WO2023000609A1 - 氦检装置及氦检设备 - Google Patents

氦检装置及氦检设备 Download PDF

Info

Publication number
WO2023000609A1
WO2023000609A1 PCT/CN2021/140324 CN2021140324W WO2023000609A1 WO 2023000609 A1 WO2023000609 A1 WO 2023000609A1 CN 2021140324 W CN2021140324 W CN 2021140324W WO 2023000609 A1 WO2023000609 A1 WO 2023000609A1
Authority
WO
WIPO (PCT)
Prior art keywords
helium
injection
detection device
station
sealing nozzle
Prior art date
Application number
PCT/CN2021/140324
Other languages
English (en)
French (fr)
Inventor
吴建平
王嵩
孙一舟
Original Assignee
无锡先导智能装备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110824783.5A external-priority patent/CN113567062B/zh
Priority claimed from CN202121670147.3U external-priority patent/CN215414242U/zh
Application filed by 无锡先导智能装备股份有限公司 filed Critical 无锡先导智能装备股份有限公司
Priority to EP21950847.0A priority Critical patent/EP4177586A4/en
Priority to JP2023503091A priority patent/JP7450110B2/ja
Publication of WO2023000609A1 publication Critical patent/WO2023000609A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/22Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/226Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators
    • G01M3/229Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators removably mounted in a test cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present application relates to the technical field of air tightness detection, in particular to a helium detection device and helium detection equipment.
  • helium testing is a common means of air tightness testing.
  • operations such as filling helium and recovering helium into the product to be inspected in the vacuum chamber are required.
  • the end of the helium injection tube is generally plugged with a sealing nozzle, so that the helium injection tube can be sealed well with the helium injection port of the product to be tested, so as to ensure the sealing of the helium injection process.
  • Sealing nozzles are generally formed of flexible materials such as silica gel and rubber, and will need to be replaced due to material fatigue failure after repeated use. At present, the sealing nozzle is usually replaced manually. However, the manual replacement method is inefficient and will affect the normal production schedule.
  • the existing helium detection equipment needs to be equipped with complex pipelines to realize connection and control on-off.
  • Complex pipelines lead to complex structures, and redundant pipelines are prone to adsorb a large amount of helium, which affects the accuracy of helium detection.
  • a technical solution adopted by this application is to provide a helium detection device, comprising:
  • the helium injection mechanism includes a helium injection tube arranged at the helium injection station, and the sealing nozzle can be inserted into one end of the helium injection tube;
  • the replacement mechanism includes a discharge assembly located at the feeding station and a recovery assembly located at the recovery station, the discharge assembly is used to output the sealing nozzle, and the recovery assembly is used to pick up the sealing nozzle; and
  • the clamping mechanism includes a clamping assembly, which can clamp or release the sealing nozzle, and the clamping assembly can move to the helium injection station, the discharge station and the recovery station, To replace the sealing nozzle plugged into the helium injection tube.
  • the finger clamping mechanism has a first station and a second station spaced apart, and the clamping assembly is provided on the first station and the second station, The clamping assembly located at the second station is used to obtain the sealing nozzle output by the discharge assembly, and transfer the sealing nozzle to the helium injection tube, and the clamping assembly located at the first station is used to Obtain the sealing nozzle plugged into the helium injection tube, and transfer the sealing nozzle to the recovery component.
  • the clamping assembly can drive the clamped sealing nozzle to move axially along the helium injection tube, so as to insert the sealing nozzle into the helium injection tube or remove the sealing nozzle from the injection tube. One end of the helium tube is pulled out.
  • the clamping assembly includes a pillar and jaws, the pillar can support the sealing nozzle, and the jaws are arranged around the circumference of the pillar and can be opened or closed.
  • the clamping finger mechanism further includes a lifting component, and the lifting component can drive the clamping component to lift up and down along the axial direction of the pillar, so that the sealing mouth can extend into or out of the clamping jaw.
  • the discharge assembly includes:
  • a discharge pipe for storing sealing nozzles one end of the discharge pipe is provided with a discharge port, a plurality of sealing nozzles are stacked on the discharge pipe, and can slide down to the discharge port under the action of gravity;
  • the switch part has a blocking state that prevents the sealing nozzle from sliding out of the discharge port and an open state that allows the sealing nozzle to slide out from the discharge port, and the switching part can be in the blocking state and the opening state switch between.
  • the switch member includes a top block and a discharge cylinder
  • the top block is arranged at the driving end of the discharge cylinder and slidably penetrates the side wall of the discharge pipe, so The discharge cylinder can drive the top block into or out of the discharge pipe, so that the switch element can be switched between the blocking state and the opening state.
  • the side wall of the end of the discharge pipe away from the discharge port is provided with a feed port
  • the inner wall of the feed port is provided with a latch
  • the sealing nozzle passes through the
  • the groove on the sealing nozzle forms a shelter for the plug.
  • the recovery assembly includes a suction part, and the suction part can suck and release the sealing nozzle.
  • the finger clamping mechanism can move to the helium injection station, the discharging station and the recycling station driven by the driving mechanism.
  • the working station, the lower cavity mechanism is linked with the finger gripping mechanism, and can move to the helium injection station driven by the driving mechanism.
  • the helium injection mechanism further includes an isolation valve, one end of the helium injection tube is provided with an injection port, and the isolation valve is fixed on the end of the helium injection tube away from the injection port and is connected with the helium injection tube.
  • the helium injection pipe is communicated;
  • the helium detection device also includes a four-position two-way valve, which has an air inlet and four air outlets, and the air inlet can alternately communicate with the four air outlets;
  • the gas inlet is connected to the helium injection pipe through the isolation valve, and the four gas outlets are respectively used to connect with a helium filling device, a helium returning device, a vacuum pumping device and a vacuum breaking device.
  • the helium injection mechanism includes a fixed seat, the helium injection tube is mounted on the fixed seat, and the helium injection tube can be moved along the longitudinal axis of the injection port relative to the fixed seat. telescopic.
  • the helium injection mechanism includes a mounting plate and an elastic member, the mounting plate is slidably mounted on the fixing seat along the longitudinal axis of the injection port, and the helium injection tube is fixedly arranged
  • the elastic member provides elastic force to the mounting plate away from the fixing seat along the longitudinal axis of the injection port.
  • the elastic member is a compression spring, and the preload of the compression spring is adjustable.
  • the helium injection tube is a metal tubular structure.
  • the helium injection mechanism further includes a pressure gauge and a three-way block, and the helium injection pipe, the isolation valve, and the pressure gauge are respectively communicated with the three ports of the three-way block.
  • the four-position two-way valve is a solenoid valve.
  • there are multiple helium injection mechanisms two adjacent helium injection mechanisms communicate through the isolation valve, and the air inlet is connected to the isolation valve of one of the helium injection mechanisms. connect.
  • the gas connection block has a first gas connection, a second gas connection and a third gas connection, and the third gas connection is connected to one of the helium injection mechanisms.
  • the isolating valve connected with the said first gas joint and the said second gas joint are respectively connected with the said air inlet and the said isolating valve of the adjacent said helium injection mechanism.
  • a technical solution adopted in the present application is to provide a helium detection device, including the helium detection device as described in any one of the above preferred embodiments.
  • the clamping mechanism can firstly make the clamping component enter the helium injection station, and the clamping component can exchange the sealing nozzle with the helium injection tube, and the old one inserted into the helium injection tube can be replaced.
  • the holding assembly can capture and clamp the new sealing nozzle output by the discharge assembly. It can be seen that the removal of the old sealing mouth and the installation of the new sealing mouth do not rely on manual work. Therefore, the above-mentioned helium detection device can realize the automatic replacement of the sealing nozzle, thereby significantly improving the replacement efficiency of the sealing nozzle.
  • the above-mentioned helium detection equipment uses a four-position two-way valve to connect the helium injection mechanism with the helium filling device, the helium return device, the vacuum device and the vacuum breaking device, and through the state switching of the four-position two-way valve, helium filling and helium return are realized.
  • Vacuum pumping and vacuum breaking operations it can significantly reduce the pipeline.
  • the isolation valve is directly connected with the helium injection pipe, which can further reduce pipelines.
  • the reduction of the pipeline structure can simplify the structure of the helium injection mechanism and facilitate maintenance. More importantly, fewer pipeline structures can also significantly reduce the adsorption of helium, thereby improving the accuracy of helium detection.
  • Fig. 1 is the left side view of the helium detection device in the preferred embodiment of the present application
  • Fig. 2 is the front view of the discharge assembly in the helium detection device shown in Fig. 1;
  • Fig. 3 is the front view of the clamping finger mechanism and the lower cavity mechanism in the helium detection device shown in Fig. 1;
  • Fig. 4 is a top view of the finger clamp mechanism and the lower cavity mechanism shown in Fig. 3;
  • Fig. 5 is a left view of the finger clamp mechanism and the lower cavity mechanism shown in Fig. 3;
  • Figure 6 is a schematic structural view of a sealing nozzle in an embodiment of the present application.
  • Fig. 7 is a left view of the helium injection mechanism in the helium detection device shown in Fig. 1;
  • Figure 8 is a rear view of the helium injection mechanism shown in Figure 7;
  • Fig. 9 is a rear view of a helium injection mechanism in another embodiment of the present application.
  • a helium detection device 10a in a preferred embodiment of the present application includes a helium injection mechanism 100a, a replacement mechanism 200a and a finger clamping mechanism 300a.
  • the helium injection mechanism 100a includes a helium injection tube 110a arranged at a helium injection station.
  • the helium injection tube 110a is generally a metal tubular structure, and is used to inject helium gas into the workpiece to be tested, such as a prismatic battery.
  • the helium detection device 10a further includes a lower cavity mechanism 500a.
  • the lower cavity mechanism 500a includes a vacuum box 510a and a jacking cylinder 520a, and the square battery is placed in the vacuum box 510a.
  • the jacking cylinder 520a drives the vacuum box 510a and the prismatic battery inside to rise until the helium injection tube 110a is docked with the helium injection port on the prismatic battery.
  • the sealing mouth 20a is a cylindrical structure with both ends open, which is generally formed of flexible materials such as silica gel and rubber.
  • the replacement mechanism 200a includes a discharge assembly 210a and a recovery assembly 220a.
  • the discharging assembly 210a is arranged at the feeding station, and is used for outputting the sealing mouth 20a;
  • the recycling assembly 220a is arranged at the recycling assembly 220a of the recycling station, and is used for picking up the sealing mouth 20a.
  • the sealing nozzle 20a output by the discharging component 210a is a new sealing nozzle
  • the sealing nozzle 20a picked up by the recycling component 220a is an old sealing nozzle.
  • the discharge assembly 210a includes a discharge pipe 211a and a switch member 212a. in:
  • the discharge pipe 211a is generally a strip-shaped tubular structure, which can be formed by metal, plastic and other materials.
  • the discharge pipe 211a is used to store the sealing nozzle 20a.
  • One end of the discharge pipe 211a is provided with a discharge port (not shown in the figure), and the discharge port is the output end of the discharge assembly 210a.
  • a plurality of sealing nozzles 20a are stacked on the discharge pipe 211a, and can slide down to the discharge port under the action of gravity.
  • the discharge pipe 211a is generally a cylindrical pipe with a smooth inner wall and a plurality of sealing nozzles 20a stacked along the extending direction of the discharge pipe 211a.
  • the discharge pipe 211a extends vertically, so the sealing nozzle 20a stored therein can slide down to the discharge port under the action of gravity, thereby realizing output.
  • the switch part 212a is used to control whether the sealing nozzle 20a is output from the discharge pipe 211a.
  • the switch member 212a has a blocking state and an open state, and can be switched between the blocking state and the open state. In the blocking state, the switch member 212a can prevent the sealing nozzle 20a from sliding out of the discharge port, and in the open state, the switch member 212a allows the sealing nozzle 20a to slide out of the discharge port. Therefore, when it is necessary to output the sealing nozzle 20a, it is sufficient to switch the switch member 212a to an open state. At this time, the sealing nozzle 20a can slide down to the discharge port under the action of gravity without any other driving elements, which helps to simplify the structure of the discharge assembly 210a and the process of realizing the discharge of the sealing nozzle 20a.
  • the discharge assembly 210a can also use other methods such as piston push type, screw feed type, etc. to realize the output of the sealing nozzle 20a.
  • the switch member 212a includes a top block 2121a and a discharge cylinder 2122a.
  • the top block 2121a is arranged at the driving end of the discharge cylinder 2122a and is slidably passed through the side wall of the discharge pipe 211a.
  • the discharge cylinder 2122a can drive the top block 2121a into or out of the discharge pipe 211a, so that the switch 212a Toggles between blocked and open states.
  • a through hole can be opened on the side wall of the discharge pipe 211a for installing the top block 2121a, and the discharge cylinder 2122a can be fixed relative to the discharge pipe 211a through a cylinder mounting plate (not shown).
  • the discharge cylinder 2122a stretches out, which can drive the top block 2121a to withstand the sealing nozzle 20a in the discharge pipe 211a, so as to prevent it from sliding down from the discharge port, and the switch part 212a is in a blocking state at this time; Drive the top block 2121a back, at this time the sealing nozzle 20a can slide down from the discharge port, and the switch part 212a is in an open state.
  • a sensor (not shown) can also be arranged near the discharge port, and the sensor can detect the movement of the sealing nozzle 20a in the discharge pipe 211a.
  • the switch member 212a When the switch member 212a is switched to an open state and a sealing nozzle 20a falls from the discharge port, the sensor will detect the action of the sealing nozzle 20a in the discharge pipe 211a. At this time, the discharge cylinder 2122a can be stretched out again, and the switch member 212a is switched to a blocking state.
  • the switch member 212a may also be other structures such as a baffle plate and a solenoid valve.
  • the side wall of the discharge pipe 211a away from the discharge port is provided with a feed port 2111a, and the inner wall of the feed port 2111a is provided with a latch 2112a, and the sealing nozzle 20a passes through the feed port according to a preset direction.
  • the groove 21a on the sealing nozzle 20a forms a shelter for the plug pin 2112a.
  • the sealing mouth 20a has a groove 21a, and the groove 21a deviates from the middle of the sealing mouth 20a.
  • the groove 21a just avoids the latch pin 2112a, so the sealing nozzle 20a can smoothly enter the discharging pipe 211a.
  • the pin 2112a will block the sealing mouth 20a, so that it cannot be smoothly put into the discharge pipe 211a. In this way, all the sealing nozzles 20a put into the discharge pipe 211a can only pass through the feed opening 2111a according to the preset orientation, so as to realize fool-proofing.
  • the recovery assembly 220a includes a suction piece, which can suck and release the sealing mouth 20a.
  • the suction part can be a vacuum suction head, and the recovery component 220a can suck and release the sealing nozzle 20a by vacuumizing and breaking the vacuum on the suction part, which is easy to operate.
  • the recovery component 220a can also pick up the sealing nozzle 20a by means of clamping or the like.
  • the clamping finger mechanism 300a includes a clamping assembly 310a capable of clamping or releasing the sealing mouth 20a.
  • the clamping assembly 310a can be in various ways, such as jaw type, hoop type, buckle type and so on. Please refer to FIG. 3 together.
  • the clamping assembly 310a includes a pillar 311a and a jaw 312a.
  • the pillar 311a can support the sealing nozzle 20a.
  • the jaw 312a is arranged around the circumference of the pillar 311a and can be opened. or collapse.
  • the jaws 312a can be controlled by the jaw cylinder, and the opening or closing of the jaws 312a can be realized by controlling air intake or exhaust.
  • the pillar 311a is generally consistent with the extending direction of the helium injection tube 110a.
  • a protruding post (not shown in the figure) is provided on the top of the supporting post 311a, and the protruding post can be inserted into the sealing mouth 20a, so as to limit the sealing mouth 20a.
  • the support 311a cooperates with the clamping claw 312a, which can improve the clamping effect on the sealing mouth 20a, and can adjust the position of the sealing mouth 20a on the clamping assembly 310a.
  • the inner wall of the jaw 312a is also provided with a protrusion (not shown).
  • the protruding portion can cooperate with the groove 21a, so as to ensure that the sealing mouth 20a is stable and reliable when clamped by the clamping assembly 310a.
  • clamping assembly 310a can be moved to the helium injection station, the material discharge station and the recovery station, so as to replace the sealing nozzle 20a inserted into the helium injection pipe 110a.
  • the holding assembly 310a can exchange the sealing nozzle 20a with the helium injection pipe 110a, the discharge assembly 210a and the recovery assembly 220a respectively.
  • the clamping assembly 310a clamps the sealing nozzle 20a
  • the old sealing nozzle 20a on the helium injection pipe 110a can be pulled out by driving the sealing nozzle 20a away from the helium injection pipe 110a; the clamping assembly 310a can also be Drive the sealing nozzle 20a to move towards the helium injection tube 110a until the new sealing nozzle 20a clamped on it is plugged into the helium injection tube 110a, and then the clamping component 310a releases the sealing nozzle 20a and moves away from the helium injection tube 110a.
  • the clamping assembly 310a can move to complete docking with the discharge assembly 210a, and clamp the new sealing nozzle 20a output by the discharge assembly 210a. And at the recycling station, the clamping component 310a can drive the clamped old sealing nozzle 20a towards the recycling component 220a, and then release the sealing nozzle 20a to be picked up by the recycling component 220a.
  • the clamping assembly 310a can drive the clamped sealing nozzle 20a to move axially along the helium injection pipe 110a, so as to insert the sealing nozzle 20a into the helium injection pipe 110a or to separate the sealing nozzle 20a from the helium injection pipe 110a. pull out one end.
  • the sealing mouth 20a can maintain a straight up and down movement line during the installation and disassembly process, thereby preventing the sealing mouth 20a from being damaged due to excessive extrusion during the installation and disassembly process.
  • the clamping finger mechanism 300a further includes an elevating assembly 320a, which can drive the clamping assembly 310a to elevate along the axial direction of the pillar 311a, so that the sealing mouth 20a extends into or exits the jaw 312a.
  • the lifting assembly 320a drives the clamping assembly 310a to rise until the sealing nozzle 20a extends into the clamping jaw 312a and is carried on the clamping assembly 310a. Strut 311a. Next, the clamping jaws 312a are closed, and the lifting component 320a drives the clamping component 310a to descend.
  • the lifting assembly 320a first drives the holding assembly 310a up until the helium injection pipe 110a is inserted into the sealing nozzle 20a. Then, the clamping jaws 312a are opened, the lifting component 320a drives the clamping component 310a to descend and the sealing nozzle 20a is withdrawn from the range of the clamping jaws 312a.
  • structures such as a multi-degree-of-freedom manipulator may also be used instead of the lifting assembly 320a.
  • Corresponding driving structures may be provided in the clamping finger mechanism 300a, so as to drive the clamping assembly 310a to flow among the helium injection station, the discharge station and the recovery station.
  • an additional driving structure may also be provided to drive the clamping finger mechanism 300a to circulate among the helium injection station, the discharge station and the recovery station as a whole.
  • the helium detection device 10a further includes a driving mechanism 400a.
  • the finger clamping mechanism 300a can move to a helium injection station, a material discharge station and a recovery station.
  • the driving mechanism 400a may be composed of power elements such as motors, cylinders, and electric cylinders and their matching transmission elements.
  • the driving mechanism 400a includes a servo motor (not shown in the figure), an electric cylinder (not shown in the figure) and a moving plate 410a, and the servo motor and the electric cylinder jointly drive the moving plate 410a to move along a preset direction.
  • the finger clamping mechanism 300a is disposed on the moving plate 410a and can move along with the moving plate 410a. In this way, the structure of the finger clamp mechanism 300a itself can be simplified.
  • the finger clamping mechanism 300a is also provided with a waste box 330a.
  • the driving mechanism 400a drives the finger gripping mechanism 300a to the feeding station
  • the waste box 330a is aligned with the recycling assembly 220a.
  • the recovery component 220a releases the picked sealing nozzle 20a, so that the old sealing nozzle 20a falls into the waste box 330a.
  • the waste box 330a may not be provided, and the recovery component 220a may be a vacuum suction pipeline connected to the box, and the sucked old sealing nozzle 20a is directly sucked into the box.
  • the lower cavity mechanism 500a is linked with the gripper mechanism 300a, and can move to the helium injection station driven by the drive mechanism 400a.
  • the lower cavity mechanism 500a is fixedly arranged on the moving plate 410a.
  • the clamping finger mechanism 300a enters the helium injection station driven by the drive mechanism 400a
  • the lower cavity mechanism 500a automatically exits the helium injection station. That is to say, driven by the driving mechanism 400a, the lower chamber mechanism 500a and the finger gripping mechanism 300a can only alternately enter the helium injection station at the same time, so as to avoid mutual interference between the two.
  • the lower cavity mechanism 500a further includes a support plate 530a and a guide rod 540a.
  • One end of the guide rod 540a is fixed on the mounting plate of the driving mechanism 400a, and the support plate 530a is mounted on the guide rod 540a through a linear bearing, so that the support plate 530a slides along the extending direction of the guide rod 540a.
  • the vacuum box 510a is fixed on the support plate 530a.
  • the jacking cylinder 520a is transmission-connected with the support plate 530a, and can drive the support plate 530a to slide along the guide rod 540a, thereby driving the vacuum box 510a up and down.
  • the lower cavity mechanism 500a further includes a stop screw 550a. After the vacuum box 510a is raised to a position, the stopper screw 550a can fix the vacuum box 510a, so as to maintain the stability of the helium injection process.
  • the clamping mechanism 300a has a first station 301a and a second station 302a spaced apart, and the first station 301a and the second station 302a are provided with clips.
  • Holding assembly 310a, the holding assembly 310a located at the second station 302a is used to obtain the sealing nozzle 20a output by the discharge assembly 210a, and transfer the sealing nozzle 20a to the helium injection tube 110a
  • the holding assembly located at the first station 301a 310a is used to obtain the sealing nozzle 20a inserted into the helium injection pipe 110a, and transfer the sealing nozzle 20a to the recovery component 220a.
  • the clamping finger mechanism 300a enters the helium injection station driven by the driving mechanism 400a, and aligns the clamping assembly 310a located at the first station 301a with the end of the helium injection tube 110a;
  • the lifting assembly 320a lifts up the clamping assembly 310a, the pillar 311a of the clamping assembly 310a of the first station 301a supports the sealing nozzle 20a, the jaws 312a close together and clamp the sealing nozzle 20a; finally, the lifting assembly 320a shrinks Back, the clamping assembly 310a is driven to move downward, and the old sealing nozzle 20a can be pulled out.
  • the clamping finger mechanism 300a is driven by the driving mechanism 400a to the recovery station, and the clamping assembly 310a located at the first station 301a is aligned with the recovery assembly 220a;
  • the holding assembly 310a is jacked up until the old sealing mouth 20a is sent to the recovery assembly 220a; then, the jaws 312a are opened, and the lifting assembly 320a is retracted to drive the clamping assembly 310a to move downward, so that the old sealing mouth 20a can be removed. Transfer to recovery assembly 220a for recovery.
  • the clamping finger mechanism 300a is driven by the driving mechanism 400a to the feeding station, and the clamping assembly 310a located at the second station 302a is aligned with the output end of the discharging assembly 210a; the new The sealing nozzle 20a drops from the discharge pipe 211a onto the pillar 311a of the second station 302a, and the clamping jaws 312a close together to clamp it, so as to realize the feeding of a new sealing nozzle 20a;
  • the clamping finger mechanism 300a enters the helium injection station driven by the drive mechanism 400a, and aligns the clamping assembly 310a at the second station 302a with the end of the helium injection tube 110a;
  • the component 320a lifts the clamping component 310a until the clamped new sealing nozzle 20a is plugged into the helium injection tube 110a; then, the clamping jaws 312a are opened and the lifting component 320a is retracted, driving the clamping component 310a to Moving down, a new sealing nozzle 20a can be installed on the end of the helium injection pipe 110a.
  • the clamping finger mechanism 300a can be brought to the feeding station, and the new sealing nozzle 20a can be transferred to the clamping assembly 310a at the second station 302a.
  • the driving mechanism 400a directly drives the clamping assembly 310a at the second station 302a and the end of the helium injection tube 110a align.
  • the lifting assembly 320a and the clamping assembly 310a operate to install a new sealing nozzle 20a on the end of the helium injection pipe 110a. In this way, the stroke of the driving mechanism 400a during the replacement of the sealing nozzle 20a can be reduced, which helps to further improve the efficiency.
  • the clamping assembly 310a on the first station 301a can also be used to replace the new sealing nozzle 20a, and the clamping assembly 310a on the second station 302a can be used to replace the old one.
  • Recovery of the sealing nozzle 20a when the upper clamping assembly 310a on the first station 301a is accepting the new sealing nozzle 20a, the clamping assembly 310a on the second station 302a can transfer the old sealing nozzle 20a to the recovery assembly 220a, Therefore, the efficiency of sealing nozzle replacement can be further improved.
  • only one clamping assembly 310a may be provided on the clamping finger mechanism 300a, and the same clamping assembly 310a performs pulling out of the old sealing mouth 20a and installation of the new sealing mouth 20a.
  • the clamping finger mechanism 300a can first make the clamping assembly 310a enter the helium injection station, and the clamping assembly 310a can replace the sealing nozzle 20a with the helium injection tube 110a, and the inserting
  • the old sealing nozzle 20a connected to the helium injection pipe 110a is removed, and a new sealing nozzle 20a can also be reinstalled on the helium injection pipe 110a;
  • the clamping assembly 310a can release the old sealing nozzle 20a and put it Hand over to the recovery component 220a; and at the discharging station, the clamping component 310a can acquire and clamp the new sealing nozzle 20a output by the discharging component 210a.
  • the above-mentioned helium detection device 10a can realize the automatic replacement of the sealing nozzle 20a, thereby significantly improving the replacement efficiency of the sealing nozzle 20a.
  • the present application provides a helium detection device (not shown in the figure), and the helium detection device includes a helium injection mechanism 100a.
  • the above-mentioned helium detection device also includes a helium filling device (not shown in the figure), a helium return device (not shown in the figure), a vacuum pumping device (not shown in the figure) and a vacuum breaking device (not shown in the figure).
  • the vacuuming device evacuates the vacuum box used to load the workpiece to be tested to form a vacuum environment; the helium filling device provides helium, and injects helium into the workpiece to be tested located in the vacuum box through the helium injection mechanism 100a, such as square In the shell battery; after holding the pressure for a preset time, the helium return device will recover the helium in the workpiece, and detect the air tightness of the workpiece by calculating the concentration of helium in the vacuum box; after the detection is completed, the vacuum breaking device will make the vacuum The air pressure in the box is restored.
  • the vacuum breaking device is a muffler.
  • the helium detection device in a preferred embodiment of the present application includes a helium injection mechanism 100 a and a four-position two-way valve 200 . in:
  • the helium injection mechanism 100 a includes a helium injection tube 110 a and an isolation valve 120 .
  • the helium injection tube 110a is generally a bar-shaped tubular structure with both ends opened.
  • One end of the helium injection pipe 110a is provided with an injection port (not shown in the figure), and the injection port can be connected with the helium injection port of the workpiece to be detected.
  • the blocking valve 120 is fixed on the end of the helium injection pipe 110a away from the injection port and communicates with the helium injection pipe 110a.
  • the helium gas provided by the helium injection mechanism enters the helium injection pipe 110a through the isolation valve 120, and is injected into the workpiece to be inspected through the injection port of the helium injection pipe 110a. Then, the isolation valve 120 is closed, so that the workpiece to be detected injected with helium can be kept under pressure.
  • a helium injection sealing nozzle 20a is installed on the injection port, and the helium injection sealing nozzle 20a may be a member formed by flexible materials such as rubber and silica gel.
  • the helium injection sealing nozzle 20a can be elastically deformed by extrusion to fill the gap between the injection port and the helium injection port, thereby achieving a better sealing effect.
  • the helium injection pipe 110a is a metal tubular structure.
  • the helium injection tube 110a can be formed by metal materials such as stainless steel.
  • the metal tubular structure has strong mechanical strength, which can prevent the helium injection tube 110a from being deformed during the helium injection process.
  • the metal tubular structure can also effectively reduce the phenomenon of helium absorption and helium storage in the helium injection tube 110a, thereby improving the accuracy of helium detection.
  • the helium injection mechanism 100 a further includes a pressure gauge 160 and a tee block 170 , and the helium injection pipe 110 a , the isolation valve 120 and the pressure gauge 160 communicate with the three ports of the tee block 170 respectively.
  • the tee block 170 is a hollow block structure with three ports, and is generally formed of metal.
  • the pressure gauge 160 can detect the air pressure in the workpiece to be detected, so as to facilitate the control of the amount of helium gas filled in the workpiece to be detected.
  • the helium injection pipe 110a, the isolation valve 120 and the pressure gauge 160 are directly connected through the tee block 170, and there is no need for additional pipelines to communicate with each other, so the adsorption of helium can be further reduced.
  • the four-position two-way valve 200 has an air inlet 210 and four air outlets 220 , and the air inlet 210 can alternately communicate with the four air outlets 220 .
  • the four-position two-way valve 200 has four switch states. In a specific switch state, one air outlet 220 corresponding to the air inlet 210 is connected and isolated from other air outlets 220 . Further, the four-position two-way valve 200 is reversely connected, the air inlet 210 is connected to the helium injection pipe 110a through the isolation valve 120, and the four gas outlets 220 are respectively connected to the helium filling device, the helium returning device, the vacuum pumping device and the vacuum breaking device. device connection.
  • the helium detection equipment generally has a supporting top plate 30 , and the four-position two-way valve 200 and the helium injection mechanism 100 a can be fixed on the surface of the top plate 30 .
  • the air inlet 210 of the four-position two-way valve 200 can be connected with the isolation valve 120 through a pipeline (not shown in the figure).
  • the isolation valve 120 is directly communicated with the helium injection pipe 110a, which can further reduce pipelines.
  • the reduction of pipeline structure can reduce the adsorption of helium, thereby improving the accuracy of helium detection.
  • the four-position two-way valve 200 is a solenoid valve. Therefore, the switch state of the four-position two-way valve 200 can be switched by inputting different electrical signals, so the response is quick and the switch is convenient. Obviously, the switch state of the four-position two-way valve 200 can also be switched through mechanical control.
  • the helium injection mechanism 100a includes a fixed seat 130, the helium injection tube 110a is installed on the fixed seat 130, and the helium injection tube 110a can be stretched and contracted along the longitudinal axis of the injection port relative to the fixed seat 130 .
  • the fixing base 130 plays a supporting role and can be fixedly installed on the top plate 30 of the helium detection device.
  • the helium injection pipe 110a When the helium detection equipment is working, the helium injection pipe 110a generally extends vertically, so the longitudinal axis direction of the injection port is the up-down direction shown in FIG. 7 .
  • the vacuum box located at the lower part of the helium injection mechanism 100a is lifted up until the helium injection port of the workpiece to be inspected inside is docked with the injection port of the helium injection pipe 110a. Since the helium injection tube 110a can be stretched. Therefore, when the helium injection port abuts against the injection port, the helium injection tube 110a will be forced to retract, thereby avoiding damage to the helium injection tube 110a and the workpiece to be tested due to hard contact between the helium injection tube 110a and the helium injection port.
  • the helium injection mechanism 100a also includes a mounting plate 140 and an elastic member 150, the mounting plate 140 is slidably mounted on the fixing seat 130 along the longitudinal axis of the injection port, and the helium injection tube 110a is fixedly arranged on the mounting plate 140.
  • the plate 140 and the longitudinal axis of the elastic member 150 provide an elastic force away from the fixing seat 130 to the mounting plate 140 .
  • the mounting plate 140 is slidably mounted on the fixing seat 130 through the cooperation of the guide rail and the slider, and the guide rail extends along the up and down direction shown in FIG. 7 . Moreover, under the action of the elastic force of the elastic member 150 , the helium injection port can be effectively attached to the injection port, thereby further improving the sealing effect between the two.
  • the helium injection tube 110a can also be stretched elastically in other ways.
  • an elastically deformable corrugated section is provided on the helium injection pipe 110a.
  • a cylinder is provided, the cylinder is fixed on the fixed seat 130 , and the helium injection tube 110 a is fixed on the driving end of the cylinder, so that the helium injection tube 110 a expands and contracts relative to the fixed seat 130 .
  • the elastic member 150 is a compression spring, and the preload of the compression spring is adjustable. Specifically, the compression spring is clamped between the fixing seat 130 and the mounting plate 140 . When the helium injection port abuts against the injection port, the helium injection tube 110a will be forced to retract, thereby further compressing the compression spring. By adjusting the preload of the compression spring, the elastic restoring force provided by the elastic member 150 can be adjusted, so that the tightness between the helium injection port and the injection port can be adjusted as required.
  • helium injection mechanisms 100a there are multiple helium injection mechanisms 100a, two adjacent helium injection mechanisms 100a communicate through the isolation valve 120, and the gas inlet 210 is connected to the isolation valve 120 of one of the helium injection mechanisms 100a.
  • the helium gas provided by the helium filling device can be distributed to multiple helium injection mechanisms 100a by a four-position two-way valve 200, and the helium recovered by multiple helium injection mechanisms 100a can be aggregated to the Return to the helium unit.
  • the working process of multiple helium injection mechanisms 100a can be controlled, so that helium inspection can be performed on multiple workpieces to be inspected at the same time.
  • the helium injection mechanism 100a also includes a gas connection block 300, and the gas connection block 300 has a first gas connection 310, a second gas connection 320 and a third gas connection (not shown in the figure).
  • the third gas connector is connected to the isolation valve 120 of one of the helium injection mechanisms 100a, and the first gas connector 310 and the second gas connector 320 are respectively connected to the gas inlet 210 and the isolation valve 120 of the adjacent helium injection mechanism 100a.
  • the gas block 300 may be a hollow structure formed of metal. Specifically, the isolating valve 120 itself has several joints (not shown in the figure), and the gas connection block 300 can be connected to any joint on the isolating valve 120, so as to expand the number of ports of the isolating valve 120, so as to facilitate the connection of adjacent
  • the helium injection mechanism 100 a and the helium injection mechanism 100 a are connected with the four-position two-way valve 200 .
  • the gas contact block 300 can be omitted.
  • the air inlet 210 of the four-position two-way valve 200 can be directly connected to the joint provided with the isolation valve 120 .
  • the above-mentioned and helium detection equipment use a four-position two-way valve 200 to connect the helium injection mechanism 100a with a helium filling device, a helium return device, a vacuum pumping device, and a vacuum breaking device, and by switching the state of the four-position two-way valve 200, the charging Helium, helium return, vacuum pumping and vacuum breaking operations, so the pipeline can be significantly reduced.
  • the isolation valve 120 is directly communicated with the helium injection pipe 110a, which can further reduce pipelines.
  • the reduction of pipeline structure can simplify the structure of the helium injection mechanism and facilitate maintenance. More importantly, fewer pipeline structures can also significantly reduce the adsorption of helium, thereby improving the accuracy of helium detection.

Abstract

一种氦检装置及氦检设备,氦检装置至包括注氦机构(100a)、更换机构(200a)及夹指机构(300a),密封嘴(20a)能够插接于注氦机构(100a)的注氦管(110a)的一端,夹指机构(300a)包括能够夹紧或释放密封嘴(20a)的夹持组件(310a),因此,氦检装置可以实现密封嘴(20a)的自动更换,从而显著提升密封嘴(20a)的更换效率。氦检设备,包括氦检装置。

Description

氦检装置及氦检设备
相关申请
本申请要求2021年07月21日申请的,申请号为202110824783.5、名称为“氦检装置”的中国专利申请的优先权,以及申请号为202121670147.3、名称为“注氦装置及氦检设备”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及气密性检测技术领域,特别涉及一种氦检装置及氦检设备。
背景技术
在各种产品,如方壳电池的生产加工过程中,常需要进行气密性检测,而氦检是一种常见的气密性检测的手段。氦检时需要向真空腔内的待检测产品进行充入氦气、回收氦气等操作。注氦管的末端一般插接有密封嘴,从而使得注氦管能够与待检测产品的注氦口之间密封较好,以保证注氦过程的密封性。
密封嘴一般由硅胶、橡胶等柔性材料成型,在多次使用后会因材料疲劳失效而需要进行更换。目前,通常采用人工的方式进行密封嘴的更换。但是,人工更换的方式效率较低,会影响正常的生产进度。
此外,现有的氦检设备为了适应上述多步操作,需设置复杂的管路实现连接及控制通断。复杂的管路导致结构复杂,且冗余的管路中容易吸附大量的氦气,从而影响氦检精度。
申请内容
基于此,有必要针对上述问题,提供一种能够提升密封嘴的更换效率的氦检装置以及能够提升氦检精度的氦检设备。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种氦检装置,包括:
注氦机构,包括设于注氦工位的注氦管,密封嘴能够插接于所述注氦管的一端;
更换机构,包括设于供料工位的出料组件及设于回收工位的回收组件,所述出料组件用于输出密封嘴,所述回收组件用于拾取密封嘴;及
夹指机构,包括夹持组件,所述夹持组件能够夹紧或释放密封嘴,所述夹持组件能够移动至所述注氦工位、所述出料工位及所述回收工位,以更换插接于所述注氦管的密封嘴。
在其中一个实施例中,所述夹指机构具有相间隔的第一工位及第二工位,且所述第一工位及所述第二工位上均设有所述夹持组件,位于所述第二工位的所述夹持组件用于获取所述出料组件输出的密封嘴,并将密封嘴转移至所述注氦管,位于所述第一工位的夹持组件用于获取插接于所述注氦管的密封嘴,并将密封嘴转移至所述回收组件。
在其中一个实施例中,所述夹持组件能够带动所夹紧的密封嘴沿所述注氦管轴向移动,以将密封嘴插接于所述注氦管或将密封嘴从所述注氦管的一端拔出。
在其中一个实施例中,所述夹持组件包括支柱及夹爪,所述支柱能够承托密封嘴,所述夹爪围绕所述支柱的周向设置,并可张开或合拢。
在其中一个实施例中,所述夹指机构还包括升降组件,所述升降组件能够带动所述夹持组件沿所述支柱的轴向升降,以使密封嘴伸入或退出所述夹爪。
在其中一个实施例中,所述出料组件包括:
用于存储密封嘴的出料管,所述出料管的一端开设有出料口,多个密封嘴层叠于所述出料管,并能够在重力的作用下滑向所述出料口;
开关件,具有阻止密封嘴由所述出料口滑出的阻挡状态及允许密封嘴由所述出料口滑出的打开状态,所述开关件能够在所述阻挡状态与所述打开状态之间切换。
在其中一个实施例中,所述开关件包括顶块及出料气缸,所述顶块设于所述出料气缸的驱动端并可滑动地穿设于所述出料管的侧壁,所述出料气缸可驱使所述顶块伸入或退出所述出料管,以使开关件在所述阻挡状态与所述打开状态之间切换。
在其中一个实施例中,所述出料管远离所述出料口的一端的侧壁开设有进料口,所述进料口的内壁设有插销,且在密封嘴按预设朝向穿过所述进料口时,密封嘴上的凹槽对所述插销形成避位。
在其中一个实施例中,所述回收组件包括吸取件,所述吸取件能够吸取并释放密封嘴。
在其中一个实施例中,还包括驱动机构及下部腔体机构,所述夹指机构在所述驱动机构的驱使下可移动至所述注氦工位、所述出料工位及所述回收工位,所述下部腔体机构与所述夹指机构联动,并能够在驱动机构的驱使下移动至所述注氦工位。
在其中一个实施例中,所述注氦机构,还包括隔断阀,所述注氦管的一端设有注入口,所述隔断阀固定于所述注氦管远离所述注入口的一端并与所述注氦管连通;及
所述氦检装置还包括四位二通阀,具有进气口及四个出气口,所述进气口能够交替与所述四个出气口导通;
其中,所述进气口通过所述隔断阀与所述注氦管连接,所述四个出气口分别用于与充氦装置、回氦装置、抽真空装置及破真空装置连接。
在其中一个实施例中,所述注氦机构包括固定座,所述注氦管安装于所述固定座,且所述注氦管相对于所述固定座能够沿所述注入口的纵轴方向伸缩。
在其中一个实施例中,所述注氦机构包括还安装板及弹性件,所述安装板沿所述注入口的纵轴方向可滑动地安装于所述固定座,所述注氦管固定设置于所述安装板,所述弹性件沿所述注入口的纵轴方向对所述安装板提供远离所述固定座的弹性力。
在其中一个实施例中,所述弹性件为压缩弹簧,且所述压缩弹簧的预紧量可调。
在其中一个实施例中,所述注氦管为金属管状结构。
在其中一个实施例中,所述注氦机构还包括压力表及三通块,所述注氦管、所述隔断阀及所述压力表分别与所述三通块的三个端口连通。
在其中一个实施例中,所述四位二通阀为电磁阀。
在其中一个实施例中,所述注氦机构为多个,相邻两个所述注氦机构通过所述隔断阀连通,所述进气口与其中一个所述注氦机构的所述隔断阀连接。
在其中一个实施例中,还包括接气块,所述接气块具有带有第一气接头、第二气接头及第三气接头,所述第三气接头与其中一个所述注氦机构的所述隔断阀连接,所述第一气接头及所述第二气接头分别与所述进气口及相邻的所述注氦机构的所述隔断阀连接。
相应地,本申请采用的一个技术方案是:提供一种氦检设备,包括如上述优选实施例中任一项所述的氦检装置。
本申请的有益效果是:
上述氦检装置,在需要更换密封嘴时,夹指机构可先使夹持组件进入注氦工位,夹持组件通过与注氦管进行密封嘴交换,可将插接于注氦管的旧的密封嘴取下,也可将新的密封嘴重新安装于注氦管;在回收工位,夹持组件可释放旧的密封嘴并将其移交至回收组件;而在出料工位,夹持组件则可获取并夹紧由出料组件输出的新的密封嘴。可见,旧的密封嘴的拆除以及新的密封嘴的安装均不依赖于人工。因此,上述氦检装置可实现密封嘴的自动更换,从而显著提升密封嘴的更换效率。
上述氦检设备,采用四位二通阀连接注氦机构与充氦装置、回氦装置、抽真空装置及破真空装置,并通过对四位二通阀的状态切换,实现充氦、回氦、抽真空及破真空操作,故能够显著减少管路。而且,隔断阀与注氦管直接连通,能进一步减少管路。管路结构的减少能够使得注氦机构结构精简,便于维护。更重要的是,较少的管路结构还能够显著减少对氦气的吸附,从而能够提升氦检的精度。
附图说明
图1为本申请较佳实施例中氦检装置的左视图;
图2为图1所示氦检装置中出料组件的主视图;
图3为图1所示氦检装置中夹指机构及下部腔体机构的主视图;
图4为图3所示夹指机构及下部腔体机构的俯视图;
图5为图3所示夹指机构及下部腔体机构的左视图;
图6为本申请一个实施例中密封嘴的结构示意图;
图7为图1所示氦检装置中注氦机构的左视图;
图8为图7所示注氦机构的后视图;
图9为本申请另一个实施例中注氦机构的后视图。
具体实施方式
本申请提供一种密封箱及静置装置,为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
请参阅图1,本申请较佳实施例中的氦检装置10a包括注氦机构100a、更换机构200a及夹指机构300a。
注氦机构100a包括设于注氦工位的注氦管110a。注氦管110a一般为金属管状结构,用于将氦气注入待检测工件,如方壳电池内。具体在本实施例中,氦检装置10a还包括下部腔体机构500a。下部腔体机构500a包括真空箱510a及顶升气缸520a,方壳电池放置于真空箱510a内。进行注氦时,下部腔体机构500a置于注氦工位并位于注氦管110a的下方。接着,顶升气缸520a带动真空箱510a及其内的方壳电池上升,直至注氦管110a与方壳电池上的注氦口对接。
为了使注氦管110a与注氦口之间保持良好的密封,注氦管110a的一端可插接如图6所示的密封嘴20a。密封嘴20a呈两端开口的筒状结构,其一般由硅胶、橡胶等柔性材料成型。
更换机构200a包括出料组件210a及回收组件220a。其中,出料组件210a设于供料工位,并用于输出密封嘴20a;回收组件220a设于回收工位的回收组件220a,并用于拾取密封嘴20a。需要指出的是,出料组件210a输出的密封嘴20a为新的密封嘴,而回收组件220a所拾取的密封嘴20a为旧的密封嘴。
请一并参阅图2,在本实施例中,出料组件210a包括出料管211a及开关件212a。其中:
出料管211a一般为长条形的条形管状结构,可由金属、塑料等材料成型。出料管211a用于存储密封嘴20a,出料管211a的一端开设有出料口(图未标),出料口即为出料组件210a的输出端。多个密封嘴20a层叠于出料管211a,并能够在重力的作用下滑向出料口。具体的,出料管211a一般采用圆柱形管,其内壁光滑且多个密封嘴20a沿出料管211a的延伸方向叠放。出料组件210a在实际使用过程中,出料管211a沿竖直方向延伸,故其内存储的密封嘴20a便可在重力的作用下滑向出料口,从而实现输出。
开关件212a用于控制密封嘴20a是否从出料管211a内输出。具体的,开关件212a具有阻挡状态及打开状态,并能够在阻挡状态与打开状态之间切换。阻挡状态下,开关件212a能阻止密封嘴20a由出料口滑出,而打开状态下,开关件212a则允许密封嘴20a由出料口滑出的打开状态。因此,在需要输出密封嘴20a时,开关件212a切换至打开状态即可。此时,密封嘴20a可在重力作用下滑向出料口,而无需辅助以其他驱动元件,从而有助于简化出料组件210a的结构以及其实现密封嘴20a出料的过程。
需要指出的是,在其他实施例中,出料组件210a也可采用活塞推动式、螺旋进给式等其他方式实现密封嘴20a的输出。
进一步的,在本实施例中,开关件212a包括顶块2121a及出料气缸2122a。顶块2121a设于出料气缸2122a的驱动端并可滑动地穿设于出料管211a的侧壁,出料气缸2122a可驱使顶块2121a伸入或退出出料管211a,以使开关件212a在阻挡状态与打开状态之间切换。
具体的,出料管211a的侧壁可以开设通孔,用于安装顶块2121a,出料气缸2122a可通过气缸安装板(图未标)相对于出料管211a固定设置。出料气缸2122a伸出,可带动顶块2121a顶住出料管211a内的密封嘴20a,以防止其从出料口滑落,开关件212a此时处于阻挡状态;出料气缸2122a回退,可带动顶块2121a回退,此时密封嘴20a可从出料口滑落,开关件212a处于打开状态。
由于密封嘴20a是逐个输出的,故还可在出料口的附近设置传感器(图未示),传感器能够检测到出料管211a内密封嘴20a的动作。当开关件212a切换到打开状态且一个密封嘴20a从出料口掉落时,传感器将检测出料管211a内密封嘴20a的动作。此时,出料气缸2122a可再次伸出,开关件212a切换至阻挡状态。
需要指出的是,在其他实施例中,开关件212a还可以是挡板、电磁阀等其他结构。
请再次参阅图6,由于密封嘴20a两端的结构存在差异,故密封嘴20a需要区分正反。为了方便后续对密封嘴20a的自动替换,在将密封嘴20a存入出料管211a时,需要使所有的密封嘴20a均按照预设朝向的叠放。
具体在本实施例中,出料管211a远离出料口的一端的侧壁开设有进料口2111a,进料口2111a的内壁设有插销2112a,且在密封嘴20a按预设朝向穿过进料口2111a时,密封嘴20a上的凹槽21a对插销2112a形成避位。
具体的,密封嘴20a上具有凹槽21a,且该凹槽21a偏离密封嘴20a的中部。当密封嘴20a按预设朝向穿过进料口2111a时,凹槽21a刚好与插销2112a形成避位,故密封嘴20a能够顺利进入出料管211a。而当密封嘴20a的朝向颠倒时,插销2112a将会阻挡密封嘴20a,以使其不能够顺利放入出料管211a。如此,所有放入出料管211a的密封嘴20a只能按预设朝向通过进料口2111a,从而实现防呆。
具体在本实施例中,回收组件220a包括吸取件,吸取件能够吸取并释放密封嘴20a。吸取件可以是真空吸头,通过对吸取件进行抽真空、破真空操作,可使得回收组件220a吸取及释放密封嘴20a,操作方便。显然,回收组件220a还可通过夹取等方式拾取密封嘴20a。
夹指机构300a包括夹持组件310a,夹持组件310a能够夹紧或释放密封嘴20a。夹持组件310a可以是多种方式,如夹爪式、抱箍式、卡扣式等。请一并参阅图3,具体在本实施例中,夹持组件310a包括支柱311a及夹爪312a,支柱311a能够承托密封嘴20a,夹爪312a围绕支柱311a的周向设置,并可张开或合拢。
夹爪312a可以由夹爪气缸控制,通过控制进气或排气实现夹爪312a的张开或合拢。支柱311a一般与注氦管110a的延伸方向一致。为了更好地对密封嘴20a进行定位,支撑柱311a的顶端设置有凸柱(图未标),该凸柱能够插入密封嘴20a,从而对密封嘴20a实现限位。夹爪312a合拢便可夹紧密封嘴20a;而夹爪312a张开,又可释放密封嘴20a。支柱311a配合夹爪312a,能够改善对密封嘴20a的夹持效果,并能摆正密封嘴20a在夹持组件310a上的位置。
此外,为了配合密封嘴20a侧壁上的凹槽21a,夹爪312a的内壁还设置有突出部(图未标)。突出部可与凹槽21a配合,从而可确保密封嘴20a在被夹持组件310a夹紧时稳固可靠。
进一步的,夹持组件310a可移动至注氦工位、出料工位及回收工位,以更换插接于注氦管110a的密封嘴20a。
具体的,夹持组件310a能够分别与注氦管110a、出料组件210a及回收组件220a交换密封嘴20a。在注氦工位,夹持组件310a在夹紧密封嘴20a后,通过带动密封嘴20a远离注氦管110a,能将注氦管110a上旧的密封嘴20a拔出;夹持组件310a也可带动密封嘴20a朝向注氦管110a移动,直至其上所夹持的新的密封嘴20a与注氦管110a相插接,夹持组件310a再释放密封嘴20a并远离注氦管110a,便可将新的密封嘴20a安装于注氦管110a。在出料工位,夹持组件310a能移动至与出料组件210a完成对接,并夹紧出料组件210a输出的新的密封嘴20a。而在回收工位,夹持组件310a能带动所夹持的旧的密封嘴20a朝向回收组件220a,接着释放密封嘴20a以使其被回收组件220a拾取。
在本实施例中,夹持组件310a能够带动所夹紧的密封嘴20a沿注氦管110a轴向移动,以将密封嘴20a插接于注氦管110a或将密封嘴20a从注氦管110a的一端拔出。
如此,密封嘴20a在安装及拆卸的过程中可保持直上直下的运动路线,从而避免密封嘴20a在安装及拆卸的过程中因受到过大的挤压而破损。
具体在本实施例中,夹指机构300a还包括升降组件320a,升降组件320a能够带动夹持组件310a沿支柱311a的轴向升降,以使密封嘴20a伸入或退出夹爪312a。
在将密封嘴20a分别从注氦管110a、出料组件210a及回收组件220a转移至夹持组件310a时,升降组件320a驱使夹持组件310a上升,直至密封嘴20a伸入夹爪312a并承载于支柱311a。接着,夹爪312a合拢、升降组件320a带动夹持组件310a下降即可。而在将密封嘴20a由夹持组件310a转移至注氦管110a时,升降组件320a先驱使夹持组件310a上升,直至注氦管110a插入密封嘴20a。接着,夹爪312a张开、升降组件320a带动夹持组件310a下降并使密封嘴20a从夹爪312a的范围内退出即可。
需要指出的是,在其他实施例中,也可采用多自由度的机械手等结构代替升降组件320a。
夹指机构300a内可设置相应的驱动结构,从而驱使夹持组件310a在注氦工位、出料工位及回收工位之间流转。另外,也可额外设置驱动结构,并整体带动夹指机构300a在注氦工位、出料工位及回收工位之间流转。
请再次参阅图1,在本实施例中,氦检装置10a还包括驱动机构400a,夹指机构300a在驱动机构400a的驱使下可移动至注氦工位、出料工位及回收工位。驱动机构400a可以由电机、气缸、电缸等动力元件与其配套的传动元件构成。
具体的,驱动机构400a包括伺服电机(图未标)、电缸(图未标)及移动板410a,伺服电机、电缸共同驱动移动板410a沿预设方向移动。夹指机构300a则设于移动板410a,并可随移动板410a移动。如此,夹指机构300a本身的结构可以得到简化。
具体在本实施例中,夹指机构300a还设置有废料盒330a。当驱动机构400a带动夹指机构300a来到供料工位时,废料盒330a与回收组件220a对齐。回收组件220a释放所拾取的密封嘴20a,便可使旧的密封嘴20a落入废料盒330a内。
需要指出的是,在其他实施例中,可不设置废料盒330a,回收组件220a可以是连接料盒的真空吸附管道,而被吸取的旧的密封嘴20a则直接被吸入料盒内。
进一步的,在本实施例中,下部腔体机构500a与夹指机构300a联动,并能够在驱动机构400a的驱使下移动至注氦工位。
具体的,下部腔体机构500a固定设置于移动板410a。当夹指机构300a在驱动机构400a的驱使下进入注氦工位时,下部腔体机构500a便自动退出注氦工位。也就是说,在驱动机构400a的驱使下,下部腔体机构500a与夹指机构300a只能交替而不能同时进入注氦工位,从而避免两者相互干扰。
请一并参阅图5,具体在本实施例中,下部腔体机构500a还包括支撑板530a及导杆540a。导杆540a的一端固定设置于驱动机构400a的安装板,支撑板530a通过直线轴承设于导杆540a,以使支撑板530a沿导杆540a的延伸方向滑动。真空箱510a固定设置于支撑板530a。顶升气缸520a与支撑板530a传动连接,可驱使支撑板530a沿导杆540a滑动,从带动真空箱510a升降。
进一步的,在本实施例中,下部腔体机构500a还包括止动螺杆550a。在真空箱510a上升到位后,止动螺杆550a能够将真空箱510a固定,从而能够保持注氦过程的稳定。
请一并参阅图4,在本实施例中,夹指机构300a具有相间隔的第一工位301a及第二工位302a,且第一工位301a及第二工位302a上均设有夹持组件310a,位于第二工位302a的夹持组件310a用于获取出料组件210a输出的密封嘴20a,并将密封嘴20a转移至注氦管110a,位于第一工位301a的夹持组件310a用于获取插接于注氦管110a的密封嘴20a,并将密封嘴20a转移至回收组件220a。
也就是说,旧的密封嘴20a的拆卸及新的密封嘴20a的安装是由不同的夹持组件310a执行的。如此,能够避免交叉污染。
下面结合附图1至图6,对上述氦检装置10a进行密封嘴20a更换的流程大致描述如下:
在注氦机构100a执行注氦工序之前,夹指机构300a在驱动机构400a的驱使下进入注氦工位,并使位于第一工位301a的夹持组件310a与注氦管110a的末端对齐;接着,升降组件320a将夹持组件310a顶起,第一工位301a的夹持组件310a的支柱311a承托密封嘴20a,夹爪312a合拢并将密封嘴20a夹紧;最后,升降组件320a缩回,带动夹持组件310a向下移动,便可将旧的密封嘴20a拔出。
旧的密封嘴20a拔出后,夹指机构300a在驱动机构400a的驱使下来到回收工位,并使位于第一工位301a的夹持组件310a与回收组件220a对齐;升降组件320a再次将夹持组件310a顶起,直至将旧的密封嘴20a送至回收组件220a;接着,夹爪312a张开,升降组件320a缩回以带动夹持组件310a向下移动,便可将旧的密封嘴20a转移至回收组件220a以实现回收。
旧的密封嘴20a被回收后,夹指机构300a在驱动机构400a的驱使下来到供料工位,并使位于第二工位302a的夹持组件310a与出料组件210a的输出端对齐;新的密封嘴20a从出料管211a内掉落到第二工位302a的支柱311a上,夹爪312a合拢以将其夹紧,实现新的密封嘴20a的上料;
新的密封嘴20a完成上料后,夹指机构300a在驱动机构400a的驱使下进入注氦工位,并使位于第二工位302a的夹持组件310a与注氦管110a的末端对齐;升降组件320a将夹持组件310a顶起,直至将所夹持的新的密封嘴20a插接于注氦管110a内;接着,夹爪312a张开且升降组件320a缩回,带动夹持组件310a向下移动,便可将新的密封嘴20a安装于注氦管110a的末端。
显然,在拔出旧的密封嘴20a之前,可先使夹指机构300a来到供料工位,并将新的密封嘴20a转移至位于第二工位302a的夹持组件310a上。待位于第一工位301a的夹持组件310a将注氦管110a上旧的密封嘴20a拔出后,驱动机构400a直接带动位于第二工位302a的夹持组件310a与注氦管110a的末端对齐。接着,升降组件320a及夹持组件310a动作,将新的密封嘴20a安装于注氦管110a的末端。如此,可减少驱动机构400a在密封嘴20a替换过程中的行程,有助于进一步提升效率。
需要指出的是,在其他实施例中,也可采用第一工位301a上的夹持组件310a进行新的密封嘴20a的替换,而采用第二工位302a上的夹持组件310a进行旧的密封嘴20a的回收。此时,当第一工位301a上的上夹持组件310a在承接新的密封嘴20a的同时,第二工位302a上的夹持组件310a能够将旧的密封嘴20a移交至回收组件220a,从而能够进一步提升密封嘴更换的效率。或者,夹指机构300a上也可仅设置一个夹持组件310a,并由同一个夹持组件310a执行旧的密封嘴20a的拔出及新的密封嘴20a的安装。
上述氦检装置10a,在需要更换密封嘴20a时,夹指机构300a可先使夹持组件310a进入注氦工位,夹持组件310a通过与注氦管110a进行密封嘴20a交换,可将插接于注氦管110a的旧的密封嘴20a取下,也可将新的密封嘴20a重新安装于注氦管110a;在回收工位,夹持组件310a可释放旧的密封嘴20a并将其移交至回收组件220a;而在出料工位,夹持组件310a则可获取并夹紧由出料组件210a输出的新的密封嘴20a。可见,旧的密封嘴20a的拆除以及新的密封嘴20a的安装均不依赖于人工。因此,上述氦检装置10a可实现密封嘴20a的自动更换,从而显著提升密封嘴20a的更换效率。
请参阅图7,本申请提供了一种氦检装置(图未示),氦检装置包括注氦机构100a。上述氦检装置还包括充氦装置(图未示)、回氦装置(图未示)、抽真空装置(图未示)及破真空装置(图未示)。
抽真空装置对用于装载待检测工件的真空箱体抽真空,以形成真空环境;充氦装置提供氦气,并通过注氦机构100a将氦气注入位于真空箱体的待检测工件,如方壳电池内;保压预设时间后,回氦装置将工件内的氦气回收,并通过计算真空箱体内氦气的浓度对工件的气密性进行检测;检测完成后,破真空装置使真空箱体内的气压恢复。具体在本实施例中,破真空装置为消音器。
请一并参阅图8,本申请较佳实施例中的氦检装置包括注氦机构100a及四位二通阀200。其中:
注氦机构100a包括注氦管110a及与隔断阀120。注氦管110a一般为两端开口的条形管状结构。注氦管110a的一端设有注入口(图未标),注入口能够与待检测工件的注氦口对接。隔断阀120固定于注氦管110a远离注入口的一端并与注氦管110a连通。在对待检测工件进行氦检时,注氦机构提供的氦气经隔离阀120进入注氦管110a,并由注氦管110a的注入口向待测工件注入。接着,隔断阀120关闭,便可使注入氦气的待检测工件实现保压。
为了提升注入口与注氦口之间的密封性能,注入口上还安装有注氦密封嘴20a,注氦密封嘴20a可以是橡胶、硅胶等柔性材料成型的构件。当注入口与注氦口对接时,通过挤压可使注氦密封嘴20a弹性形变,以填充注入口与注氦口之间的间隙,从而起到较好的密封作用。
具体在本实施例中,注氦管110a为金属管状结构。注氦管110a可由不锈钢等金属材料成型。一方面,金属管状结构具有较强的机械强度,能够避免注氦管110a在注氦过程中变形。另一方面,金属管状结构还能够有效地减轻注氦管110a内的吸氦及藏氦现象,从而有利于提升氦检的精度。
具体在本实施例中,注氦机构100a还包括压力表160及三通块170,注氦管110a、隔断阀120及压力表160分别与三通块170的三个端口连通。
三通块170为具有三个端口且内部中空的块状结构,一般由金属成型。压力表160能够检测待检测工件内的气压,从而方便对充入待检测工件内的氦气量进行控制。而且,注氦管110a、隔断阀120及压力表160通过三通块170实现直连,相互之间无需额外设置管道进行连通,故还能进一步减少对氦气的吸附。
四位二通阀200具有进气口210及四个出气口220,进气口210能够交替与四个出气口220导通。具体的,四位二通阀200具有四个开关状态,在特定的开关状态下,进气口210对应的一个出气口220导通,而与其他出气口220隔离。进一步的,四位二通阀200反向连接,进气口210通过隔断阀120与注氦管110a连接,四个出气口220则分别与充氦装置、回氦装置、抽真空装置及破真空装置连接。
氦检设备一般具备起支撑作用的顶板30,四位二通阀200及注氦机构100a均可固定于顶板30的表面。其中,四位二通阀200的进气口210可通过管道(图未示)与隔断阀120连接。
在进行氦检时,通过对四位二通阀200的状态切换,便可实现充氦、回氦、抽真空及破真空操作,故能够显著减少管路。而且,隔断阀120与注氦管110a直接连通,能进一步减少管路。管路结构的减少能够减少对氦气的吸附,从而能够提升氦检的精度。
具体在本实施例中,四位二通阀200为电磁阀。因此,通过输入不同的电信号便可对四位二通阀200的开关状态进行切换,故响应迅速、切换方便。显然,四位二通阀200也可通过机械控制的方式实现开关状态的切换。
请再次参阅图7,在本实施例中,注氦机构100a包括固定座130,注氦管110a安装于固定座130,且注氦管110a相对于固定座130能够沿注入口的纵轴方向伸缩。
具体的,固定座130起支撑作用,可固定安装于氦检设备的顶板30上。氦检设备工作时,注氦管110a一般沿竖直方向延伸,故注入口的纵轴方向即为图7所示的上下方向。
进行氦检时,位于注氦机构100a下部的真空箱体的向上顶升,直至使其内的待检测工件的注氦口与注氦管110a的注入口对接。由于注氦管110a能够伸缩。因此,当注氦口与注入口抵接时会迫使注氦管110a回缩,从而避免因注氦管110a与注氦口发生硬接触而造成注氦管110a及待测工件的损伤。
进一步的,在本实施例中,注氦机构100a还包括安装板140及弹性件150,安装板140沿注入口的纵轴方向可滑动地安装于固定座130,注氦管110a固定设置于安装板140,弹性件150注入口的纵轴方向对安装板140提供远离固定座130的弹性力。
具体的,安装板140通过导轨与滑块配合的方式可滑动地安装于固定座130,导轨沿图7所示的上下方向延伸。而且,在弹性件150的弹性力的作用下,可使注氦口与注入口有效地贴紧,从而进一步提升两者之间的密封效果。
显然,在其他实施例中,还可通过其他方式使注氦管110a实现弹性伸缩。譬如,在注氦管110a上设置能够发生弹性形变的波纹段。或者,设置气缸,气缸固定于固定座130,注氦管110a则固定于气缸的驱动端,以此来实现注氦管110a相对于固定座130伸缩。
具体在本实施例中,弹性件150为压缩弹簧,且压缩弹簧的预紧量可调。具体的,压缩弹簧夹持于固定座130与安装板140之间。当注氦口与注入口抵接时会迫使注氦管110a回缩,从而进一步压缩该压缩弹簧。通过调节压缩弹簧的预紧量,可对弹性件150所能提供的弹性回复力的大小进行调节,从而可根据需要调节注氦口与注入口的贴紧程度。
在本实施例中,注氦机构100a为多个,相邻两个注氦机构100a通过隔断阀120连通,进气口210与其中一个注氦机构100a的隔断阀120连接。
具体的,充氦装置提供的氦气可由一个四位二通阀200分配至多个注氦机构100a,而由多个注氦机构100a回收的氦气又可经一个四位二通阀200汇总至回氦装置。如此,通过设置一个四位二通阀200,便可对多个注氦机构100a的工作过程进行控制,从而能够同时对多个待检测工件进行氦检。
进一步的,在本实施例中,注氦机构100a还包括接气块300,接气块300具有带有第一气接头310、第二气接头320及第三气接头(图未示),接第三气接头与其中一个注氦机构100a的隔断阀120连接,第一气接头310及第二气接头320分别与进气口210及相邻的注氦机构100a的隔断阀120连接。
接气块300可以是金属成型的中空结构。具体的,隔断阀120本身自带有若干个接头(图未标),接气块300可与隔断阀120上任一个接头对接,从而对隔断阀120的端口数量实现扩展,以方便将相邻的注氦机构100a及注氦机构100a与四位二通阀200进行连接。
如图9所示,对于氦检装置包括一个注氦机构100a的实施例而言,接气块300可以省略。此时,四位二通阀200的进气口210可直接与隔断阀120自带的接头连接。
上述及氦检设备,采用四位二通阀200连接注氦机构100a与充氦装置、回氦装置、抽真空装置及破真空装置,并通过对四位二通阀200的状态切换,实现充氦、回氦、抽真空及破真空操作,故能够显著减少管路。而且,隔断阀120与注氦管110a直接连通,能进一步减少管路。管路结构的减少能够使得注氦机构的结构精简,便于维护。更重要的是,较少的管路结构还能够显著减少对氦气的吸附,从而能够提升氦检的精度。
可以理解的是,对本领域普通技术人员来说,可以根据本申请的技术方案及其申请构思加以等同替换或改变,而所有这些改变或替换都应属于本申请所附的权利要求的保护范围。

Claims (20)

  1. 一种氦检装置,其中,包括:
    注氦机构(100a),包括设于注氦工位的注氦管(110a),密封嘴(20a)能够插接于所述注氦管(110a)的一端;
    更换机构(200a),包括设于供料工位的出料组件(210a)及设于回收工位的回收组件(220a),所述出料组件(210a)用于输出密封嘴(20a),所述回收组件(220a)用于拾取密封嘴(20a);及
    夹指机构(300a),包括夹持组件(310a),所述夹持组件(310a)能够夹紧或释放密封嘴(20a),所述夹持组件(310a)能够移动至所述注氦工位、所述出料工位及所述回收工位,以更换插接于所述注氦管(110a)的密封嘴(20a)。
  2. 根据权利要求1所述的氦检装置,其中,所述夹指机构(300a)具有相间隔的第一工位(301a)及第二工位(302a),且所述第一工位(301a)及所述第二工位(302a)上均设有所述夹持组件(310a),位于所述第二工位(302a)的所述夹持组件(310a)用于获取所述出料组件(210a)输出的密封嘴(20a),并将密封嘴(20a)转移至所述注氦管(110a),位于所述第一工位(301a)的夹持组件(310a)用于获取插接于所述注氦管(110a)的密封嘴(20a),并将密封嘴(20a)转移至所述回收组件(220a)。
  3. 根据权利要求1所述的氦检装置,其中,所述夹持组件(310a)能够带动所夹紧的密封嘴(20a)沿所述注氦管(110a)轴向移动,以将密封嘴(20a)插接于所述注氦管(110a)或将密封嘴(20a)从所述注氦管(110a)的一端拔出。
  4. 根据权利要求1所述的氦检装置,其中,所述夹持组件(310a)包括支柱(311a)及夹爪(312a),所述支柱(311a)能够承托密封嘴(20a),所述夹爪(312a)围绕所述支柱(311a)的周向设置,并可张开或合拢。
  5. 根据权利要求4所述的氦检装置,其中,所述夹指机构(300a)还包括升降组件(320a),所述升降组件(320a)能够带动所述夹持组件(310a)沿所述支柱(311a)的轴向升降,以使密封嘴(20a)伸入或退出所述夹爪(312a)。
  6. 根据权利要求1所述的氦检装置,其中,所述出料组件(210a)包括:
    用于存储密封嘴(20a)的出料管(211a),所述出料管(211a)的一端开设有出料口,多个密封嘴(20a)层叠于所述出料管(211a),并能够在重力的作用下滑向所述出料口;
    开关件(212a),具有阻止密封嘴(20a)由所述出料口滑出的阻挡状态及允许密封嘴(20a)由所述出料口滑出的打开状态,所述开关件(212a)能够在所述阻挡状态与所述打开状态之间切换。
  7. 根据权利要求6所述的氦检装置,其中,所述开关件(212a)包括顶块(2121a)及出料气缸(2122a),所述顶块(2121a)设于所述出料气缸(2122a)的驱动端并可滑动地穿设于所述出料管(211a)的侧壁,所述出料气缸(2122a)可驱使所述顶块(2121a)伸入或退出所述出料管(211a),以使开关件(212a)在所述阻挡状态与所述打开状态之间切换。
  8. 根据权利要求6所述的氦检装置,其中,所述出料管(211a)远离所述出料口的一端的侧壁开设有进料口(2111a),所述进料口(2111a)的内壁设有插销(2112a),且在密封嘴(20a)按预设朝向穿过所述进料口(2111a)时,密封嘴(20a)上的凹槽(21a)对所述插销(2112a)形成避位。
  9. 根据权利要求1所述的氦检装置,其中,所述回收组件(220a)包括吸取件,所述吸取件能够吸取并释放密封嘴(20a)。
  10. 根据权利要求1至9任一项所述的氦检装置,其中,还包括驱动机构(400a)及下部腔体机构(500a),所述夹指机构(300a)在所述驱动机构(400a)的驱使下可移动至所述注氦工位、所述出料工位及所述回收工位,所述下部腔体机构(500a)与所述夹指机构(300a)联动,并能够在驱动机构(400a)的驱使下移动至所述注氦工位。
  11. 根据权利要求1所述的氦检装置,其中,所述注氦机构(100a)还包括隔断阀(120),所述注氦管(110a)的一端设有注入口,所述隔断阀(120)固定于所述注氦管(110a)远离所述注入口的一端并与所述注氦管(110a)连通;
    所述氦检装置还包括四位二通阀(200),具有进气口(210)及四个出气口(220),所述进气口(210)能够交替与所述四个出气口(220)导通;
    其中,所述进气口(210)通过所述隔断阀(120)与所述注氦管(110a)连接,所述四个出气口(220)分别用于与充氦装置、回氦装置、抽真空装置及破真空装置连接。
  12. 根据权利要求11所述的氦检装置,其中,所述注氦机构(100a)包括固定座(130),所述注氦管(110a)安装于所述固定座(130),且所述注氦管(110a)相对于所述固定座(130)能够沿所述注入口的纵轴方向伸缩。
  13. 根据权利要求12所述的氦检装置,其中,所述注氦机构(100a)包括还安装板(140)及弹性件(150),所述安装板(140)沿所述注入口的纵轴方向可滑动地安装于所述固定座(130),所述注氦管(110a)固定设置于所述安装板(140),所述弹性件(150)沿所述注入口的纵轴方向对所述安装板(140)提供远离所述固定座(130)的弹性力。
  14. 根据权利要求13所述的氦检装置,其中,所述弹性件(150)为压缩弹簧,且所述压缩弹簧的预紧量可调。
  15. 根据权利要求11所述的氦检装置,其中,所述注氦管(110a)为金属管状结构。
  16. 根据权利要求11所述的氦检装置,其中,所述注氦机构(100a)还包括压力表(160)及三通块(170),所述注氦管(110a)、所述隔断阀(120)及所述压力表(160)分别与所述三通块(170)的三个端口连通。
  17. 根据权利要求11所述的氦检装置,其中,所述四位二通阀为电磁阀。
  18. 根据权利要求11所述的氦检装置,其中,所述注氦机构(100a)为多个,相邻两个所述注氦机构(100a)通过所述隔断阀(120)连通,所述进气口(210)与其中一个所述注氦机构(100a)的所述隔断阀(120)连接。
  19. 根据权利要求18所述的氦检装置,其中,还包括接气块(300),所述接气块(300)具有带有第一气接头(310)、第二气接头(320)及第三气接头,所述第三气接头与其中一个所述注氦机构(100a)的所述隔断阀(120)连接,所述第一气接头(310)及所述第二气接头(320)分别与所述进气口(210)及相邻的所述注氦机构(100a)的所述隔断阀(120)连接。
  20. 一种氦检设备,其中,包括如上述权利要求1至19任一项所述的氦检装置。
PCT/CN2021/140324 2021-07-21 2021-12-22 氦检装置及氦检设备 WO2023000609A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21950847.0A EP4177586A4 (en) 2021-07-21 2021-12-22 HELIUM DETECTION DEVICE AND HELIUM DETECTION DEVICE
JP2023503091A JP7450110B2 (ja) 2021-07-21 2021-12-22 ヘリウム検査装置およびヘリウム検査機器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110824783.5 2021-07-21
CN202121670147.3 2021-07-21
CN202110824783.5A CN113567062B (zh) 2021-07-21 2021-07-21 氦检装置
CN202121670147.3U CN215414242U (zh) 2021-07-21 2021-07-21 注氦装置及氦检设备

Publications (1)

Publication Number Publication Date
WO2023000609A1 true WO2023000609A1 (zh) 2023-01-26

Family

ID=84980466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140324 WO2023000609A1 (zh) 2021-07-21 2021-12-22 氦检装置及氦检设备

Country Status (3)

Country Link
EP (1) EP4177586A4 (zh)
JP (1) JP7450110B2 (zh)
WO (1) WO2023000609A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110132075A1 (en) * 2009-12-08 2011-06-09 Gm Global Technology Operations, Inc. Tool for assisting leak testing of an enclosed volume and method incorporating the tool
CN105327863A (zh) * 2015-11-17 2016-02-17 深圳市誉辰自动化设备有限公司 方形动力电池自动气密性氦检机
CN206920089U (zh) * 2017-05-23 2018-01-23 深圳市博发电子科技有限公司 一种电池密封性真空腔体检测机构
CN207123361U (zh) * 2017-04-13 2018-03-20 深圳市卓誉自动化科技有限公司 一种注氦密封装置
CN110091269A (zh) * 2019-04-02 2019-08-06 大族激光科技产业集团股份有限公司 电池氦检夹持机构
CN209589377U (zh) * 2019-05-05 2019-11-05 昆山泽旭自动化科技有限公司 一种电池氦检设备
CN113567062A (zh) * 2021-07-21 2021-10-29 无锡先导智能装备股份有限公司 氦检装置
CN215414242U (zh) * 2021-07-21 2022-01-04 无锡先导智能装备股份有限公司 注氦装置及氦检设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209352A (ja) 2007-02-28 2008-09-11 Denso Corp 漏洩検査装置およびその装置の漏洩検査方法
CN110103158A (zh) * 2019-04-02 2019-08-09 大族激光科技产业集团股份有限公司 电池氦检夹持机构
CN111842210B (zh) * 2020-07-14 2021-05-14 宁波格劳博智能工业有限公司 一种纽扣型锂离子电池电芯全自动精确检漏生产线

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110132075A1 (en) * 2009-12-08 2011-06-09 Gm Global Technology Operations, Inc. Tool for assisting leak testing of an enclosed volume and method incorporating the tool
CN105327863A (zh) * 2015-11-17 2016-02-17 深圳市誉辰自动化设备有限公司 方形动力电池自动气密性氦检机
CN207123361U (zh) * 2017-04-13 2018-03-20 深圳市卓誉自动化科技有限公司 一种注氦密封装置
CN206920089U (zh) * 2017-05-23 2018-01-23 深圳市博发电子科技有限公司 一种电池密封性真空腔体检测机构
CN110091269A (zh) * 2019-04-02 2019-08-06 大族激光科技产业集团股份有限公司 电池氦检夹持机构
CN209589377U (zh) * 2019-05-05 2019-11-05 昆山泽旭自动化科技有限公司 一种电池氦检设备
CN113567062A (zh) * 2021-07-21 2021-10-29 无锡先导智能装备股份有限公司 氦检装置
CN215414242U (zh) * 2021-07-21 2022-01-04 无锡先导智能装备股份有限公司 注氦装置及氦检设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4177586A4 *

Also Published As

Publication number Publication date
EP4177586A1 (en) 2023-05-10
JP7450110B2 (ja) 2024-03-14
JP2023537668A (ja) 2023-09-05
EP4177586A4 (en) 2024-03-13

Similar Documents

Publication Publication Date Title
CN114054387B (zh) 一种气密性测试设备
CN109941947A (zh) 一种自动灌装设备
CN107433609B (zh) 一种用于夹取钢制工件的机器人手爪装置
WO2023000609A1 (zh) 氦检装置及氦检设备
CN207710805U (zh) 机器人多自由度夹持器
CN113567062B (zh) 氦检装置
WO2021248387A1 (zh) 一种换料转运设备及换料方法
CN113932988B (zh) 锂电池盖板检测装置
CN113970411B (zh) 配备有工件移运机械手的锂电池盖板检测装置
CN112871925B (zh) 锂电池电解液吨桶全智能清洗检测及转运生产线
CN216000554U (zh) 一种新型的上料机器人夹爪
CN112014040A (zh) 一种用于管材气密性测漏的设备和方法
CN210487187U (zh) 气密性检测设备
CN212158932U (zh) 歧管气密性检测用定位夹具
CN204666310U (zh) 蒸发器检测流水线
CN209727394U (zh) 一种蓄电池加工用气密性检测机
CN209380764U (zh) 玻璃管搬运机械手
CN210456662U (zh) 一种粉料生产用自动对接装置
JP3146925B2 (ja) 液体充填方法及びその装置
CN113941522B (zh) 锂电池盖板检测机的待测锂电池盖板输入装置
CN117168692B (zh) 自动气密检测设备
CN112768781B (zh) 适合负压化成的锂离子电池化成设备
CN117342044B (zh) 电解液灌装机
CN204714038U (zh) 棉纺条并卷机筒管输送机构
CN218199044U (zh) 多管收料装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023503091

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 21950847.0

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021950847

Country of ref document: EP

Effective date: 20230202

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE