WO2022270565A1 - 粘着剤組成物、及び、粘着テープ - Google Patents

粘着剤組成物、及び、粘着テープ Download PDF

Info

Publication number
WO2022270565A1
WO2022270565A1 PCT/JP2022/025002 JP2022025002W WO2022270565A1 WO 2022270565 A1 WO2022270565 A1 WO 2022270565A1 JP 2022025002 W JP2022025002 W JP 2022025002W WO 2022270565 A1 WO2022270565 A1 WO 2022270565A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
sensitive adhesive
weight
adhesive composition
acrylic copolymer
Prior art date
Application number
PCT/JP2022/025002
Other languages
English (en)
French (fr)
Inventor
絢 足立
雄大 緒方
達哉 小木曽
徳之 内田
寛幸 片岡
寛生 山本
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN202280015421.4A priority Critical patent/CN116867868A/zh
Priority to KR1020237022656A priority patent/KR20240023013A/ko
Priority to JP2022542770A priority patent/JPWO2022270565A1/ja
Publication of WO2022270565A1 publication Critical patent/WO2022270565A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/062Copolymers with monomers not covered by C09J133/06
    • C09J133/066Copolymers with monomers not covered by C09J133/06 containing -OH groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1807C7-(meth)acrylate, e.g. heptyl (meth)acrylate or benzyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/24Homopolymers or copolymers of amides or imides
    • C09J133/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • C09J7/381Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/385Acrylic polymers

Definitions

  • the present invention relates to an adhesive composition and an adhesive tape.
  • Adhesive tapes having an adhesive layer containing an adhesive have been widely used for fixing electronic parts, vehicles, houses and building materials (for example, Patent Documents 1 to 3). Specifically, for example, an adhesive tape is used to adhere a cover panel for protecting the surface of a portable electronic device to a touch panel module or a display panel module, or to adhere a touch panel module and a display panel module. ing.
  • metals are generally used for parts such as sensors and copper wiring in electronic device parts, vehicle parts, and the like.
  • the pressure-sensitive adhesive composition is used around such metals, the metals corrode, causing problems with the lapse of time.
  • the present disclosure 1 is a pressure-sensitive adhesive composition containing an acrylic copolymer, wherein the acrylic copolymer contains 50% by weight or more of structural units derived from n-heptyl (meth)acrylate, and the pressure-sensitive adhesive
  • the composition is a pressure-sensitive adhesive composition having an acid value of 22 mgKOH/g or less and a shear storage modulus at 23° C. of 6 ⁇ 10 4 Pa or more and 5 ⁇ 10 5 Pa or less.
  • the present disclosure 2 is the adhesive composition of the present disclosure 1, wherein the acrylic copolymer has an acid value of 22 mgKOH/g or less.
  • the present disclosure 3 is the present disclosure 1, wherein the acrylic copolymer further contains a structural unit derived from a monomer having a polar functional group, and the monomer having the polar functional group contains a monomer having an amide group. or the adhesive composition of 2.
  • Present Disclosure 4 is the pressure-sensitive adhesive composition according to Present Disclosure 3, wherein the acrylic copolymer contains 2% by weight or more and 30% by weight or less of structural units derived from the monomer having an amide group.
  • Present Disclosure 5 is the pressure-sensitive adhesive composition according to Present Disclosure 3 or 4, wherein the monomer having a polar functional group further contains a monomer having a hydroxyl group.
  • Present Disclosure 6 is the pressure-sensitive adhesive composition according to Present Disclosure 5, wherein the acrylic copolymer contains 0.01% by weight or more and 5% by weight or less of structural units derived from the hydroxyl group-containing monomer.
  • Present Disclosure 7 is the adhesive composition of Present Disclosure 1, 2, 3, 4, 5, or 6, further comprising a tackifying resin, wherein the tackifying resin has an acid value of 10 mgKOH/g or less.
  • the present disclosure 8 is the pressure-sensitive adhesive composition of the present disclosure 7, wherein the tackifying resin has a hydroxyl value of 50 mgKOH/g or less.
  • Present Disclosure 9 is the pressure-sensitive adhesive composition of Present Disclosure 1, 2, 3, 4, 5, 6, 7 or 8, wherein the content of biological carbon is 30% by weight or more.
  • Disclosure 10 is a pressure-sensitive adhesive tape having a pressure-sensitive adhesive layer containing the pressure-sensitive adhesive composition of Disclosure 1, 2, 3, 4, 5, 6, 7, 8, or 9.
  • Present Disclosure 11 is the adhesive tape according to Present Disclosure 10, wherein the adhesive layer has a gel fraction of 20% by weight or more and 50% by weight or less.
  • Present Disclosure 12 is the adhesive tape according to Present Disclosure 10, wherein the adhesive layer has a gel fraction of 60% by weight or more and 95% by weight or less.
  • (meth)acrylate means acrylate or methacrylate
  • (meth)acryl means acrylic or methacrylic.
  • the acrylic copolymer may be a methacrylic copolymer.
  • the present inventors have investigated the use of an acrylic monomer containing biological carbon as an acrylic monomer that constitutes an acrylic copolymer in a pressure-sensitive adhesive composition containing an acrylic copolymer. Among them, the inventors have found that by using a certain amount or more of n-heptyl (meth)acrylate (acrylic group having 7 carbon atoms), excellent adhesion can be expected. However, the present inventors further found that n-heptyl (meth) acrylate has a glass transition temperature obtained from the temperature at which tan ⁇ of the homopolymer is maximized, which is lower than expected, and the cohesive force of the pressure-sensitive adhesive composition is We found that it was lower than expected.
  • n-heptyl (meth)acrylate in order to increase the cohesive strength of the pressure-sensitive adhesive composition and exhibit excellent adhesive strength, for example, it is conceivable to copolymerize a relatively large amount of acrylic acid. .
  • a pressure-sensitive adhesive composition containing an acrylic copolymer copolymerized with a relatively large amount of acrylic acid is used in the vicinity of metal, there is a problem that the metal corrodes and problems occur over time.
  • the present inventors have found that by adjusting the acid value of the pressure-sensitive adhesive composition to a certain value or less and adjusting the shear storage elastic modulus at 23 ° C. to a specific range, corrosion of metals can be reduced.
  • the inventors have found that a pressure-sensitive adhesive composition capable of exhibiting excellent pressure-sensitive adhesive strength can be obtained, and have completed the present invention.
  • the pressure-sensitive adhesive composition of the present invention contains an acrylic copolymer.
  • the above acrylic copolymer contains structural units derived from n-heptyl(meth)acrylate. Thereby, the pressure-sensitive adhesive composition of the present invention can exhibit excellent adhesive strength.
  • the above acrylic copolymer preferably contains structural units derived from n-heptyl(meth)acrylate containing biological carbon. Since the acrylic copolymer contains structural units derived from n-heptyl (meth) acrylate containing biological carbon, the content of biological carbon in the pressure-sensitive adhesive composition as a whole can be increased. can. By using a bio-derived material instead of a petroleum-derived material, it is possible to save petroleum resources, which is a countermeasure against the depletion of petroleum resources and the emission of carbon dioxide due to the combustion of petroleum-derived products.
  • the n-heptyl (meth)acrylate containing biological carbon is not particularly limited as long as it contains biological carbon. It is preferably synthesized by esterification.
  • n-heptyl alcohol which is a biological material
  • (meth)acrylic acid ester It is also preferable to synthesize by transesterification reaction between n-heptyl alcohol, which is a biological material, and (meth)acrylic acid ester.
  • the n-heptyl alcohol which is a biologically derived material, can be obtained inexpensively and easily by cracking a material collected from animals and plants (for example, ricinoleic acid derived from castor oil) as a raw material. can.
  • the lower limit of the content of structural units derived from n-heptyl (meth)acrylate in the acrylic copolymer is 50% by weight.
  • the adhesive strength of the adhesive composition is increased.
  • the content of the structural unit derived from the n-heptyl (meth)acrylate containing the biogenic carbon is 50% by weight or more, the biogenic carbon content of the pressure-sensitive adhesive composition as a whole is increased. be able to.
  • the content of the structural unit derived from n-heptyl (meth)acrylate is not particularly limited, but preferably exceeds 50% by weight, a more preferred lower limit is 60% by weight, and a further preferred lower limit is 70% by weight.
  • the upper limit of the content of the structural unit derived from n-heptyl (meth) acrylate is not particularly limited, but from the viewpoint of adjusting the shear storage modulus of the pressure-sensitive adhesive composition at 23° C. to the range described later, the preferred upper limit is 99. % by weight, and a more preferred upper limit is 97% by weight.
  • the content of structural units derived from n-heptyl (meth) acrylate in the acrylic copolymer is determined by mass spectrometry and 1 H-NMR measurement of the acrylic copolymer, and is derived from n-heptyl (meth) acrylate. can be calculated from the integrated intensity ratio of the hydrogen peaks.
  • the acrylic copolymer preferably further contains a structural unit derived from a monomer having a polar functional group.
  • the acrylic copolymer contains a structural unit derived from a monomer having a polar functional group, the cohesive force of the pressure-sensitive adhesive composition increases, and the shear storage modulus at 23°C easily satisfies the range described later, higher adhesion.
  • the polar functional group-containing monomer is not particularly limited, and examples thereof include a hydroxyl group-containing monomer, a carboxyl group-containing monomer, an ether group-containing monomer, a glycidyl group-containing monomer, an amide group-containing monomer, and a nitrile group-containing monomer. is mentioned. These polar functional group-containing monomers may be used alone, or two or more of them may be used in combination. Among them, a monomer having a hydroxyl group, a monomer having a carboxyl group, and a monomer having an amide group are preferable because the shear storage modulus of the pressure-sensitive adhesive composition at 23° C. more easily satisfies the range described below.
  • the acid value In addition to the shear storage modulus of the pressure-sensitive adhesive composition at 23° C., the acid value also easily satisfies the range described later, and the corrosion of metal can be further reduced while the adhesive strength can be increased. And a monomer having an amide group is more preferred. From the viewpoint of sufficiently suppressing the acid value of the pressure-sensitive adhesive composition and further reducing metal corrosion, it is more preferable not to use a monomer having a carboxyl group.
  • Examples of the monomer having a hydroxyl group include acrylic monomers having a hydroxyl group such as 4-hydroxybutyl (meth)acrylate and 2-hydroxyethyl (meth)acrylate.
  • Examples of the monomer having a carboxyl group include acrylic monomers having a carboxyl group such as (meth)acrylic acid.
  • Examples of the monomer having a glycidyl group include acrylic monomers having a glycidyl group such as glycidyl (meth)acrylate.
  • Examples of monomers having an amide group include (meth)acrylamide, dimethyl(meth)acrylamide, diethyl(meth)acrylamide, isopropyl(meth)acrylamide, t-butyl(meth)acrylamide, methoxymethyl(meth)acrylamide, butoxymethyl
  • Examples of the nitrile group-containing monomer include acrylic monomers having a nitrile group such as (meth)acrylonitrile.
  • the content of the structural unit derived from the monomer having the polar functional group in the acrylic copolymer is not particularly limited, and can be determined according to the type of the monomer having the polar functional group.
  • the content of the structural unit derived from the monomer having a hydroxyl group in the acrylic copolymer is not particularly limited, but the preferred lower limit is 0.01 weight. %, the preferred upper limit is 5% by weight.
  • the shear storage modulus at 23° C. of the pressure-sensitive adhesive composition more easily satisfies the below-described range, and the pressure-sensitive adhesive strength is further increased.
  • a more preferable lower limit of the structural unit is 0.05% by weight, and a more preferable upper limit is 1% by weight.
  • the content of structural units derived from the monomer having an amide group in the acrylic copolymer is not particularly limited, but the preferred lower limit is 2 weights. %, the preferred upper limit is 30% by weight.
  • the shear storage modulus at 23° C. of the pressure-sensitive adhesive composition more easily satisfies the below-described range, and the pressure-sensitive adhesive strength is further increased.
  • a more preferable lower limit of the structural unit is 5% by weight, a more preferable upper limit is 25% by weight, a still more preferable lower limit is 10% by weight, and a further preferable upper limit is 20% by weight.
  • the content of structural units derived from the monomer having a polar functional group in the acrylic copolymer is determined by mass spectrometry and 1 H-NMR measurement of the acrylic copolymer, and integration of hydrogen peaks derived from each monomer. It can be calculated from the intensity ratio.
  • the above acrylic copolymer may have a structural unit derived from a monomer having a glass transition temperature (Tg) of ⁇ 35° C. or higher.
  • Tg glass transition temperature
  • the monomer having a glass transition temperature (Tg) of ⁇ 35° C. or higher is a monomer whose glass transition temperature (Tg) of the homopolymer is ⁇ 35° C. or higher when converted into a homopolymer.
  • the transition temperature (Tg) can be determined, for example, by differential scanning calorimetry.
  • the glass transition temperature (Tg) of the monomer having a glass transition temperature (Tg) of -35°C or higher is more preferably -15°C or higher.
  • the upper limit of the glass transition temperature (Tg) is not particularly limited, a preferable upper limit is 180°C, and a more preferable upper limit is 150°C.
  • the monomer having a glass transition temperature (Tg) of ⁇ 35° C. or higher is not particularly limited, but a monomer having no crosslinkable functional group is preferable.
  • Specific examples include methyl (meth)acrylate, ethyl (meth)acrylate, Isopropyl (meth)acrylate, tert-butyl (meth)acrylate, n-butyl methacrylate, isobutyl (meth)acrylate, isobornyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, trimethylolpropane formal (meth)acrylate, cyclohexyl ( meth)acrylate, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, acrylamide, dimethylacrylamide, diethylacrylamide and the like.
  • isobornyl (meth)acrylate and tetrahydrofurfuryl (meth)acrylate are preferred.
  • the content of the structural unit derived from the monomer having a glass transition temperature (Tg) of ⁇ 35° C. or higher in the acrylic copolymer is not particularly limited, but is preferably 5% by weight or more and 70% by weight or less. If the content of the structural unit derived from the monomer having a glass transition temperature (Tg) of ⁇ 35° C. or higher is 70% by weight or less, the obtained pressure-sensitive adhesive layer will have higher conformability to irregularities.
  • the upper limit of the content of structural units derived from a monomer having a glass transition temperature (Tg) of ⁇ 35° C. or higher is more preferably 65% by weight, more preferably 60% by weight, still more preferably 55% by weight, and particularly preferably The upper limit is 50% by weight.
  • a more preferable lower limit of the content of structural units derived from a monomer having a glass transition temperature (Tg) of ⁇ 35° C. or higher is 10% by weight.
  • the content of structural units derived from monomers having a glass transition temperature (Tg) of ⁇ 35° C. or higher in the acrylic copolymer is also determined by mass spectrometry and 1 H-NMR measurement of the acrylic copolymer. It can be calculated from the integrated intensity ratio of the derived hydrogen peak.
  • the above acrylic copolymer preferably has a structural unit derived from a monomer having a ring structure. Since the acrylic copolymer has a structural unit derived from a monomer having a ring structure, the pressure-sensitive adhesive tape can be suitably used as an optical pressure-sensitive adhesive tape.
  • the ring structure is not particularly limited, and examples thereof include an alicyclic structure, an aromatic ring structure, a heterocyclic structure and the like.
  • Examples of the above-mentioned monomers having a ring structure include isobornyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, trimethylolpropane formal (meth)acrylate, cyclohexyl (meth)acrylate, and benzyl (meth)acrylate. , phenoxyethyl (meth)acrylate and the like.
  • isobornyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, and trimethylolpropane formal (meth)acrylate are preferred.
  • biological monomers are particularly preferable, and biological isobornyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, and trimethylolpropane formal (meth)acrylate are more preferable.
  • the acrylic copolymer is derived from a structural unit derived from the n-heptyl (meth)acrylate, a structural unit derived from the monomer having a polar functional group, and a monomer having a glass transition temperature (Tg) of ⁇ 35° C. or higher. It may have structural units derived from other monomers other than structural units and structural units derived from monomers having a ring structure.
  • the other monomer is not particularly limited, and examples thereof include (meth)acrylic acid alkyl esters.
  • Examples of the (meth)acrylic acid alkyl esters include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, tert-butyl (meth)acrylate, 2-ethylhexyl ( meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, n-nonyl (meth)acrylate, isononyl (meth)acrylate, myristyl (meth)acrylate, cetyl (meth)acrylate, stearyl (meth)acrylate, Ester of 5,7,7-trimethyl-2-(1,3,3-trimethylbutyl)octanol-1 and (meth)acrylic acid, total carbon having 1 or 2 methyl groups in the linear main chain Esters of alcohol of number 18 and (meth)acrylic acid, behenyl (meth
  • the other monomers for example, cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, benzyl (meth)acrylate, 2-butoxyethyl (meth)acrylate, 2-phenoxyethyl (meth)acrylate, tetrahydrofurfuryl ( Meth)acrylates, polypropylene glycol mono(meth)acrylates, and the like may also be mentioned, and isobornyl (meth)acrylates are preferred from the viewpoint of excellent rebound resistance.
  • vinyl carboxylates such as vinyl acetate
  • various monomers used in general acrylic polymers such as styrene can also be used. These other monomers may be used alone or in combination of two or more.
  • the content of structural units derived from the other monomers in the acrylic copolymer is determined by mass spectrometry and 1 H-NMR measurement of the acrylic copolymer, and from the integrated intensity ratio of hydrogen peaks derived from each monomer. can be calculated.
  • the above-mentioned monomer having a polar functional group and the above-mentioned other monomer preferably contain biogenic carbon, but may be made of only a petroleum-derived material without biogenic carbon.
  • the acrylic monomers constituting the acrylic copolymer can all be biogenic carbon-containing monomers. From the viewpoint of the cost and productivity of the pressure-sensitive adhesive composition, a relatively inexpensive and readily available biogenic carbon-containing monomer may be used in combination with a monomer consisting solely of a petroleum-derived material.
  • the acid value of the acrylic copolymer is not particularly limited, but the preferred upper limit is 22 mgKOH/g. When the acid value of the acrylic copolymer is 22 mgKOH/g or less, the acid value of the pressure-sensitive adhesive composition easily satisfies the below-described range, and metal corrosion can be further reduced.
  • a more preferable upper limit of the acid value of the acrylic copolymer is 10 mgKOH/g.
  • the lower limit of the acid value of the acrylic copolymer is not particularly limited, and may be 0 mgKOH/g.
  • the acid value of the acrylic copolymer can be obtained, for example, by the same method as for the acid value of the pressure-sensitive adhesive composition.
  • the acid value of the acrylic copolymer of the present invention is the number of mg of potassium hydroxide required to neutralize the acid contained in 1 g of the sample. It can be determined by potentiometric titration.
  • the glass transition temperature (Tg) of the acrylic copolymer is not particularly limited, it is preferably ⁇ 20° C. or lower. If the acrylic copolymer has a glass transition temperature (Tg) of ⁇ 20° C. or lower, the followability of the pressure-sensitive adhesive composition to the adherend is improved, and the adhesive strength is further increased.
  • the glass transition temperature (Tg) of the acrylic copolymer is more preferably ⁇ 30° C. or lower, still more preferably ⁇ 40° C. or lower, and even more preferably ⁇ 50° C. or lower.
  • the lower limit of the glass transition temperature (Tg) of the acrylic copolymer is not particularly limited, and is usually ⁇ 90° C. or higher, preferably ⁇ 80° C. or higher.
  • the glass transition temperature (Tg) of the acrylic copolymer can be determined, for example, by differential scanning calorimetry.
  • the weight average molecular weight (Mw) of the acrylic copolymer is not particularly limited, the preferred lower limit is 200,000 and the preferred upper limit is 2,000,000. When the weight-average molecular weight of the acrylic copolymer is within the above range, the pressure-sensitive adhesive composition has a higher adhesive strength.
  • a more preferable lower limit of the weight average molecular weight of the acrylic copolymer is 400,000, a more preferable upper limit is 1,800,000, a still more preferable lower limit is 500,000, and a further preferable upper limit is 1,500,000.
  • the weight average molecular weight (Mw) is the weight average molecular weight in terms of standard polystyrene by GPC (Gel Permeation Chromatography) measurement.
  • the acrylic copolymer was diluted 50-fold with tetrahydrofuran (THF), and the resulting diluted solution was filtered through a filter (material: polytetrafluoroethylene, pore diameter: 0.2 ⁇ m) to obtain a measurement sample. to prepare.
  • this measurement sample is supplied to a gel permeation chromatograph (manufactured by Waters, trade name "2690 Separations Module” or equivalent), and GPC measurement is performed under the conditions of a sample flow rate of 1 ml/min and a column temperature of 40 ° C. conduct.
  • the polystyrene-equivalent molecular weight of the acrylic copolymer is measured, and this value is defined as the weight-average molecular weight of the acrylic copolymer.
  • the acrylic copolymer can be obtained by radically reacting a monomer mixture as a raw material in the presence of a polymerization initiator.
  • the method of radical reaction is not particularly limited, and examples thereof include living radical polymerization and free radical polymerization. According to living radical polymerization, a copolymer having a more uniform molecular weight and composition can be obtained as compared with free radical polymerization, and the generation of low molecular weight components can be suppressed. rises and becomes more sticky.
  • the polymerization method is not particularly limited, and conventionally known methods can be used.
  • polymerization method examples include solution polymerization (boiling point polymerization or constant temperature polymerization), UV polymerization, emulsion polymerization, suspension polymerization, bulk polymerization and the like.
  • solution polymerization and UV polymerization are preferable because the adhesive strength of the adhesive composition is further increased.
  • solution polymerization is more preferable because it is easy to mix the tackifying resin with the obtained acrylic copolymer and the adhesive strength of the adhesive composition can be further increased.
  • reaction solvents include ethyl acetate, toluene, methyl ethyl ketone, dimethyl sulfoxide, ethanol, acetone, and diethyl ether. These reaction solvents may be used alone or in combination of two or more.
  • the polymerization initiator is not particularly limited, and examples thereof include organic peroxides and azo compounds.
  • organic peroxide include 1,1-bis(t-hexylperoxy)-3,3,5-trimethylcyclohexane, t-hexylperoxypivalate, t-butylperoxypivalate, 2,5 -dimethyl-2,5-bis(2-ethylhexanoylperoxy)hexane, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxy isobutyrate, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxylaurate and the like.
  • Examples of the azo compound include azobisisobutyronitrile and azobiscyclohexanecarbonitrile. These polymerization initiators may be used alone or in combination of two or more.
  • examples of the polymerization initiator include organic tellurium polymerization initiators.
  • the organic tellurium polymerization initiator is not particularly limited as long as it is generally used for living radical polymerization, and examples thereof include organic tellurium compounds and organic telluride compounds.
  • an azo compound may be used as the polymerization initiator for the purpose of accelerating the polymerization rate.
  • the pressure-sensitive adhesive composition preferably does not contain a surfactant. Since the pressure-sensitive adhesive composition does not contain a surfactant, the pressure-sensitive adhesive strength of the pressure-sensitive adhesive tape, especially at high temperatures, becomes higher.
  • the pressure-sensitive adhesive composition containing no surfactant means that the content of the surfactant in the pressure-sensitive adhesive composition is 3% by weight or less, preferably 1% by weight or less.
  • the content of the surfactant can be determined, for example, by measuring the pressure-sensitive adhesive composition using a liquid chromatography mass spectrometer (e.g., NEXCERA manufactured by Shimadzu Corporation, Exactive manufactured by Thermo Fisher Scientific, etc.). can. More specifically, the ethyl acetate solution of the adhesive composition is filtered through a filter (material: polytetrafluoroethylene, pore diameter: 0.2 ⁇ m). About 10 ⁇ L of the obtained filtrate is injected into a liquid chromatography mass spectrometer and analyzed under the following conditions. The content of the surfactant can be determined from the area ratio of the peak corresponding to the surfactant in the pressure-sensitive adhesive composition.
  • a liquid chromatography mass spectrometer e.g., NEXCERA manufactured by Shimadzu Corporation, Exactive manufactured by Thermo Fisher Scientific, etc.
  • the ethyl acetate solution of the adhesive composition is filtered through a filter (material: polytetraflu
  • the pressure-sensitive adhesive composition of the present invention preferably further contains a cross-linking agent.
  • the cross-linking agent is not particularly limited, and examples thereof include an isocyanate-based cross-linking agent, an aziridine-based cross-linking agent, an epoxy-based cross-linking agent, and a metal chelate-type cross-linking agent. Among them, an isocyanate-based cross-linking agent is preferable because the pressure-sensitive adhesive composition has excellent adhesion to the adherend.
  • the molecular weight of the cross-linking agent is not particularly limited, the molecular weight is preferably less than 2000, preferably 100 or more, from the viewpoint of production.
  • the content of the cross-linking agent in the adhesive composition of the present invention is not particularly limited, but the preferred lower limit is 0.05 parts by weight and the preferred upper limit is 7 parts by weight with respect to 100 parts by weight of the acrylic copolymer.
  • the content of the cross-linking agent is within the above range, the shear storage modulus at 23° C. of the pressure-sensitive adhesive composition more easily satisfies the below-described range, and the pressure-sensitive adhesive strength is further increased.
  • a more preferable lower limit of the content of the cross-linking agent is 0.1 parts by weight, and a more preferable upper limit thereof is 5 parts by weight.
  • content of the said crosslinking agent shows the amount of solid content of the said crosslinking agent.
  • the pressure-sensitive adhesive composition of the present invention may further contain a cross-linking catalyst for promoting cross-linking by the cross-linking agent.
  • the crosslinking catalyst is not particularly limited, and examples of crosslinking catalysts for the isocyanate-based crosslinking agent include dibutyltin dilaurate, dibutyltin diacetate, and dioctyltin dilaurate.
  • the content of the crosslinking catalyst in the pressure-sensitive adhesive composition of the present invention is not particularly limited, but the preferred lower limit is 0.001 parts by weight, the preferred upper limit is 3 parts by weight, and the more preferred lower limit is 100 parts by weight of the acrylic copolymer. is 0.01 part by weight, and a more preferable upper limit is 1 part by weight.
  • the pressure-sensitive adhesive composition of the present invention preferably further contains a tackifying resin.
  • the acid value of the tackifying resin is not particularly limited, but the preferred upper limit is 10 mgKOH/g.
  • the acid value of the tackifying resin is 10 mgKOH/g or less, the acid value of the pressure-sensitive adhesive composition easily satisfies the below-described range, and metal corrosion can be further reduced.
  • a more preferable upper limit of the acid value of the tackifying resin is 5 mgKOH/g.
  • the lower limit of the acid value of the tackifying resin is not particularly limited, and may be 0 mgKOH/g.
  • the acid value of the tackifying resin can be determined, for example, by the same method as for the acid value of the pressure-sensitive adhesive composition.
  • the acid value of the tackifying resin of the present invention is the number of mg of potassium hydroxide required to neutralize the acid contained in 1 g of the sample. It can be obtained by a titration method.
  • the hydroxyl value of the tackifying resin is not particularly limited, the preferred upper limit is 50 mgKOH/g. If the hydroxyl value of the tackifying resin is 50 mgKOH/g or less, the pressure-sensitive adhesive composition can be prevented from absorbing too much water in the air, and metal corrosion can be further reduced. A more preferable upper limit of the hydroxyl value of the tackifying resin is 40 mgKOH/g. Although the lower limit of the hydroxyl value of the tackifying resin is not particularly limited, the preferred lower limit is 10 mgKOH/g.
  • the hydroxyl value of the tackifying resin is the number of mg of potassium hydroxide required to neutralize acetic acid bound to the hydroxyl group when 1 g of the sample is acetylated. It can be determined by the sum titration method.
  • the tackifying resin examples include rosin ester-based tackifying resins, terpene-based tackifying resins, coumarone-indene-based tackifying resins, alicyclic saturated hydrocarbon-based tackifying resins, and C5-based petroleum tackifying resins. , C9 petroleum tackifying resins, C5-C9 copolymer petroleum tackifying resins, and the like. These tackifying resins may be used alone or in combination of two or more. Among them, at least one selected from the group consisting of rosin ester-based tackifying resins and terpene-based tackifying resins is preferable because the acid value and hydroxyl value easily satisfy the above ranges.
  • Examples of the rosin ester-based tackifying resin include polymerized rosin ester-based resins and hydrogenated rosin ester-based resins.
  • Examples of the terpene-based tackifying resin include terpene-based resins and terpene-phenolic resins.
  • the rosin ester-based tackifying resin and the terpene-based tackifying resin are preferably of biological origin.
  • Examples of rosin ester-based tackifying resins derived from organisms include rosin ester-based tackifying resins derived from natural resins such as rosin.
  • Terpene-based tackifying resins derived from organisms include, for example, terpene-based tackifying resins derived from plant essential oils and the like.
  • the content of the tackifying resin in the pressure-sensitive adhesive composition of the present invention is not particularly limited, but the preferred lower limit is 10 parts by weight and the preferred upper limit is 60 parts by weight with respect to 100 parts by weight of the acrylic copolymer. If the content of the tackifying resin is within the above range, the adhesive strength of the adhesive composition will be higher.
  • the more preferable lower limit of the content of the tackifying resin is 15 parts by weight, the more preferable upper limit is 50 parts by weight, and the more preferable upper limit is 35 parts by weight.
  • the content of the tackifying resin in the pressure-sensitive adhesive composition of the present invention is not particularly limited.
  • a preferred lower limit is 0 parts by weight, and a preferred upper limit is 40 parts by weight. If the content of the tackifying resin is within the above range, the adhesive tape can be suitably used as the optical adhesive tape. A more preferable upper limit of the content of the tackifying resin is 30 parts by weight.
  • the pressure-sensitive adhesive composition of the present invention may contain additives such as silane coupling agents, plasticizers, softeners, fillers, pigments and dyes, if necessary.
  • the upper limit of the acid value of the adhesive composition of the present invention is 22 mgKOH/g. Thereby, the pressure-sensitive adhesive composition of the present invention becomes less likely to corrode metal.
  • a more preferable upper limit of the acid value of the pressure-sensitive adhesive composition of the present invention is 10 mgKOH/g.
  • the lower limit of the acid value of the pressure-sensitive adhesive composition of the present invention is not particularly limited, and may be 0 mgKOH/g.
  • the acid value of the pressure-sensitive adhesive composition of the present invention is the number of mg of potassium hydroxide required to neutralize the acid contained in 1 g of the sample, and is determined, for example, by potentiometric titration in accordance with JIS K 0070. be able to.
  • the method for adjusting the acid value of the pressure-sensitive adhesive composition of the present invention to the above range is not particularly limited, but the composition and acid value of the acrylic copolymer, and the type and acid value of the tackifying resin are as described above. A method of adjustment is preferred.
  • the pressure-sensitive adhesive composition of the present invention has a shear storage modulus at 23° C. of 6 ⁇ 10 4 Pa as a lower limit and an upper limit as 5 ⁇ 10 5 Pa.
  • the shear storage elastic modulus at 23°C is within the above range, the pressure-sensitive adhesive composition can exhibit excellent adhesive strength, and the adhesion to adherends is also improved.
  • the preferable lower limit of the shear storage modulus at 23° C. is 7 ⁇ 10 4 Pa, the preferable upper limit is 4 ⁇ 10 5 Pa, the more preferable lower limit is 8 ⁇ 10 4 Pa, and the more preferable upper limit is 3 ⁇ 10 5 Pa.
  • the shear storage modulus at 23° C. of the pressure-sensitive adhesive composition of the present invention can be determined, for example, by the following method.
  • the pressure-sensitive adhesive composition of the present invention is applied to the release-treated surface of a release-treated PET film so that the thickness of the pressure-sensitive adhesive layer after drying is 100 ⁇ m, and dried.
  • the pressure-sensitive adhesive layer is formed so as to have a thickness of 100 ⁇ m by stacking the pressure-sensitive adhesive layers.
  • the pressure-sensitive adhesive layer thus obtained was subjected to dynamics at -50°C to 200°C under conditions of 5°C/min in shear mode and 10Hz using a viscoelastic spectrometer (eg, DVA-200 manufactured by IT Keisoku Kogyo Co., Ltd.). measure the viscoelastic spectrum.
  • the method for adjusting the shear storage modulus of the adhesive composition of the present invention at 23° C. to the above range is not particularly limited, but the composition and weight average molecular weight of the acrylic copolymer, and the type and amount of the cross-linking agent are adjusted. The method of adjustment as described above is preferred.
  • the pressure-sensitive adhesive composition of the present invention preferably has a biological carbon content of 10% by weight or more.
  • a "bio-based product” is defined as having a bio-derived carbon content of 10% by weight or more. If the content of the biogenic carbon is 10% by weight or more, it is preferable from the viewpoint of saving petroleum resources and reducing carbon dioxide emissions.
  • a more preferable lower limit of the content of the biogenic carbon is 30% by weight or more, and a further preferable lower limit is 60% by weight.
  • the upper limit of the biogenic carbon content is not particularly limited, and may be 100% by weight. It should be noted that carbon derived from organisms contains a certain proportion of radioactive isotope (C-14), whereas carbon derived from petroleum contains almost no C-14. Therefore, the biogenic carbon content can be calculated by measuring the concentration of C-14 contained in the pressure-sensitive adhesive composition. Specifically, it can be measured according to ASTM D6866-20, which is a standard used in many bioplastic industries.
  • a pressure-sensitive adhesive tape having a pressure-sensitive adhesive layer containing the pressure-sensitive adhesive composition of the present invention is also one aspect of the present invention.
  • the gel fraction of the pressure-sensitive adhesive layer is not particularly limited, but the preferred lower limit is 10% by weight and the preferred upper limit is 70% by weight. When the gel fraction of the pressure-sensitive adhesive layer is within the above range, the pressure-sensitive adhesive layer has a higher adhesive strength and improved adhesion to the adherend.
  • a more preferable lower limit of the gel fraction of the pressure-sensitive adhesive layer is 20% by weight, and a more preferable upper limit thereof is 50% by weight.
  • the gel fraction of the pressure-sensitive adhesive layer is not particularly limited, but the preferred lower limit is 60% by weight and the preferred upper limit is 98% by weight. If the gel fraction of the pressure-sensitive adhesive layer is within the above range, the pressure-sensitive adhesive tape can be suitably used as the optical pressure-sensitive adhesive tape. A more preferable lower limit of the gel fraction of the pressure-sensitive adhesive layer is 70% by weight, and a more preferable upper limit thereof is 95% by weight.
  • the gel fraction of the adhesive layer is measured as follows.
  • the adhesive tape was cut into a flat rectangular shape of 20 mm ⁇ 40 mm to prepare a test piece, and the test piece was immersed in ethyl acetate at 23 ° C. for 24 hours, then removed from ethyl acetate and placed under 110 ° C. conditions. dry for 1 hour. The weight of the test piece after drying is measured, and the gel fraction is calculated using the following formula (1). Note that the test piece was not laminated with a release film for protecting the pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive layer preferably has a shear storage modulus at 23° C. of 6 ⁇ 10 4 Pa as a lower limit and an upper limit as 5 ⁇ 10 5 Pa.
  • the shear storage elastic modulus at 23°C is within the above range, the pressure-sensitive adhesive layer can exhibit excellent adhesive strength, and the adhesion to the adherend is also improved.
  • the preferable lower limit of the shear storage modulus at 23° C. is 7 ⁇ 10 4 Pa, the preferable upper limit is 4 ⁇ 10 5 Pa, the more preferable lower limit is 8 ⁇ 10 4 Pa, and the more preferable upper limit is 3 ⁇ 10 5 Pa.
  • the shear storage modulus of the pressure-sensitive adhesive layer at 23°C can be determined, for example, by the following method.
  • the pressure-sensitive adhesive layer for measurement is formed so as to have a thickness of 100 ⁇ m or more by stacking the pressure-sensitive adhesive layers.
  • the pressure-sensitive adhesive tape of the present invention preferably has a lower limit of 5 N/25 mm, more preferably 7 N/25 mm, for the 180° peel strength against a SUS plate measured according to JIS Z 0237:2009.
  • the upper limit of the 180° peeling force is not particularly limited, and is preferably about 25 N/25 mm, although it is preferably as high as possible.
  • the 180° peel strength against the SUS plate measured according to JIS Z 0237:2009 is measured as follows. First, an adhesive tape is cut into a size of 25 mm wide by 75 mm long to prepare a test piece.
  • test piece After placing this test piece on a SUS plate so that the pressure-sensitive adhesive layer faces the SUS plate, the test piece is pasted by reciprocating a 2-kg rubber roller once at a speed of 300 mm/min. After that, it is cured at 23° C. and 50% humidity for 20 minutes to prepare a test sample. According to JIS Z 0237:2009, under conditions of 23° C. and 50% humidity, this test sample is peeled off in the direction of 180° at a tensile speed of 300 mm/min, and the adhesive strength (N/25 mm) is measured.
  • the adhesive tape is a non-support tape having no substrate or a double-sided adhesive tape having an adhesive layer on both sides of the substrate, a 23 ⁇ m thick polyethylene terephthalate film (For example, FE2002 manufactured by Futamura Chemical Co., Ltd. or its equivalent) is lined and then laminated to a SUS plate.
  • a 23 ⁇ m thick polyethylene terephthalate film (For example, FE2002 manufactured by Futamura Chemical Co., Ltd. or its equivalent) is lined and then laminated to a SUS plate.
  • the thickness of the pressure-sensitive adhesive layer in the pressure-sensitive adhesive tape of the present invention is not particularly limited, the preferred lower limit is 3 ⁇ m, and the preferred upper limit is 300 ⁇ m.
  • the pressure-sensitive adhesive composition has a higher adhesive strength.
  • a more preferable lower limit of the thickness of the pressure-sensitive adhesive layer is 5 ⁇ m, and a further preferable lower limit is 10 ⁇ m.
  • a more preferable upper limit of the thickness of the pressure-sensitive adhesive layer is 200 ⁇ m, and a further preferable upper limit is 100 ⁇ m.
  • the pressure-sensitive adhesive tape of the present invention may be a non-support tape having no substrate, or may be a single-sided pressure-sensitive adhesive tape having an adhesive layer on one side of the substrate. It may be a double-sided adhesive tape having When the pressure-sensitive adhesive tape of the present invention is used as an optical pressure-sensitive adhesive tape, a non-supporting tape having no substrate is preferred.
  • the substrate is not particularly limited, and conventionally known substrates can be used. However, in order to increase the biogenic carbon content of the adhesive tape as a whole, it is possible to use a biogenic substrate. preferable.
  • the biological-derived substrate examples include plant-derived polyethylene terephthalate (PET), polyethylene furanoate (PEF), polylactic acid (PLA), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), and polybutylene.
  • PET polyethylene terephthalate
  • PLA polyethylene furanoate
  • PPA polylactic acid
  • PTT polytrimethylene terephthalate
  • PBT polybutylene terephthalate
  • PBS polybutylene
  • PET polyethylene
  • PBS polypropylene
  • PU polyurethane
  • TAC triacetyl cellulose
  • PA polyamide
  • the substrate is preferably a PES film or a PA film.
  • a film made of PA is preferable.
  • the composition of the PA film include nylon 11, nylon 1010, nylon 610, nylon 510, and nylon 410 made from castor oil, and nylon 56 made from cellulose.
  • a base material using recycled resources may be used.
  • waste such as packaging containers, home appliances, automobiles, construction materials, food, etc., and waste generated in the manufacturing process are collected, and the removed materials are washed, decontaminated, or There is a method of reusing it as a raw material by decomposition by heating or fermentation.
  • substrates using recycled resources include films and non-woven fabrics made of PET, PBT, PE, PP, PA, etc., which use recycled plastics as raw materials.
  • the collected waste may be burned and used as heat energy related to the production of base materials and raw materials thereof, and the fats and oils contained in the collected waste are mixed with petroleum, fractionally distilled, and refined. It can be used as a raw material.
  • the base material may be a foam base material from the viewpoint of improving compression characteristics.
  • a foam base material made of PE, PP and/or PU is preferable, and a foam base material made of PE is more preferable from the viewpoint of achieving a high degree of compatibility between flexibility and strength.
  • Examples of the composition of the foam base material made of PE include PE made from sugarcane.
  • the method for producing the foam base material is not particularly limited.
  • a preferred method is to foam the foaming agent when the resin composition is extruded into a sheet, and to crosslink the resulting polyolefin foam as necessary.
  • the thickness of the foam base material is not particularly limited, but the preferred lower limit is 50 ⁇ m and the preferred upper limit is 5000 ⁇ m. When the thickness of the foam base material is within this range, it is possible to exhibit high flexibility that enables adhesion along the shape of the adherend while exhibiting high impact resistance.
  • a more preferable upper limit of the thickness of the foam base material is 1000 ⁇ m, and a further preferable upper limit is 300 ⁇ m.
  • the total thickness of the pressure-sensitive adhesive tape (the total thickness of the substrate and the pressure-sensitive adhesive layer) preferably has a lower limit of 3 ⁇ m and a preferred upper limit of 6000 ⁇ m. If the total thickness of the adhesive tape is within the above range, the adhesive strength will be higher. A more preferable upper limit of the total thickness of the adhesive tape is 1200 ⁇ m, and a further preferable upper limit is 500 ⁇ m.
  • the haze of the pressure-sensitive adhesive tape of the present invention is not particularly limited.
  • the haze of the adhesive tape is measured according to JIS K7136:2000.
  • the production method of the pressure-sensitive adhesive tape of the present invention is not particularly limited, and it can be produced by a conventionally known production method.
  • a solution of adhesive A is prepared by adding a solvent to an acrylic copolymer and, if necessary, a cross-linking agent, a tackifying resin, etc., and this solution of adhesive A is applied to the surface of a base material, and the solution is The solvent inside is completely removed by drying to form an adhesive layer A.
  • a release film is overlaid on the formed pressure-sensitive adhesive layer A so that the release-treated surface faces the pressure-sensitive adhesive layer A. As shown in FIG.
  • a release film different from the release film is prepared, and a solution of adhesive B prepared in the same manner as above is applied to the release-treated surface of this release film, and the solvent in the solution is removed.
  • a laminate film having an adhesive layer B formed on the surface of the release film is produced.
  • the laminate film thus obtained is superimposed on the back surface of the substrate on which the adhesive layer A is formed so that the adhesive layer B faces the back surface of the substrate to prepare a laminate.
  • by pressing the laminate with a rubber roller or the like it is possible to obtain a double-sided pressure-sensitive adhesive tape having pressure-sensitive adhesive layers on both sides of the base material and the surfaces of the pressure-sensitive adhesive layers covered with a release film. .
  • two sets of laminated films are prepared in the same manner, and these laminated films are laminated on both sides of the base material with the pressure-sensitive adhesive layer of the laminated film facing the base material to prepare a laminate.
  • a double-sided pressure-sensitive adhesive tape having pressure-sensitive adhesive layers on both sides of a base material and surfaces of the pressure-sensitive adhesive layers covered with a release film may be obtained by pressing this laminate with a rubber roller or the like.
  • the application of the adhesive tape of the present invention is not particularly limited, but it is preferably used for fixing electronic equipment parts or vehicle parts because it can exhibit excellent adhesive strength while reducing metal corrosion.
  • the pressure-sensitive adhesive tape of the present invention can be suitably used for adhesion and fixation of electronic device parts in large portable electronic devices, adhesion and fixation of in-vehicle parts (for example, in-vehicle panels), and the like.
  • the adhesive composition which is hard to corrode a metal and can exhibit the outstanding adhesive force can be provided.
  • the adhesive tape which has an adhesive layer containing this adhesive composition can be provided.
  • n-Heptyl Acrylate Containing Biological Carbon Ricinoleic acid derived from castor oil was cracked to give a mixture containing undecylenic acid and heptyl alcohol. Then, by separating from undecylenic acid by distillation, n-heptyl alcohol containing biological carbon was obtained. n-heptyl acrylate was prepared by esterifying n-heptyl alcohol containing biological carbon and acrylic acid (manufactured by Nippon Shokubai Co., Ltd.).
  • ⁇ Tackifying resin> ⁇ Rosin ester (rosin ester D-135, acid value 13 mgKOH/g, hydroxyl value 45 mgKOH/g, manufactured by Arakawa Chemical Industries, Ltd.) ⁇ Terpene phenol A (terpene phenol G-150, acid value 0 mgKOH/g, hydroxyl value 135 mgKOH/g, manufactured by Yasuhara Chemical Co., Ltd.) ⁇ Terpene phenol B (terpene phenol UH-115, acid value 0 mgKOH/g, hydroxyl value 25 mgKOH/g, manufactured by Yasuhara Chemical Co., Ltd.)
  • Example 1 Production of acrylic copolymer Ethyl acetate was added as a polymerization solvent into a reaction vessel, and nitrogen was bubbled through the reaction vessel. Subsequently, a polymerization initiator solution obtained by diluting 0.1 parts by weight of azobisisobutyronitrile 10 times with ethyl acetate as a polymerization initiator was charged into the reaction vessel, and 98.9 parts by weight of n-heptyl acrylate and acrylic acid were added. 1 part by weight and 0.1 part by weight of 2-hydroxylethyl acrylate were added dropwise over 2 hours.
  • the obtained acrylic copolymer was subjected to mass spectrometry and 1 H-NMR measurement, and the content of structural units derived from each monomer was calculated from the integrated intensity ratio of hydrogen peaks derived from each monomer.
  • the obtained acrylic copolymer was diluted 50-fold with tetrahydrofuran (THF), and the diluted solution obtained was filtered through a filter (material: polytetrafluoroethylene, pore diameter: 0.2 ⁇ m) to prepare a measurement sample.
  • This measurement sample is supplied to a gel permeation chromatograph (manufactured by Waters, 2690 Separations Module), and GPC measurement is performed under the conditions of a sample flow rate of 1 mL/min and a column temperature of 40°C to measure the polystyrene equivalent molecular weight of the acrylic copolymer. to determine the weight average molecular weight.
  • the acid value of the obtained acrylic copolymer was determined by potentiometric titration according to JIS K 0070. Further, the obtained acrylic copolymer was subjected to differential scanning calorimetry using a differential scanning calorimeter (DSC7000X, manufactured by Hitachi High-Tech Science) to determine the glass transition temperature (Tg). Specifically, about 2 mg of the acrylic copolymer was weighed into an aluminum pan, and the temperature of the aluminum pan was measured at a rate of 10° C./min under a nitrogen atmosphere. The resulting chart was read to determine the glass transition point.
  • DSC7000X differential scanning calorimeter
  • the acid value of the pressure-sensitive adhesive composition was determined by potentiometric titration according to JIS K 0070.
  • the adhesive layers of the adhesive tape were laminated to a thickness of 100 ⁇ m to prepare a measurement sample.
  • a viscoelastic spectrometer for example, DVA-200 manufactured by IT Keisoku Co., Ltd.
  • the dynamic viscoelastic spectrum from -50 ° C. to 200 ° C. under the conditions of 5 ° C./min in shear mode and 10 Hz. was measured. From this, the shear storage modulus at 23°C was obtained.
  • the release film on one side of the adhesive tape was peeled off, and a PET film (FE2002, manufactured by Futamura Chemical Co., Ltd.) with a thickness of 23 ⁇ m was attached to the adhesive tape. Furthermore, the release film on the other side of the adhesive tape was peeled off to prepare a test piece, and the weight was measured. After the test piece was immersed in ethyl acetate at 23° C. for 24 hours, it was removed from the ethyl acetate and dried at 110° C. for 1 hour. The weight of the test piece after drying was measured, and the gel fraction was calculated using the following (1).
  • Example 1 (Examples 2 to 16, Comparative Examples 1 to 4) Example 1 except that the type and blending amount of the acrylic monomer constituting the acrylic copolymer, the weight average molecular weight of the acrylic copolymer, the type and blending amount of the tackifying resin and the cross-linking agent were changed as shown in Table 1. In the same manner as above, an adhesive tape was obtained.
  • the laminate was aged for 20 minutes under conditions of 23° C. and 50% humidity to prepare a test sample.
  • the test sample was left in an environment with a temperature of 85 ° C. and a humidity of 85%, and after 3 days, 14 days, and 28 days, the evaluation adhesive tape 1 and the evaluation adhesive tape 2 were peeled off from the copper foil, and the copper foil was corroded. was confirmed visually.
  • corrosion of the copper foil was observed, it was evaluated as x, and when corrosion of the copper foil was not observed on both sides, it was evaluated as ⁇ .
  • a haze adhesive tape is attached to a slide glass (manufactured by Matsunami Glass Industry Co., Ltd., large slide white edge polishing No. 2), and a haze meter (manufactured by Murakami Color Research Institute, HM-150) is used to measure JIS K7136: 2000. Haze was measured according to.
  • the adhesive composition which is hard to corrode a metal and can exhibit the outstanding adhesive force can be provided.
  • the adhesive tape which has an adhesive layer containing this adhesive composition can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)

Abstract

本発明は、金属を腐食させにくく、優れた粘着力を発揮できる粘着剤組成物を提供する。また、該粘着剤組成物を含有する粘着剤層を有する粘着テープを提供する。本発明は、アクリル共重合体を含有する粘着剤組成物であって、前記アクリル共重合体は、n-ヘプチル(メタ)アクリレートに由来する構成単位を50重量%以上含有し、前記粘着剤組成物は、酸価が22mgKOH/g以下、23℃におけるせん断貯蔵弾性率が6×10Pa以上5×10Pa以下である粘着剤組成物である。

Description

粘着剤組成物、及び、粘着テープ
本発明は、粘着剤組成物、及び、粘着テープに関する。
従来から、電子部品、車輌、住宅及び建材において部品を固定する際に、粘着剤を含有する粘着剤層を有する粘着テープが広く用いられている(例えば、特許文献1~3)。具体的には、例えば、携帯電子機器の表面を保護するためのカバーパネルをタッチパネルモジュール又はディスプレイパネルモジュールに接着したり、タッチパネルモジュールとディスプレイパネルモジュールとを接着したりするために粘着テープが用いられている。
特開2015-052050号公報 特開2015-021067号公報 特開2015-120876号公報
従来、電子機器部品、車載部品等においてはセンサー、銅配線等の部分に金属が一般的に用いられている。このような金属の周辺に、粘着剤組成物を用いた場合、金属が腐食して時間の経過とともに不具合を生じることがあった。
本発明は、金属を腐食させにくく、優れた粘着力を発揮できる粘着剤組成物を提供することを目的とする。また、本発明は、該粘着剤組成物を含有する粘着剤層を有する粘着テープを提供することを目的とする。
本開示1は、アクリル共重合体を含有する粘着剤組成物であって、前記アクリル共重合体は、n-ヘプチル(メタ)アクリレートに由来する構成単位を50重量%以上含有し、前記粘着剤組成物は、酸価が22mgKOH/g以下、23℃におけるせん断貯蔵弾性率が6×10Pa以上5×10Pa以下である、粘着剤組成物である。
本開示2は、前記アクリル共重合体が、酸価が22mgKOH/g以下である、本開示1の粘着剤組成物である。
本開示3は、前記アクリル共重合体が、更に、極性官能基を有するモノマーに由来する構成単位を含有し、前記極性官能基を有するモノマーが、アミド基を有するモノマーを含有する、本開示1又は2の粘着剤組成物である。
本開示4は、前記アクリル共重合体が、前記アミド基を有するモノマーに由来する構成単位の含有量が2重量%以上30重量%以下である、本開示3の粘着剤組成物である。
本開示5は、前記極性官能基を有するモノマーが、更に、水酸基を有するモノマーを含有する、本開示3又は4の粘着剤組成物である。
本開示6は、前記アクリル共重合体が、前記水酸基を有するモノマーに由来する構成単位の含有量が0.01重量%以上5重量%以下である、本開示5の粘着剤組成物である。
本開示7は、更に、粘着付与樹脂を含有し、前記粘着付与樹脂が、酸価が10mgKOH/g以下である、本開示1、2、3、4、5又は6の粘着剤組成物である。
本開示8は、前記粘着付与樹脂が、水酸基価が50mgKOH/g以下である、本開示7の粘着剤組成物である。
本開示9は、生物由来の炭素の含有率が30重量%以上である、本開示1、2、3、4、5、6、7又は8の粘着剤組成物である。
本開示10は、本開示1、2、3、4、5、6、7、8又は9の粘着剤組成物を含有する粘着剤層を有する、粘着テープである。
本開示11は、前記粘着剤層が、ゲル分率が20重量%以上50重量%以下である、本開示10の粘着テープである。
本開示12は、前記粘着剤層が、ゲル分率が60重量%以上95重量%以下である、本開示10記載の粘着テープである。
なお、本明細書中において(メタ)アクリレートとは、アクリレート又はメタクリレートを意味し、(メタ)アクリルとは、アクリル又はメタクリルを意味する。アクリル共重合体は、メタクリル共重合体であってもよい。
以下に本発明を詳述する。
本発明者らは、アクリル共重合体を含有する粘着剤組成物において、アクリル共重合体を構成するアクリル系モノマーとして、生物由来の炭素を含有するアクリル系モノマーを用いることを検討した。そのなかでも特に、n-ヘプチル(メタ)アクリレート(アクリル基の炭素数=7)を一定量以上用いることで、優れた粘着力の発揮が期待できることを見出した。
しかしながら、更に、本発明者らは、n-ヘプチル(メタ)アクリレートは、ホモポリマーのtanδが極大となる温度より得られたガラス転移温度が、予想以上に低く、粘着剤組成物の凝集力が予想以上に低くなることを見出した。すなわち、示差走査熱量測定(DSC)により得られたガラス転移温度傾向による予測に反して、例えば、n-ヘプチルアクリレートは、ブチルアクリレート及び2-エチルヘキシルアクリレート(アクリル基の炭素数=4及び8)と比べて、ホモポリマーのtanδが極大となる温度より得られたガラス転移温度が、低くなることがわかった。
ここで、n-ヘプチル(メタ)アクリレートを用いつつ、粘着剤組成物の凝集力を上げて優れた粘着力を発揮させるためには、例えば、アクリル酸を比較的多く共重合させることが考えられる。
しかしながら、アクリル酸を比較的多く共重合させたアクリル共重合体を含有する粘着剤組成物を金属の周辺で用いた場合、金属が腐食して時間の経過とともに不具合を生じるという問題がある。これに対し、本発明者らは、粘着剤組成物の酸価を一定値以下に調整し、かつ、23℃におけるせん断貯蔵弾性率を特定範囲に調整することにより、金属の腐食を低減しつつ優れた粘着力を発揮することもできる粘着剤組成物が得られることを見出し、本発明を完成させるに至った。
本発明の粘着剤組成物は、アクリル共重合体を含有する。
上記アクリル共重合体は、n-ヘプチル(メタ)アクリレートに由来する構成単位を含有する。これにより、本発明の粘着剤組成物は、優れた粘着力を発揮することができる。
上記アクリル共重合体は、生物由来の炭素を含有するn-ヘプチル(メタ)アクリレートに由来する構成単位を含有することが好ましい。上記アクリル共重合体が上記生物由来の炭素を含有するn-ヘプチル(メタ)アクリレートに由来する構成単位を含有することで、粘着剤組成物全体としての生物由来の炭素の含有率を高めることができる。石油由来材料に代えて生物由来材料を用いることにより、石油資源を節約できるので、石油資源の枯渇や、石油由来製品の燃焼による二酸化炭素の排出への対策となる。
上記生物由来の炭素を含有するn-ヘプチル(メタ)アクリレートは、生物由来の炭素を含有していれば特に限定されないが、生物由来材料であるn-ヘプチルアルコールと、(メタ)アクリル酸とのエステル化により合成されることが好ましい。また、生物由来材料であるn-ヘプチルアルコールと、(メタ)アクリル酸エステルとのエステル交換反応により合成されることも好ましい。
上記生物由来材料であるn-ヘプチルアルコールは、例えば、動植物等から採取される材料(例えば、ひまし油由来のリシノール酸等)を原料として、これをクラッキングすることにより、安価かつ容易に入手することができる。
上記アクリル共重合体における上記n-ヘプチル(メタ)アクリレートに由来する構成単位の含有量は、下限が50重量%である。上記構成単位の含有量が50重量%以上であれば、粘着剤組成物の粘着力が高くなる。また、上記生物由来の炭素を含有するn-ヘプチル(メタ)アクリレートに由来する構成単位の含有量が50重量%以上であれば、粘着剤組成物全体としての生物由来の炭素の含有率を高めることができる。
上記n-ヘプチル(メタ)アクリレートに由来する構成単位の含有量は特に限定されないが、50重量%を超えることが好ましく、より好ましい下限は60重量%、さらに好ましい下限は70重量%である。
上記n-ヘプチル(メタ)アクリレートに由来する構成単位の含有量の上限は特に限定されないが、粘着剤組成物の23℃におけるせん断貯蔵弾性率を後述する範囲に調整する観点から、好ましい上限は99重量%、より好ましい上限は97重量%である。
上記アクリル共重合体における上記n-ヘプチル(メタ)アクリレートに由来する構成単位の含有量は、上記アクリル共重合体の質量分析及びH-NMR測定を行い、n-ヘプチル(メタ)アクリレートに由来する水素のピークの積分強度比から算出することができる。
上記アクリル共重合体は、更に、極性官能基を有するモノマーに由来する構成単位を含有することが好ましい。
上記アクリル共重合体が上記極性官能基を有するモノマーに由来する構成単位を含有することで、粘着剤組成物の凝集力が上がって23℃におけるせん断貯蔵弾性率が後述する範囲を満たしやすくなり、粘着力がより高くなる。
上記極性官能基を有するモノマーは特に限定されず、例えば、水酸基を有するモノマー、カルボキシル基を有するモノマー、エーテル基を有するモノマー、グリシジル基を有するモノマー、アミド基を有するモノマー、ニトリル基を有するモノマー等が挙げられる。これらの極性官能基を有するモノマーは単独で用いてもよく、2種以上を併用してもよい。なかでも、粘着剤組成物の23℃におけるせん断貯蔵弾性率が後述する範囲をより満たしやすくなることから、水酸基を有するモノマー、カルボキシル基を有するモノマー、及び、アミド基を有するモノマーが好ましい。粘着剤組成物の23℃におけるせん断貯蔵弾性率に加えて酸価も後述する範囲を満たしやすくなり、金属の腐食をより低減しつつ粘着力をより高くすることができることから、水酸基を有するモノマー、及び、アミド基を有するモノマーがより好ましい。粘着剤組成物の酸価を充分に抑えて金属の腐食を更に低減する観点からは、カルボキシル基を有するモノマーは用いないことが更に好ましい。
上記水酸基を有するモノマーとして、例えば、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート等の水酸基を有するアクリル系モノマーが挙げられる。
上記カルボキシル基を有するモノマーとして、例えば、(メタ)アクリル酸等のカルボキシル基を有するアクリル系モノマーが挙げられる。
上記グリシジル基を有するモノマーとして、例えば、グリシジル(メタ)アクリレート等のグリシジル基を有するアクリル系モノマーが挙げられる。
上記アミド基を有するモノマーとして、例えば、(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、ジエチル(メタ)アクリルアミド、イソプロピル(メタ)アクリルアミド、t-ブチル(メタ)アクリルアミド、メトキシメチル(メタ)アクリルアミド、ブトキシメチル(メタ)アクリルアミド等のアミド基を有するアクリル系モノマーが挙げられる。なかでも、入手が容易であること、及び、取り扱いが容易であることから、(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、及び、ジエチル(メタ)アクリルアミドが好ましい。
上記ニトリル基を有するモノマーとして、例えば、(メタ)アクリロニトリル等のニトリル基を有するアクリル系モノマーが挙げられる。
上記アクリル共重合体における上記極性官能基を有するモノマーに由来する構成単位の含有量は特に限定されず、上記極性官能基を有するモノマーの種類に応じて決定することができる。
上記極性官能基を有するモノマーが上記水酸基を有するモノマーを含有する場合、上記アクリル共重合体における上記水酸基を有するモノマーに由来する構成単位の含有量は特に限定されないが、好ましい下限は0.01重量%、好ましい上限は5重量%である。上記構成単位の含有量が上記範囲内であれば、粘着剤組成物の23℃におけるせん断貯蔵弾性率が後述する範囲をより満たしやすくなり、粘着力が更に高くなる。上記構成単位のより好ましい下限は0.05重量%、より好ましい上限は1重量%である。
上記極性官能基を有するモノマーが上記アミド基を有するモノマーを含有する場合、上記アクリル共重合体における上記アミド基を有するモノマーに由来する構成単位の含有量は特に限定されないが、好ましい下限は2重量%、好ましい上限は30重量%である。上記構成単位の含有量が上記範囲内であれば、粘着剤組成物の23℃におけるせん断貯蔵弾性率が後述する範囲をより満たしやすくなり、粘着力が更に高くなる。上記構成単位のより好ましい下限は5重量%、より好ましい上限は25重量%であり、更に好ましい下限は10重量%、更に好ましい上限は20重量%である。
上記アクリル共重合体における上記極性官能基を有するモノマーに由来する構成単位の含有量は、上記アクリル共重合体の質量分析及びH-NMR測定を行い、各モノマーに由来する水素のピークの積分強度比から算出することができる。
上記アクリル共重合体は、ガラス転移温度(Tg)が-35℃以上のモノマーに由来する構成単位を有していてもよい。上記アクリル共重合体がガラス転移温度(Tg)が-35℃以上のモノマーに由来する構成単位を有することで、得られる粘着剤層の粘着力がより高くなる。なお、ガラス転移温度(Tg)が-35℃以上のモノマーとは、ホモポリマーとしたときに該ホモポリマーのガラス転移温度(Tg)が-35℃以上となるモノマーであり、該ホモポリマーのガラス転移温度(Tg)は、例えば、示差走査熱量測定により求めることができる。
上記ガラス転移温度(Tg)が-35℃以上のモノマーのガラス転移温度(Tg)は、より好ましくは-15℃以上である。上記ガラス転移温度(Tg)の上限は特に限定されないが、好ましい上限は180℃、より好ましい上限は150℃である。
上記ガラス転移温度(Tg)が-35℃以上のモノマーは特に限定されないが、架橋性官能基を有さないモノマーが好ましく、具体的には例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ブチルメタクリレート、イソブチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、トリメチロールプロパンホルマル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、アクリルアミド、ジメチルアクリルアミド、ジエチルアクリルアミド等が挙げられる。なかでも、イソボルニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレートが好ましい。
上記アクリル共重合体における上記ガラス転移温度(Tg)が-35℃以上のモノマーに由来する構成単位の含有量は特に限定されないが、好ましくは5重量%以上、70重量%以下である。上記ガラス転移温度(Tg)が-35℃以上のモノマーに由来する構成単位の含有量が70重量%以下であれば、得られる粘着剤層の凹凸に対する追従性がより高くなる。上記ガラス転移温度(Tg)が-35℃以上のモノマーに由来する構成単位の含有量のより好ましい上限は65重量%、更に好ましい上限は60重量%、更により好ましい上限は55重量%、特に好ましい上限は50重量%である。上記ガラス転移温度(Tg)が-35℃以上のモノマーに由来する構成単位の含有量のより好ましい下限は10重量%である。
上記アクリル共重合体における上記ガラス転移温度(Tg)が-35℃以上のモノマーに由来する構成単位の含有量も、上記アクリル共重合体の質量分析及びH-NMR測定を行い、各モノマーに由来する水素のピークの積分強度比から算出することができる。
上記アクリル共重合体は、環構造を有するモノマーに由来する構成単位を有することが好ましい。上記アクリル共重合体が環構造を有するモノマーに由来する構成単位を有することで、光学用粘着テープとして粘着テープを好適に用いることができる。
上記環構造は特に限定されず、例えば、脂環式構造、芳香環構造、複素環構造等が挙げられる。上記環構造を有するモノマーとして、上述したもののなかでは、例えば、イソボルニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、トリメチロールプロパンホルマル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等が挙げられる。なかでも、イソボルニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、トリメチロールプロパンホルマル(メタ)アクリレートが好ましい。なかでも特に、生物由来のモノマーが好ましく、生物由来のイソボルニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、トリメチロールプロパンホルマル(メタ)アクリレートがより好ましい。
上記アクリル共重合体は、上記n-ヘプチル(メタ)アクリレートに由来する構成単位、上記極性官能基を有するモノマーに由来する構成単位、ガラス転移温度(Tg)が-35℃以上のモノマーに由来する構成単位、及び環構造を有するモノマーに由来する構成単位以外の、他のモノマーに由来する構成単位を有していてもよい。
上記他のモノマーは特に限定されず、例えば、(メタ)アクリル酸アルキルエステルが挙げられる。
上記(メタ)アクリル酸アルキルエステルとして、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、n-ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、ミリスチル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、5,7,7-トリメチル-2-(1,3,3-トリメチルブチル)オクタノール-1と(メタ)アクリル酸とのエステル、直鎖状の主鎖に1又は2のメチル基を有する総炭素数18のアルコールと(メタ)アクリル酸とのエステル、ベヘニル(メタ)アクリレート、アラキジル(メタ)アクリレート等が挙げられる。これらの(メタ)アクリル酸アルキルエステルは単独で用いてもよく、2種以上を併用してもよい。
また、上記他のモノマーとして、例えば、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等も挙げられ、耐反発性に優れる観点から、イソボルニル(メタ)アクリレートが好ましい。更に、上記他のモノマーとして、例えば、酢酸ビニル等のカルボン酸ビニルや、スチレン等の一般のアクリル系ポリマーに用いられている各種のモノマーも用いることができる。これらの他のモノマーは単独で用いてもよく、2種以上を併用してもよい。
上記アクリル共重合体における上記他のモノマーに由来する構成単位の含有量は、上記アクリル共重合体の質量分析及びH-NMR測定を行い、各モノマーに由来する水素のピークの積分強度比から算出することができる。
上記極性官能基を有するモノマー、及び、上記他のモノマーは、生物由来の炭素を含有することが好ましいが、生物由来の炭素を含有せず石油由来材料のみからなっていてもよい。理論的には、上記アクリル共重合体を構成するアクリル系モノマーを、全て生物由来の炭素を含有するモノマーとすることも可能である。粘着剤組成物のコストや生産性の観点からは、比較的安価で入手の容易な生物由来の炭素を含有するモノマーを採用し、これに石油由来材料のみからなるモノマーを組み合わせてもよい。
上記アクリル共重合体の酸価は特に限定されないが、好ましい上限は22mgKOH/gである。上記アクリル共重合体の酸価が22mgKOH/g以下であれば、粘着剤組成物の酸価が後述する範囲を満たしやすくなり、金属の腐食をより低減することができる。上記アクリル共重合体の酸価のより好ましい上限は10mgKOH/gである。上記アクリル共重合体の酸価の下限は特に限定されず、0mgKOH/gであってもよい。
上記アクリル共重合体の酸価は、例えば、粘着剤組成物の酸価と同様の方法で求めることができる。具体的には、本発明のアクリル共重合体の酸価とは、試料1g中に含まれる酸を中和するのに要する水酸化カリウムのmg数であり、例えば、JIS K 0070に準拠して電位差滴定法により求めることができる。
上記アクリル共重合体のガラス転移温度(Tg)は特に限定されないが、-20℃以下であることが好ましい。上記アクリル共重合体のガラス転移温度(Tg)が-20℃以下であれば、粘着剤組成物の被着体に対する追従性が向上し、粘着力がより高くなる。上記アクリル共重合体のガラス転移温度(Tg)は、-30℃以下であることがより好ましく、-40℃以下であることが更に好ましく、-50℃以下であることが更により好ましい。上記アクリル共重合体のガラス転移温度(Tg)の下限は特に限定されず、通常-90℃以上であり、-80℃以上であることが好ましい。
上記アクリル共重合体のガラス転移温度(Tg)は、例えば、示差走査熱量測定により求めることができる。
上記アクリル共重合体の重量平均分子量(Mw)は特に限定されないが、好ましい下限は20万、好ましい上限は200万である。上記アクリル共重合体の重量平均分子量が上記範囲内であれば、粘着剤組成物の粘着力がより高くなる。上記アクリル共重合体の重量平均分子量のより好ましい下限は40万、より好ましい上限は180万であり、更に好ましい下限は50万、更に好ましい上限は150万である。
なお、重量平均分子量(Mw)とは、GPC(Gel Permeation Chromatography:ゲルパーミッションクロマトグラフィ)測定による標準ポリスチレン換算の重量平均分子量である。具体的には、アクリル共重合体をテトラヒドロフラン(THF)によって50倍希釈し、得られた希釈液をフィルター(材質:ポリテトラフルオロエチレン、ポア径:0.2μm)で濾過することにより、測定サンプルを調製する。次に、この測定サンプルをゲルパーミッションクロマトグラフ(Waters社製、商品名「2690 Separations Module」又はその同等品)に供給して、サンプル流量1ミリリットル/分、カラム温度40℃の条件でGPC測定を行う。アクリル共重合体のポリスチレン換算分子量を測定して、この値をアクリル共重合体の重量平均分子量とする。
上記アクリル共重合体は、原料となるモノマー混合物を重合開始剤の存在下にてラジカル反応させることによって得ることができる。
ラジカル反応の方式は特に限定されず、例えば、リビングラジカル重合、フリーラジカル重合等が挙げられる。リビングラジカル重合によれば、フリーラジカル重合と比較してより均一な分子量及び組成を有する共重合体が得られ、低分子量成分等の生成を抑えることができることから、粘着剤組成物の凝集力が上がり、粘着力がより高くなる。
重合方法は特に限定されず、従来公知の方法を用いることができる。重合方法として、例えば、溶液重合(沸点重合又は定温重合)、UV重合、エマルジョン重合、懸濁重合、塊状重合等が挙げられる。なかでも、粘着剤組成物の粘着力がより高くなることから、溶液重合及びUV重合が好ましい。更に、得られたアクリル共重合体に対して粘着付与樹脂を混合しやすく、粘着剤組成物の粘着力を更に高くすることができることから、溶液重合がより好ましい。
重合方法として溶液重合を用いる場合、反応溶剤として、例えば、酢酸エチル、トルエン、メチルエチルケトン、ジメチルスルホキシド、エタノール、アセトン、ジエチルエーテル等が挙げられる。これらの反応溶剤は単独で用いてもよく、2種以上を併用してもよい。
上記重合開始剤は特に限定されず、例えば、有機過酸化物、アゾ化合物等が挙げられる。上記有機過酸化物として、例えば、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート等が挙げられる。上記アゾ化合物として、例えば、アゾビスイソブチロニトリル、アゾビスシクロヘキサンカルボニトリル等が挙げられる。これらの重合開始剤は単独で用いてもよく、2種以上を併用してもよい。
また、リビングラジカル重合の場合には、上記重合開始剤として、例えば、有機テルル重合開始剤が挙げられる。上記有機テルル重合開始剤は、リビングラジカル重合に一般的に用いられるものであれば特に限定されず、例えば、有機テルル化合物、有機テルリド化合物等が挙げられる。なお、リビングラジカル重合においても、上記有機テルル重合開始剤に加えて、重合速度の促進を目的として上記重合開始剤としてアゾ化合物を用いてもよい。
上記粘着剤組成物は、界面活性剤を含有しないことが好ましい。
上記粘着剤組成物が界面活性剤を含有しないことにより、粘着テープの粘着力、特に高温での粘着力がより高くなる。なお、上記粘着剤組成物が界面活性剤を含有しないとは、上記粘着剤組成物における界面活性剤の含有量が3重量%以下であることを意味し、好ましくは1重量%以下である。
上記粘着剤組成物が界面活性剤を含有しないためには、上記アクリル共重合体を得る際に界面活性剤を使用しないことが好ましい。このためには、例えば、上記アクリル共重合体を得る際の重合方法として、溶液重合、UV重合等を採用すればよい。
上記界面活性剤の含有量は、例えば、上記粘着剤組成物について液体クロマトグラフィー質量分析計(例えば、島津製作所社製NEXCERA、Thermo Fisher Scientific社製Exactive等)を用いて測定することで求めることができる。より具体的には、上記粘着剤組成物の酢酸エチル溶液をフィルター(材質:ポリテトラフルオロエチレン、ポア径:0.2μm)で濾過する。得られた濾液約10μLを液体クロマトグラフィー質量分析計に注入して下記条件で分析する。上記粘着剤組成物に占める上記界面活性剤に対応するピークの面積比から、上記界面活性剤の含有量を求めることができる。なお、界面活性剤種ごとに上記粘着剤組成物中の上記界面活性剤の含有量が既知のサンプルを作製し、界面活性剤含有量とピーク面積比との関係を示す検量線を作成し、分析することが好ましい。
カラム Thermo Fisher Scientific社製、Hypersil GOLD(2.1×150mm)
移動相 アセトニトリル
カラム温度 40℃
流速 1.0mL/min
イオン化方法 ESI
キャピラリー温度 350℃
本発明の粘着剤組成物は、23℃におけるせん断貯蔵弾性率を調整する観点から、更に、架橋剤を含有することが好ましい。
上記架橋剤は特に限定されず、例えば、イソシアネート系架橋剤、アジリジン系架橋剤、エポキシ系架橋剤、金属キレート型架橋剤等が挙げられる。なかでも、粘着剤組成物が被着体への密着性に優れることから、イソシアネート系架橋剤が好ましい。
上記架橋剤の分子量は特に限定されないが、製造上の観点から、分子量は2000未満が好ましく、100以上が好ましい。
本発明の粘着剤組成物における上記架橋剤の含有量は特に限定されないが、上記アクリル共重合体100重量部に対する好ましい下限は0.05重量部、好ましい上限は7重量部である。上記架橋剤の含有量が上記範囲内であれば、粘着剤組成物の23℃におけるせん断貯蔵弾性率が後述する範囲をより満たしやすくなり、粘着力が更に高くなる。上記架橋剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は5重量部である。
なお、上記架橋剤の含有量は、上記架橋剤の固形分の量を示す。
本発明の粘着剤組成物は、更に、上記架橋剤による架橋を促進するための架橋触媒を含有してもよい。
上記架橋触媒は特に限定されず、例えば、上記イソシアネート系架橋剤の架橋触媒として、ジブチルスズジラウレート、ジブチルスズジアセテート、ジオクチルスズジラウレート等が挙げられる。
本発明の粘着剤組成物における上記架橋触媒の含有量は特に限定されないが、上記アクリル共重合体100重量部に対する好ましい下限は0.001重量部、好ましい上限は3重量部であり、より好ましい下限は0.01重量部、より好ましい上限は1重量部である。
本発明の粘着剤組成物は、更に、粘着付与樹脂を含有することが好ましい。これにより、粘着剤組成物の粘着力がより高くなる。
上記粘着付与樹脂の酸価は特に限定されないが、好ましい上限が10mgKOH/gである。上記粘着付与樹脂の酸価が10mgKOH/g以下であれば、粘着剤組成物の酸価が後述する範囲を満たしやすくなり、金属の腐食をより低減することができる。上記粘着付与樹脂の酸価のより好ましい上限は5mgKOH/gである。上記粘着付与樹脂の酸価の下限は特に限定されず、0mgKOH/gであってもよい。
上記粘着付与樹脂の酸価は、例えば、粘着剤組成物の酸価と同様の方法で求めることができる。具体的には、本発明の粘着付与樹脂の酸価とは、試料1g中に含まれる酸を中和するのに要する水酸化カリウムのmg数であり、例えば、JIS K 0070に準拠して電位差滴定法により求めることができる。
上記粘着付与樹脂の水酸基価は特に限定されないが、好ましい上限が50mgKOH/gである。上記粘着付与樹脂の水酸基価が50mgKOH/g以下であれば、粘着剤組成物が空気中の水分を吸収しすぎることを抑制できるため、金属の腐食をより低減することができる。上記粘着付与樹脂の水酸基価のより好ましい上限は40mgKOH/gである。上記粘着付与樹脂の水酸基価の下限は特に限定されないが、好ましい下限は10mgKOH/gである。
上記粘着付与樹脂の水酸基価とは、試料1gをアセチル化させたとき、水酸基と結合した酢酸を中和するのに要する水酸化カリウムのmg数であり、例えば、JIS K 0070に準拠して中和滴定法により求めることができる。
上記粘着付与樹脂として、具体的には例えば、ロジンエステル系粘着付与樹脂、テルペン系粘着付与樹脂、クマロンインデン系粘着付与樹脂、脂環族飽和炭化水素系粘着付与樹脂、C5系石油粘着付与樹脂、C9系石油粘着付与樹脂、C5-C9共重合系石油粘着付与樹脂等が挙げられる。これらの粘着付与樹脂は単独で用いてもよく、2種以上を併用してもよい。なかでも、酸価及び水酸基価が上記範囲を満たしやすいことから、ロジンエステル系粘着付与樹脂及びテルペン系粘着付与樹脂からなる群より選択される少なくとも1種が好ましい。
上記ロジンエステル系粘着付与樹脂としては、例えば、重合ロジンエステル系樹脂、水添ロジンエステル系樹脂等が挙げられる。上記テルペン系粘着付与樹脂としては、例えば、テルペン系樹脂、テルペンフェノール系樹脂等が挙げられる。
上記ロジンエステル系粘着付与樹脂及び上記テルペン系粘着付与樹脂は、生物由来であることが好ましい。生物由来のロジンエステル系粘着付与樹脂として、例えば、松脂等の天然樹脂に由来するロジンエステル系粘着付与樹脂が挙げられる。生物由来のテルペン系粘着付与樹脂として、例えば、植物の精油等に由来するテルペン系粘着付与樹脂等が挙げられる。
本発明の粘着剤組成物における上記粘着付与樹脂の含有量は特に限定されないが、上記アクリル共重合体100重量部に対する好ましい下限は10重量部、好ましい上限は60重量部である。上記粘着付与樹脂の含有量が上記範囲内であれば、粘着剤組成物の粘着力がより高くなる。上記粘着付与樹脂の含有量のより好ましい下限は15重量部、より好ましい上限は50重量部であり、更に好ましい上限は35重量部である。
また、本発明の粘着剤組成物を光学用粘着テープに用いる場合には、本発明の粘着剤組成物における上記粘着付与樹脂の含有量は特に限定されないが、上記アクリル共重合体100重量部に対する好ましい下限は0重量部、好ましい上限は40重量部である。上記粘着付与樹脂の含有量が上記範囲内であれば、光学用粘着テープとして粘着テープを好適に用いることができる。上記粘着付与樹脂の含有量のより好ましい上限は30重量部である。
本発明の粘着剤組成物は、必要に応じて、シランカップリング剤、可塑剤、軟化剤、充填剤、顔料、染料等の添加剤等を含有していてもよい。
本発明の粘着剤組成物は、酸価の上限が22mgKOH/gである。これにより、本発明の粘着剤組成物は、金属を腐食させにくいものとなる。本発明の粘着剤組成物の酸価のより好ましい上限は10mgKOH/gである。本発明の粘着剤組成物の酸価の下限は特に限定されず、0mgKOH/gであってもよい。
本発明の粘着剤組成物の酸価とは、試料1g中に含まれる酸を中和するのに要する水酸化カリウムのmg数であり、例えば、JIS K 0070に準拠して電位差滴定法により求めることができる。
本発明の粘着剤組成物の酸価を上記範囲に調整する方法は特に限定されないが、上記アクリル共重合体の組成及び酸価、並びに、上記粘着付与樹脂の種類及び酸価を上述したように調整する方法が好ましい。
本発明の粘着剤組成物は、23℃におけるせん断貯蔵弾性率の下限が6×10Pa、上限が5×10Paである。
上記23℃におけるせん断貯蔵弾性率が上記範囲内であれば、粘着剤組成物が優れた粘着力を発揮することができ、被着体への密着性も向上する。上記23℃におけるせん断貯蔵弾性率の好ましい下限は7×10Pa、好ましい上限は4×10Paであり、より好ましい下限は8×10Pa、より好ましい上限は3×10Paである。
本発明の粘着剤組成物の23℃におけるせん断貯蔵弾性率は、例えば、次の方法により求めることができる。本発明の粘着剤組成物を、離型処理したPETフィルムの離型処理面に、乾燥後の粘着剤層の厚みが100μmとなるように、塗工し乾燥させる。或いは、粘着剤層を重ね合わせることにより、厚みが100μmとなるように粘着剤層を形成する。得られた粘着剤層について、粘弾性スペクトロメーター(例えば、アイティー計測制御社製、DVA-200)を用い、せん断モードの5℃/分、10Hzの条件で、-50℃~200℃の動的粘弾性スペクトルを測定する。
本発明の粘着剤組成物の23℃におけるせん断貯蔵弾性率を上記範囲に調整する方法は特に限定されないが、上記アクリル共重合体の組成及び重量平均分子量、並びに、上記架橋剤の種類及び量を上述したように調整する方法が好ましい。
本発明の粘着剤組成物は、生物由来の炭素の含有率が10重量%以上であることが好ましい。生物由来の炭素の含有率が10重量%以上であることが「バイオベース製品」であることの目安となる。
上記生物由来の炭素の含有率が10重量%以上であれば、石油資源を節約する観点や、二酸化炭素の排出量を削減する観点から好ましい。上記生物由来の炭素の含有率のより好ましい下限は30重量%以上、更に好ましい下限は60重量%である。上記生物由来の炭素の含有率の上限は特に限定されず、100重量%であってもよい。
なお、生物由来の炭素には一定割合の放射性同位体(C-14)が含まれるのに対し、石油由来の炭素にはC-14がほとんど含まれない。そのため、上記生物由来の炭素の含有率は、粘着剤組成物に含まれるC-14の濃度を測定することによって算出することができる。具体的には、多くのバイオプラスチック業界で利用されている規格であるASTM D6866-20に準じて測定することができる。
本発明の粘着剤組成物を含有する粘着剤層を有する粘着テープもまた、本発明の1つである。
上記粘着剤層のゲル分率は特に限定されないが、好ましい下限は10重量%、好ましい上限は70重量%である。上記粘着剤層のゲル分率が上記範囲内であれば、上記粘着剤層の粘着力がより高くなり、被着体への密着性も向上する。上記粘着剤層のゲル分率のより好ましい下限は20重量%、より好ましい上限は50重量%である。
また、本発明の粘着テープを光学用粘着テープとして用いる場合には、上記粘着剤層のゲル分率は特に限定されないが、好ましい下限は60重量%、好ましい上限は98重量%である。上記粘着剤層のゲル分率が上記範囲内であれば、光学用粘着テープとして粘着テープを好適に用いることができる。上記粘着剤層のゲル分率のより好ましい下限は70重量%、より好ましい上限は95重量%である。
上記粘着剤層のゲル分率は、次のようにして測定される。
まず、粘着テープを20mm×40mmの平面長方形状に裁断して試験片を作製し、試験片を酢酸エチル中に23℃にて24時間浸漬した後、酢酸エチルから取り出して、110℃の条件下で1時間乾燥させる。乾燥後の試験片の重量を測定し、下記式(1)を用いてゲル分率を算出する。なお、試験片には、粘着剤層を保護するための離型フィルムは積層されていないものとする。
ゲル分率(重量%)=100×(W-W)/(W-W) (1)
(W:基材の重量、W:浸漬前の試験片の重量、W:浸漬、乾燥後の試験片の重量)
上記粘着剤層は、23℃におけるせん断貯蔵弾性率の下限が6×10Pa、上限が5×10Paであることが好ましい。
上記23℃におけるせん断貯蔵弾性率が上記範囲内であれば、粘着剤層が優れた粘着力を発揮することができ、被着体への密着性も向上する。上記23℃におけるせん断貯蔵弾性率の好ましい下限は7×10Pa、好ましい上限は4×10Paであり、より好ましい下限は8×10Pa、より好ましい上限は3×10Paである。
上記粘着剤層の23℃におけるせん断貯蔵弾性率は、例えば、次の方法により求めることができる。粘着剤層について、粘弾性スペクトロメーター(例えば、アイティー計測制御社製、DVA-200)を用い、せん断モードの5℃/分、10Hzの条件で、-50℃~200℃の動的粘弾性スペクトルを測定する。粘着剤層が100μm未満の場合は、粘着剤層を重ね合わせることにより、厚みが100μm以上となるように測定用の粘着剤層を形成する。得られた測定用の粘着剤層について、粘弾性スペクトロメーター(例えば、アイティー計測制御社製、DVA-200)を用い、せん断モードの5℃/分、10Hzの条件で、-50℃~200℃の動的粘弾性スペクトルを測定する。
本発明の粘着テープは、JIS Z 0237:2009に準拠して測定したSUS板に対する180°剥離力の好ましい下限が5N/25mm、より好ましい下限が7N/25mmである。上記180°剥離力の上限は特に限定されず、高いほど好ましいが、実質的には25N/25mm程度である。
上記JIS Z 0237:2009に準拠して測定したSUS板に対する180°剥離力は、次のようにして測定される。まず、幅25mm×長さ75mmに粘着テープを裁断し、試験片を作製する。この試験片をSUS板にその粘着剤層がSUS板に対向した状態となるように載せた後、試験片上に300mm/分の速度で2kgのゴムローラを一往復させることにより貼り合わせる。その後、23℃、50%湿度で20分養生し、試験サンプルを作製する。JIS Z 0237:2009に準じて、23℃、50%湿度の条件下、この試験サンプルを引張速度300mm/minの条件で180°方向に剥離し、粘着力(N/25mm)を測定する。
なお、粘着テープが、基材を有しないノンサポートテープ又は基材の両面に粘着剤層を有する両面粘着テープの場合、他方(測定しない側)の粘着剤層表面に、厚み23μmのポリエチレンテレフタレートフィルム(例えばフタムラ化学社製、FE2002又はその同等品)を裏打ちした後にSUS板への貼り合わせを行う。
本発明の粘着テープにおける上記粘着剤層の厚みは特に限定されないが、好ましい下限は3μm、好ましい上限は300μmである。上記粘着剤層の厚みが上記範囲内であれば、粘着剤組成物の粘着力がより高くなる。上記粘着剤層の厚みのより好ましい下限は5μm、更に好ましい下限は10μmである。上記粘着剤層の厚みのより好ましい上限は200μm、更に好ましい上限は100μmである。
本発明の粘着テープは、基材を有しないノンサポートテープであってもよく、基材の一方の面に粘着剤層を有する片面粘着テープであってもよく、基材の両面に粘着剤層を有する両面粘着テープであってもよい。本発明の粘着テープを光学用粘着テープとして用いる場合は、基材を有しないノンサポートテープが好ましい。
上記基材としては特に限定されず、従来公知の基材を用いることができるが、粘着テープ全体としての生物由来の炭素の含有率を高くするためには、生物由来の基材を用いることが好ましい。
上記生物由来の基材としては、例えば、植物由来のポリエチレンテレフタレート(PET)、ポリエチレンフラノエート(PEF)、ポリ乳酸(PLA)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)、ポリブチレンサクシネート(PBS)等のポリエステル(PES)からなるフィルム及び不織布等が挙げられる。また、植物由来のポリエチレン(PE)、ポリプロピレン(PP)、ポリウレタン(PU)、トリアセチルセルロース(TAC)、セルロース、ポリアミド(PA)等からなるフィルム及び不織布等も挙げられる。
上記基材は、基材強度の観点からは、PESからなるフィルム又はPAからなるフィルムが好ましい。更に、耐熱性や耐油性の観点からは、PAからなるフィルムが好ましい。
上記PAからなるフィルムの構成物として、例えば、ひまし油を原料とするナイロン11、ナイロン1010、ナイロン610、ナイロン510、ナイロン410等や、セルロースを原料とするナイロン56等が挙げられる。
また、新たな石油資源の使用量を減らし、二酸化炭素の排出量を抑えることで環境負荷低減を図る観点では、再生資源を使用した基材を用いてもよい。資源の再生方法としては、例えば、包装容器、家電、自動車、建設資材、食品等の廃棄物や、製造工程で発生した廃棄物を回収し、取り出された材料を、洗浄、除染、又は、加熱や発酵による分解により、再び原料として使用する方法が挙げられる。再生資源を使用した基材としては、例えば、回収したプラスチックを再樹脂化したものを原料として使用した、PET、PBT、PE、PP、PA等からなるフィルム及び不織布等が挙げられる。また、回収した廃棄物を燃焼させ、基材やその原料の製造に関わる熱エネルギーとして利用してもよく、回収した上記廃棄物に含まれる油脂を石油に混合し、分留、精製したものを原料に利用してもよい。
上記基材は、圧縮特性を向上させる観点から、発泡体基材であってもよい。
上記発泡体基材としては、PE、PP及び/又はPUからなる発泡体基材が好ましく、柔軟性と強度とを高度に両立させる観点から、PEからなる発泡体基材がより好ましい。PEからなる発泡体基材の構成物として、例えば、サトウキビを原料とするPE等が挙げられる。
上記発泡体基材の製造方法は特に限定されないが、例えば、サトウキビを原料とするPEを含有するPE樹脂と発泡剤とを含有する発泡性樹脂組成物を調製し、押出機を用いて発泡性樹脂組成物をシート状に押出加工する際に発泡剤を発泡させ、得られたポリオレフィン発泡体を必要に応じて架橋する方法が好ましい。
上記発泡体基材の厚みは特に限定されないが、好ましい下限は50μm、好ましい上限は5000μmである。上記発泡体基材の厚みがこの範囲内であると、高い耐衝撃性を発揮しながら、被着体の形状に沿って密着させて貼り合わせることができる高い柔軟性を発揮することができる。上記発泡基材の厚みのより好ましい上限は1000μm、更に好ましい上限は300μmである。
本発明の粘着テープは、粘着テープの総厚み(基材と粘着剤層の厚みの合計)の好ましい下限が3μm、好ましい上限が6000μmである。粘着テープの総厚みが上記範囲内であれば、粘着力がより高くなる。上記粘着テープの総厚みのより好ましい上限は1200μm、更に好ましい上限は500μmである。
本発明の粘着テープのヘイズは特に限定されないが、本発明の粘着テープを光学用粘着テープとして用いる場合、好ましい上限は1、より好ましい上限は0.6以下である。上記粘着テープのヘイズは、JIS K7136:2000に準拠して測定される。
本発明の粘着テープの製造方法は特に限定されず、従来公知の製造方法により製造することができる。例えば、両面粘着テープの場合には、以下のような方法が挙げられる。
まず、アクリル共重合体と、必要に応じて架橋剤や粘着付与樹脂等に溶剤を加えて粘着剤Aの溶液を作製して、この粘着剤Aの溶液を基材の表面に塗布し、溶液中の溶剤を完全に乾燥除去して粘着剤層Aを形成する。次に、形成された粘着剤層Aの上に離型フィルムをその離型処理面が粘着剤層Aに対向した状態に重ね合わせる。
次いで、上記離型フィルムとは別の離型フィルムを用意し、この離型フィルムの離型処理面に、上記と同様の要領で作製した粘着剤Bの溶液を塗布し、溶液中の溶剤を完全に乾燥除去することにより、離型フィルムの表面に粘着剤層Bが形成された積層フィルムを作製する。得られた積層フィルムを粘着剤層Aが形成された基材の裏面に、粘着剤層Bが基材の裏面に対向した状態に重ね合わせて積層体を作製する。そして、上記積層体をゴムローラ等によって加圧することによって、基材の両面に粘着剤層を有し、かつ、該粘着剤層の表面が離型フィルムで覆われた両面粘着テープを得ることができる。
また、同様の要領で積層フィルムを2組作製し、これらの積層フィルムを基材の両面のそれぞれに、積層フィルムの粘着剤層を基材に対向させた状態に重ね合わせて積層体を作製し、この積層体をゴムローラ等によって加圧することによって、基材の両面に粘着剤層を有し、かつ、該粘着剤層の表面が離型フィルムで覆われた両面粘着テープを得てもよい。
本発明の粘着テープの用途は特に限定されないが、金属の腐食を低減しつつ優れた粘着力を発揮することもできることから、電子機器部品又は車載部品の固定に用いられることが好ましい。具体的には、大型の携帯電子機器における電子機器部品の接着固定、車載部品(例えば、車載用パネル)の接着固定等に、本発明の粘着テープを好適に用いることができる。
本発明によれば、金属を腐食させにくく、優れた粘着力を発揮できる粘着剤組成物を提供することができる。また、本発明によれば、該粘着剤組成物を含有する粘着剤層を有する粘着テープを提供することができる。
以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
<生物由来の炭素を含有するn-ヘプチルアクリレート>
ひまし油から誘導されたリシノール酸をクラッキングし、ウンデシレン酸とヘプチルアルコールとを含む混合物を得た。次いで、蒸留によりウンデシレン酸と分離することで、生物由来の炭素を含有するn-ヘプチルアルコールを得た。生物由来の炭素を含有するn-ヘプチルアルコールと、アクリル酸(日本触媒社製)とをエステル化することにより、n-ヘプチルアクリレートを調製した。
<その他のアクリル系モノマー>
・アクリルアミド(東京化成工業社製)
・ジメチルアクリルアミド(東京化成工業社製)
・ジエチルアクリルアミド(東京化成工業社製)
・イソボルニルアクリレート(大阪有機化学工業社製)
・アクリル酸(日本触媒社製)
・2-ヒドロキシエチルアクリレート(大阪有機化学工業社製)
<架橋剤>
・イソシアネート系架橋剤(東ソー社製、コロネートL-45)
<粘着付与樹脂>
・ロジンエステル(ロジンエステル D-135、酸価13mgKOH/g、水酸基価45mgKOH/g、荒川化学工業社製)
・テルペンフェノールA(テルペンフェノール G-150、酸価0mgKOH/g、水酸基価135mgKOH/g、ヤスハラケミカル社製)
・テルペンフェノールB(テルペンフェノール UH-115、酸価0mgKOH/g、水酸基価25mgKOH/g、ヤスハラケミカル社製)
(実施例1)
(1)アクリル共重合体の製造
反応容器内に、重合溶媒として酢酸エチルを加え、窒素でバブリングした後、窒素を流入しながら反応容器を加熱して還流を開始した。続いて、重合開始剤としてアゾビスイソブチロニトリル0.1重量部を酢酸エチルで10倍希釈した重合開始剤溶液を反応容器内に投入し、n-ヘプチルアクリレート98.9重量部、アクリル酸1重量部及び2-ヒドロキシルエチルアクリレート0.1重量部を2時間かけて滴下添加した。滴下終了後、重合開始剤としてアゾビスイソブチロニトリル0.1重量部を酢酸エチルで10倍希釈した重合開始剤溶液を反応容器内に再度投入し、4時間重合反応を行い、アクリル共重合体含有溶液を得た。
得られたアクリル共重合体の質量分析及びH-NMR測定を行い、各モノマーに由来する水素のピークの積分強度比から、各モノマーに由来する構成単位の含有量を算出した。
得られたアクリル共重合体をテトラヒドロフラン(THF)によって50倍希釈して得られた希釈液をフィルター(材質:ポリテトラフルオロエチレン、ポア径:0.2μm)で濾過し、測定サンプルを調製した。この測定サンプルをゲルパーミッションクロマトグラフ(Waters社製、2690 Separations Module)に供給して、サンプル流量1mL/min、カラム温度40℃の条件でGPC測定を行い、アクリル共重合体のポリスチレン換算分子量を測定して、重量平均分子量を求めた。
また、JIS K 0070に準拠して電位差滴定法により、得られたアクリル共重合体の酸価を求めた。
また、得られたアクリル共重合体について、示差走査熱量計(日立ハイテクサイエンス製、DSC7000X)を用いて示差走査熱量測定を行い、ガラス転移温度(Tg)を求めた。具体的には、アクリル共重合体約2mgをアルミニウムパンに秤量し、該アルミニウムパンを10℃/分の昇温条件で窒素雰囲気下にて測定した。得られたチャートを読み取り、ガラス転移点を求めた。
(2)粘着テープの製造
得られたアクリル共重合体含有溶液に、アクリル共重合体100重量部に対して、テルペンフェノールBを30重量部加え、更に、イソシアネート系架橋剤(東ソー社製、コロネートL-45)の固形分が0.5重量部となるよう加え、粘着剤組成物含有溶液を調製した。この粘着剤組成物含有溶液を厚み75μmの離型処理したPETフィルムの離型処理面に、乾燥後の粘着剤層の厚みが50μmとなるように塗工した後、110℃で5分間乾燥させた。この粘着剤層を、厚み75μmの離型処理したPETフィルムの離型処理面に重ねて、40℃で48時間養生し、粘着テープ(ノンサポートタイプ)を得た。
(3)酸価の測定
JIS K 0070に準拠して電位差滴定法により、粘着剤組成物の酸価を求めた。
(4)23℃におけるせん断貯蔵弾性率の測定
(4-1)粘着剤組成物
粘着剤組成物を酢酸エチルで2倍希釈し、厚み75μmの離型処理したPETフィルムの離型処理面に、乾燥後の厚みが50μmとなるように塗工した後、110℃で5分間乾燥させた。厚みが100μmになるように重ねて測定サンプルを作製した。測定サンプルについて、粘弾性スペクトロメーター(例えば、アイティー計測制御社製、DVA-200)を用い、せん断モードの5℃/分、10Hzの条件で、-50℃~200℃の動的粘弾性スペクトルを測定した。これにより、23℃におけるせん断貯蔵弾性率を求めた。
(4-2)粘着剤層
粘着テープの粘着剤層について、厚みが100μmになるように重ねて測定サンプルを作製した。測定サンプルについて、粘弾性スペクトロメーター(例えば、アイティー計測制御社製、DVA-200)を用い、せん断モードの5℃/分、10Hzの条件で、-50℃~200℃の動的粘弾性スペクトルを測定した。これにより、23℃におけるせん断貯蔵弾性率を求めた。
(5)ゲル分率の測定
粘着テープの一方の面の離型フィルムを剥がし、厚み23μmのPETフィルム(フタムラ化学社製、FE2002)に貼り合わせ、20mm×40mmの平面長方形状に裁断した。更に粘着テープのもう一方の面の離型フィルムを剥がして、試験片を作製し、重量を測定した。試験片を酢酸エチル中に23℃にて24時間浸漬した後、酢酸エチルから取り出して、110℃の条件下で1時間乾燥させた。乾燥後の試験片の重量を測定し、下記(1)を用いてゲル分率を算出した。
ゲル分率(重量%)=100×(W-W)/(W-W) (1)
(W:基材(PETフィルム)の重量、W:浸漬前の試験片の重量、W:浸漬、乾燥後の試験片の重量)
(実施例2~16、比較例1~4)
アクリル共重合体を構成するアクリル系モノマーの種類及び配合量、アクリル共重合体の重量平均分子量、粘着付与樹脂及び架橋剤の種類及び配合量を表1に示すように変更した以外は実施例1と同様にして、粘着テープを得た。
<評価>
実施例及び比較例で得た粘着テープについて、以下の方法により評価を行った。結果を表1に示した。
(1)SUS板に対する180°剥離力
粘着テープの一方の面(測定しない側)を厚み23μmのポリエチレンテレフタレートフィルム(フタムラ化学社製、FE2002)で裏打ちした後に、幅25mm×長さ75mmに裁断し、試験片を作製した。この試験片をSUS板にその粘着剤層(測定する側)がSUS板に対向した状態となるように載せた後、試験片上に300mm/分の速度で2kgのゴムローラを一往復させることにより貼り合わせた。その後、23℃、50%湿度で20分養生し、試験サンプルを作製した。JIS Z 0237:2009に準じて、23℃、50%湿度の条件下、この試験サンプルを引張速度300mm/minの条件で180°方向に剥離し、粘着力(N/25mm)を測定した。
なお、表1中、「凝集破壊」とは、粘着剤層の凝集力が低いためにSUS板との界面での剥離が生じず、粘着剤層が凝集破壊したことを意味する。
(2)銅箔に対する腐食
粘着テープの一方の面を厚み50μmのポリエチレンテレフタレートフィルム(東洋紡社製、E5200)で裏打ちした後に、幅25mm×長さ25mmに裁断し、評価用粘着テープを作製した。なお、この評価用粘着テープを2つ作製した。
評価用粘着テープ1の粘着面を銅箔(C1020R-H、厚み20μm、幅25mm×長さ25mm、竹内金属箔粉工業社製)の一方の面と対向した状態となるように載せた後、評価用粘着テープ1上に300mm/分の速度で2kgのゴムローラを一往復させることにより貼り合わせた。その後、評価用粘着テープ2の粘着面を銅箔の他方の面と対向した状態となるように載せた後、評価用粘着テープ2上に300mm/分の速度で2kgのゴムローラを一往復させることにより貼り合わせ、幅25mm×長さ25mmの積層体を作製した。貼り合わせを行ってから、23℃、50%湿度条件で積層体を20分間養生し、試験サンプルを作製した。
試験サンプルを温度85℃、湿度85%環境下に放置し、3日後、14日後、及び、28日後に評価用粘着テープ1及び評価用粘着テープ2を銅箔から剥がし、銅箔の腐食の有無を目視にて確認した。銅箔の腐食が見られた場合を×、両面ともに銅箔の腐食が見られなかった場合を〇とした。
(3)生物由来の炭素の含有率
粘着テープについて、ASTM D6866-20に準じて生物由来の炭素の含有率を測定した。
(4)ヘイズ
粘着テープをスライドガラス(松浪硝子工業社製、大型スライド白縁磨No.2)に貼り付け、ヘイズメーター(村上色彩技術研究所製、HM-150)を用いてJIS K7136:2000に準じてヘイズを測定した。
Figure JPOXMLDOC01-appb-T000001
本発明によれば、金属を腐食させにくく、優れた粘着力を発揮できる粘着剤組成物を提供することができる。また、本発明によれば、該粘着剤組成物を含有する粘着剤層を有する粘着テープを提供することができる。

Claims (12)

  1. アクリル共重合体を含有する粘着剤組成物であって、
    前記アクリル共重合体は、n-ヘプチル(メタ)アクリレートに由来する構成単位を50重量%以上含有し、
    前記粘着剤組成物は、酸価が22mgKOH/g以下、23℃におけるせん断貯蔵弾性率が6×10Pa以上5×10Pa以下である
    ことを特徴とする粘着剤組成物。
  2. 前記アクリル共重合体は、酸価が22mgKOH/g以下であることを特徴とする請求項1記載の粘着剤組成物。
  3. 前記アクリル共重合体は、更に、極性官能基を有するモノマーに由来する構成単位を含有し、前記極性官能基を有するモノマーは、アミド基を有するモノマーを含有することを特徴とする請求項1又は2記載の粘着剤組成物。
  4. 前記アクリル共重合体は、前記アミド基を有するモノマーに由来する構成単位の含有量が2重量%以上30重量%以下であることを特徴とする請求項3記載の粘着剤組成物。
  5. 前記極性官能基を有するモノマーは、更に、水酸基を有するモノマーを含有することを特徴とする請求項3又は4記載の粘着剤組成物。
  6. 前記アクリル共重合体は、前記水酸基を有するモノマーに由来する構成単位の含有量が0.01重量%以上5重量%以下であることを特徴とする請求項5記載の粘着剤組成物。
  7. 更に、粘着付与樹脂を含有し、前記粘着付与樹脂は、酸価が10mgKOH/g以下であることを特徴とする請求項1、2、3、4、5又は6記載の粘着剤組成物。
  8. 前記粘着付与樹脂は、水酸基価が50mgKOH/g以下であることを特徴とする請求項7記載の粘着剤組成物。
  9. 生物由来の炭素の含有率が30重量%以上であることを特徴とする請求項1、2、3、4、5、6、7又は8記載の粘着剤組成物。
  10. 請求項1、2、3、4、5、6、7、8又は9記載の粘着剤組成物を含有する粘着剤層を有することを特徴とする粘着テープ。
  11. 前記粘着剤層は、ゲル分率が20重量%以上50重量%以下であることを特徴とする請求項10記載の粘着テープ。
  12. 前記粘着剤層は、ゲル分率が60重量%以上95重量%以下であることを特徴とする請求項10記載の粘着テープ。
     
PCT/JP2022/025002 2021-06-23 2022-06-23 粘着剤組成物、及び、粘着テープ WO2022270565A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280015421.4A CN116867868A (zh) 2021-06-23 2022-06-23 粘合剂组合物及粘合带
KR1020237022656A KR20240023013A (ko) 2021-06-23 2022-06-23 점착제 조성물 및 점착 테이프
JP2022542770A JPWO2022270565A1 (ja) 2021-06-23 2022-06-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-104397 2021-06-23
JP2021104397 2021-06-23

Publications (1)

Publication Number Publication Date
WO2022270565A1 true WO2022270565A1 (ja) 2022-12-29

Family

ID=84544372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025002 WO2022270565A1 (ja) 2021-06-23 2022-06-23 粘着剤組成物、及び、粘着テープ

Country Status (5)

Country Link
JP (1) JPWO2022270565A1 (ja)
KR (1) KR20240023013A (ja)
CN (1) CN116867868A (ja)
TW (1) TW202309220A (ja)
WO (1) WO2022270565A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5463140A (en) * 1977-10-31 1979-05-21 Nitto Electric Ind Co Ltd Production of pressure-sensitive adhesive tape
WO2013005470A1 (ja) * 2011-07-01 2013-01-10 古河電気工業株式会社 接着フィルム、並びにダイシングダイボンディングフィルム及びそれを用いた半導体加工方法
EP2626397A1 (de) * 2012-02-09 2013-08-14 tesa AG Haftklebebänder auf Basis biobasierter Monomere
WO2019244595A1 (ja) * 2018-06-19 2019-12-26 積水化学工業株式会社 粘着剤、粘着テープ、及び、電子機器部品又は車載部品を固定する方法
JP2020164844A (ja) * 2019-03-28 2020-10-08 積水化学工業株式会社 感圧粘着剤組成物及び粘着テープ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021067A (ja) 2013-07-19 2015-02-02 Dic株式会社 熱伝導性粘着テープ、物品及び画像表示装置
JP6100654B2 (ja) 2013-09-06 2017-03-22 帝人株式会社 耐熱性粘着テープ用基材及びそれからなる耐熱性粘着テープ
JP6367598B2 (ja) 2013-11-22 2018-08-01 日東電工株式会社 両面粘着シート

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5463140A (en) * 1977-10-31 1979-05-21 Nitto Electric Ind Co Ltd Production of pressure-sensitive adhesive tape
WO2013005470A1 (ja) * 2011-07-01 2013-01-10 古河電気工業株式会社 接着フィルム、並びにダイシングダイボンディングフィルム及びそれを用いた半導体加工方法
EP2626397A1 (de) * 2012-02-09 2013-08-14 tesa AG Haftklebebänder auf Basis biobasierter Monomere
WO2019244595A1 (ja) * 2018-06-19 2019-12-26 積水化学工業株式会社 粘着剤、粘着テープ、及び、電子機器部品又は車載部品を固定する方法
JP2020164844A (ja) * 2019-03-28 2020-10-08 積水化学工業株式会社 感圧粘着剤組成物及び粘着テープ

Also Published As

Publication number Publication date
KR20240023013A (ko) 2024-02-20
CN116867868A (zh) 2023-10-10
TW202309220A (zh) 2023-03-01
JPWO2022270565A1 (ja) 2022-12-29

Similar Documents

Publication Publication Date Title
JP7132452B2 (ja) 粘着剤組成物、粘着テープ、電子機器部品又は車載部品の固定方法、及び、電子機器部品又は車載部品の製造方法
JP7128389B1 (ja) 粘着テープ、電子機器部品又は車載機器部品の固定方法、及び、電子機器又は車載機器の製造方法
JP7128390B1 (ja) 粘着テープ、電子機器部品又は車載機器部品の固定方法、及び、電子機器又は車載機器の製造方法
JP2023003413A (ja) 粘着テープ
WO2022270566A1 (ja) 粘着テープ
JP2023003416A (ja) 粘着テープ、電化製品、車載部材及び固定方法
WO2022270565A1 (ja) 粘着剤組成物、及び、粘着テープ
WO2022202774A1 (ja) 粘着テープ、電子機器部品又は車載機器部品の固定方法、及び、電子機器又は車載機器の製造方法
WO2022202778A1 (ja) 粘着テープ、電子機器部品又は車載機器部品の固定方法、及び、電子機器又は車載機器の製造方法
JP2023003305A (ja) 粘着テープ
JP2023003414A (ja) 粘着テープ、電子機器及び車載部材
JP2024049356A (ja) 粘着テープ
WO2022270567A1 (ja) 粘着テープ
JP2023003415A (ja) 粘着テープ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022542770

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828481

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280015421.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE