WO2021248387A1 - 一种换料转运设备及换料方法 - Google Patents

一种换料转运设备及换料方法 Download PDF

Info

Publication number
WO2021248387A1
WO2021248387A1 PCT/CN2020/095470 CN2020095470W WO2021248387A1 WO 2021248387 A1 WO2021248387 A1 WO 2021248387A1 CN 2020095470 W CN2020095470 W CN 2020095470W WO 2021248387 A1 WO2021248387 A1 WO 2021248387A1
Authority
WO
WIPO (PCT)
Prior art keywords
refueling
isolation valve
transfer
positioning
cock
Prior art date
Application number
PCT/CN2020/095470
Other languages
English (en)
French (fr)
Inventor
周国丰
张梦金
余冰
关雪丹
黄碧漪
王祖辉
林新鹏
吴凤岐
刘刚
黄海华
吴玉
何之
张奎
Original Assignee
中广核研究院有限公司
岭东核电有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核研究院有限公司, 岭东核电有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 中广核研究院有限公司
Priority to PCT/CN2020/095470 priority Critical patent/WO2021248387A1/zh
Publication of WO2021248387A1 publication Critical patent/WO2021248387A1/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/02Details of handling arrangements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/02Details of handling arrangements
    • G21C19/10Lifting devices or pulling devices adapted for co-operation with fuel elements or with control elements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/02Details of handling arrangements
    • G21C19/10Lifting devices or pulling devices adapted for co-operation with fuel elements or with control elements
    • G21C19/11Lifting devices or pulling devices adapted for co-operation with fuel elements or with control elements with revolving coupling elements, e.g. socket coupling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the technical field of refueling, and more specifically, to a refueling transfer device and a refueling method.
  • the related patent CN106782715A discloses a refueling system for a liquid heavy metal reactor.
  • the refueling system itself does not have the ability to contain radioactive products, which is not conducive to the shielding and sealing of the core during the refueling process.
  • the oxygen control requirements are high, and its safety and economy are poor.
  • the related patent CN106531257A discloses an in-reactor refueling system. Although the refueling system can complete the replacement of the reactor fuel assembly without opening the cover, the refueling system needs to be placed in the reactor for a long time and serves as a pressure boundary Participating in the operation of the reactor has high requirements for equipment reliability and material durability, and high technical risks.
  • the related patent CN106782715A discloses a refueling system for a liquid heavy metal reactor.
  • the refueling system itself does not have the ability to contain radioactive products, which is not conducive to the shielding and sealing of the core during the refueling process.
  • the oxygen control requirements are high, and its safety and economy are poor.
  • the related patent CN106531257A discloses an in-reactor refueling system. Although the refueling system can complete the replacement of the reactor fuel assembly without opening the cover, the refueling system needs to be placed in the reactor for a long time and serves as a pressure boundary Participating in the operation of the reactor has high requirements for equipment reliability and material durability, and high technical risks.
  • the technical problem to be solved by the present invention is to provide an improved refueling transfer equipment and refueling method.
  • the technical solution adopted by the present invention to solve its technical problem is to construct a refueling and transporting device, which includes: detachably arranged at the open end of the core device to shield and seal the core device during refueling A positioning cock, a refueling transfer machine that is detachably arranged on the positioning cock and can perform horizontal and lifting movements for taking and unloading fuel assemblies, and a flexible docking mechanism provided at one end of the refueling transfer machine;
  • the positioning cock is provided with a passage for taking and placing the fuel assembly
  • the positioning cock is provided with a first isolation valve corresponding to the passage;
  • a second isolation valve is provided on the side of the flexible docking mechanism opposite to the refueling transfer machine, and the second isolation valve and the first isolation valve are transported in the refueling via the flexible docking mechanism. Docking under the drive of the machine for sealing and shielding during refueling.
  • the flexible docking mechanism includes an upper cabin body, a lower cabin body connected with the upper cabin body, a sealed connection structure for sealingly connecting the upper cabin body and the lower cabin body, and is arranged in the upper cabin.
  • the elastic buffer device between the lower cabin body and the upper cabin body is arranged between the upper cabin body and the lower cabin body to detect the upper cabin body and the lower cabin body when the flexible docking mechanism performs docking work.
  • the displacement detection assembly includes a plurality of displacement detection units arranged at intervals along the circumference of the upper cabin and the lower cabin and connected to the refueling transfer machine;
  • the first isolation valve and the second isolation valve are docked in position.
  • the displacement detection unit is a displacement sensor.
  • the buffer device includes a plurality of elastic buffer components arranged at intervals along the circumference of the upper cabin and the lower cabin.
  • the positioning cock includes a first rotation positioning portion that is rotatably arranged, a second rotation positioning portion that is arranged in the first rotation positioning portion and is eccentrically arranged and rotatably connected to the first rotation positioning portion, A third rotation positioning portion arranged in the second rotation positioning portion eccentrically arranged with the second rotation positioning portion and rotatably connected, and a third rotation positioning portion installed on the third rotation positioning portion and capable of being inserted into the core
  • the guide tube in the device to guide the fetching and placing of the fuel assembly
  • the channel is formed in the guide cylinder.
  • it further comprises a transition mechanism detachably arranged at the open end of the core device to connect with the positioning cock;
  • the transition mechanism includes a socket part sleeved on the open end of the core device, an insertion port provided on the socket part for the positioning cock to insert, and a gate capable of opening or closing the insertion port.
  • it further includes a sealing mechanism provided on the positioning cock to be sealedly connected with the transition mechanism.
  • the refueling transfer machine includes a transfer container with both ends passing through, a grasping mechanism reciprocally arranged in the transfer container to extend into the core device to grasp the fuel assembly, and the grasping mechanism
  • the mechanism is connected to a driving mechanism that drives the grabbing mechanism, an elevating mechanism that is connected to the transfer container to drive the transfer container up and down, and a walking mechanism that is connected to the transfer container to drive the transfer container to move horizontally;
  • the flexible docking mechanism is arranged at one end of the transfer container.
  • the transfer container is in the shape of a hollow column, and a transfer channel for the grabbing mechanism to grab the fuel assembly is provided on the inside.
  • a shielding cover is provided at one end of the transfer container away from the second isolation valve
  • the driving mechanism is arranged in the shielding cover.
  • the lifting mechanism includes a movable flange sleeved on the periphery of the transfer container, a lifting component connected with the movable flange to drive the movable flange to lift, and a supporting component supporting the lifting component;
  • the support assembly is connected with the walking mechanism.
  • the lifting assembly includes a drive motor, a clutch connected to the drive motor, a dual output commutator connected to the clutch, and two sets of lifting units connected to the two output ports of the dual output commutator ;
  • Each group of lifting units includes a first cardan shaft connected to the output port of the dual output commutator, a single output commutator connected with the first cardan shaft, and the single output commutator A screw jack connected with the output port and an encoder connected with the screw jack.
  • each group of lifting units there are multiple screw jacks in each group of lifting units, and the multiple screw jacks are arranged side by side, and are connected by arranging a second cardan shaft.
  • the side wall of the transfer container is provided with a pipeline connecting the transfer channel and an external cooling ventilation system.
  • the driving mechanism includes a winding machine and a traction rope wound on the winding machine and connected to the grasping mechanism.
  • the present invention also constructs a refueling method, using the refueling transfer equipment of the present invention, including the reclaiming step of taking out the fuel assembly from the core device, and/or putting the fuel assembly into the core device Unwinding steps;
  • the reclaiming step includes:
  • A1. Install the first isolation valve on the positioning cock and at the position corresponding to the channel of the positioning cock; install the positioning cock with the first isolation valve on the open end of the core device, and connect the channel of the positioning cock to the stack Align the fuel assembly in the core device;
  • A4 Drive the refueling transfer machine to make an upward movement to separate the second isolation valve from the first isolation valve, and drive the refueling transfer machine to move horizontally to run the grabbed fuel assembly to Unloading at the unloading station;
  • the discharging step includes:
  • the refueling and transferring device can shield and seal the core device during the refueling by providing a positioning cock at the open end of the core device, and It can help solve the problem of difficult positioning caused by the invisible position of the core, and can facilitate the lowering of the refueling transfer machine to the core position without human intervention.
  • the refueling transfer equipment can ensure sealing and shielding during the entire refueling process, thereby improving the safety of the refueling operation.
  • the refueling transfer equipment drives the flexible docking mechanism to connect the first isolation valve and the second isolation valve through the refueling transfer machine, which ensures the local adjustment ability when large rigid equipment is accurately docked, and prevents hard contact from causing equipment damage , To ensure the safety of the design.
  • the refueling transfer equipment is equipped with a refueling transfer machine capable of horizontal movement and lifting movement, in addition to completing the replacement of the fuel assembly, the fuel assembly can be transferred, thereby improving the economy and refueling efficiency of the reactor.
  • Fig. 1 is a schematic diagram of the refueling state of the refueling transfer equipment in the first embodiment of the present invention
  • Figure 2 is a cross-sectional view of the transition mechanism of the refueling transfer equipment shown in Figure 1;
  • Fig. 3 is a schematic structural diagram of the positioning cock of the refueling transfer device shown in Fig. 1;
  • Figure 4 is a cross-sectional view of the positioning cock shown in Figure 3;
  • Fig. 5 is a schematic diagram of a partial structure of the refueling transfer equipment shown in Fig. 1;
  • Fig. 6 is a schematic structural diagram of the lifting mechanism of the refueling transfer equipment shown in Fig. 5;
  • Fig. 7 is a schematic structural diagram of the lifting assembly of the refueling transfer equipment shown in Fig. 6;
  • Fig. 8 is a schematic structural diagram of a flexible docking mechanism of the refueling transfer equipment shown in Fig. 1;
  • Figure 9 is a cross-sectional view of the flexible docking mechanism of the refueling transfer equipment shown in Figure 8;
  • Figure 10 is a partial structural diagram of the refueling and transporting equipment in the second embodiment of the present invention.
  • Figure 11 is a schematic flow chart of the reclaiming step of the refueling method of the present invention.
  • Fig. 12 is a schematic flow chart of the discharging step of the refueling method of the present invention.
  • Fig. 1 shows a first embodiment of the refueling transfer device of the present invention.
  • the refueling transfer equipment 1 can be used to replace the fuel assembly of the core device 2.
  • the core device 2 may be a reactor, specifically, it may be a metal fast reactor.
  • the core device 2 may not be limited to a metal fast reactor, and it may be a pressurized water reactor.
  • the refueling and transporting device 1 may not be limited to being applied to the core device 2, and it may also be applied to other fields.
  • the refueling transfer equipment 1 can realize remote, automatic fuel assembly replacement and dry transfer, thereby improving the economy, safety, and reliability of the reactor.
  • the refueling transfer device 1 may include a transition mechanism 10, a positioning cock 20, a first isolation valve 30, a second isolation valve 40, a refueling transfer machine 50, and a flexible Butt joint structure 60.
  • the transition mechanism 10 can be installed at the open end of the core device 2, which can facilitate the installation of the positioning cock 20.
  • the positioning cock 20 can be detachably installed on the open end of the core device 2 through the transition mechanism 10, which can shield and seal the core device 2 during the refueling period, and can help solve the invisible core position. This leads to the problem of difficult positioning and can facilitate the lowering of the refueling transfer machine to the core position without human intervention.
  • the core device 2 may be a pressure vessel.
  • the first isolation valve 30 can be arranged on the core device 2 and can be sealed and shielded during the refueling period.
  • the second isolation valve 40 can be arranged on the side of the flexible docking mechanism 60 opposite to the refueling transfer machine 50, and it can communicate with the first isolation valve 30 under the driving of the refueling transfer machine 50 through the flexible docking structure 60. The docking can then be sealed and shielded during the refueling period to improve the safety of the refueling operation.
  • the refueling transfer machine 50 is detachably arranged on the positioning cock 20, and it can perform horizontal movement and lifting movement to take and unload the fuel assembly of the core device 2 so as to realize the refueling of the core device 2.
  • the flexible docking mechanism 60 can be arranged at one end of the refueling transfer machine 50, which can be driven by the refueling transfer machine 50 to dock the second isolation valve 40 with the first isolation valve 30, and can ensure The local adjustment capability of large-scale rigid equipment during docking is improved to prevent hard contact from causing damage to the equipment and ensure the safety of the design.
  • the transition mechanism 10 is detachably disposed on the open end of the core device 2. In some embodiments, it can be sleeved on the core device 2 The open end can be detachably connected to the open end of the core device 2 through a connecting mechanism.
  • the connecting mechanism may be a screw assembly or a bolt assembly.
  • the transition mechanism 10 may be a gate valve structure, which may include a socket 11, an insertion port 12, and a gate.
  • the socket 11 can be sleeved on the open end of the core device 2 and can be detachably connected to the core device 2 through a connecting mechanism.
  • the socket 11 may be ring-shaped.
  • the plug-in interface 12 can be provided on the socket 11, and can provide an installation interface for the positioning cock 20 for inserting the positioning cock 20 and then detachably connecting with the positioning cock 20.
  • the inner diameter of the plug-in interface 12 can be adapted to the outer diameter of the plug-in end of the positioning cock 20, so as to facilitate the insertion of the positioning cock 20.
  • the gate can be arranged at one end of the socket 11, which can open or close the plug interface 12, and the gate can be electrically or communicatively connected with an external remote control device. It can be opened or closed remotely, thereby improving the remote Level of chemistry and automation. After the top cover of the core device 2 is removed, and before the positioning cock 20 is installed, the gate can be in a closed state, thereby providing a temporary shielding effect.
  • the positioning cock 20 is a three-stage rotary positioning shielding plug.
  • the positioning cock 20 may include a support base 25, a first rotation positioning portion 21, a second rotation positioning portion 22, a third rotation positioning portion 23, and a guide cylinder 24.
  • the support base 25 can be sleeved on the periphery of the first rotation positioning portion 21, and can be used to support and accommodate the first rotation positioning portion 21, the second rotation positioning portion 22, and the third rotation positioning portion 23.
  • the support base 25 can also be provided with a lifting lug 251, which can be used to connect a lifting rope to facilitate the lifting of the positioning cock 20.
  • the first rotation positioning portion 21 can be rotatably disposed in the support base 25, it can be columnar, and a first through hole is provided inside the first rotation positioning portion 21, and the first through hole can be eccentrically disposed with the first rotation positioning portion 21.
  • the first through hole can be used for the second rotation positioning portion 22 to be installed.
  • the first rotation positioning portion 21 can be connected to the first motor 26 to realize automatic rotation. Of course, in some other embodiments, it can be manually driven to rotate.
  • the rotation of the first rotation positioning portion 21 can drive the second rotation positioning portion 22 and the third rotation positioning portion 23 to rotate together, which can be used to position the guide cylinder 24 to the refueling area.
  • the second rotation positioning portion 22 can be embedded in the first rotation positioning portion 21, specifically, it can be penetrated in the first through hole of the first rotation positioning portion 21, and it is connected to the first rotation positioning portion 21.
  • the part 21 is eccentrically arranged and can be rotatably arranged in the first rotation positioning part 21.
  • the second rotation positioning portion 22 can be connected to the second motor 27 to realize automatic rotation. Of course, in some other embodiments, it can also be manually driven to rotate.
  • the rotation of the second rotation positioning portion 22 can drive the third rotation positioning portion 23 to rotate together, and position the center of the guide cylinder directly above the fuel assembly.
  • a second through hole may be provided on the second rotation positioning portion 22, and the second through hole may be eccentrically arranged with the second rotation positioning portion 22, which can be used for the installation of the third rotation positioning portion 23.
  • the third rotation positioning portion 23 can be embedded in the second rotation positioning portion 22, it can pass through the second through hole, and is eccentrically arranged with the second rotation positioning portion 22, and it can be installed in the second rotation positioning portion 22.
  • the second rotation positioning part 22 is arranged to rotate.
  • the third rotation positioning portion 23 can be connected to the guide cylinder 24, and the rotation of the third rotation positioning portion 23 can complete the angle adjustment of the guide cylinder 24, thereby completing the precise positioning of the fuel assembly.
  • the third rotation positioning portion 23 can be connected to a third motor to realize automatic rotation. Of course, in some other embodiments, it can also be manually driven to rotate.
  • the guide tube 24 may be cylindrical with both ends penetrating and hollow. It can be installed on the third rotation positioning portion 23, and can be set through the third rotation positioning portion 23, and can be inserted into the core device 2 when the positioning cock 20 is installed on the transition mechanism 10, The first rotation positioning portion 21, the second rotation positioning portion 22, and the third rotation positioning portion 23 can be respectively driven to rotate to achieve positioning with the fuel assembly 3 in the core device 2.
  • the guide cylinder 24 can be used to guide the taking and placing of the fuel assembly 3.
  • the positioning cock 20 is provided with a channel. Specifically, the channel may be formed in the guide cylinder 24 to allow the fuel assembly 3 to pass through, facilitating the loading and unloading of the fuel assembly 3.
  • the first motor 26, the second motor 27, and the third motor 28 can be connected to an external remote control device.
  • Each fuel assembly 3 in the core device 2 has a set position, and the remote control device can adjust the rotation angles of the first motor 26, the second motor 27, and the third motor 28 according to the set position.
  • the positioning cock 20 can accurately position the fuel assembly 3 in the core device 2 when the core device 2 is not visible.
  • the first rotation positioning portion 21, the second rotation positioning portion 22, and the third rotation positioning portion 23 can be filled with shielding material, and can be designed for sealing, so that the core can be performed during refueling. Shielding and sealing.
  • the refueling transfer equipment may further include a sealing mechanism.
  • the sealing mechanism can be arranged on the positioning cock 20 and can be used for sealingly connecting the transition mechanism 10 and the positioning cock 20.
  • the sealing mechanism may be a sealing ring, which may be sleeved on an end of the support base 25 that is inserted into the transition mechanism 10. Understandably, in some other embodiments, the sealing mechanism may not be limited to a sealing ring.
  • the first isolation valve 30 can be arranged on the top of the positioning cock 20 and arranged corresponding to the passage. Specifically, the first isolation valve 30 can be arranged on the third rotation positioning portion 23, and can be connected to the channel on the third rotation positioning portion 23 through a connecting flange, and can follow the third rotation positioning portion. 23 rotate and rotate.
  • the third isolation valve 30 can be a conventional valve, which can be connected to an external remote control device, and it can be controlled to open or close by the external remote control device.
  • the first isolation valve 30 is opened and can be communicated with the passage on the positioning cock 20.
  • the first isolation valve 30 is closed, and the passage on the positioning cock 20 can be closed.
  • the second isolation valve 40 is connected and fixed to the flexible docking mechanism 60.
  • the third isolation valve 40 is a conventional valve, which can be connected to an external remote control device, which can be controlled by an external remote control device. The device controls on or off.
  • the second isolation valve 40 and the first isolation valve 30 are opened and can be used for replacement of the fuel assembly 3.
  • the second isolation valve 40 and/or the first isolation valve 30 are closed to close the passage.
  • the second isolation valve 40 can move with the movement of the refueling transfer machine 50.
  • the second isolation valve 40 can move up and down in the vertical direction under the drive of the refueling transfer machine 50, and can be docked to the first isolation valve 30 through the Ruixiang docking mechanism 60.
  • the abutting surface of the first isolation valve 30 and the second isolation valve 40 can form a sealing surface under the weight of the second isolation valve 40, so as to ensure that the fuel assembly 3 passes through the first isolation valve 30 and The airtightness of the second isolation valve 40.
  • the refueling transfer machine 50 may include a transfer container 51, a shielding cover 52, a lifting mechanism 53, a walking mechanism 54, a grasping mechanism 55 and a driving mechanism 56.
  • the transfer container 51 can be used to guide the grabbing mechanism 55, and can contain and shield the fuel assembly 3 during the refueling and transfer process.
  • the shielding cover 52 can be arranged at an end of the transfer container 51 away from the second isolation valve 40, which can play a shielding role.
  • the lifting mechanism 53 can be connected to the transfer container 51 and can be used to drive the transfer container 51 to lift.
  • the walking mechanism 54 can be connected to the transfer container 51 and can be used to drive the transfer container 51 to move horizontally.
  • the gripping mechanism 55 can reciprocate in the transfer container 51 and can extend into the core device 2 to grip the fuel assembly 3.
  • the driving mechanism 56 can be connected to the grasping mechanism 55 and can be used to drive the grasping mechanism 55 to move.
  • the transfer container 51 is a lead-filled shielding container, which can shield the spent fuel assembly.
  • the transfer container 51 may be columnar, and it has a hollow structure with both ends passing through.
  • a transfer channel 511 can be formed on the inner side of the transfer container 51, and the transfer channel 511 can be used for the grabbing mechanism 55 to grab the fuel assembly 3.
  • One end of the transfer container 51 can be detachably connected to the flexible docking mechanism 60 by a connecting mechanism, and the other end can also be connected to the shield 52 by a connecting mechanism.
  • the shielding cover 52 can be installed at the outlet on the top of the transfer container 51, and can be set on the periphery of the driving mechanism 56, and the inside of the shielding cover 52 can form a sealed chamber, which can be connected to the purification system of the factory building through a pipeline.
  • the dynamic air pressure in the sealed chamber can be maintained higher than that of the transfer container 51 to ensure that the gas in the transfer container 51 does not leak to the sealed chamber, and at the same time, the gas in the sealed chamber can be purified.
  • the lifting mechanism 53 can be sleeved on the periphery of the transfer container 51 and can be arranged close to the shielding cover 52.
  • the lifting mechanism 53 may include a movable flange 531, a lifting component 532 and a supporting component 533.
  • the movable flange 531 can be sleeved on the periphery of the transfer container 51 and can be used to connect the transfer container 51.
  • the lifting assembly 532 can be arranged on the movable flange 531 and connected to the movable flange 531, and can drive the movable flange 531 to rise and fall by lifting, thereby driving the transfer container 51 to rise and fall.
  • the support assembly 533 can be used to install the movable flange 531 and can be used to support the lifting assembly 532.
  • the lifting assembly 532 may include a driving motor 5321, a clutch 5322, a dual-output commutator 5323, and two sets of lifting units.
  • the driving motor 5321 can output power to drive the two sets of lifting units up and down.
  • the clutch 5322 can be connected to the drive motor 5321.
  • the clutch 5322 can be provided at the output end of the drive motor 5321. It is a safety clutch that can be used to ensure the rotation of the drive motor 5321. The torque or rotation speed is within the setting range to protect the lifting mechanism 53.
  • the bidirectional output commutator 5323 can be connected with the clutch 5322, which can transmit the power of the driving motor 5321 to the two groups of lifting units to drive the two groups of lifting units to lift.
  • the two sets of lifting units can be respectively connected to the two output ports of the dual output commutator 5323.
  • Each group of lifting units may include a first universal joint shaft 5324, a single output commutator 5325, a coupling 5326, a screw jack 5325, a second universal joint shaft 5328, and an encoder 5329.
  • One end of the first universal joint shaft 5324 can be connected to the output port of the dual-output commutator 5323, which can be driven to rotate by the power output by the dual-output commutator 5323.
  • the one-way commutator 5325 can be connected to the other end of the first universal joint shaft 5324, and it can be connected to the power input by the first universal joint shaft 5324 and output in one direction.
  • the coupling can be connected to the output port of the one-way commutator 5325, which can be used to connect the screw jack 5327 and the one-way commutator 5325.
  • the screw jack 5327 can be arranged on the bottom surface of the movable flange 531 and connected with the movable flange 531.
  • the screw of the screw jack 5327 can be driven by the power output from the output port of the one-way commutator 5325 to move up and down, thereby driving the The movable flange 531 performs a lifting motion, thereby driving the transfer container 51 to perform a lifting motion.
  • the encoder 5329 may be connected to the screw jack 5327. In some embodiments, the encoder 5329 can be connected to the screw jack 5327 at the end, which can feed back the output signal and perform comparative protection control.
  • the two groups of lifting units can be arranged in parallel, and the two screw elevators 5327 in each group of lifting units can be arranged in series, and the two groups of lifting units can form a synchronous lifting system.
  • the dual-output commutator 5323 can respectively output power to the two sets of lifting units, thereby controlling the entire lifting mechanism 53 to lift in the vertical direction.
  • the supporting assembly 533 may include two supporting beams 5331 arranged side by side and spaced apart, and a connecting plate arranged side by side and spaced apart between the two supporting beams 5331 to connect the two supporting beams 5331 5332.
  • the two supporting beams 5331 can be installed on the traveling mechanism 54 and connected with the traveling mechanism 54.
  • the movable flange 531 can be installed on the two supporting beams 5331, and the screw of the screw jack 5327 can pass through the connecting plate 5332 to be connected to the movable flange 531.
  • the movable flange 531 may be provided with an anti-turnover hook 534, which may be used to prevent the movable flange 531 from sliding down during installation and operation of the equipment.
  • the anti-turnover hook 534 can be installed on the connecting plate 5332, and it can be hooked on the movable flange 531 when the movable flange 531 moves to the maximum to prevent the movable flange 531 from falling out .
  • the lifting mechanism 53 may further include a guide component, which can guide the movable flange 531 to lift.
  • the guide assembly may include a guide groove 5311 and a guide button 535.
  • the guide groove 5311 may be provided on the side wall of the movable flange 531, there may be multiple, and the guide groove 5311 may be arranged along the circumferential direction of the movable flange 531.
  • the guiding key 535 can be arranged on the supporting assembly 533, and can be arranged corresponding to the guiding groove 5311, and can be inserted into the guiding groove 5311 to guide the whole lifting process, and the transfer container 51 can be placed and shaken. When the movable flange 531 is raised and lowered, it can be raised and lowered along the guide key 535.
  • the walking mechanism 54 can be installed on the supporting assembly 533.
  • the traveling mechanism 54 may be a traveling vehicle, which may be composed of large and small traveling vehicles, which can complete the movement of the refueling transfer machine 50 in the X and Y directions.
  • the grasping mechanism 55 may be arranged along the axial direction of the transfer container 51, and it may include a mechanical arm and a clamp arranged at one end of the mechanical arm.
  • the mechanical arm can be connected with the driving mechanism 56, which can be driven by the driving mechanism 56 to rise and fall, and the clamp can be used to grab and release the fuel assembly 3.
  • the grasping mechanism 55 may not be limited to include a mechanical arm and a clamp.
  • the driving mechanism 56 may be disposed in the shielding cover 52, and it may include a winder 561, a traction rope 562, a bracket 564, and a roller 563.
  • the winder 561 can be arranged on the open end surface of one end of the transfer container 51, and can wind the traction rope 562 so as to drive the grabbing mechanism 55 to go up and down.
  • the traction rope 562 can be wound around the winding machine 561, and one end of the traction rope 562 can be connected to the grabbing mechanism 55. When the winder 561 is wound, the traction rope 562 can be driven to expand and contract, and then the grasping mechanism 55 can be driven up and down.
  • the roller 563 can be installed on the bracket 564, which can be used for the traction rope 562 to pass around, and then the traction rope 562 can be reversed, so that the traction rope 562 can move up and down in the vertical direction.
  • the bracket 564 can be arranged on the open end surface of one end of the transfer container 51 and can be used for the roller 563 to be installed.
  • the driving mechanism 56 is not limited to include a winder 561, a traction rope 562, a bracket 564, and a roller 563, and the driving mechanism 56 may be other telescopic mechanisms, such as a lifting cylinder.
  • the flexible docking mechanism 60 can improve the docking accuracy of the first isolation valve 30 and the second isolation valve 40, which may include an upper cabin 61, a lower The cabin 62, the sealed connection structure 63, the displacement detection assembly 64 and the elastic buffer device 65.
  • the upper cabin 61 can be connected to an external refueling transfer machine 50, which can be driven by the refueling transfer machine 50 to move up and down and horizontally.
  • the lower cabin 62 can be connected with the upper cabin 61, and it can be connected with the first isolation valve 30.
  • the displacement detection assembly 64 can be arranged between the upper cabin 61 and the lower cabin 62, and it can detect the displacement between the upper cabin 61 and the lower cabin 62 when the flexible docking mechanism 60 is in docking work.
  • the elastic buffer device 65 can be arranged between the upper cabin body 61 and the lower cabin body 62, which can play a buffering role, thereby supplementing the positioning deviation of the docking equipment, and can provide a certain down force to ensure the docking surface The tightness of the.
  • the upper cabin 61 may include a first main body portion 611, an insertion post 612, a guide groove 613, and a first flange 614.
  • the first main body 611 can be used to connect with the refueling transfer machine 50.
  • the plug post 612 can be disposed on the first main body portion 611 and can extend downward, and can be used for plugging with the lower cabin 62.
  • the guide groove 613 can be provided on the first main body portion 611 and can be located on the periphery of the plug post 612, and can be used to guide the lower cabin 62 for installation.
  • the first flange 614 can be disposed on the outer side wall of the first main body portion 611 and can be disposed along the circumferential direction of the first main body portion 611.
  • the first flange 614 can be located at an end of the first main body portion 611 close to the second main body portion 621, and can protrude from the outer side wall of the first main body portion 611. It can be used for the displacement detection assembly 64 and the The elastic buffer device 65 is installed.
  • the outer shape of the first main body portion 611 may be cylindrical or truncated.
  • the top end of the first main body portion 611 may be provided with a disc, and the radial size of the disc may be greater than the radial size of the first main body portion 611.
  • a connecting hole 6111 may be provided on the disc, and the connecting hole 6111 may be provided on a side of the first main body portion 611 opposite to the second main body portion 621.
  • the connecting hole 6111 allows the connecting component to pass through and connect the first main body portion 611 with the refueling transfer machine 50.
  • the connecting hole 6111 may be a circular through hole. Understandably, in some other embodiments, the connecting hole 6111 may not be limited to a circular through hole.
  • the plug post 612 has a hollow cylindrical shape, and it has a through structure at both ends, and a channel can be formed on the inside thereof.
  • the plug post 612 may not be limited to a hollow cylindrical shape, and in some other embodiments, the plug post 612 may have a rectangular parallelepiped shape, a cone shape, or a wedge shape.
  • the plug post 612 can be located at the central axis of the first main body portion 611, and it can be integrally formed with the first main body portion 611. Understandably, in this embodiment, it can be integrally formed with the first body portion 611 by casting.
  • the lower part of the plug post 612 can be provided with a socket portion 6121 for the sealing connection structure 63 to be sleeved, and the lower end of the plug post 612 can also be provided with a limit for limiting the sealing connection structure 63.
  • Position external flange 6122 Position external flange 6122.
  • the radial dimension of the limiting outer flange 6122 may be greater than the radial dimension of the sleeve portion 6121, and it can cooperate with the sleeve portion 6121 to form a step.
  • the guide groove 613 may be ring-shaped, specifically, it may be a ring-shaped truncated cone shape, which can be used for inserting and guiding the lower cabin 62. Understandably, in this embodiment, the guide groove 613 can be omitted.
  • the first flange 614 may be polygonal, specifically, it may have a square-like shape.
  • the lateral dimension of the first flange 614 may be greater than the radial dimension of the first main body portion 611.
  • the first flange 614 can be arranged in parallel with the disc on the first main body portion 611.
  • the first flange 614 can be integrally formed with the first body portion 611. In this embodiment, it can be integrally formed with the first body portion 611 by casting.
  • the first main body portion 611 and the first flange 614 can be connected by a reinforcing plate 615.
  • the reinforcing plate 615 can be disposed between the first flange 614 and the disc on the first main body portion 611, and it can be a right-angled triangle, and its two right-angled sides can be connected to the outer side wall of the first main body portion 611, respectively. It is connected to the first flange 614.
  • the reinforcing plate 615 may not be limited to being a right-angled triangle, and it may be a rectangle or other shapes.
  • the lower cabin 62 may include a second main body portion 621, a guiding convex portion 622, a slot 623 and a second flange 624.
  • the second body portion 621 can be connected with the workpiece to be docked.
  • the guiding protrusion 622 can be disposed on the first main body portion 621, and it can protrude from the first main body portion 621.
  • the main body 611 is plugged in.
  • the slot 623 can be disposed on the second body portion 621, and can be disposed corresponding to the plug post 612, and can be inserted into the plug post 612.
  • the second flange 624 can be disposed on the outer side wall of the second main body portion 621 and can be disposed along the circumferential direction of the second main body portion 621, and can be used to cooperate with the first flange 614 for the elastic buffer device 65 And the displacement detection assembly 64 is installed.
  • the cross section of the second main body portion 621 may be circular.
  • the side of the second main body portion 621 opposite to the first main body portion 611 may be provided with a connecting structure, and the connecting structure may be used to connect with the workpiece to be docked.
  • the connecting structure may be a clamping structure, specifically, it may be a clamping boss or a clamping groove that is clamped with the workpiece to be docked.
  • the guiding protrusion 622 can be integrally formed with the second main body portion 621, and in this embodiment, the guiding protrusion 622 can be integrally formed with the second main body portion 621 by casting.
  • the guiding protrusion 622 can be adapted to the shape and size of the guiding groove 613, and it can be matched with the guiding groove 613 to assemble and guide the upper cabin 61 and the lower cabin 62, and The size of the lower cabin 62 is reduced.
  • the guiding convex portion 622 may be hollow and have a circular truncated cone shape provided at both ends.
  • the guiding protrusion 622 may not be limited to a truncated cone shape, and it may also have a wedge shape or other shapes.
  • An end opening of the guiding protrusion 622 away from the second main body portion 621 can be provided with an annular limiting inner flange 6211, and the limiting inner flange 6211 can be used to limit the sealing connection structure 63.
  • the slot 623 can be disposed in the guide protrusion 622, it can be a hollow structure, and its size can be slightly larger than the size of the plug post 612, which can be used for the plug post 612. 612 inserted.
  • the bottom surface of the guide groove 613 and the top end surface of the guide protrusion 622 are provided with a first gap 6131, and the first gap 6131 can be used to compensate for the centering deviation, thereby improving the reliability of the docking. sex.
  • a second gap 6231 is provided between the bottom surface of the slot 623 and the bottom surface of the plug post 612, and the second gap can be used to compensate for the centering deviation, thereby improving the reliability of the connection. Both the first gap 6231 and the second gap 6231 can be adjusted by the elastic buffer device 65.
  • the sealed connection structure 63 can be sleeved on the plug post 612 and located in the slot 623, and it can be used to seal the plug post 612 with the slot 623, thereby It can improve the sealing performance of the docking channel.
  • the sealed connection structure 63 may be a bellows.
  • the corrugated tube can be sleeved on the periphery of the plug post 612, specifically, it can be sleeved on the sleeve portion 6121 of the plug post 612, and abut against the limit outer flange 6122 of the plug post 612 .
  • the displacement detection component 64 may include a plurality of displacement detection units.
  • the multiple displacement detection units can be arranged at intervals along the circumference of the upper cabin 61 and the lower cabin 62, and can be connected to the refueling transfer machine 50.
  • the displacement detection unit may be located between the first flange 614 and the second flange 624, and there may be four of them, which may be located on the first flange 614 and the second flange respectively. Around 624.
  • the displacement detection unit may be a displacement sensor.
  • the elastic buffer device 63 may include a plurality of elastic buffer components.
  • the plurality of elastic buffer components can be four, which can be arranged at intervals along the circumference of the upper cabin 61 and the lower cabin 62, and they can be respectively located on the first flange 614 and the second flange 624. At four corners, the elastic buffer component abuts against the first flange 614 and the second flange 624 respectively to generate elastic pressure.
  • the elastic buffer assembly may include a positioning post 651 with two ends respectively penetrating from the first flange 614 and the second flange 624, an elastic member 652 sleeved on the positioning post 651, and a connecting and fixing station.
  • the connecting assembly 653 of the positioning column 651 is described.
  • the elastic member 652 can be a spring, a rubber sleeve or a silicone sleeve.
  • the connecting components 653 are in two groups, which can be respectively arranged on the first flange 614 and the second flange 624, and the positioning pillar 651 can be connected and fixed with the first flange 614 and the second flange 624 .
  • FIG. 10 shows a second embodiment of the refueling transfer device of the present invention.
  • the difference from the first embodiment is that a pipeline 512 can be provided in the side wall of the transfer container 51.
  • the pipeline 512 can be used to connect the transfer channel 511 and an external cooling and ventilation system.
  • the pipeline 512 is a cooling circuit, which can connect the cold air of the external cooling and ventilation system to the transfer channel 511, and then the transfer channel 511
  • the fuel assembly 3 in 511 is cooled.
  • a plurality of vent holes connected with the pipeline 512 can be provided on the side wall of the transfer container 51.
  • Two ends of the pipeline 512 can pass through the shield 52, one end can form a first air inlet 5121, and the other end can form a first air outlet 5122.
  • the shield 52 can be provided with a second air inlet 521 and a second air outlet 522, and the second air inlet 521 can be connected to an external ventilation system.
  • the pipeline 512 is
  • Figures 11 and 12 show some preferred embodiments of the refueling method of the present invention.
  • the refueling method can use the refueling and transporting equipment of the present invention.
  • the refueling method has the advantages of simple operation, high safety and reliability.
  • the refueling method includes a reclaiming step A and a discharging step B.
  • the refueling method may only include the reclaiming step A or the discharging step B.
  • the reclaiming step A may include the following steps:
  • the transition device 10 is hoisted to the open end of the core device 2, and the transition device 10 is installed At the open end of the core device 2. At this time, the expansion of the transition device 10 is closed, which acts as a temporary shield.
  • a first isolation valve 30 is installed on the third rotary positioning portion 23 of the positioning cock 20 and corresponding to the channel of the guide cylinder, and a sealing ring is sleeved at the plug-in end of the positioning cock 20. At this time, the first isolation valve 30 is in a closed state.
  • the third motor 28 sequentially drives the first rotation positioning portion 21, the second rotation positioning portion 22, and the third rotation positioning portion 23 to rotate, thereby positioning the passage of the positioning cock 20 directly above the position of the target fuel assembly 3.
  • the refueling transfer machine 50 is driven to move horizontally in the direction of the first isolation valve 30, and when it is centered on the first isolation valve 30, the refueling transfer machine 50 is driven to make a descending movement, and at the same time, it drives the The flexible docking mechanism 60 at one end of the refueling transfer machine 50 moves, and then the second isolation valve 40 is docked with the first isolation valve through the flexible docking mechanism 60 until it is in place.
  • the first isolation valve 30 and the second isolation valve 40 are opened to communicate with the passage to form a refueling passage.
  • the driving mechanism 56 of the refueling transfer machine 50 is started to rotate to release the traction rope, and the grasping mechanism 55 is driven to move down the transfer channel 511 of the transfer container 51 and pass through the guide cylinder 24 to the core device 2
  • the fuel assembly 3 is grasped in the middle, and the driving mechanism 56 is used for retracting the traction rope movement to drive the grasping mechanism 55 to move upward along the transfer passage 511 of the transfer container 51, thereby grabbing the fuel assembly 3 into the transfer container 51.
  • the first isolation valve 30 and the second isolation valve 40 are closed.
  • the lifting mechanism 53 of the refueling transfer machine 50 can be driven to perform a lifting motion, thereby driving the refueling transfer machine 50 to perform a rising motion, so that the second isolation valve 40 and the first isolation valve 30 are separated, and then the The refueling transfer machine 50 moves horizontally to move the grabbed fuel assembly 3 to the unloading station for unloading. Specifically, it can run to the cleaning well station for unloading.
  • steps A2 to A4 can be repeated in sequence until all the fuel assemblies 3 that need to be replaced are taken out.
  • the discharging step includes the following steps:
  • the transition device 10 is hoisted to the open end of the core device 2, and the transition device 10 is installed At the open end of the core device 2. At this time, the expansion of the transition device 10 is closed, which acts as a temporary shield.
  • a first isolation valve 30 is installed on the third rotary positioning portion 23 of the positioning cock 20 and corresponding to the channel of the guide cylinder, and a sealing ring is sleeved at the plug-in end of the positioning cock 20. At this time, the first isolation valve 30 is in a closed state.
  • the third motor 28 sequentially drives the first rotation positioning portion 21, the second rotation positioning portion 22, and the third rotation positioning portion 23 to rotate, thereby positioning the passage of the positioning cock 20 directly above the position of the target fuel assembly 3.
  • the traveling vehicle 54 driving the refueling transfer machine 50 runs to the fuel assembly storage station, and the fuel assembly 3 is taken out by driving the grasping mechanism 55 up and down, and the fuel assembly 3 is a new fuel assembly.
  • the flexible docking mechanism 60 at one end of the refueling transfer machine 50 is driven to move, and then the second isolation valve 40 is docked with the first isolation valve 30 through the flexible docking mechanism 60 until it is in place.
  • the first isolation valve 30 and the second isolation valve 40 are opened to communicate with the passage to form a refueling passage.
  • the driving mechanism 56 of the refueling transfer machine 50 is started to rotate to release the traction rope, and the grasping mechanism 55 is driven to move down the transfer channel 511 of the transfer container 51 and pass through the guide cylinder 24 to the core device 2 Put the fuel assembly 3 into the corresponding placement station, and then move the traction rope through the drive mechanism 56 to drive the grasping mechanism 55 to move upward along the transfer channel 511 of the transfer container 51, thereby driving the grasping mechanism 55 It is separated from the fuel assembly 3, and then the first isolation valve 30 and the second isolation valve 40 are closed.
  • the lifting mechanism 53 of the refueling transfer machine 50 can be driven to perform a lifting motion, and then the refueling transfer machine 50 is driven to perform a rising motion, so that the second isolation valve 40 and the first isolation valve 30 are separated.
  • steps B2 to B4 can be repeated in sequence until all the fuel assemblies 3 that need to be replaced are replaced.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)

Abstract

一种换料转运设备及换料方法,换料转运设备包括可拆卸设置于堆芯装置(2)的开口端以在换料期间对堆芯装置(2)进行屏蔽和密封的定位旋塞(20),可拆卸设置于定位旋塞(20)上且可做水平运动和升降运动以进行取放燃料组件(3)的换料转运机(50),以及设置于换料转运机(50)一端的柔性对接机构(60);定位旋塞(20)上设有取放燃料组件(3)的通道;定位旋塞(20)上设有与通道对应设置的第一隔离阀(30);柔性对接机构(60)与换料转运机(50)相背设置的一侧设有第二隔离阀(40),第二隔离阀(40)与第一隔离阀(30)通过柔性对接机构(60)在换料转运机(50)带动下进行对接以在换料期间进行密封和屏蔽。该换料转运设备对接精准度高、可实现远程化和自动化运行,提高了反应堆的经济性、安全性和可靠性。

Description

一种换料转运设备及换料方法 技术领域
本发明涉及换料技术领域,更具体地说,涉及一种换料转运设备及换料方法。
背景技术
相关专利CN106782715A公开了一种液态重金属反应堆换料系统,该换料系统本身不具备放射性产物包容的能力,不利于换料过程中的堆芯屏蔽和密封,并且对对厂房净化系统及堆芯冷却氧控要求高,且其安全性和经济性较差。
相关专利CN106531257A公开了一种反应堆堆内换料系统,该换料系统虽然可在不开盖的情况下完成反应堆燃料组件更换,但是该换料系统需要长时间放置在反应堆内,并作为压力边界参与反应堆运行,其对设备可靠性、材料耐久性等要求高,技术风险较高。
技术问题
相关专利CN106782715A公开了一种液态重金属反应堆换料系统,该换料系统本身不具备放射性产物包容的能力,不利于换料过程中的堆芯屏蔽和密封,并且对对厂房净化系统及堆芯冷却氧控要求高,且其安全性和经济性较差。
相关专利CN106531257A公开了一种反应堆堆内换料系统,该换料系统虽然可在不开盖的情况下完成反应堆燃料组件更换,但是该换料系统需要长时间放置在反应堆内,并作为压力边界参与反应堆运行,其对设备可靠性、材料耐久性等要求高,技术风险较高。
技术解决方案
本发明要解决的技术问题在于,提供一种改进的换料转运设备及换料方法。
本发明解决其技术问题所采用的技术方案是:构造一种换料转运设备,其包括:可拆卸设置于堆芯装置的开口端以在换料期间对所述堆芯装置进行屏蔽和密封的定位旋塞,可拆卸设置于所述定位旋塞上且可做水平运动和升降运动以进行取放燃料组件的换料转运机,以及设置于所述换料转运机一端的柔性对接机构;
所述定位旋塞上设有取放所述燃料组件的通道;
所述定位旋塞上设有与所述通道对应设置的第一隔离阀;
所述柔性对接机构与所述换料转运机相背设置的一侧设有第二隔离阀,所述第二隔离阀与所述第一隔离阀通过所述柔性对接机构在所述换料转运机带动下进行对接以在换料期间进行密封和屏蔽。
优选地,所述柔性对接机构包括上舱体、与所述上舱体连接的下舱体、将所述上舱体和所述下舱体密封连接的密封连接结构、设置于所述上舱体和所述下舱体之间的弹性缓冲装置、设置在所述上舱体和所述下舱体之间以在所述柔性对接机构进行对接工作时检测所述上舱体和所述下舱体之间的位移的位移检测组件;
所述位移检测组件包括沿所述上舱体和所述下舱体周向间隔设置且与换料转运机连接的多个位移检测单元;
当每个所述位移检测单元的检测到的所述上舱体和所述下舱体之间的位移量相当,所述第一隔离阀和所述第二隔离阀对接到位。
优选地,所述位移检测单元为位移传感器。
优选地,所述缓冲装置包括沿所述上舱体和所述下舱体周向间隔设置的多个弹性缓冲组件。
优选地,所述定位旋塞包括可转动设置的第一旋转定位部、设置于所述第一旋转定位部中且与所述第一旋转定位部偏心设置并可转动连接的第二旋转定位部、设置于所述第二旋转定位部中与所述第二旋转定位部偏心设置并可转动连接的第三旋转定位部、以及安装于所述第三旋转定位部上且可穿出以插入堆芯装置中以给燃料组件取放导向的导向筒;
所述通道形成于所述导向筒中。
优选地,还包括可拆卸设置于所述堆芯装置的开口端以连接所述定位旋塞的过渡机构;
所述过渡机构包括套设于所述堆芯装置开口端的套接部、设置于所述套接部上供所述定位旋塞插入的插接口、以及可开启或者关闭所述插接口的闸门。
优选地,还包括设置于所述定位旋塞上以与所述过渡机构密封连接的密封机构。
优选地,所述换料转运机包括两端贯通设置的转运容器、可往复运动设置于所述转运容器中以伸入所述堆芯装置抓取燃料组件的抓取机构、与所述抓取机构连接驱动所述抓取机构运动的驱动机构、与所述转运容器连接以带动所述转运容器升降的升降机构、与所述转运容器连接以带动所述转运容器水平运动的行走机构;
所述柔性对接机构设置于所述转运容器的一端。
优选地,所述转运容器呈中空柱状,内侧设有供所述抓取机构抓取燃料组件的转运通道。
优选地,所述转运容器远离所述第二隔离阀的一端设有屏蔽罩;
所述驱动机构设置于所述屏蔽罩中。
优选地,所述升降机构包括套设于所述转运容器外围的活动法兰、与所述活动法兰连接以带动所述活动法兰升降的升降组件、以及支撑所述升降组件的支撑组件;
所述支撑组件与所述行走机构连接。
优选地,升降组件包括驱动电机、与所述驱动电机连接的离合器、与所述离合器连接的双输出换向器、以及与所述双输出换向器的两个输出端口连接的两组升降单元;每组升降单元包括与双输出换向器的输出端口连接的第一万向传动轴、与所述第一万向传动轴连接的单输出换向器、与所述单输出换向器的输出端口连接的螺旋升降机、以及与所述螺旋升降机连接的编码器。
优选地,每组升降单元的螺旋升降机为多个,多个所述螺旋升降机并排设置,且通过设置第二万向传动轴连接。
优选地,所述转运容器的侧壁中设有连接所述转运通道和外置的冷却通风系统的管路。
优选地,所述驱动机构包括卷绕机、以及绕设在所述卷绕机上且与所述抓取机构连接的牵引绳。
本发明还构造一种换料方法,采用本发明所述的换料转运设备,包括从堆芯装置中取出燃料组件的取料步骤,和/或,将所述燃料组件放入堆芯装置的放料步骤;
所述取料步骤包括:
A1、在定位旋塞上且与定位旋塞的通道对应设置的位置安装第一隔离阀;在堆芯装置的开口端安装带有所述第一隔离阀的定位旋塞,并将定位旋塞的通道与堆芯装置中的燃料组件进行对位;
A2、驱动换料转运机做水平运动和下降运动,同时带动设置于所述换料转运机一端的柔性对接机构运动,进而带动所述第二隔离阀与所述第一隔离阀进行对接,直至对接到位;
A3、打开所述第一隔离阀和第二隔离阀,驱动所述换料转运机的抓取机构做升降运动以将所述堆芯装置中的所述燃料组件抓出,关闭所述第一隔离阀和第二隔离阀;
A4、驱动所述换料转运机做上升运动将所述第二隔离阀和所述第一隔离阀分离,并驱动所述换料转运机做水平运动以将抓出的所述燃料组件运行至卸料工位进行卸料;
所述放料步骤包括:
B1、在定位旋塞上且与定位旋塞的通道对应设置的位置安装第一隔离阀;在堆芯装置的开口端安装带有所述第一隔离阀的定位旋塞,并将定位旋塞的通道与堆芯装置中的所述燃料组件的放置工位进行对位;
B2、驱动所述换料转运机从燃料组件储存工位取出所述燃料组件,再驱动换料转运机做水平运动和下降运动,同时带动设置于所述换料转运机一端的柔性对接机构运动,进而带动所述第二隔离阀与所述第一隔离阀进行对接,直至对接到位;
B3、打开所述第一隔离阀和第二隔离阀,驱动所述换料转运机的抓取机构做升降运动以将所述堆芯装置中的所述燃料组件放入至对应的放置工位,关闭所述第一隔离阀和第二隔离阀;
B4、驱动换料转运机做上升运动以将所述第二隔离阀和所述第一隔离阀分离。
有益效果
实施本发明的换料转运设备及换料方法,具有以下有益效果:该换料转运设备通过在堆芯装置的开口端设置定位旋塞从而可在换料期间对堆芯装置进行屏蔽和密封,并可有利于解决堆芯位置不可视而导致的定位困难的问题且可便于在无人员干预的情况下降换料转运机定位至堆芯位置。该换料转运设备通过第一隔离阀和第二隔离阀的对接,可在换料全过程保证密封和屏蔽,进而可提升该换料操作的安全性。该换料转运设备通过该换料转运机带动该柔性对接机构对该第一隔离阀和第二隔离阀进行对接,保证了大型刚性设备精确对接时的局部调整能力,防止出现硬接触导致设备损坏,保证了设计的安全性。另外,该换料转运设备通过设置可做水平运动和升降运动的换料转运机,除了完成燃料组件的更换外,该可对燃料组件进行转运,进而可提升反应堆的经济性和换料效率。
附图说明
图1是本发明第一实施例中换料转运设备进行换料的状态示意图;
图2是图1所示换料转运设备的过渡机构的剖视图;
图3是图1所示换料转运设备的的定位旋塞的结构示意图图;
图4是图3所示定位旋塞的剖视图;
图5是图1所示换料转运设备的局部结构示意图;
图6是图5所示换料转运设备的升降机构的结构示意图;
图7是图6所示换料转运设备的升降组件的结构示意图;
图8是图1所示换料转运设备的柔性对接机构的结构示意图;
图9是图8所示换料转运设备的柔性对接机构的剖视图;
图10是本发明第二实施例中换料转运设备的局部结构示意图;
图11是本发明换料方法的取料步骤的流程示意图;
图12是本发明换料方法的放料步骤的流程示意图。
本发明的最佳实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
图1示出了本发明换料转运设备的第一实施例。该换料转运设备1可用于对堆芯装置2的燃料组件进行更换。该堆芯装置2可以为反应堆,具体地,其可以为金属快堆,当然,可以理解地,在其他一些实施例中,该堆芯装置2可不限于金属快堆,其可以为压水堆。当然,可以理解地,在其他一些实施例中,该换料转运设备1可不限于应用于堆芯装置2,其也可以应用于其他领域。该换料转运设备1可实现远程化、自动化更换燃料组件和干式转运,从而可提高了反应堆的经济性、安全性、可靠性。
如图1所示,进一步地,在本实施例中,该换料转运设备1可包括过渡机构10、定位旋塞20、第一隔离阀30、第二隔离阀40、换料转运机50以及柔性对接结构60。该过渡机构10可安装在该堆芯装置2的开口端,其可便于该定位旋塞20的安装。该定位旋塞20可通过该过渡机构10可拆卸安装于该堆芯装置2的开口端,其可在换料期间对堆芯装置2进行屏蔽和密封,并可有利于解决堆芯位置不可视而导致的定位困难的问题且可便于在无人员干预的情况下降换料转运机定位至堆芯位置。在本实施例中,该堆芯装置2可以为压力容器。该第一隔离阀30可设置在该堆芯装置2上,其可在换料期间进行密封和屏蔽。该第二隔离阀40可设置于柔性对接机构60与该换料转运机50相背设置的一侧,其可通过该柔性对接结构60在换料转运机50带动下与该第一隔离阀30进行对接,进而可在换料期间进行密封和屏蔽,提升换料操作的安全性。该换料转运机50可拆卸地设置于定位旋塞20上,且其可做水平运动和升降运动以对堆芯装置2进行取放燃料组件,从而实现对堆芯装置2进行换料。该柔性对接机构60可设置于该换料转运机50的一端,其可在该换料转运机50的带动下,将该第二隔离阀40与该第一隔离阀30进行对接,并可保证了大型刚性设备对接时的局部调整能力,防止出现硬接触导致设备损坏,保证了设计的安全性。
如图2所示,进一步地,在本实施例中,该过渡机构10可拆卸地设置于该堆芯装置2的开口端,在一些实施例中,其可套设于该堆芯装置2的开口端,并可通过连接机构与该堆芯装置2的开口端可拆卸连接。在一些实施例中,该连接机构可以为螺钉组件或者螺栓组件。在本实施例中,该过渡机构10可以为闸阀结构,其可包括套接部11、插接口12以及闸门。该套接部11可套设于该堆芯装置2的开口端,并可通过连接机构与该堆芯装置2可拆卸连接。该套接部11可呈环状。该插接口12可设置于该套接部11上,其可为定位旋塞20提供安装接口,以用于供定位旋塞20插入,进而与该定位旋塞20可拆卸连接。该插接口12的内径可与该定位旋塞20的插接端的外径相适配,进而可便于定位旋塞20插入。该闸门可设置于套接部11的一端,其可开启或者关闭该插接口12,该闸门可与外置的远程控制装置电连接或者通信连接,其可实现远程开启或者关闭,进而可提高远程化和自动化水平。该堆芯装置2的顶盖取走后,并在该定位旋塞20安装前,该闸门可处于关闭状态,进而可起到临时屏蔽作用。
如图3及图4所示,进一步地,在本实施例中,该定位旋塞20为三级旋转定位屏蔽塞。该定位旋塞20可包括支撑座25、第一旋转定位部21、第二旋转定位部22、第三旋转定位部23、以及导向筒24。
该支撑座25可套设置于该第一旋转定位部21的外围,其可用于支撑收容该第一旋转定位部21、第二旋转定位部22、以及第三旋转定位部23。该支撑座25上还可设置吊耳251,该吊耳251可用于连接吊绳,以便于该定位旋塞20吊装。
该第一旋转定位部21可转动设置于该支撑座25中,其可呈柱状,且其内侧设有第一通孔,该第一通孔可与该第一旋转定位部21偏心设置。该第一通孔可用于供该第二旋转定位部22安装。该第一旋转定位部21可通过连接第一电机26实现自动旋转。当然,在其他一些实施例中,其可通过手动带动旋转。该第一旋转定位部21转动可带动该第二旋转定位部22以及该第三旋转定位部23一并转动,其可用于将导向筒24定位至换料区域。
该第二旋转定位部22可嵌设于该第一旋转定位部21中,具体地,其可穿设于该第一旋转定位部21的第一通孔中,且其与该第一旋转定位部21偏心设置,并可在该第一旋转定位部21中转动设置。该第二旋转定位部22可通过连接第二电机27实现自动旋转。当然,在其他一些实施例中,其也可通过手动带动旋转。该第二旋转定位部22旋转,可带动该第三旋转定位部23一并旋转,并将该导向筒的中心定位至燃料组件的正上方。该第二旋转定位部22上可设置第二通孔,该第二通孔可与该第二旋转定位部22偏心设置,其可用于供该第三旋转定位部23安装。
该第三旋转定位部23可嵌设于该第二旋转定位部22中,其可穿设于该第二通孔中,并与该第二旋转定位部22偏心设置,且其可在该第二旋转定位部22中转动设置。该第三旋转定位部23可与导向筒24连接,该第三旋转定位部23旋转,可完成该导向筒24的角度调整,从而可完成对燃料组件的精确定位。在一些实施例中,该第三旋转定位部23可通过连接第三电机实现自动旋转。当然,在其他一些实施例中,其也可通过手动带动旋转。
进一步地,在本实施例中,该导向筒24可以为两端贯通且中空的圆柱状。其可安装于第三旋转定位部23上,并可从该第三旋转定位部23穿出设置,且可在该定位旋塞20安装于该过渡机构10上时,插入该堆芯装置2中,且可由该第一旋转定位部21、第二旋转定位部22以及第三旋转定位部23分别带动旋转实现与该堆芯装置2中的燃料组件3进行定位。该导向筒24可用于给该燃料组件3取放进行导向。在本实施例中,该定位旋塞20上设有通道,具体地,该通道可形成于该导向筒24中,其可供燃料组件3通过,便于燃料组件3取放的进行。
在本实施例中,该第一电机26、第二电机27以及第三电机28可与外置的远程控制装置连接。在堆芯装置2中每个燃料组件3具有设定位置,该远程控制装置可根据该设定位置分别调节该第一电机26和该第二电机27以及第三电机28的转动角度,进而可实现定位旋塞20在堆芯装置2不可视的状态下对堆芯装置2中的燃料组件3进行精准定位。
在本实施例中,该第一旋转定位部21、第二旋转定位部22以及该第三旋转定位部23中可填充屏蔽材料,并可进行密封设计,从而可在换料期间对堆芯进行屏蔽和密封。
在本实施例中,该换料转运设备还可包括密封机构。该密封机构可设置于该定位旋塞20上,其可用于将该过渡机构10与该定位旋塞20密封连接。在一些实施例中,该密封机构可以为密封环,其可套设于该支撑座25的插入该过渡机构10的一端。可以理解地,在其他一些实施例中,该密封机构可不限于密封环。
再如图1及图3 所示,该第一隔离阀30可设置于该定位旋塞20的顶部,且与通道对应设置。具体地,该第一隔离阀30可设置于该第三旋转定位部23上,并可通过连接法兰与该第三旋转定位部23上的通道密封连接,且可随该第三旋转定位部23转动而转动。该第三隔离阀30可以为常规阀门,其可与外置的远程控制装置连接,其可由外置的远程控制装置控制开启或者关闭。该第一隔离阀30开启,可与该定位旋塞20上的通道导通。该第一隔离阀30关闭,可关闭该定位旋塞20上的通道。
在本实施例中,该第二隔离阀40连接固定于该柔性对接机构60上,该第三隔离阀40为常规阀门,其可与外置的远程控制装置连接,其可由外置的远程控制装置控制开启或者关闭。该第二隔离阀40和该第一隔离阀30开启,可供燃料组件3更换进行。该第二隔离阀40和/或该第一隔离阀30关闭,可关闭该通道。该第二隔离阀40可随该换料转运机50运动而运动。该第二隔离阀40可在该换料转运机50的带动下在竖直方向上做升降运动,并可通过该瑞祥对接机构60对接到第一隔离阀30上。该第一隔离阀30和该第二隔离阀40的对接面可在该第二隔离阀40的自重下形成密封面,从而可确保换料过程中燃料组件3穿过该第一隔离阀30和该第二隔离阀40的密闭性。
如图5至图7所示,在本实施例中,该换料转运机50可包括转运容器51、屏蔽罩52、升降机构53、行走机构54、抓取机构55以及驱动机构56。该转运容器51可用于给该抓取机构55进行导向,并可在换料和转运过程中,对燃料组件3起到收容和屏蔽作用。该屏蔽罩52可设置于该转运容器51远离该第二隔离阀40的一端,其可起到屏蔽的作用。该升降机构53可与该转运容器51连接,其可用于带动该转运容器51升降。该行走机构54可与该转运容器51连接,其可用于带动该转运容器51水平移动。抓取机构55可在该转运容器51中往复运动,其可伸入该堆芯装置2中抓取燃料组件3。该驱动机构56可与该抓取机构55连接,其可用于驱动该抓取机构55运动。
在本实施例中,该转运容器51为灌铅屏蔽容器,可屏蔽乏燃料组件。该转运容器51可呈柱状,且其为两端贯通且中空的结构。该转运容器51的内侧可形成转运通道511,该转运通道511可用于供抓取机构55抓取燃料组件3。该转运容器51的一端可通过设置连接机构与该柔性对接机构60可拆卸连接,另一端也可通过设置连接机构与该屏蔽罩52连接。
在本实施例中,该屏蔽罩52可安装于该转运容器51顶部的出口,且可罩设于该驱动机构56的外围,其内侧可形成密封室,其可通过连接管线与厂房的净化系统连接,从而可维持密封室内的动态气压高于转运容器51,保证转运容器51气体不向密封室泄漏,同时可对密封室内气体进行净化。
在本实施例中,该升降机构53可套设于该转运容器51的外围,且可靠近该屏蔽罩52设置。在本实施例中,该升降机构53可包括活动法兰531、升降组件532以及支撑组件533。该活动法兰531可套设于该转运容器51外围,且可用于连接该转运容器51。该升降组件532可设置于该活动法兰531上,且与该活动法兰531连接,其可通过升降带动该活动法兰531升降,进而带动该转运容器51升降。该支撑组件533可用于供该活动法兰531安装,并可用于支撑该升降组件532。
进一步地,在一些实施例中,该升降组件532可包括驱动电机5321、离合器5322、双输出换向器5323、以及两组升降单元。该驱动电机5321可输出动力带动该两组升降单元升降。该离合器5322可与该驱动电机5321连接,具体地,在一些实施例中,该离合器5322可设置于该驱动电机5321的输出端,其为安全离合器,其可用于确保该驱动电机5321传递的转矩或转速在设定范围中,以对升降机构53起到保护作用。该双向输出换向器5323可与该离合器5322连接,其可将该驱动电机5321的动力,并传向两组升降单元,以带动该两组升降单元升降。该两组升降单元可分别与该双输出换向器5323的两个输出端口连接。
每组升降单元可包括第一万向传动轴5324、单输出换向器5325、联轴器5326、螺旋升降机5325、第二万向传动轴5328以及编码器5329。该第一万向传动轴5324的一端可与该双输出换向器5323的输出端口连接,其可由该双输出换向器5323输出的动力带动转动。该单向换向器5325可与该第一万向传动轴5324的另一端连接,其可接入该第一万向传动轴5324输入的动力并单向输出。该联轴器可与该单向换向器5325的输出端口连接,其可用于连接该螺旋升降机5327和该单向换向器5325。该螺旋升降机5327可设置于该活动法兰531的底面,且与该活动法兰531连接,螺旋升降机5327的螺杆可由该单向换向器5325输出端口输出的动力带动做升降运动,进而带动该活动法兰531做升降运动,从而带动该转运容器51做升降运动。在一些实施例中,该螺旋升降机5327可以为多个,该多个螺旋升降机5327可并排设置。在本实施例中,该螺旋升降机5327可以为两个,该两个螺旋升降机5327之间可通过该第二万向传动轴5328连接。在一些实施例中,该编码器5329可与该螺旋升降机5327连接。在一些实施例中,该编码器5329可与末端的螺旋升降机5327连接,其可反馈输出端信号,并作比较保护控制。
在本实施例中,两组升降单元可并联设置,每组升降单元中的两台螺旋升降机5327可串联设置,该两组升降单元可组成同步升降系统。该驱动电机5321转动时可通过该双输出换向器5323分别向两组升降单元输出动力,进而可控制整个升降机构53在竖直方向上升降。
进一步地,在本实施例中,该支撑组件533可包括并排且间隔设置的两个支撑梁5331、以及并排且间隔设置于该两个支撑梁5331之间以连接两个支撑梁5331的连接板5332。该两个支撑梁5331可安装于该行走机构54上,并与该行走机构54连接。该活动法兰531可安装于该两个支撑梁5331上,螺旋升降机5327的螺杆可穿出该连接板5332与该活动法兰531连接。
进一步地,在本实施例中,该活动法兰531上可设置防翻钩534,该翻钩534可用于防止设备安装和运行过程中,活动法兰531滑落。在本实施例中,该防翻钩534可安装与该连接板5332上,且其可在活动法兰531运动至最大限度时勾设于该活动法兰531上,避免该活动法兰531脱出。
进一步地,在本实施例中,该升降机构53还可包括导向组件,该导向组件可给该活动法兰531升降导向。在一些实施例中,该导向组件可包括导向槽5311以及导向健535。该导向槽5311可设置于该活动法兰531的侧壁上,其可以为多个,其可沿该活动法兰531周向设置。该导向健535可设置于该支撑组件533上,其可与该导向槽5311对应设置,其可卡入该导向槽5311中,以对整个升降过程进行导向,并放置转运容器51等出现晃动。该活动法兰531升降时,可沿该导向健535升降。
进一步地,在一些实施例中,该行走机构54可安装于该支撑组件533上。在一些实施例中,该行走机构54可以为行车,其可由大小行车组成,其可完成该换料转运机50在X和Y方向运动。
进一步地,在本实施例中,该抓取机构55可沿该转运容器51的轴向设置,其可包括机械臂以及设置在该机械臂一端的夹具。该机械臂可与该驱动机构56连接,其可由该驱动机构56带动升降,该夹具可在用于抓取和释放燃料组件3。当然,可以理解地,在其他一些实施例中,该抓取机构55可不限于包括机械臂和夹具。
进一步地,在本实施例中,该驱动机构56可设置于该屏蔽罩52中,其可包括卷绕机561、牵引绳562、支架564以及滚轮563。该卷绕机561可设置于该转运容器51一端的开口端面上,其可对牵引绳562进行卷绕,从而可实现带动该抓取机构55升降。该牵引绳562可绕设于该卷绕机561上,且其一端可与该抓取机构55连接。当该卷绕机561卷绕时,可带动该牵引绳562伸缩,进而带动该抓取机构55升降。该滚轮563可安装于该支架564上,其可供该牵引绳562绕过,进而可对该牵引绳562进行换向,从而可使得牵引绳562在竖直方向上做升降运动。该支架564可设置于转运容器51一端的开口端面上,其可用于供该滚轮563安装。可以理解地,在其他一些实施例中,该驱动机构56不限于包括卷绕机561、牵引绳562、支架564以及滚轮563,该驱动机构56可以为其他伸缩机构,比如升降气缸。
如图8及图9所示,进一步地,在本实施例中,该柔性对接机构60可提高第一隔离阀30和第二隔离阀40的对接精准度,其可包括上舱体61、下舱体62、密封连接结构63、位移检测组件64以及弹性缓冲装置65。该上舱体61可与外置的换料转运机50连接其可由换料转运机50带动做升降运动以及水平运动。该下舱体62可与该上舱体61连接,其可与第一隔离阀30连接。该位移检测组件64可设置于该上舱体61和该下舱体62之间,其可在柔性对接机构60进行对接工作时,检测该上舱体61和该下舱体62之间的位移。该弹性缓冲装置65可设置于该上舱体61和该下舱体62之间,其可起到缓冲的作用,进而可补充对接设备的定位偏差,并能提供一定的下压力,保证对接面的紧密程度。
进一步地,在本实施例中,该上舱体61可包括第一主体部611、插接柱612、导向槽613以及第一凸缘614。该第一主体部611可用于与换料转运机50连接。该插接柱612可设置于该第一主体部611上且可向下延伸设置,其可用于与该下舱体62插接。该导向槽613可设置于该第一主体部611上,且可位于该插接柱612的外围,其可用于供该下舱体62安装导向。该第一凸缘614可设置于该第一主体部611外侧壁且可沿该第一主体部611的周向设置。该第一凸缘614可位于该第一主体部611靠近该第二主体部621的一端,且其可凸出该第一主体部611外侧壁设置,其可用于供该位移检测组件64和该弹性缓冲装置65安装。
在本实施例中,该第一主体部611的外形可呈圆柱状或者圆台状。该第一主体部611的顶端可设置圆盘,该圆盘上的径向尺寸可大于该第一主体部611的径向尺寸。该圆盘上可设置连接孔6111,该连接孔6111可设置于该第一主体部611相背于该第二主体部621的一侧。该连接孔6111可供连接组件穿设进而将第一主体部611与换料转运机50连接。在本实施例中,该连接孔6111可以为圆形通孔。可以理解地,在其他一些实施例中,该连接孔6111可不限于圆形通孔。
在本实施例中,该插接柱612为中空的圆柱状,且其为两端贯通结构,其内侧可形成通道。当然,可以理解地,在其他一些实施例中,该插接柱612可不限于为中空圆柱状,在其他一些实施例中,该插接柱612可为长方体状或者圆锥状或者楔形状。该插接柱612可位于该第一主体部611的中轴处,其可与该第一主体部611一体成型。可以理解地,在本实施例中,其可与该第一主体部611通过铸造一体成型。在本实施例中,该插接柱612的下部可设置供该密封连接结构63套设的套接部6121,该插接柱612的下端还可设置对该密封连接结构63进行限位的限位外凸缘6122。该限位外凸缘6122的径向尺寸可大于该套接部6121的径向尺寸,其可与该套接部6121配合形成台阶。
在本实施例中,该导向槽613可为环状,具体地,其可以为环形的圆台状,其可供该下舱体62插入导向。可以理解地,在本实施例中,该导向槽613可以省去。
在本实施例中,该第一凸缘614可为多边形,具体地,其可呈类方形状。该第一凸缘614的横向尺寸可大于该第一主体部611的径向尺寸。该第一凸缘614可与该第一主体部611上的圆盘平行设置。该第一凸缘614可与该第一主体部611一体成型。在本实施例中,其可与该第一主体部611通过铸造一体成型。
在本实施例中,该第一主体部611与该第一凸缘614之间可通过设置加强板615连接。该加强板615可设置于该第一凸缘614和该第一主体部611上的圆盘之间,其可呈直角三角形,其两个直角边可分别与该第一主体部611的外侧壁和该第一凸缘614连接。可以理解地,在其他一些实施例中,该加强板615可不限于呈直角三角形,其可以为长方形或者其他形状。该加强板615可以为多个,该多个加强板615可沿该第一主体部611的周向间隔设置。
进一步地,在本实施例中,该下舱体62可包括第二主体部621、导向凸部622、插槽623以及第二凸缘624。该第二主体部621可与待对接的工件连接。该导向凸部622可设置于该第一主体部621上,且其可凸出该第一主体部621设置,其可插入该第一主体部611上的导向槽613中,进而与该第一主体部611插接。该插槽623可设置于该第二主体部621上,且其可与该插接柱612对应设置,其可供该插接柱612插入。该第二凸缘624可设置于该第二主体部621的外侧壁且可沿该第二主体部621的周向设置,其可用于与该第一凸缘614配合,供该弹性缓冲装置65和该位移检测组件64安装。
进一步地,在本实施例中,该第二主体部621的横截面可呈圆形。该第二主体部621相背于该第一主体部611的一侧可设置连接结构,该连接结构可用于与待对接工件连接。在本实施例中,该连接结构可以为卡接结构,具体地,其可以为与待对接的工件卡接的卡接凸台或者卡接槽。
进一步地,在本实施例中,该导向凸部622可与该第二主体部621一体成型,在本实施例中,该导向凸部622可与该第二主体部621通过铸造一体成型。在本实施例中,该导向凸部622可与该导向槽613的形状和尺寸相适配,其可与该导向槽613配合,给该上舱体61和下舱体62装配导向,并可减小下舱体62的尺寸。在本实施例中,该导向凸部622可呈中空且两端贯通设置的圆台状。可以理解地,在其他一些实施例中,该导向凸部622可不限于呈圆台状,其也可呈楔形或者其他形状。该导向凸部622远离该第二主体部621的一端开口可设置呈环状的限位内凸缘6211,该限位内凸缘6211可用于给该密封连接结构63进行限位。进一步地,在本实施例中,该插槽623可设置于该导向凸部622中,其可为中空结构,其可尺寸可略大于该插接柱612的尺寸,其可供该插接柱612插入。
进一步地,在本实施例中,该导向槽613的底面与该导向凸部622的顶部端面刘设有第一间隙6131,该第一间隙6131可用于补偿对中偏差,进而可提高对接的可靠性。在本实施例中,该插槽623的底面与该插接柱612的底面留设第二间隙6231,该第二间隙可用于补偿对中偏差,进而可提高对接的可靠性。该第一间隙6231和该第二间隙6231均可通过弹性缓冲装置65进行调节。
进一步地,在本实施例中,该密封连接结构63可套设于该插接柱612上且位于该插槽623中,其可用于将该插接柱612与该插槽623密封连接,从而可提高对接通道的密封性。在本实施例中,该密封连接结构63可以为波纹管。该波纹管可套设于该插接柱612外围,具体地,其可套设于该插接柱612的套接部6121上,且与该插接柱612的限位外凸缘6122抵接。
进一步地,在本实施例中,该位移检测组件64可包括多个位移检测单元。该多个位移检测单元可沿该上舱体61和该下舱体62周向间隔设置,且可与换料转运机50连接。在本实施例中,该位移检测单元可位于该第一凸缘614和该第二凸缘624之间,且其可以为四个,其可分别位于该第一凸缘614和第二凸缘624的四周。在本实施例中,当四个位移检测单元检测到的上舱体61和该下舱体62之间的位移量相当,即,四个位移检测单元检测到的上舱体61和下舱体62之间的位移量均在预设位移范围内,则可判断该相互对接的第一隔离阀30和第二隔离阀40对接无偏差或者偏差可忽略。若其中一个或者多个位移检测单元检测到的位移量超出预设位移或者达不到预设位移,则可判断相互对接的两个隔离阀偏差过大,需要重新定位对接。当该位移检测装置出现超差,换料转运机50的控制装置可发出提示预警,以便于人工介入进行调节。在本实施例中,该位移检测单元可以为位移传感器。
进一步地,在本实施例中,该弹性缓冲装置63可包括多个弹性缓冲组件。该多个弹性缓冲组件可以为四个,其可沿该上舱体61和该下舱体62的周向间隔设置,且其可分别位于该第一凸缘614和该第二凸缘624的四个角落,该弹性缓冲组件分别与该第一凸缘614和该第二凸缘624抵接,以产生弹性压力。在本实施例中,该弹性缓冲组件可包括两端分别从第一凸缘614和第二凸缘624穿出的定位柱651、套设于该定位柱651上的弹性件652以及连接固定所述定位柱651的连接组件653。该弹性件652可以为弹簧或者橡胶套或者硅胶套。该连接组件653为两组,其可分别设置于该第一凸缘614和该第二凸缘624上,可将该定位柱651与该第一凸缘614和该第二凸缘624连接固定。
图10示出了本发明换料转运设备的第二实施例,其与该第一实施例的区别在于,该转运容器51的侧壁中可设置管路512。该管路512可用于连接转运通道511和外置的冷却通风系统,该管路512为冷却回路,其可将外置的冷却通风系统的冷风接入至转运通道511中,进而对该转运通道511中的燃料组件3进行冷却。该转运容器51的侧壁上可设置多个与该管路512连通的出气孔。该管路512的两端可从该屏蔽罩52穿出设置,其一端可形成第一进气口5121,另一端可形成第一出气口5122。在本实施例中,该屏蔽罩52上可设置第二进气口521以及第二出气口522,该第二进气口521可与外置的通风系统连接,该屏蔽罩52中的气流通道与该管路512为独立的两个通道。
图11和图12示出了本发明的换料方法的一些优选实施例。该换料方法可采用本发明的换料转运设备。该换料方法具有操作简单、安全性和可靠性高的优点。
在一些实施例中,该换料方法包括取料步骤A和放料步骤B。当然,可以理解地,在其他一些实施例中,该换料方法可仅包括取料步骤A或者放料步骤B。
在一些实施例中,该取料步骤A可包括以下步骤:
A1、在定位旋塞20上且与定位旋塞20的通道对应设置的位置安装第一隔离阀30;在堆芯装置2的开口端安装带有第一隔离阀20的定位旋塞20,并将定位旋塞20的通道与堆芯装置2中的燃料组件3进行对位。
具体地,将堆芯装置2的反应容器的顶盖打开,取走控制棒驱动机构等上部堆内构件后,吊装过渡装置10至该堆芯装置2的开口端,并将该过渡装置10安装于该堆芯装置2的开口端。此时,过渡装置10的展关闭,起到临时屏蔽作用。在定位旋塞20的第三旋转定位部23上且与该导向筒的通道对应设置的位置安装第一隔离阀30,并在该定位旋塞20的插接端套入密封环。此时该第一隔离阀30处于关闭状态。吊装该安装有第一隔离阀30的定位旋塞20至过渡装置10上,打开过渡装置10的闸门,将定位旋塞20插入该过渡装置10的插接口,依次启动第一电机26、第二电机27、第三电机28依次带动该第一旋转定位部21、第二旋转定位部22以及第三旋转定位部23转动,进而将该定位旋塞20的通道定位至目标燃料组件3的位置的正上方。
A2、驱动换料转运机50做水平运动和下降运动,同时带动设置于换料转运机50一端的柔性对接机构60运动,进而带动第二隔离阀40与第一隔离阀30进行对接,直至对接到位。
具体地,驱动该换料转运机50向第一隔离阀30方向做水平运动,当其与该位于该第一隔离阀30对中时,驱动该换料转运机50做下降运动,同时带动该换料转运机50一端的柔性对接机构60运动,进而通过柔性对接机构60将第二隔离阀40与该第一隔离阀对接直至到位。
A3、打开第一隔离阀30和第二隔离阀40,驱动换料转运机50的抓取机构55做升降运动以将堆芯装置2中的燃料组件3抓出,关闭第一隔离阀30和第二隔离阀40。
具体地,通过远程控制,打开第一隔离阀30和第二隔离阀40,从而与该通道连通,形成换料通道。启动该换料转运机50的驱动机构56转动,进行放牵引绳,带动该抓取机构55沿该转运容器51的转运通道511向下运动并从该导向筒24穿出至该堆芯装置2中抓取燃料组件3,再通过驱动机构56进行收牵引绳运动,带动该抓取机构55沿该转运容器51的转运通道511向上运动,从而将该燃料组件3抓出至转运容器51中。然后关闭第一隔离阀30和第二隔离阀40。
A4、驱动换料转运机50做上升运动将第二隔离阀40和第一隔离阀30分离,并驱动换料转运机50做水平运动以将抓出的燃料组件3运行至卸料工位进行卸料。
具体地,可驱动该换料转运机50的升降机构53做升降运动,进而带动该换料转运机50做上升运动,使得该第二隔离阀40和该第一隔离阀30分离,再驱动该换料转运机50做水平运动,将抓出的燃料组件3运行至卸料工位进行卸料,具体地,其可运行至清洗井工位进行卸料。
当需要更换的燃料组件3为多根时,可依次重复步骤A2至A4,直至需要更换的燃料组件3全部被取出。
在一些实施例中,该放料步骤包括以下步骤:
B1、在定位旋塞20上且与定位旋塞20的通道对应设置的位置安装第一隔离阀30;在堆芯装置2的开口端安装带有第一隔离阀20的定位旋塞20,并将定位旋塞20的通道与堆芯装置2中的燃料组件3的放置工位进行对位。
具体地,将堆芯装置2的反应容器的顶盖打开,取走控制棒驱动机构等上部堆内构件后,吊装过渡装置10至该堆芯装置2的开口端,并将该过渡装置10安装于该堆芯装置2的开口端。此时,过渡装置10的展关闭,起到临时屏蔽作用。在定位旋塞20的第三旋转定位部23上且与该导向筒的通道对应设置的位置安装第一隔离阀30,并在该定位旋塞20的插接端套入密封环。此时该第一隔离阀30处于关闭状态。吊装该安装有第一隔离阀30的定位旋塞20至过渡装置10上,打开过渡装置10的闸门,将定位旋塞20插入该过渡装置10的插接口,依次启动第一电机26、第二电机27、第三电机28依次带动该第一旋转定位部21、第二旋转定位部22以及第三旋转定位部23转动,进而将该定位旋塞20的通道定位至目标燃料组件3的位置的正上方。
B2、驱动换料转运机50从燃料组件储存工位取出燃料组件3,再驱动换料转运机50做水平运动和下降运动,同时带动设置于换料转运机50一端的柔性对接机构60运动,进而带动第二隔离阀40与第一隔离阀30进行对接,直至对接到位。
具体地,驱动该换料转运机50的行车54运行至燃料组件储存工位,并通过驱动该抓取机构55升降进而取出燃料组件3,该燃料组件3是新燃料组件。驱动已抓取有新燃料组件的换料转运机50向第一隔离阀30方向做水平运动,当其与该位于该第一隔离阀30对中时,驱动该换料转运机50做下降运动,同时带动该换料转运机50一端的柔性对接机构60运动,进而通过柔性对接机构60将第二隔离阀40与该第一隔离阀30对接直至到位。
B3、打开第一隔离阀30和第二隔离阀40,驱动换料转运机50的抓取机构55做升降运动以将堆芯装置2中的燃料组件3放入至对应的放置工位,关闭第一隔离阀30和第二隔离阀40;
具体地,通过远程控制,打开第一隔离阀30和第二隔离阀40,从而与该通道连通,形成换料通道。启动该换料转运机50的驱动机构56转动,进行放牵引绳,带动该抓取机构55沿该转运容器51的转运通道511向下运动并从该导向筒24穿出至该堆芯装置2中将燃料组件3放入对应的放置工位上,再通过驱动机构56进行收牵引绳运动,带动该抓取机构55沿该转运容器51的转运通道511向上运动,从而带动该抓取机构55与该燃料组件3脱离,然后关闭第一隔离阀30和第二隔离阀40。
B4、驱动换料转运机50做上升运动以将第二隔离阀40和第一隔离阀30分离。
具体地,可驱动该换料转运机50的升降机构53做升降运动,进而带动该换料转运机50做上升运动,使得该第二隔离阀40和该第一隔离阀30分离。
当需要更换的燃料组件3为多根时,可依次重复步骤B2至B4直至需要更换燃料组件3全部更换完成。
可以理解的,以上实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,可以对上述技术特点进行自由组合,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修饰,均应属于本发明权利要求的涵盖范围。

Claims (16)

  1. 一种换料转运设备,其特征在于,包括:可拆卸设置于堆芯装置(2)的开口端以在换料期间对所述堆芯装置(2)进行屏蔽和密封的定位旋塞(20),可拆卸设置于所述定位旋塞(20)上且可做水平运动和升降运动以进行取放燃料组件(3)的换料转运机(50),以及设置于所述换料转运机(50)一端的柔性对接机构(60);
    所述定位旋塞(20)上设有取放所述燃料组件(3)的通道;
    所述定位旋塞(20)上设有与所述通道对应设置的第一隔离阀(30);
    所述柔性对接机构(60)与所述换料转运机(50)相背设置的一侧设有第二隔离阀(40),所述第二隔离阀(40)与所述第一隔离阀(30)通过所述柔性对接机构(60)在所述换料转运机(50)带动下进行对接以在换料期间进行密封和屏蔽。
  2. 根据权利要求1所述的换料转运设备,其特征在于,所述柔性对接机构(60)包括上舱体(61)、与所述上舱体(61)连接的下舱体(62)、将所述上舱体(61)和所述下舱体(62)密封连接的密封连接结构(63)、设置于所述上舱体(61)和所述下舱体(62)之间的弹性缓冲装置(65)、设置在所述上舱体(61)和所述下舱体(62)之间以在所述柔性对接机构(60)进行对接工作时检测所述上舱体(61)和所述下舱体(62)之间的位移的位移检测组件(64);
    所述位移检测组件(64)包括沿所述上舱体(61)和所述下舱体(62)周向间隔设置且与换料转运机(50)连接的多个位移检测单元;
    当每个所述位移检测单元的检测到的所述上舱体(61)和所述下舱体(62)之间的位移量相当,所述第一隔离阀(30)和所述第二隔离阀(40)对接到位。
  3. 根据权利要求2所述的换料转运设备,其特征在于,所述位移检测单元为位移传感器。
  4. 根据权利要求2所述的换料转运设备,其特征在于,所述缓冲装置包括沿所述上舱体(61)和所述下舱体(62)周向间隔设置的多个弹性缓冲组件。
  5. 根据权利要求1所述的换料转运设备,其特征在于,所述定位旋塞(20)包括可转动设置的第一旋转定位部(21)、设置于所述第一旋转定位部(21)中且与所述第一旋转定位部(21)偏心设置并可转动连接的第二旋转定位部(22)、设置于所述第二旋转定位部(22)中与所述第二旋转定位部(22)偏心设置并可转动连接的第三旋转定位部(23)、以及安装于所述第三旋转定位部(23)上且可穿出以插入堆芯装置(2)中以给燃料组件(3)取放导向的导向筒(24);
    所述通道形成于所述导向筒(24)中。
  6. 根据权利要求5所述的换料转运设备,其特征在于,还包括可拆卸设置于所述堆芯装置(2)的开口端以连接所述定位旋塞(20)的过渡机构(10);
    所述过渡机构(10)包括套设于所述堆芯装置(2)开口端的套接部(11)、设置于所述套接部(11)上供所述定位旋塞(20)插入的插接口(12)、以及可开启或者关闭所述插接口(12)的闸门。
  7. 根据权利要求6所述的换料转运设备,其特征在于,还包括设置于所述定位旋塞(20)上以与所述过渡机构(10)密封连接的密封机构。
  8. 根据权利要求1所述的换料转运设备,其特征在于,所述换料转运机(50)包括两端贯通设置的转运容器(51)、可往复运动设置于所述转运容器(51)中以伸入所述堆芯装置(2)抓取燃料组件(3)的抓取机构(55)、与所述抓取机构(55)连接驱动所述抓取机构(55)运动的驱动机构(56)、与所述转运容器(51)连接以带动所述转运容器(51)升降的升降机构(53)、与所述转运容器(51)连接以带动所述转运容器(51)水平运动的行走机构(54);
    所述柔性对接机构(60)设置于所述转运容器(51)的一端。
  9. 根据权利要求8所述的换料转运设备,其特征在于,所述转运容器(51)呈中空柱状,内侧设有供所述抓取机构(55)抓取燃料组件(3)的转运通道(511)。
  10. 根据权利要求8所述的换料转运设备,其特征在于,所述转运容器(51)远离所述第二隔离阀(40)的一端设有屏蔽罩(52);
    所述驱动机构(56)设置于所述屏蔽罩(52)中。
  11. 根据权利要求8所述的换料转运设备,其特征在于,所述升降机构(53)包括套设于所述转运容器(51)外围的活动法兰(531)、与所述活动法兰(531)连接以带动所述活动法兰(531)升降的升降组件(532)、以及支撑所述升降组件(532)的支撑组件(533);
    所述支撑组件(533)与所述行走机构(54)连接。
  12. 根据权利要求11所述的换料转运设备,其特征在于,升降组件(532)包括驱动电机(5321)、与所述驱动电机(5321)连接的离合器(5322)、与所述离合器(5322)连接的双输出换向器(5323)、以及与所述双输出换向器(5323)的两个输出端口连接的两组升降单元;每组升降单元包括与双输出换向器(5323)的输出端口连接的第一万向传动轴(5324)、与所述第一万向传动轴(5324)连接的单输出换向器(5325)、与所述单输出换向器(5325)的输出端口连接的螺旋升降机(5327)、以及与所述螺旋升降机(5327)连接的编码器(5329)。
  13. 根据权利要求12所述的换料转运设备,其特征在于,每组升降单元的螺旋升降机(5327)为多个,多个所述螺旋升降机(5327)并排设置,且通过设置第二万向传动轴(5328)连接。
  14. 根据权利要求8所述的换料转运设备,其特征在于,所述转运容器(51)的侧壁中设有连接所述转运通道(511)和外置的冷却通风系统的管路(512)。
  15. 根据权利要求8所述的换料转运设备,其特征在于,所述驱动机构(56)包括卷绕机(561)、以及绕设在所述卷绕机(561)上且与所述抓取机构(55)连接的牵引绳(562)。
  16. 一种换料方法,采用权利要求1至15任一项所述的换料转运设备,其特征在于,包括从堆芯装置(2)中取出燃料组件的取料步骤(A),和/或,将所述燃料组件放入堆芯装置(2)的放料步骤(B);
    所述取料步骤包括:
    A1、在定位旋塞(20)上且与定位旋塞(20)的通道对应设置的位置安装第一隔离阀(30);在堆芯装置(2)的开口端安装带有所述第一隔离阀(20)的定位旋塞(20),并将定位旋塞(20)的通道与堆芯装置(2)中的燃料组件(3)进行对位;
    A2、驱动换料转运机(50)做水平运动和下降运动,同时带动设置于所述换料转运机(50)一端的柔性对接机构(60)运动,进而带动所述第二隔离阀(40)与所述第一隔离阀(30)进行对接,直至对接到位;
    A3、打开所述第一隔离阀(30)和第二隔离阀(40),驱动所述换料转运机(50)的抓取机构(55)做升降运动以将所述堆芯装置(2)中的所述燃料组件(3)抓出,关闭所述第一隔离阀(30)和第二隔离阀(40);
    A4、驱动所述换料转运机(50)做上升运动将所述第二隔离阀(40)和所述第一隔离阀(30)分离,并驱动所述换料转运机(50)做水平运动以将抓出的所述燃料组件(3)运行至卸料工位进行卸料;
    所述放料步骤包括:
    B1、在定位旋塞(20)上且与定位旋塞(20)的通道对应设置的位置安装第一隔离阀(30);在堆芯装置(2)的开口端安装带有所述第一隔离阀(20)的定位旋塞(20),并将定位旋塞(20)的通道与堆芯装置(2)中的所述燃料组件(3)的放置工位进行对位;
    B2、驱动所述换料转运机(50)从燃料组件储存工位取出所述燃料组件(3),再驱动换料转运机(50)做水平运动和下降运动,同时带动设置于所述换料转运机(50)一端的柔性对接机构(60)运动,进而带动所述第二隔离阀(40)与所述第一隔离阀(30)进行对接,直至对接到位;
    B3、打开所述第一隔离阀(30)和第二隔离阀(40),驱动所述换料转运机(50)的抓取机构(55)做升降运动以将所述堆芯装置(2)中的所述燃料组件(3)放入至对应的放置工位,关闭所述第一隔离阀(30)和第二隔离阀(40);
    B4、驱动换料转运机(50)做上升运动以将所述第二隔离阀(40)和所述第一隔离阀(30)分离。
     
PCT/CN2020/095470 2020-06-10 2020-06-10 一种换料转运设备及换料方法 WO2021248387A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095470 WO2021248387A1 (zh) 2020-06-10 2020-06-10 一种换料转运设备及换料方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095470 WO2021248387A1 (zh) 2020-06-10 2020-06-10 一种换料转运设备及换料方法

Publications (1)

Publication Number Publication Date
WO2021248387A1 true WO2021248387A1 (zh) 2021-12-16

Family

ID=78846731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095470 WO2021248387A1 (zh) 2020-06-10 2020-06-10 一种换料转运设备及换料方法

Country Status (1)

Country Link
WO (1) WO2021248387A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115064291A (zh) * 2022-03-18 2022-09-16 中国原子能科学研究院 用于反应堆闭式换料系统的定位对中装置及方法
WO2024061068A1 (zh) * 2022-09-19 2024-03-28 上海核工程研究设计院股份有限公司 一种反应堆装换料系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1354866A (fr) * 1962-12-20 1964-03-13 Electricite De France Perfectionnements aux machines de manutention pour réacteurs nucleaires
US4649016A (en) * 1985-10-09 1987-03-10 Westinghouse Electric Corp. Remotely operable fuel transfer system for nuclear reactor
CN106531257A (zh) * 2016-12-29 2017-03-22 中国科学院合肥物质科学研究院 一种反应堆堆内换料系统
CN106782715A (zh) * 2016-12-29 2017-05-31 中国科学院合肥物质科学研究院 一种液态重金属反应堆换料系统
CN107910079A (zh) * 2017-10-31 2018-04-13 田嘉夫 深水池核供热反应堆池内结构及燃料装卸法
CN108630331A (zh) * 2018-06-11 2018-10-09 中广核研究院有限公司 用于反应堆燃料组件装卸的换料机及换料装置
CN108648840A (zh) * 2018-06-11 2018-10-12 中广核研究院有限公司 用于反应堆燃料组件装卸的装置
CN111128420A (zh) * 2019-11-28 2020-05-08 中广核研究院有限公司 用于海上浮动核电站的燃料冷却系统及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1354866A (fr) * 1962-12-20 1964-03-13 Electricite De France Perfectionnements aux machines de manutention pour réacteurs nucleaires
US4649016A (en) * 1985-10-09 1987-03-10 Westinghouse Electric Corp. Remotely operable fuel transfer system for nuclear reactor
CN106531257A (zh) * 2016-12-29 2017-03-22 中国科学院合肥物质科学研究院 一种反应堆堆内换料系统
CN106782715A (zh) * 2016-12-29 2017-05-31 中国科学院合肥物质科学研究院 一种液态重金属反应堆换料系统
CN107910079A (zh) * 2017-10-31 2018-04-13 田嘉夫 深水池核供热反应堆池内结构及燃料装卸法
CN108630331A (zh) * 2018-06-11 2018-10-09 中广核研究院有限公司 用于反应堆燃料组件装卸的换料机及换料装置
CN108648840A (zh) * 2018-06-11 2018-10-12 中广核研究院有限公司 用于反应堆燃料组件装卸的装置
CN111128420A (zh) * 2019-11-28 2020-05-08 中广核研究院有限公司 用于海上浮动核电站的燃料冷却系统及方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115064291A (zh) * 2022-03-18 2022-09-16 中国原子能科学研究院 用于反应堆闭式换料系统的定位对中装置及方法
CN115064291B (zh) * 2022-03-18 2024-02-20 中国原子能科学研究院 用于反应堆闭式换料系统的定位对中装置及方法
WO2024061068A1 (zh) * 2022-09-19 2024-03-28 上海核工程研究设计院股份有限公司 一种反应堆装换料系统及方法

Similar Documents

Publication Publication Date Title
WO2021248387A1 (zh) 一种换料转运设备及换料方法
CN205527564U (zh) 一种装饰瓷砖码垛搬运小车
JPS6122274B2 (zh)
CN107053230A (zh) 吸盘式抓手结构
CN115415787A (zh) 一种防爆型自动装配专机系统
WO2021258431A1 (zh) 一种高速电机定子搬运内撑式机械手
CN116812737A (zh) 一种房建施工砖块搬运设备
CN116477547A (zh) 一种取封盖系统
CN215043819U (zh) 运载火箭推进剂自动加注机器人
CN110648774B (zh) 一种车载移动式换料系统及换料方法
CN212495409U (zh) 一种人工转移物料的电极感应真空雾化设备
CN111128823B (zh) 一种半导体圆片的转移方法
CN208400512U (zh) 用于反应堆燃料组件装卸的升降机
CN220963381U (zh) 一种Micro LED基板衬底减薄设备
JP4064588B2 (ja) 制御棒駆動機構取扱用治具
CN114654394B (zh) 一种晶圆检测移动载台机构
CN113744906B (zh) 中间热交换器的拆装装置
CN220850797U (zh) 用于负压设备的阀门
CN115479506B (zh) 一种海上火箭残余燃料回收系统
CN214192189U (zh) 一种用于包装箱堆叠的吊装装置
CN220057109U (zh) 坩埚承载结构及单晶炉热场
CN111824954B (zh) 一种乏燃料水池水下推动装置
CN112547319B (zh) 一种输血科血液处理装置
CN214275366U (zh) 丝堵式空冷器管束用查漏专用工装
CN220033137U (zh) 自动开盖式离心管输送机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20940101

Country of ref document: EP

Kind code of ref document: A1