide resin composition |
CN202280050434.5A CN117651732A (zh) | 2021-07-19 | 2022-07-14 | 玻璃纤维增强再生聚苯硫醚树脂组合物的制造方法、及将玻璃纤维增强再生聚苯硫醚树脂组合物成型而成的成型品 |
JP2022544343A JP7235177B1 (ja) | 2021-07-19 | 2022-07-14 | ガラス繊維強化再生ポリフェニレンスルフィド樹脂組成物の製造方法、およびガラス繊維強化再生ポリフェニレンスルフィド樹脂組成物を成形してなる成形品 |
US18/580,035 US20240343905A1 (en) | 2021-07-19 | 2022-07-14 | Method of producing glass fiber-reinforced recycled polyphenylene sulfide resin composition, and molded article obtained by molding glass fiber-reinforced recycled polyphenylene sulfide resin composition |
KR1020237035616A KR20240034686A (ko) | 2021-07-19 | 2022-07-14 | 유리 섬유 강화 재생 폴리페닐렌설파이드 수지 조성물의 제조 방법, 및 유리 섬유 강화 재생 폴리페닐렌설파이드 수지 조성물을 성형하여 이루어지는 성형품 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-118378 | 2021-07-19 | ||
JP2021118378 | 2021-07-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023002903A1 true WO2023002903A1 (ja) | 2023-01-26 |
Family
ID=84979189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/027656 WO2023002903A1 (ja) | 2021-07-19 | 2022-07-14 | ガラス繊維強化再生ポリフェニレンスルフィド樹脂組成物の製造方法、およびガラス繊維強化再生ポリフェニレンスルフィド樹脂組成物を成形してなる成形品 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240343905A1 (ja) |
EP (1) | EP4375316A1 (ja) |
JP (1) | JP7235177B1 (ja) |
KR (1) | KR20240034686A (ja) |
CN (1) | CN117651732A (ja) |
WO (1) | WO2023002903A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024204840A1 (ja) * | 2023-03-31 | 2024-10-03 | ポリプラスチックス株式会社 | 再生ポリアリーレンスルフィド樹脂組成物及びその製造方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0780834A (ja) * | 1993-07-21 | 1995-03-28 | Toray Ind Inc | 繊維強化熱可塑性樹脂構造物、その製造方法およびその製造用押出機 |
JPH1077408A (ja) | 1996-09-03 | 1998-03-24 | Kureha Chem Ind Co Ltd | ポリフェニレンスルフィド樹脂組成物 |
JPH11166054A (ja) | 1997-10-02 | 1999-06-22 | Daicel Chem Ind Ltd | リサイクル樹脂組成物及びその成形方法 |
JP2001026719A (ja) | 1999-05-07 | 2001-01-30 | Mitsubishi Engineering Plastics Corp | リサイクル樹脂組成物及びその製造方法 |
JP2010116428A (ja) * | 2008-11-11 | 2010-05-27 | Tosoh Corp | 再生繊維状充填材強化ポリフェニレンスルフィド粒状物の製造方法 |
WO2013099234A1 (ja) * | 2011-12-28 | 2013-07-04 | 東レ株式会社 | ポリフェニレンスルフィド樹脂組成物、該樹脂組成物の成形品、および該樹脂組成物の製造方法 |
JP2015009436A (ja) * | 2013-06-28 | 2015-01-19 | 東レ株式会社 | 繊維強化樹脂成形体およびその製造方法 |
JP2015081321A (ja) * | 2013-10-24 | 2015-04-27 | 東レ株式会社 | 繊維強化樹脂組成物およびその成形品 |
JP2017171731A (ja) * | 2016-03-22 | 2017-09-28 | 三井化学株式会社 | ポリフェニレンスルフィド樹脂組成物及びその成形品 |
-
2022
- 2022-07-14 WO PCT/JP2022/027656 patent/WO2023002903A1/ja active Application Filing
- 2022-07-14 JP JP2022544343A patent/JP7235177B1/ja active Active
- 2022-07-14 EP EP22845837.8A patent/EP4375316A1/en active Pending
- 2022-07-14 KR KR1020237035616A patent/KR20240034686A/ko unknown
- 2022-07-14 US US18/580,035 patent/US20240343905A1/en active Pending
- 2022-07-14 CN CN202280050434.5A patent/CN117651732A/zh active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0780834A (ja) * | 1993-07-21 | 1995-03-28 | Toray Ind Inc | 繊維強化熱可塑性樹脂構造物、その製造方法およびその製造用押出機 |
JPH1077408A (ja) | 1996-09-03 | 1998-03-24 | Kureha Chem Ind Co Ltd | ポリフェニレンスルフィド樹脂組成物 |
JPH11166054A (ja) | 1997-10-02 | 1999-06-22 | Daicel Chem Ind Ltd | リサイクル樹脂組成物及びその成形方法 |
JP2001026719A (ja) | 1999-05-07 | 2001-01-30 | Mitsubishi Engineering Plastics Corp | リサイクル樹脂組成物及びその製造方法 |
JP2010116428A (ja) * | 2008-11-11 | 2010-05-27 | Tosoh Corp | 再生繊維状充填材強化ポリフェニレンスルフィド粒状物の製造方法 |
WO2013099234A1 (ja) * | 2011-12-28 | 2013-07-04 | 東レ株式会社 | ポリフェニレンスルフィド樹脂組成物、該樹脂組成物の成形品、および該樹脂組成物の製造方法 |
JP2015009436A (ja) * | 2013-06-28 | 2015-01-19 | 東レ株式会社 | 繊維強化樹脂成形体およびその製造方法 |
JP2015081321A (ja) * | 2013-10-24 | 2015-04-27 | 東レ株式会社 | 繊維強化樹脂組成物およびその成形品 |
JP2017171731A (ja) * | 2016-03-22 | 2017-09-28 | 三井化学株式会社 | ポリフェニレンスルフィド樹脂組成物及びその成形品 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024204840A1 (ja) * | 2023-03-31 | 2024-10-03 | ポリプラスチックス株式会社 | 再生ポリアリーレンスルフィド樹脂組成物及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023002903A1 (ja) | 2023-01-26 |
EP4375316A1 (en) | 2024-05-29 |
US20240343905A1 (en) | 2024-10-17 |
JP7235177B1 (ja) | 2023-03-08 |
KR20240034686A (ko) | 2024-03-14 |
CN117651732A (zh) | 2024-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9718225B2 (en) | Heat resistant toughened thermoplastic composition for injection molding | |
JP6223531B2 (ja) | ポリフェニレンスルフィド樹脂組成物、その製造方法、および反射板 | |
WO2007108384A1 (ja) | ポリフェニレンスルフィド樹脂組成物、その製造方法および成形品 | |
JP5597908B2 (ja) | 成形材料 | |
JP7235177B1 (ja) | ガラス繊維強化再生ポリフェニレンスルフィド樹脂組成物の製造方法、およびガラス繊維強化再生ポリフェニレンスルフィド樹脂組成物を成形してなる成形品 | |
JP5292711B2 (ja) | 成形材料 | |
JP2021172675A (ja) | ポリフェニレンスルフィド樹脂組成物および成形体 | |
WO2023068186A1 (ja) | ポリアリーレンスルフィド組成物及びその製造方法 | |
JP5386853B2 (ja) | 成形体の製造方法 | |
JP2022109212A (ja) | ポリフェニレンスルフィド樹脂組成物および成形体 | |
JP5103763B2 (ja) | 樹脂組成物およびそれからなる成形品 | |
JP2000309707A (ja) | 芳香族ポリサルホン樹脂組成物およびその成形体 | |
JP2024012105A (ja) | ポリフェニレンスルフィド樹脂成形材料、および成形品 | |
JP2023060934A (ja) | ポリアリーレンスルフィド樹脂組成物 | |
JP2023060933A (ja) | ポリアリーレンスルフィド樹脂組成物及びその製造方法 | |
JP2024087827A (ja) | 繊維強化再生熱可塑性樹脂組成物の製造方法、および繊維強化再生熱可塑性樹脂組成物 | |
JP2024106326A (ja) | ポリフェニレンスルフィド樹脂組成物、および成形品 | |
WO2024116947A1 (ja) | 再生ポリアリーレンスルフィド樹脂組成物及びその製造方法 | |
JP2022165481A (ja) | ポリアリーレンスルフィド樹脂組成物及びその製造方法 | |
WO2023008192A1 (ja) | ポリアリーレンスルフィド組成物 | |
CN116057121A (zh) | 聚亚芳基硫醚树脂组合物以及改善聚亚芳基硫醚树脂的成型性的方法 | |
JP2009046641A (ja) | ポリエーテルイミド樹脂組成物 | |
JP3641906B2 (ja) | ポリフェニレンスルフィド樹脂組成物の製造方法 | |
CN117362980A (zh) | 一种聚酮复合材料及其制备方法 | |
JP2024518642A (ja) | ポリプロピレン樹脂組成物、その製造方法及びそれを含む成形品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022544343 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22845837 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280050434.5 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022845837 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022845837 Country of ref document: EP Effective date: 20240219 |