WO2022270505A1 - ポリエステル樹脂組成物の製造方法及び回収されたポリエステル樹脂の再生方法並びにポリエステル樹脂組成物 - Google Patents

ポリエステル樹脂組成物の製造方法及び回収されたポリエステル樹脂の再生方法並びにポリエステル樹脂組成物 Download PDF

Info

Publication number
WO2022270505A1
WO2022270505A1 PCT/JP2022/024734 JP2022024734W WO2022270505A1 WO 2022270505 A1 WO2022270505 A1 WO 2022270505A1 JP 2022024734 W JP2022024734 W JP 2022024734W WO 2022270505 A1 WO2022270505 A1 WO 2022270505A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
aluminum
phosphorus
resin composition
compound
Prior art date
Application number
PCT/JP2022/024734
Other languages
English (en)
French (fr)
Inventor
珠世 佐々井
万紀 木南
佑 山本
文章 西中
暢夫 森山
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to KR1020247002444A priority Critical patent/KR20240023168A/ko
Priority to EP22828421.2A priority patent/EP4361218A1/en
Priority to CN202280044183.XA priority patent/CN117545804A/zh
Priority to US18/572,417 priority patent/US20240309202A1/en
Priority to JP2022566462A priority patent/JP7521601B2/ja
Publication of WO2022270505A1 publication Critical patent/WO2022270505A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/84Boron, aluminium, gallium, indium, thallium, rare-earth metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/20Recycled plastic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for producing a polyester resin composition, a method for recycling a recovered polyester resin, and a polyester resin composition.
  • Polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are excellent in transparency, mechanical properties, and chemical properties. It is widely used in various fields such as fibers for industrial use and industrial materials, various films and sheets for packaging and industrial use, and hollow moldings such as bottles and engineering plastics.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • hollow moldings made using polyester resin have become essential to our lives.
  • an increase in the amount of use of hollow molded bodies is causing various problems such as depletion of resources, an increase in marine litter, and global warming.
  • hollow moldings such as used polyester bottles are collected and remolded into moldings such as polyester bottles, fibers, nonwoven fabrics, etc. for reuse. Attention is paid to the recycling system.
  • polyester resins using antimony compounds, titanium compounds, or germanium compounds which are widely used as polymerization catalysts, when the used polyester resin is recovered and recycled, the deterioration of the polyester resin causes coloration of the polyester resin and a decrease in molecular weight. Therefore, its improvement is desired.
  • Patent Documents 1 and 2 reference As a method for solving the above problems, a method of adding a hindered phenol compound in the production of a polyester resin using an antimony compound, a titanium compound, or a germanium compound as a polymerization catalyst is known (for example, Patent Documents 1 and 2 reference).
  • Patent Documents 1 and 2 improve thermal oxidation stability, further improvement is required from the viewpoint of suppressing deterioration of physical properties when recycling is performed.
  • the applicant found a catalyst with excellent thermal stability. Specifically, the inventors found a catalyst comprising an aluminum compound and a phosphorus compound containing a hindered phenol structure described in Patent Documents 3 and 4. However, no study has been made to recycle the used polyester resin, especially the used polyester resin using at least one selected from antimony compounds, titanium compounds, and germanium compounds as a polymerization catalyst. In addition, in the method using a catalyst comprising an aluminum compound and a phosphorus compound, the amount of catalyst added is large and the cost of the phosphorus compound used is high, so the cost of the catalyst required for polymerization is high. In order to obtain a high-quality polyester resin while maintaining high polymerization activity, it is necessary to increase the amounts of the aluminum compound and the phosphorus compound that are catalysts, and as a result, there is a problem that the cost of the catalyst increases.
  • the present invention has been made to solve the problems of the prior art, and its object is to use a used polyester resin with at least one selected from antimony compounds, titanium compounds, and germanium compounds as a polymerization catalyst. , a method for producing a polyester resin composition that is unlikely to cause coloration or a decrease in molecular weight even after multiple recyclings (hereinafter referred to as "excellent in recyclability"), a method for recycling the recovered polyester resin, and a polyester resin It is to provide a composition.
  • Another object of the present invention is to provide a method for producing a polyester resin composition, a method for recycling recovered polyester resin, and a polyester resin composition at reduced costs.
  • the present invention consists of the following configurations. 1. A step of mixing the recovered polyester resin (A) with a polyester resin (B) containing an aluminum compound and a phosphorus compound, wherein the polyester resin (A) satisfies the following (1) to (3), and the polyester A method for producing a polyester resin composition (C), wherein the resin (B) satisfies the following (4) to (6).
  • the polyester resin (A) contains at least one element selected from antimony, titanium, and germanium (2)
  • the total content of the antimony element, the titanium element, and the germanium element in the polyester resin (A) is 2 to 500 mass ppm (3)
  • the polyester resin (A) has an intrinsic viscosity of 0.5 to 0.8 dl/g (4)
  • the content of aluminum element in the polyester resin (B) is 9 to 20 mass ppm (5)
  • the content of phosphorus element in the polyester resin (B) is 13 to 31 mass ppm (6)
  • the residual molar ratio of the phosphorus element to the aluminum element in the polyester resin (B) is 1.32 or more and 1.80 or less. 1.
  • polyester resin (B) has an intrinsic viscosity of 0.56 dl/g or more;
  • the polyester resin (A) is 5 to 95 parts by mass with respect to a total of 100 parts by mass of the polyester resin (A) and the polyester resin (B). ⁇ 3.
  • a method for producing a hollow molded article (D), comprising the step of melt-molding the polyester resin composition (C) produced by the production method according to any one of the above. 6.
  • the polyester resin (A) contains at least one element selected from antimony, titanium, and germanium (2)
  • the total content of the antimony element, the titanium element, and the germanium element in the polyester resin (A) is 2 to 500 mass ppm (3)
  • the polyester resin (A) has an intrinsic viscosity of 0.5 to 0.8 dl/g (4)
  • the content of aluminum element in the polyester resin (B) is 9 to 20 mass ppm (5)
  • the content of phosphorus element in the polyester resin (B) is 13 to 31 mass ppm (6)
  • the residual molar ratio of the phosphorus element to the aluminum element in the polyester resin (B) is 1.32 or more and 1.80 or less. 6.
  • polyester resin (B) has an intrinsic viscosity of 0.56 dl/g or more; 3. A method for recycling the polyester resin (A) described in . 8. 6. above, wherein the phosphorus compound is 3,5-di-tert-butyl-4-hydroxybenzylphosphonic acid dialkyl ester; or 7. 3. A method for recycling the polyester resin (A) described in . 9. 6. The polyester resin (A) is 5 to 95 parts by mass with respect to a total of 100 parts by mass of the polyester resin (A) and the polyester resin (B). ⁇ 8. A method for recycling the polyester resin (A) according to any one of the above. 10.
  • a polyester resin composition (C) which is a mixture of the recovered polyester resin (A) and a polyester resin (B) containing an aluminum compound and a phosphorus compound, wherein the polyester resin (A) is the following (1) to ( A polyester resin composition (C) which satisfies 3) and wherein the polyester resin (B) satisfies the following (4) to (6).
  • the polyester resin (A) contains at least one element selected from antimony, titanium, and germanium (2)
  • the total content of the antimony element, the titanium element, and the germanium element in the polyester resin (A) is 2 to 500 mass ppm (3)
  • the polyester resin (A) has an intrinsic viscosity of 0.5 to 0.8 dl/g (4)
  • the content of aluminum element in the polyester resin (B) is 9 to 20 mass ppm (5)
  • the content of phosphorus element in the polyester resin (B) is 13 to 31 mass ppm (6)
  • the residual molar ratio of the phosphorus element to the aluminum element in the polyester resin (B) is 1.32 or more and 1.80 or less.11. 10.
  • the polyester resin (B) has an intrinsic viscosity of 0.56 dl/g or more.
  • the polyester resin composition (C) according to . 12. 10.
  • the phosphorus compound is 3,5-di-tert-butyl-4-hydroxybenzylphosphonic acid dialkyl ester. or 11.
  • the polyester resin (A) is 5 to 95 parts by mass with respect to a total of 100 parts by mass of the polyester resin (A) and the polyester resin (B). ⁇ 12.
  • a polyester resin composition (C) is prepared by mixing a polyester resin (B) containing predetermined amounts of an aluminum compound and a phosphorus compound with a recovered polyester resin (A) containing at least one element selected from antimony, titanium, and germanium.
  • a polyester resin composition (C) is prepared by mixing a polyester resin (B) containing predetermined amounts of an aluminum compound and a phosphorus compound with a recovered polyester resin (A) containing at least one element selected from antimony, titanium, and germanium.
  • a polyester resin composition (hereinafter sometimes referred to as a polyester resin composition (C)) is prepared by mixing the recovered polyester resin (A) with a polyester resin (B) containing an aluminum compound and a phosphorus compound. to manufacture.
  • the polyester resin (A) can be regenerated by mixing the recovered polyester resin (A) with the polyester resin (B) containing the aluminum compound and the phosphorus compound.
  • a polyester resin composition a mixture of a recovered polyester resin and a non-recovered polyester resin is referred to as a polyester resin composition.
  • polyester resin (A) The polyester resin (A) preferably contains ethylene terephthalate structural units in an amount of 50 mol% or more, more preferably 70 mol% or more, even more preferably 80 mol% or more, and 90 mol% or more. is particularly preferred.
  • the polyhydric carboxylic acid component other than terephthalic acid and the polyhydric alcohol component other than ethylene glycol the components described in the later-described polyester resin (B) can be used.
  • the polyester resin (A) contains at least one element selected from antimony, titanium, and germanium. Manufactured using a catalytic amount of catalyst.
  • the total content of the antimony element, the titanium element, and the germanium element in the polyester resin (A) is 2 to 500 mass ppm, preferably 5 to 400 mass ppm, and 10 to 300 mass ppm. More preferably, it is 50 to 250 ppm by mass. If it exceeds 500 ppm by mass, the intrinsic viscosity retention of the polyester resin composition (C), which will be described later, may become insufficient.
  • mass ppm means 10 ⁇ 4 mass %.
  • the polyester resin (A) is a recovered used polyester resin, and the shape of the polyester resin (A) is not limited, but it is preferably in a shape that is easy to mix with the polyester resin (B). , chips, flakes, powders, and the like.
  • the polyester resin (A) has an intrinsic viscosity of 0.5 to 0.8 dl/g or more, preferably 0.7 to 0.8 dl/g. If the intrinsic viscosity of the polyester resin (A) is less than the above, the mechanical strength and impact resistance of the polyester resin composition (C) produced using the polyester resin (A) may be insufficient. If the intrinsic viscosity of the polyester resin (A) exceeds the above range, molding may become difficult.
  • the intrinsic viscosity retention rate of the polyester resin (A) is preferably 92% or less, more preferably 91% or less, even more preferably 90% or less, and particularly preferably 89% or less.
  • the intrinsic viscosity retention rate of the polyester resin (A) exceeds 92%, there is a possibility that the effect of improving recyclability by blending the polyester resin (B) may be insufficient. A method for measuring the intrinsic viscosity retention rate will be described later.
  • the polyester resin (A) is preferably only a polyester resin produced using at least one polymerization catalyst selected from antimony compounds, titanium compounds, and germanium compounds. It may contain a polyester resin produced using the same, but preferably in a small amount.
  • the polyester resin produced using at least one polymerization catalyst selected from antimony compounds, titanium compounds, and germanium compounds in the polyester resin (A) preferably exceeds 50% by mass, and is 70% by mass or more. is more preferable, and 80% by mass or more is even more preferable.
  • polyester resin (B) contains an aluminum compound and a phosphorus compound, that is, the polyester resin (B) is produced using a catalytic amount of a polymerization catalyst comprising an aluminum compound and a phosphorus compound.
  • the polyester resin (B) is a recycled polyester resin that can be mixed with the recovered polyester resin (A) to recycle the polyester resin (A).
  • the polyester resin (B) is a polymer formed from at least one selected from polyhydric carboxylic acids and ester-forming derivatives thereof and at least one selected from polyhydric alcohols and ester-forming derivatives thereof.
  • the main polyvalent carboxylic acid component constituting the polyester resin (B) is a dicarboxylic acid.
  • the main polycarboxylic acid component is a dicarboxylic acid means that the dicarboxylic acid is contained in an amount of more than 50 mol% with respect to the total polycarboxylic acid component, and the dicarboxylic acid may be contained in an amount of 70 mol% or more. More preferably, it contains 80 mol % or more of dicarboxylic acid, and more preferably 90 mol % or more of dicarboxylic acid. In addition, when using two or more kinds of dicarboxylic acids, it is preferable that the total thereof is within the above range.
  • Dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, dodecanedicarboxylic acid, tetradecanedicarboxylic acid, hexadecanedicarboxylic acid, 1, 3-cyclobutanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2,5-norbornanedicarboxylic acid, dimer acid, etc.
  • saturated aliphatic dicarboxylic acids exemplified in or ester-forming derivatives thereof; unsaturated aliphatic dicarboxylic acids exemplified by fumaric acid, maleic acid, itaconic acid, or ester-forming derivatives thereof; terephthalic acid, 5-(alkali metal)sulfoisophthalic acid, diphenylic acid, 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2, 7-naphthalenedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, 4,4'-biphenylsulfonedicarboxylic acid, 4,4'-biphenyletherdicarboxylic acid, 1,2-bis(phenoxy)ethane-p,p'- aromatic dicarboxylic acids such as dicarboxylic acid, pa
  • the main polycarboxylic acid component is terephthalic acid or its ester-forming derivative or naphthalenedicarboxylic acid or its forming derivative.
  • Naphthalenedicarboxylic acids or ester-forming derivatives thereof include 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 2,7-naphthalenedicarboxylic acid. acids, or ester-forming derivatives thereof.
  • the main polyvalent carboxylic acid component is terephthalic acid or an ester-forming derivative thereof or naphthalene dicarboxylic acid or an ester-forming derivative thereof
  • the total content of naphthalene dicarboxylic acid or ester-forming derivative thereof is more than 50 mol%, preferably 70 mol% or more, more preferably 80 mol% or more, and 90 mol% or more. Containing is more preferable.
  • terephthalic acid 2,6-naphthalenedicarboxylic acid, and ester-forming derivatives thereof. If necessary, other dicarboxylic acids may be used as constituents.
  • a polycarboxylic acid other than these dicarboxylic acids a polycarboxylic acid having a valence of 3 or more and a hydroxycarboxylic acid may be used in combination as long as the amount is small, and a polycarboxylic acid having a valence of 3 to 4 is preferable.
  • polyvalent carboxylic acids include ethanetricarboxylic acid, propanetricarboxylic acid, butanetetracarboxylic acid, pyromellitic acid, trimellitic acid, trimesic acid, 3,4,3′,4′-biphenyltetracarboxylic acid, and these and ester-forming derivatives.
  • the polycarboxylic acid having a valence of 3 or more is preferably 20 mol % or less, more preferably 10 mol % or less, and still more preferably 5 mol % or less based on the total polycarboxylic acid component.
  • the total thereof is within the above range.
  • Hydroxycarboxylic acids include lactic acid, citric acid, malic acid, tartaric acid, hydroxyacetic acid, 3-hydroxybutyric acid, p-hydroxybenzoic acid, p-(2-hydroxyethoxy)benzoic acid, 4-hydroxycyclohexanecarboxylic acid, or these and ester-forming derivatives of
  • the hydroxycarboxylic acid content is preferably 20 mol % or less, more preferably 10 mol % or less, still more preferably 5 mol % or less, relative to the total polycarboxylic acid component. When two or more hydroxycarboxylic acids are used, the total is preferably within the above range.
  • ester-forming derivatives of polyvalent carboxylic acids or hydroxycarboxylic acids include their alkyl esters, acid chlorides, acid anhydrides, and the like.
  • the main polyhydric alcohol component constituting the polyester resin (B) is glycol.
  • the main polyhydric alcohol component is glycol means that the glycol content is more than 50 mol%, preferably 70 mol% or more, more preferably 80 mol% or more, relative to the total polyhydric alcohol component. It is more preferable to contain 90 mol % or more. In addition, when using two or more kinds of glycols, it is preferable that the total thereof is within the above range.
  • Glycols include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, diethylene glycol, triethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 1,3-butylene glycol, 4-butylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanediol alkylene glycols exemplified by methanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediethanol, 1,10-decamethylene glycol, 1,12-dodecanediol; polyethylene glycol; Aliphatic glycols
  • alkylene glycol is preferred, and ethylene glycol, 1,3-propylene glycol, 1,4-butylene glycol, or 1,4-cyclohexanedimethanol are more preferred.
  • the alkylene glycol may contain a substituent or an alicyclic structure in the molecular chain, and two or more of them may be used at the same time.
  • trihydric or higher polyhydric alcohols may be used in combination as long as they are in small amounts, and trihydric to tetrahydric polyhydric alcohols are preferred.
  • Trimethylolmethane, trimethylolethane, trimethylolpropane, pentaerythritol, glycerol, hexanetriol and the like are examples of trihydric or higher polyhydric alcohols.
  • the trihydric or higher polyhydric alcohol is preferably 20 mol% or less, more preferably 10 mol% or less, still more preferably 5 mol% or less, relative to the total polyhydric alcohol component.
  • the total is preferably within the above range.
  • Cyclic esters include ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -methyl- ⁇ -propiolactone, ⁇ -valerolactone, glycolide, lactide and the like.
  • ester-forming derivatives of polyhydric alcohols include esters of polyhydric alcohols with lower aliphatic carboxylic acids such as acetic acid.
  • the cyclic ester content is preferably 20 mol% or less, more preferably 10 mol% or less, and still more preferably 5 mol% or less, based on the total of all polyhydric carboxylic acid components and all polyhydric alcohol components.
  • the polyester resin (B) is a polymer consisting of only one monomer selected from ethylene terephthalate, butylene terephthalate, propylene terephthalate, 1,4-cyclohexanedimethylene terephthalate, ethylene naphthalate, butylene naphthalate, or propylene naphthalate. It is preferably a coalescence or a copolymer composed of two or more of the above monomers, and the polyester resin (B) is polyethylene terephthalate or a copolymer composed of ethylene terephthalate and at least one of the above monomers other than ethylene terephthalate. is more preferred, and polyethylene terephthalate is particularly preferred.
  • a copolymer composed of ethylene terephthalate and at least one of the above monomers other than ethylene terephthalate preferably contains 70 mol% or more, more preferably 80 mol% or more, and 90 mol of components derived from ethylene terephthalate monomers. % or more is more preferable.
  • the polyester resin (B) is produced using a polymerization catalyst comprising an aluminum compound and a phosphorus compound.
  • the aluminum compound that constitutes the polymerization catalyst of the polyester resin (B) is not limited as long as it dissolves in a solvent, and known aluminum compounds can be used without limitation.
  • Aluminum compounds such as aluminum formate, aluminum acetate, basic aluminum acetate, aluminum propionate, aluminum oxalate, aluminum acrylate, aluminum laurate, aluminum stearate, aluminum benzoate, aluminum trichloroacetate, aluminum lactate, citric acid Carboxylate such as aluminum, aluminum tartrate, aluminum salicylate; inorganic acid salts such as aluminum chloride, aluminum hydroxide, aluminum hydroxychloride, aluminum nitrate, aluminum sulfate, aluminum carbonate, aluminum phosphate, aluminum phosphonate; aluminum methoxide , aluminum ethoxide, aluminum n-propoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum t-butoxide, etc.
  • At least one selected from carboxylates, inorganic acid salts, and chelate compounds is preferred, and among these, aluminum acetate, basic aluminum acetate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride, and aluminum acetylacetate more preferably at least one selected from aluminum acetate, basic aluminum acetate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride, and aluminum acetylacetonate, aluminum acetate and a base At least one selected from the group consisting of aluminum acetates is particularly preferred, and basic aluminum acetate is most preferred.
  • the above aluminum compound is preferably an aluminum compound that is solubilized in a solvent such as water or glycol.
  • Solvents that can be used in the production of the polyester resin (B) are water and alkylene glycols.
  • Alkylene glycols include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, trimethylene glycol, ditrimethylene glycol, tetramethylene glycol, ditetramethylene glycol, neopentyl glycol, and the like.
  • it is at least one selected from water, ethylene glycol, trimethylene glycol, and tetramethylene glycol, and more preferably water or ethylene glycol.
  • the aluminum element content in the polyester resin (B) is 9 to 20 mass ppm, preferably 9 to 19 mass ppm, more preferably 10 to 17 mass ppm, still more preferably 12 to 17 mass ppm. If the aluminum element content is less than 9 ppm by mass, the polymerization activity may not be sufficiently exhibited. On the other hand, if it exceeds 20 mass ppm, the amount of aluminum-based contaminants may increase due to the relationship with the content of phosphorus element, which will be described later, and in addition, the cost of the catalyst increases.
  • the phosphorus compound constituting the polymerization catalyst of the polyester resin (B) is not particularly limited, but phosphonic acid-based compounds and phosphinic acid-based compounds are preferably used because they have a large effect of improving catalytic activity. It is more preferable to use a compound because the effect of improving the catalytic activity is particularly large.
  • a phosphorus compound having a phosphorus element and a phenol structure in the same molecule is preferable.
  • a phosphorus compound having a phosphorus element and a phenol structure in the same molecule but a phosphonic acid compound having a phosphorus element and a phenol structure in the same molecule, and a phosphine having a phosphorus element and a phenol structure in the same molecule
  • R 1 represents a hydrocarbon group of 6 to 50 carbon atoms containing a phenol moiety, a substituent such as a hydroxyl group, a halogen group, an alkoxyl group or an amino group, and a hydrocarbon group of 6 to 50 carbon atoms containing a phenol structure.
  • R 4 represents a hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon group having 1 to 50 carbon atoms containing a substituent such as a hydroxyl group, a halogen group, an alkoxyl group, or an amino group.
  • R 2 and R 3 each independently represent hydrogen, a hydrocarbon group of 1 to 50 carbon atoms, a hydrocarbon group of 1 to 50 carbon atoms containing a substituent such as a hydroxyl group or an alkoxyl group.
  • the hydrocarbon group may contain a branched structure, an alicyclic structure such as cyclohexyl, or an aromatic ring structure such as phenyl or naphthyl. The ends of R 2 and R 4 may be bonded together.
  • Phosphorus compounds having a phosphorus element and a phenol structure in the same molecule include, for example, p-hydroxyphenylphosphonic acid, dimethyl p-hydroxyphenylphosphonate, diethyl p-hydroxyphenylphosphonate, diphenyl p-hydroxyphenylphosphonate, bis (p-hydroxyphenyl)phosphinic acid, methyl bis(p-hydroxyphenyl)phosphinate, phenyl bis(p-hydroxyphenyl)phosphinate, p-hydroxyphenylphosphinic acid, methyl p-hydroxyphenylphosphinate, p-hydroxyphenyl and phenyl phosphinate.
  • a phosphorus element and a hindered phenol structure an alkyl group having a tertiary carbon (preferably a t-butyl group, thexyl An alkyl group having a tertiary carbon such as a group at the benzylic position; a neopentyl group, etc.) is bonded to one or two ortho positions of a hydroxyl group).
  • the phosphorus compound used in the production of the polyester resin (B) is preferably dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate represented by the following (chemical formula B).
  • modified forms of dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate may also be included. Details of the modified product will be described later.
  • X 1 and X 2 each represent hydrogen and an alkyl group having 1 to 4 carbon atoms.
  • a polyester resin in which at least one hindered phenol structure can be detected by the P-NMR measurement method of a solution dissolved in a hexafluoroisopropanol-based solvent is referred to as "having a hindered phenol structure.” That is, the polyester resin (B) is preferably a polyester resin produced using a phosphorus compound having a phosphorus element and a hindered phenol structure in the same molecule as a polymerization catalyst. A method for detecting the hindered phenol structure in the polyester resin (B) (P-NMR measurement method) will be described later.
  • both X 1 and X 2 are preferably alkyl groups having 1 to 4 carbon atoms, more preferably alkyl groups having 1 to 2 carbon atoms.
  • the ethyl ester having 2 carbon atoms is preferable because Irganox 1222 (manufactured by BASF) is commercially available and easily available.
  • the phosphorus compound after heat-treating it in a solvent. Details of the heat treatment will be described later.
  • the phosphorus compound when dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, which is the phosphorus compound shown in the above (Chemical Formula B), is used, in the above heat treatment, the reaction shown in (Chemical Formula B) A part of dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, which is a phosphorus compound, undergoes a structural change.
  • the phosphorus compound includes structurally modified phosphorus compounds in addition to dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate represented by (Chemical Formula B).
  • elimination of the t-butyl group remarkably occurs at high temperature in the polymerization process.
  • diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate when diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate is used as the phosphorus compound, part of diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate has the structure Nine phosphorus compounds that have been altered are shown. The component amount of each structurally-changed phosphorus compound in the glycol solution can be quantified by the P-NMR measurement method.
  • 3,5-di-tert-butyl-4-hydroxybenzylphosphonate 3,5-di-tert-butyl-4-hydroxy 3,5-di-tert-butyl-4-hydroxy compounds represented by the above nine chemical formulas can be used as phosphorus compounds in the present invention.
  • Modified dialkyl benzylphosphonates may also be included.
  • the polyester resin contains 9 types of phosphorus compound residues shown in Table 1 below.
  • the polyester resin (B) has a phosphorus element and a hindered phenol structure in the same molecule. It can be said that it is a polyester resin produced by using a phosphorus compound having a polymerization catalyst. By using a phosphorus compound having a hindered phenol structure, sufficient polymerization activity can be exhibited while suppressing the cost of the catalyst.
  • the content of the phosphorus element in the polyester resin (B) is 13 to 31 mass ppm, preferably 15 to 29 mass ppm, more preferably 16 to 28 mass ppm. If the elemental phosphorus content is less than 13 ppm by mass, the polymerization activity may decrease and the amount of aluminum-based contaminants may increase. On the other hand, if it exceeds 31 ppm by mass, the polymerization activity may be lowered, the amount of the phosphorus compound added may be increased, and the catalyst cost may be increased.
  • the molar ratio of the phosphorus element to the aluminum element (hereinafter referred to as the "remaining molar ratio of the phosphorus element to the aluminum element" in order to distinguish from the “addition molar ratio of the phosphorus element to the aluminum element” described later) is 1.32 to 1.80, preferably 1.38 to 1.68.
  • the aluminum element and the phosphorus element in the polyester resin (B) are respectively derived from the aluminum compound and the phosphorus compound used as the polymerization catalyst for the polyester resin (B).
  • the resin produced using a polymerization catalyst consisting of an aluminum compound and a phosphorus compound has a higher catalyst cost (higher production cost) than a polyester resin produced using a catalyst such as an antimony catalyst.
  • a catalyst cost high production cost
  • the aluminum compound and the phosphorus compound together in a specific ratio sufficient polymerization activity can be exhibited while suppressing the cost of the catalyst. If the residual molar ratio of elemental phosphorus to elemental aluminum is less than 1.32, the thermal stability and thermal oxidation stability may decrease, and the amount of aluminum-based contaminants may increase. On the other hand, if the residual molar ratio of elemental phosphorus to elemental aluminum exceeds 1.80, the amount of phosphorus compound added becomes too large, resulting in an increase in catalyst cost.
  • the polymerization catalyst used for the production of the polyester resin (B) in addition to the above-mentioned aluminum compound and phosphorus compound, other polymerization catalysts such as antimony compounds, germanium compounds, and titanium compounds are used to improve the properties and workability of the polyester resin (B). , color tone, etc., may be used in combination within a range that does not cause problems with the product.
  • the content of the antimony element in the polyester resin (B) is preferably 30 ppm by mass or less
  • the content of the germanium element in the polyester resin (B) is preferably 10 ppm by mass or less
  • the polyester resin (B ) is preferably 3 ppm by mass or less.
  • the content of the aluminum element corresponding to the aluminum-based foreign matter in the polyester resin (B) is preferably 3000 mass ppm or less, more preferably 2800 mass ppm or less, still more preferably 2000 mass ppm or less, and more More preferably, it is 1500 mass ppm or less.
  • the aluminum-based foreign matter originates from the aluminum compound used as the polymerization catalyst, and is a foreign matter insoluble in the polyester resin (B). If the content of the aluminum-based foreign matter exceeds the above range, fine foreign matter insoluble in the polyester resin (B) may cause deterioration in the quality of the molded product. In addition, it also leads to the problem that filter clogging increases during polyester filtration in the polycondensation process and the molding process.
  • a preferred lower limit for the content of the aluminum element corresponding to the aluminum-based foreign matter is 0 ppm by mass, but is about 300 ppm by mass due to technical difficulties.
  • this index is based on the amount of aluminum element and relatively evaluates the amount of aluminum-based foreign matter. It does not indicate the absolute value of the amount of aluminum-based contaminants contained in the polyester resin.
  • the intrinsic viscosity of the polyester resin (B) is preferably 0.56 dl/g or more, more preferably 0.56 to 0.90 dl/g, and more preferably 0.60 to 0.80 dl/g. It is more preferably 0.65 to 0.75 dl/g, and particularly preferably 0.65 to 0.75 dl/g. If the intrinsic viscosity of the polyester resin (B) is less than 0.56 dl/g, there is a risk that a large amount of fines will be generated due to friction between the polyester resin pellets and the air feeding pipe when the polyester resin (B) is air-fed.
  • polyester resin (B) having an intrinsic viscosity exceeding 0.62 dl/g is to be produced only by melt polymerization, the economic efficiency may decrease.
  • B) it is preferable to polymerize the polyester resin (B) obtained by melt polymerization by a solid phase polymerization method.
  • the intrinsic viscosity retention rate of the polyester resin (B) is preferably 93% or more, more preferably 94% or more, and even more preferably 95% or more. If the intrinsic viscosity retention rate of the polyester resin (B) is less than 93%, the intrinsic viscosity retention rate of the polyester resin composition (C) may be low, resulting in insufficient recyclability. Although the upper limit of the intrinsic viscosity retention rate of the polyester resin (B) is preferably 100%, it is about 99% due to technical difficulties.
  • the polyester resin composition (C) is preferably produced by mixing the polyester resin (A) and the polyester resin (B) at a mass ratio of 5:95 to 95:5. That is, in the polyester resin composition (C), it is preferable that the polyester resin (A) is 5 to 95 parts by mass with respect to a total of 100 parts by mass of the polyester resin (A) and the polyester resin (B). Within the above range, coloring of the polyester resin composition (C) and reduction in molecular weight can be suppressed. In this specification, suppression of coloration refers to suppression of a decrease in the L value described later and an increase in the b value described later even when the number of recycling times is repeated (re-kneading is repeated).
  • the blending ratio of the polyester resin (A) exceeds 95 parts by mass, the intrinsic viscosity retention rate of the polyester resin composition (C) may become low, resulting in insufficient recyclability.
  • the blending ratio of the polyester resin (A) is less than 5 parts by mass, there is a possibility that the effect of suppressing coloration will saturate and the economy will decrease.
  • the polyester resin (B) is produced using a polymerization catalyst comprising an aluminum compound and a phosphorus compound, even if the residual molar ratio of the phosphorus element to the aluminum element is within the above predetermined range, The cost of the catalyst is higher (higher manufacturing cost) than the polyester resin produced using a catalyst such as an antimony catalyst, but the polyester resin (A) and the polyester resin (B) can be used in combination. Recyclability can also be improved while suppressing manufacturing costs. In the present invention, the production cost of the polyester resin (B) is reduced as much as possible.
  • the mass ratio of polyester resin (A) to polyester resin (B) is more preferably 20:80 to 80:20, and even more preferably 25:75 to 75:25.
  • the polyester resin composition (C) can be produced by dry-blending the polyester resin (A) and the polyester resin (B).
  • the polyester resin composition (C) may be produced by kneading the polyester resin (A) and the polyester resin (B) by a melt extrusion method.
  • general The polyester resin composition (C) can be produced by melting and kneading using a kneading apparatus for resins.
  • a twin-screw extruder, a four-screw extruder, a single-screw planetary extruder, and the like, which are excellent in surface renewal are preferred.
  • the extruder has at least one or more, preferably two or more, more preferably three or more vent ports, and the vent ports are connected to a reduced pressure system to prevent deterioration of the polyester resin composition (C). Suppression is the preferred embodiment.
  • the intrinsic viscosity of the polyester resin composition (C) is preferably 0.56 to 0.90 dl/g, preferably 0.60 to 0.80 dl/g, and 0.70 to 0.75 dl/g. g is more preferred. If the intrinsic viscosity of the polyester resin composition (C) exceeds 0.90 dl/g, there is a possibility that the economic efficiency will decrease.
  • the intrinsic viscosity retention rate of the polyester resin composition (C) is preferably 89% or more, more preferably 90% or more, still more preferably 92% or more, particularly 94% or more. preferable. If the intrinsic viscosity retention rate of the polyester resin composition (C) is less than 89%, the recyclability may be insufficient. Although the upper limit of the intrinsic viscosity retention rate of the polyester resin composition (C) is preferably 100%, it is about 99% due to technical difficulties. Moreover, the intrinsic viscosity retention rate of the polyester resin composition (C) is preferably higher than the intrinsic viscosity retention rate of the polyester resin (A).
  • the re-kneaded product obtained by re-kneading the polyester resin composition (C) only once refers to the intrinsic viscosity retention rate.
  • the physical properties of the polyester resin composition (C) refer to physical properties of a re-kneaded product obtained by re-kneading the polyester resin composition (C) only once, unless otherwise specified for physical properties other than the intrinsic viscosity retention rate. .
  • the amount of CT (cyclic trimer) contained in the re-kneaded product obtained by re-kneading the polyester resin composition (C) once is preferably 6600 ppm or less. It is more preferably 6400 ppm or less, still more preferably 6000 ppm or less. Although the lower limit is not limited, it is about 2500 ppm due to technical difficulties. If the CT amount exceeds 6600 ppm, there is a possibility that mold contamination will increase during molding.
  • the value obtained by subtracting the CT amount of the re-kneaded product obtained by re-kneading the polyester resin composition (C) once from the CT amount of the re-kneaded product obtained by re-kneading the polyester resin composition (C) three times ( ⁇ CT) is 900 ppm or less.
  • It is more preferably 700 ppm or less, still more preferably 600 ppm or less.
  • the lower limit is preferably 0 ppm, it is about 200 ppm due to technical difficulties. If ⁇ CT exceeds 900 ppm, there is a possibility that mold contamination during molding will increase.
  • the polyester resin composition (C) contains the polyester resin (B) produced using the above Irganox 1222 as a phosphorus compound
  • the polyester resin composition (C) is subjected to the P-NMR measurement method. At least one of the nine hindered phenol structures shown in 1 is detected. The same is true when a phosphorus compound having a phosphorus element and a hindered phenol structure in the same molecule other than Irganox 1222 is used as a polymerization catalyst.
  • the method for producing the hollow molded article (D) is not particularly limited. (direct molding method) and the like.
  • the polyester resin (B) is produced using a polymerization catalyst composed of an aluminum compound and a phosphorus compound, the cost of the catalyst is higher than that of the polyester resin produced using a catalyst such as an antimony catalyst. (Manufacturing cost is high), but by manufacturing the hollow molded article (D) by using the polyester resin (A) and the polyester resin (B) together, it is possible to reduce the manufacturing cost and improve the recyclability. can. In the present invention, the production cost of the polyester resin (B) is reduced as much as possible. When the blending ratio of the polyester resin (A) is increased, the manufacturing cost of the hollow molded article (D) can be suppressed, but the color tone deteriorates as the number of recycling times increases.
  • the blending ratio of the polyester resin (B) may be appropriately set according to market requirements, but the mass ratio of the polyester resin (A) and the polyester resin (B) is 5:95 to 95:5. It is preferable to mix them to produce the hollow molded article (D).
  • the field of application of the hollow molded body (D) is not particularly limited, but it can be used for mineral water, juice, wine, whiskey and other beverage containers, household and dishwashing detergent containers, baby bottles, bottled food containers, hair styling products, cosmetics, and the like. It can be used as various containers and the like.
  • the hollow molded article (D) is produced by molding a blend containing the high-quality polyester resin composition (C) or the high-quality polyester resin (B). Even if it is collected and recycled after being used as a container, the polyester resin can be reused while maintaining its high quality. can contribute to problem solving.
  • the method for producing the hollow molded body is not particularly limited.
  • a blend obtained by blending the polyester resin (A) and the polyester resin (B) by dry blending or the like is dried by a vacuum drying method or the like, and then extruded or extruded.
  • a bottomed preform is obtained by a method of molding with a molding machine such as an injection molding machine, or a method of molding by introducing the melt of the polyester resin composition (C) in a molten state into a molding machine.
  • a final hollow molded article can be produced from the preformed article by a blow molding method such as stretch blow molding, direct blow molding, or extrusion blow molding.
  • a molded article obtained by a molding machine such as the extrusion molding machine or the injection molding machine may be used as the final hollow molded article.
  • the hollow molded body can have a multi-layered structure provided with a gas barrier layer such as polyvinyl alcohol or poly-meta-xylylenediamine adipate, a light-shielding resin layer, and the like. It is also possible to coat the inside and outside of the container with a layer of metal such as aluminum or diamond-like carbon using a method such as PVD (physical vapor deposition) or CVD (chemical vapor deposition).
  • a gas barrier layer such as polyvinyl alcohol or poly-meta-xylylenediamine adipate, a light-shielding resin layer, and the like.
  • a layer of metal such as aluminum or diamond-like carbon using a method such as PVD (physical vapor deposition) or CVD (chemical vapor deposition).
  • the polyester resin composition (C) may be molded into the hollow molded article (D) by the above method. It may be molded into a hollow molded body (D) after drying.
  • the above-mentioned polyester resin composition (C) or a blend obtained by dry blending the polyester resin (A) and the polyester resin (B) has a suppressed intrinsic viscosity retention rate and a reduced degree of coloring.
  • D can also be suitably used for other products such as fibers, non-woven fabrics, sheets and films.
  • the content of aluminum element in the polyester resin (B) is 9 to 20 mass ppm (5)
  • the content of phosphorus element in the polyester resin (B) is 13 to 31 mass ppm (6)
  • the residual molar ratio of the phosphorus element to the aluminum element in the polyester resin (B) is 1.32 or more and 1.80 or less
  • the polyester resin (B) As a method for producing the polyester resin (B), a first step of synthesizing a polyester or an oligomer thereof, which is a polycondensate (low-order condensate) as an intermediate, and a second step of further polycondensing the intermediate. It is preferable to have
  • a solution S in which an aluminum compound is dissolved in the intermediate and a solution T in which a phosphorus compound is dissolved are mixed so as to satisfy the following (7) to (9). It is preferable to add to Polyvalent carboxylic acids and ester-forming derivatives thereof used in the production of the polyester resin (B), hydroxycarboxylic acids that may be added in small amounts and ester-forming derivatives thereof, and cyclic esters that may be added in small amounts are added during polymerization. , and almost 100% of the amount initially added to the system as a catalyst remains in the polyester resin (B) produced by polymerization. It is possible to calculate the mass of the "polyester resin to be used".
  • the amount of aluminum element added to the produced polyester resin (B) is 9 to 20 mass ppm (more preferably 9 to 19 mass ppm, still more preferably 10 to 17 mass ppm, particularly preferably 12 to 17 mass ppm).
  • the amount of phosphorus element added to the polyester resin (B) to be produced is 20 to 40 mass ppm (more preferably 20 to 38 mass ppm, more preferably 21 to 36 mass ppm).
  • the molar ratio of the added amount of phosphorus element in (8) to the added amount of aluminum element in (7) (hereinafter referred to as "the added molar ratio of phosphorus element to aluminum element") is 1.50 or more. 50 or less (more preferably 1.50 to 2.30, more preferably 1.60 to 2.20)
  • the method for producing the polyester or its oligomer, which is a low-order condensate (low polymer) synthesized in the first step is not particularly limited.
  • the method for producing the polyester resin (B) is to be carried out by a method comprising conventionally known steps, except that a polyester polymerization catalyst comprising an aluminum compound and a phosphorus compound is used as a catalyst and that the addition amount of the polyester polymerization catalyst is noted. can be done.
  • a polyester polymerization catalyst comprising an aluminum compound and a phosphorus compound
  • other copolymer components are directly reacted to distill off water and esterify, followed by polycondensation under normal pressure or reduced pressure.
  • the amount (mass) of the polyester resin (B) to be produced can be calculated from the amount (mass) of polyvalent carboxylic acid containing dicarboxylic acid or the like used as a raw material.
  • esterification reaction or transesterification reaction may be carried out in one step or in multiple steps.
  • polyester resin produced by the melt polymerization method may be additionally polymerized by the solid phase polymerization method.
  • the solid-phase polymerization reaction can be carried out in a continuous apparatus like the melt polycondensation reaction.
  • the first stage is the initial stage
  • the final stage is the late stage
  • from the second stage The stage immediately before the final stage is defined as an intermediate stage
  • the reaction conditions for the polymerization reaction in the intermediate stage are preferably between the reaction conditions for the initial stage and the reaction conditions for the final stage.
  • the degree of increase in intrinsic viscosity achieved in each of these polymerization reaction steps is smoothly distributed.
  • Solid phase polymerization method In order to increase the intrinsic viscosity, a polyester resin produced by a melt polymerization method may be solid phase polymerized.
  • the solid phase polymerization may be a batch polymerization method or a continuous polymerization method, but the solid phase polymerization is preferably carried out in a continuous apparatus like the melt polymerization.
  • the polyester resin produced by the melt polymerization method by the solid phase polymerization method.
  • Solid phase polymerization is carried out by converting the polyester obtained in the second step (melt polymerization) into powder.
  • Granules mean chips, pellets, flakes and powdered polyester, preferably chips or pellets.
  • the above solid phase polymerization is carried out by heating the powdery polyester at a temperature below the melting point of the polyester under inert gas flow or under reduced pressure.
  • the solid phase polymerization process may be carried out in one step, or may be carried out in multiple steps.
  • the powdery polyester supplied to the solid-phase polymerization step may be preliminarily crystallized by heating to a temperature lower than the temperature at which the solid-phase polymerization is performed, and then supplied to the solid-phase polymerization step.
  • Such a preliminary crystallization step may be carried out by heating the powdery and granular polyester in a dry state to a temperature of usually 120 to 200°C, preferably 130 to 180°C for 1 minute to 4 hours, or the powdery and granular polyester may be It may be carried out by heating at a temperature of usually 120 to 200° C. for 1 minute or longer in a steam atmosphere, a steam-containing inert gas atmosphere, or a steam-containing air atmosphere.
  • the polyester melt-polymerized as described above is, for example, chipped and then transported to a storage silo or a solid-phase polymerization process in a transport pipe.
  • chips are transported by, for example, a forced low-density transport method using air, a large impact force is applied to the surface of the melt-polymerized polyester chips due to collision with piping, resulting in fine or film-like particles.
  • Such fines and films have the effect of promoting the crystallization of the polyester, and when present in a large amount, the transparency of the resulting molded product is very poor. Therefore, adding a step of removing such fines and films is one of the preferred embodiments.
  • the method for removing the above fines and film-like substances is not limited, but for example, a vibrating sieve step separately installed in an intermediate step between the solid phase polymerization step and a post-process installed after the solid phase polymerization step and Examples include a method of treating by an air classification process using an air flow, a gravity classification process, and the like.
  • aluminum compounds and phosphorus compounds are used as catalysts, they are preferably added in the form of a slurry or a solution, more preferably a solution dissolved in a solvent such as water or glycol, and a solution dissolved in water and/or glycol is used. more preferably, and most preferably a solution in ethylene glycol is used.
  • the content (residual amount) of the solution S in which the aluminum compound is dissolved and the solution T in which the phosphorus compound is dissolved in the polyester resin (B) at any stage up to the start of the polymerization reaction in the manufacturing process of the polyester resin (B) is the above. It is preferable to add in a range that satisfies (4) to (6).
  • the catalyst amount A complex having catalytic activity is functionally formed in the polymerization system while (catalyst cost) is kept low, and sufficient polymerization activity can be exhibited. Also, the generation of aluminum-based foreign matter can be suppressed.
  • the solution S in which the aluminum compound is dissolved and the solution T in which the phosphorus compound is dissolved it is a more preferable embodiment to prepare a mixed liquid by mixing in and add the one-liquid mixed liquid to the intermediate.
  • the method of making one solution in advance include a method of mixing the respective solutions in a tank, a method of joining the pipes to which the catalyst is added in the middle and mixing the solutions, and the like.
  • the solution S in which the aluminum compound is dissolved and the solution T in which the phosphorus compound is dissolved are preferably added before the start of the polymerization reaction and after the completion of the esterification reaction or the transesterification reaction, and after the first step. It is more preferable to add a solution S in which an aluminum compound is dissolved and a solution T in which a phosphorus compound is dissolved to the intermediate before the second step. If it is added before the completion of the esterification reaction or transesterification reaction, the amount of aluminum-based contaminants may increase.
  • the polyester resin (B) comprises at least one selected from polyhydric carboxylic acids and ester-forming derivatives thereof and at least one selected from polyhydric alcohols and ester-forming derivatives thereof
  • the aluminum compound is dissolved.
  • the solution S obtained by dissolving the aluminum compound is preferably a glycol solution in which the aluminum compound is dissolved
  • the solution T in which the phosphorus compound is dissolved is preferably a glycol solution in which the phosphorus compound is dissolved.
  • the phosphorus compound used in the production of the polyester resin (B) is preferably heat-treated in a solvent.
  • the solvent to be used is not limited as long as it is at least one selected from the group consisting of water and alkylene glycol.
  • alkylene glycol it is preferable to use a solvent that dissolves a phosphorus compound, and a polyester resin such as ethylene glycol ( It is more preferable to use glycol as a component of B).
  • the heat treatment in the solvent is preferably performed after dissolving the phosphorus compound, but it does not have to be completely dissolved.
  • the heat treatment temperature is preferably 170 to 196°C, more preferably 175 to 185°C, and still more preferably 175 to 180°C.
  • the heat treatment time is preferably 30 to 240 minutes, more preferably 50 to 210 minutes.
  • the concentration of the phosphorus compound during the heat treatment is preferably 3 to 10% by mass.
  • the acidity of the phosphorus compound contained in the glycol solution can be made constant, the polymerization activity is improved by using it together with the aluminum compound, and the amount of aluminum-based foreign matter caused by the polymerization catalyst is suppressed.
  • the amount of the phosphorus compound distilled off in the polymerization process can be suppressed, and the economic efficiency can be improved. Therefore, it is preferable to perform the above heat treatment.
  • IV Intrinsic viscosity
  • polyester resin (B) was subjected to wet decomposition with sulfuric acid, nitric acid and perchloric acid, and then neutralized with aqueous ammonia. After adding ammonium molybdate and hydrazine sulfate to the prepared solution, absorbance at a wavelength of 830 nm was measured using an ultraviolet-visible spectrophotometer (UV-1700, manufactured by Shimadzu Corporation). The concentration of elemental phosphorus in the polyester resin (B) was obtained from a previously prepared calibration curve.
  • UV-1700 ultraviolet-visible spectrophotometer
  • polyester resin (B) 30 g of polyester resin (B) and 250 mL of a mixed solution of p-chlorophenol/tetrachloroethane (3/1: mass ratio) were placed in a 500 mL Erlenmeyer flask containing a stirrer. It was charged and melted by heating at 100 to 105° C. for 1.5 hours using a hot stirrer. Foreign matter was removed from the solution using a polytetrafluoroethylene membrane filter (Advantec PTFE membrane filter, product name: T100A047A) with a diameter of 47 mm and a pore size of 1.0 ⁇ m. The effective filtration diameter was 37.5 mm.
  • Advanced PTFE membrane filter Advanced PTFE membrane filter
  • the filter was washed with 50 mL of chloroform and then dried.
  • the amount of aluminum element on the filtered surface of the membrane filter was quantified with a scanning fluorescent X-ray analyzer (manufactured by RIGAKU, ZSX100e, Rh line ball 4.0 kW). Quantitation was performed on a central portion of the membrane filter with a diameter of 30 mm.
  • the calibration curve for the fluorescent X-ray analysis method was determined using a polyethylene terephthalate resin with a known aluminum element content, and the apparent aluminum element content was expressed in ppm.
  • the measurement was carried out by measuring the Al-K ⁇ ray intensity under the conditions of X-ray output of 50 kV-70 mA, pentaerythritol as an analyzing crystal, PC (proportional counter) as a detector, and PHA (pulse height analyzer) of 100-300. .
  • the amount of aluminum element in the polyethylene terephthalate resin for the calibration curve was quantified by high frequency inductively coupled plasma emission spectrometry.
  • Apparatus Fourier transform nuclear magnetic resonance apparatus (BRUKER, AVANCE500) 31P resonance frequency: 202.456MHz Lock solvent: deuterated benzene Flip angle of detection pulse: 65° Data acquisition time: 1.5 seconds Delay time: 0.5 seconds Proton decoupling: Full decoupling Measurement temperature: 25-35°C Cumulative number: about 20,000 to 30,000 The peak wavelengths of the chemical formula number residues shown in Table 1 are shown below. When these peak wavelengths were detected, it was determined that the sample had a hindered phenol structure.
  • Chemical formula 1 34.5 ppm, chemical formula 4: 30.5 ppm, chemical formula 7: 53.6 ppm Chemical formula 2: 33.8 ppm, Chemical formula 5: 30.1 ppm, Chemical formula 8: 53.0 ppm Chemical formula 3: 31.9 ppm, chemical formula 6: 28.7 ppm, chemical formula 9: 51.3 ppm
  • Measurement method JIS Z8722 compliant Transmitted light 0 degree, -0 degree method
  • Detection element Silicon photodiode array
  • Light source Halogen lamp 12V100W 2000H
  • Measurement area transmission 25mm ⁇ Humidity and temperature conditions: 25°C, RH50%
  • Measurement cell ⁇ 35mm, height 25mm
  • polyester resin (A-1) 20 mg of polyester resin (A-1) was dissolved in 0.6 ml of a mixed solvent in which heavy hexafluoroisopropanol and heavy chloroform were mixed at a ratio of 1:9 (volume ratio), Centrifugation was performed. After that, the supernatant was collected and subjected to 1 H-NMR measurement under the following conditions.
  • Apparatus Fourier transform nuclear magnetic resonance apparatus (manufactured by BRUKER, AVANCE NEO600) 1H resonance frequency: 600.13MHz Lock solvent: heavy chloroform
  • Lock solvent heavy chloroform
  • Polyester resin (B'-1) (a polyester resin for reference example, which is the residual amount of aluminum element and the residual amount of phosphorus element, which were conventionally considered optimal)
  • a 10 L stainless steel autoclave equipped with a stirrer was charged with pre-mixed polyester oligomer consisting of high-purity terephthalic acid and ethylene glycol with an esterification rate of about 95%, and high-purity terephthalic acid, and an esterification reaction was carried out at 260 ° C. , to obtain an oligomer mixture.
  • the resulting oligomer mixture had an acid end group concentration of 750 eq/ton and a hydroxyl group end ratio (OH %) of 59 mol %.
  • oligomer mixture To the resulting oligomer mixture was added a mixture obtained by mixing the aluminum-containing ethylene glycol solution s and the phosphorus-containing ethylene glycol solution t prepared by the above method to form a one-liquid mixture.
  • the mixed solution was prepared so that the aluminum element and the phosphorus element were 21 mass ppm and 58 mass ppm, respectively, relative to the mass of the oligomer mixture.
  • the added molar ratio of the phosphorus element to the aluminum element was 2.41.
  • the amount of polyester resin to be produced can be calculated from the amount of terephthalic acid to be added.
  • the mixture is added so that the After that, the temperature of the system was raised to 280° C. in 1 hour, and the pressure of the system was gradually reduced to 0.15 kPa during this time.
  • a polyester resin was obtained. Thereafter, the obtained polyester resin is solid-phase polymerized at 230° C. under reduced pressure for 7 hours using a batch-type solid-phase polymerization apparatus, and a polyester resin (B′- 1) was obtained.
  • the residual amount of aluminum element was 21 mass ppm
  • the residual amount of phosphorus element was 45 mass ppm
  • the residual molar ratio of phosphorus element to aluminum element was 1.87.
  • the content of the aluminum element corresponding to the aluminum foreign matter in the polyester resin (B'-1) is 710 mass ppm
  • the L value of the polyester resin (B'-1) is 58.7
  • the polyester resin (B'- 1) was confirmed to have a hindered phenol structure.
  • Polyester resin (B-1) A polyester resin (B-1) was obtained in the same manner as the polyester resin (B'-1), except that the added amounts of the aluminum element and the phosphorus element were different.
  • the residual amount of aluminum element in polyester resin (B-1) was 16 mass ppm
  • the residual amount of phosphorus element was 26 mass ppm
  • the residual molar ratio of phosphorus element to aluminum element was 1.42.
  • the content of the aluminum element corresponding to the aluminum foreign matter in the polyester resin (B-1) is 2000 ppm by mass
  • the L value of the polyester resin (B-1) is 58.5. It was confirmed that the compound has a hindered phenol structure.
  • Polyester resin (B-2) A polyester resin (B-2) was obtained in the same manner as the polyester resin (B'-1), except that the added amounts of the aluminum element and the phosphorus element were different.
  • polyester resin (B-2) the residual amount of aluminum element was 10 mass ppm, the residual amount of phosphorus element was 16 mass ppm, and the residual molar ratio of phosphorus element to aluminum element was 1.39.
  • the content of the aluminum element corresponding to the aluminum-based foreign matter in the polyester resin (B-2) is 2300 ppm by mass, and the L value of the polyester resin (B-2) is 56.6. It was confirmed that the compound has a hindered phenol structure.
  • polyester resin (A-1) As the polyester resin (A-1), recovered polyester resin flakes provided by Kyoei Sangyo Co., Ltd. were used. As a result of compositional analysis, it was confirmed that the recovered polyester resin flakes contained 97 mol % or more of ethylene terephthalate structural units. The intrinsic viscosity of the recovered polyester resin flakes was 0.750 dl/g. The content of antimony element in the recovered polyester resin flakes was 190 ppm by mass, and the content of germanium element was 1.6 ppm by mass. Note that the content of the titanium element is as small as 1 ppm by mass or less, so the description of the content of the titanium element is omitted in Tables 2 and 3. From the contents of the elements antimony, germanium, and titanium, it can be confirmed that the recovered polyester resin flakes are mainly composed of hollow moldings using a polyester resin produced with an antimony catalyst. rice field.
  • Examples 1 to 7, Reference Example 6 A polyester resin composition was obtained by melt-kneading the polyester resin (A-1) and the polyester resin (B) at the compounding ratios shown in Tables 2 and 3. Various properties of the polyester resin composition are shown in Tables 2 and 3.
  • Table 3 shows various properties of the polyester resin (A-1), the polyester resin (B-1), the polyester resin (B-2), and the following polyester resins (E) to (G) alone.
  • the polyester resins (E) to (G) are polyester resins produced using at least one of an antimony catalyst, a titanium catalyst, and a germanium catalyst, and the content of each element of antimony, titanium, and germanium is Measured by the measurement method.
  • a polyester resin composition could be obtained by melt-kneading the polyester resin (A-1) and any of the polyester resins (E) to (G) at the compounding ratio shown in Table 3.
  • Various properties of the polyester resin composition are shown in Table 3.
  • the recovered polyester resin (A-1) was mixed with the polyester resin (B-1) or the polyester resin (B-2) to recycle multiple times. It was possible to obtain a polyester resin composition in which the L value, which is a measure of darkening, remains high and the b value, which is a measure of yellowness, remains low. These characteristics are comparable to those of Reference Example 6.
  • the polyester resin (B-1) and the polyester resin (B-2) have a shorter polymerization time than the polyester resin (B'-1), although the added amounts of the aluminum element and the phosphorus element are small. In addition, the amount of aluminum-based contaminants is small, so the quality is high. In addition, since the amount of catalyst added is small, the cost of the catalyst can be reduced.
  • Reference Example 1 using the polyester resin (B-1) and Reference Example 2 using the polyester resin (B-2) are excellent in recyclability.
  • polyester resins containing antimony element, titanium element, or germanium element were used, and in Comparative Examples 2 to 4, polyester resins containing antimony element, titanium element, or germanium element were recovered. This is the case where it is mixed with the polyester resin (A-1). Although the polyester resin containing antimony element, titanium element, or germanium element has a high intrinsic viscosity retention rate (Reference Examples 3 to 5), antimony element is added to the recovered polyester resin (A-1).
  • Titanium element, or even if a polyester resin containing a germanium element is mixed the intrinsic viscosity retention rate is about the same as when only the polyester resin (A-1) is recycled (Comparative Examples 2 to 4), and the recovered polyester Even when a polyester resin containing an antimony element, a titanium element, or a germanium element was mixed with the resin (A-1), the decrease in molecular weight could not be suppressed.
  • the CT amount and ⁇ CT increase as the number of recycling times increases, and the recyclability is improved. I could't.
  • polyester resin composition (C) by mixing polyester resin (B) containing predetermined amounts of aluminum compound and phosphorus compound with recovered polyester resin (A) to produce polyester resin composition (C) It is possible to suppress the decrease in molecular weight and the polyester resin composition excellent in recyclability can be obtained at low cost.
  • the polyester resin (B) containing an aluminum compound and a phosphorus compound with the recovered polyester resin (A) to produce the hollow molded article (D) the hollow molded article (D) is colored and the molecular weight is reduced. It is possible to obtain a polyester resin composition that can suppress the decrease and has excellent recyclability.
  • the polyester resin composition (C) and the hollow molded article (D) can be reused, it can contribute to solving various problems such as the suppression of resource depletion, the reduction of marine litter, and the suppression of global warming. can.
  • the method for producing the polyester resin composition (C) of the first aspect according to the present disclosure includes the recovered polyester resin (A), the polyester resin (B) containing the aluminum compound and the phosphorus compound, and wherein the polyester resin (A) satisfies the following (1) to (3), and the polyester resin (B) satisfies the following (4) to (6).
  • the polyester resin (A) contains at least one element selected from antimony, titanium, and germanium (2) The total content of the antimony element, the titanium element, and the germanium element in the polyester resin (A) (3) The intrinsic viscosity of the polyester resin (A) is 0.5 to 0.8 dl / g (4) The content of aluminum element in the polyester resin (B) is 9 (5) The content of the phosphorus element in the polyester resin (B) is 13 to 31 ppm by mass. (6) The residual molar ratio of the phosphorus element to the aluminum element in the polyester resin (B). is 1.32 or more and 1.80 or less
  • a polyester resin (B) containing predetermined amounts of an aluminum compound and a phosphorus compound is mixed with a recovered polyester resin (A) containing at least one element selected from antimony, titanium, and germanium.
  • the polyester resin (B) has an intrinsic viscosity of 0.56 dl/g or more.
  • the polyester resin (B) when the polyester resin (B) is air-fed, a large amount of fines is less likely to occur due to friction between the polyester resin pellets and the air-fed piping.
  • the phosphorus compound is 3,5-di-tert-butyl-4-hydroxybenzylphosphonic acid dialkyl ester.
  • sufficient polymerization activity can be exhibited while suppressing the cost of the catalyst.
  • the polyester resin (A) is 5 to 95 parts by mass with respect to a total of 100 parts by mass of the polyester resin (A) and the polyester resin (B).
  • the fourth aspect it is possible to suppress the coloring of the polyester resin composition (C) and the decrease in molecular weight.
  • the method for producing the hollow molded article (D) of the fifth aspect includes a step of melt-molding the polyester resin composition (C) produced by the production method of any one of the first to fourth aspects.
  • the hollow molded article (D) includes a step of introducing the melt in a molten state into a molding machine and molding it.
  • the recovered polyester resin (A) is mixed with the polyester resin (B) containing the aluminum compound and the phosphorus compound.
  • the polyester resin (A) satisfies the following (1) to (3), and the polyester resin (B) satisfies the following (4) to (6).
  • the polyester resin (A) contains at least one element selected from antimony, titanium, and germanium (2) The total content of the antimony element, the titanium element, and the germanium element in the polyester resin (A) (3) The intrinsic viscosity of the polyester resin (A) is 0.5 to 0.8 dl / g (4) The content of aluminum element in the polyester resin (B) is 9 (5) The content of the phosphorus element in the polyester resin (B) is 13 to 31 ppm by mass. (6) The residual molar ratio of the phosphorus element to the aluminum element in the polyester resin (B). is 1.32 or more and 1.80 or less
  • the used and recovered polyester resin (A) containing at least one element selected from antimony, titanium, and germanium is regenerated into a polyester resin composition (C) having excellent recyclability. can do.
  • the intrinsic viscosity of the polyester resin (B) is 0.56 dl/g or more.
  • the polyester resin (B) when the polyester resin (B) is air-fed, a large amount of fines is less likely to occur due to friction between the polyester resin pellets and the air-fed piping.
  • the phosphorus compound is 3,5-di-tert-butyl-4-hydroxybenzylphosphonic acid dialkyl ester.
  • the polyester resin (A) of the ninth aspect in the sixth aspect, 5 parts by mass of the polyester resin (A) is added to a total of 100 parts by mass of the polyester resin (A) and the polyester resin (B). ⁇ 95 parts by mass.
  • the polyester resin composition (C) to be regenerated can be prevented from being colored or reduced in molecular weight.
  • the polyester resin composition (C) of the tenth aspect is a mixture of the recovered polyester resin (A) and the polyester resin (B) containing an aluminum compound and a phosphorus compound.
  • the polyester resin (A) satisfies the following (1) to (3), and the polyester resin (B) satisfies the following (4) to (6).
  • the polyester resin (A) contains at least one element selected from antimony, titanium, and germanium (2) The total content of the antimony element, the titanium element, and the germanium element in the polyester resin (A) (3) The intrinsic viscosity of the polyester resin (A) is 0.5 to 0.8 dl / g (4) The content of aluminum element in the polyester resin (B) is 9 (5) The content of the phosphorus element in the polyester resin (B) is 13 to 31 ppm by mass. (6) The residual molar ratio of the phosphorus element to the aluminum element in the polyester resin (B). is 1.32 or more and 1.80 or less
  • the polyester resin composition (C) coloring and reduction in molecular weight of the polyester resin composition (C) can be suppressed, and a polyester resin composition with excellent recyclability can be obtained at low cost.
  • the polyester resin composition (C) of the eleventh aspect is such that the polyester resin (B) has an intrinsic viscosity of 0.56 dl/g or more.
  • the polyester resin (B) when the polyester resin (B) is air-fed, a large amount of fines is less likely to occur due to friction between polyester resin pellets or air-fed piping.
  • the phosphorus compound is 3,5-di-tert-butyl-4-hydroxybenzylphosphonic acid dialkyl ester.
  • the polyester resin composition (C) of the thirteenth aspect is, in the tenth aspect, the polyester resin (A) with respect to a total of 100 parts by mass of the polyester resin (A) and the polyester resin (B) ⁇ 95 parts by mass.
  • the polyester resin composition (C) can be prevented from being colored or reduced in molecular weight.
  • the hollow molded article (D) of the fourteenth aspect is formed from the polyester resin composition (C) according to any one of the tenth to thirteenth aspects.
  • the hollow molded article (D) can improve recyclability while suppressing manufacturing costs.
  • the hollow molded article (D) is produced by molding from the high-quality polyester resin composition (C), so that even if it is recovered and recycled after being used as various containers, the high quality is maintained.
  • the polyester resin can be reused, and in turn, it can contribute to solving various problems such as the suppression of resource depletion, the reduction of marine litter, and the suppression of global warming.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

アンチモン化合物、チタン化合物、又はゲルマニウム化合物から選ばれる少なくとも一種を重合触媒とした使用済みポリエステル樹脂を用いて複数回リサイクルを行っても着色や分子量の低下が生じにくいポリエステル樹脂組成物を製造する方法を提供するものであり、回収されたポリエステル樹脂(A)とアルミニウム化合物及びリン化合物を含むポリエステル樹脂(B)とを混合する工程を含み、前記ポリエステル樹脂(A)は下記(1)~(3)を満足し、前記ポリエステル樹脂(B)はポリエステル樹脂(B)中におけるアルミニウム元素の含有量、リン元素の含有量、及びアルミニウム元素に対するリン元素の残存モル比が所定値を満足する、ポリエステル樹脂組成物(C)の製造方法。 (1)前記ポリエステル樹脂(A)はアンチモン、チタン、及びゲルマニウムから選ばれる少なくとも一種の元素を含む (2)前記ポリエステル樹脂(A)中におけるアンチモン元素、チタン元素、及びゲルマニウム元素の合計の含有量が2~500質量ppm (3)前記ポリエステル樹脂(A)の固有粘度が0.5~0.8dl/g

Description

ポリエステル樹脂組成物の製造方法及び回収されたポリエステル樹脂の再生方法並びにポリエステル樹脂組成物
 本発明は、ポリエステル樹脂組成物の製造方法及び回収されたポリエステル樹脂の再生方法並びにポリエステル樹脂組成物に関する。
 ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等に代表されるポリエステル樹脂は、透明性、機械的特性、および化学的特性に優れており、それぞれのポリエステル樹脂の特性に応じて、例えば、衣料用や産業資材用の繊維、包装用や工業用などの各種フィルムやシート、ボトルやエンジニアリングプラスチックなどの中空成形体など各種分野において広範囲に使用されている。
 近年、例えば、ポリエステル樹脂を用いて製造された中空成形体は、我々人類の生活にとっては必要不可欠なものになってきている。一方では、中空成形体の利用量の増加に伴い、資源枯渇、海洋ごみの増加、地球温暖化など様々な問題を引き起こしている。このような課題を解決する方法の一つとして使用済みであるポリエステルボトル等の中空成形体を回収してポリエステルボトル、繊維、不織布等の成形体に再成形して再使用する、いわゆる回収・再生リサイクルシステムが注目されている。
 しかし、一般に広く用いられているアンチモン化合物、チタン化合物、又はゲルマニウム化合物を重合触媒としたポリエステル樹脂は、使用済みポリエステル樹脂を回収して再生すると、ポリエステル樹脂の劣化によるポリエステル樹脂の着色や分子量の低下が生じるため、その改善が求められている。
 上記の課題を解決する方法として、アンチモン化合物、チタン化合物、又はゲルマニウム化合物を重合触媒としたポリエステル樹脂の製造において、ヒンダードフェノール化合物を添加する方法が知られている(例えば、特許文献1及び2参照)。
 特許文献1及び2に記載の方法では、熱酸化安定性は向上するが、リサイクルを行った場合において物性の劣化を抑制するという観点からはさらなる改善が求められた。
 そこで、出願人は熱安定性に優れた触媒を見出した。具体的には、特許文献3及び4に記載のアルミニウム化合物とヒンダードフェノール構造を含むリン化合物とからなる触媒を見出した。しかし、使用済みポリエステル樹脂、特にアンチモン化合物、チタン化合物、又はゲルマニウム化合物から選ばれる少なくとも一種を重合触媒とした使用済みポリエステル樹脂をリサイクルする検討まではなされていなかった。また、前記アルミニウム化合物とリン化合物とからなる触媒を用いる方法では、触媒添加量が多く、かつ使用しているリン化合物のコストも高いため、重合で必要な触媒コストが高くなっていた。高い重合活性を維持しつつ高品位のポリエステル樹脂を得るためには、触媒であるアルミニウム化合物とリン化合物の添加量を増やす必要があり、結果として触媒コストが高くなるという課題があった。
国際公開第2013/154042号 国際公開第2013/154043号 国際公開第2007/032325号 特開2006-169432号公報
 本発明は、かかる従来技術の問題を解消するためになされたものであり、その目的は、アンチモン化合物、チタン化合物、又はゲルマニウム化合物から選ばれる少なくとも一種を重合触媒とした使用済みポリエステル樹脂を用いて、複数回リサイクルを行っても着色や分子量の低下が生じにくい(以下、「リサイクル性に優れた」という)ポリエステル樹脂組成物を製造する方法、及び回収されたポリエステル樹脂の再生方法、並びにポリエステル樹脂組成物を提供することである。また、本発明の他の目的は、コストを低減させた、ポリエステル樹脂組成物を製造する方法、及び回収されたポリエステル樹脂の再生方法、並びにポリエステル樹脂組成物を提供することにある。
 本発明は以下の構成からなる。
 1.回収されたポリエステル樹脂(A)とアルミニウム化合物及びリン化合物を含むポリエステル樹脂(B)とを混合する工程を含み、前記ポリエステル樹脂(A)は下記(1)~(3)を満足し、前記ポリエステル樹脂(B)は下記(4)~(6)を満足することを特徴とするポリエステル樹脂組成物(C)の製造方法。
(1)前記ポリエステル樹脂(A)はアンチモン、チタン、及びゲルマニウムから選ばれる少なくとも一種の元素を含む
(2)前記ポリエステル樹脂(A)中におけるアンチモン元素、チタン元素、及びゲルマニウム元素の合計の含有量が2~500質量ppm
(3)前記ポリエステル樹脂(A)の固有粘度が0.5~0.8dl/g
(4)前記ポリエステル樹脂(B)中におけるアルミニウム元素の含有量が9~20質量ppm
(5)前記ポリエステル樹脂(B)中におけるリン元素の含有量が13~31質量ppm
(6)前記ポリエステル樹脂(B)中におけるアルミニウム元素に対するリン元素の残存モル比が1.32以上1.80以下
 2.前記ポリエステル樹脂(B)の固有粘度が0.56dl/g以上である上記1.に記載のポリエステル樹脂組成物(C)の製造方法。
 3.リン化合物が3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルエステルである上記1.又は2.に記載のポリエステル樹脂組成物(C)の製造方法。
 4.前記ポリエステル樹脂(A)及び前記ポリエステル樹脂(B)の合計100質量部に対し、前記ポリエステル樹脂(A)が5~95質量部である上記1.~3.のいずれか1項に記載のポリエステル樹脂組成物(C)の製造方法。
 5.上記1.~4.のいずれか1項に記載の製造方法で製造されたポリエステル樹脂組成物(C)を溶融成形する工程を含む中空成形体(D)の製造方法。
 6.回収されたポリエステル樹脂(A)とアルミニウム化合物及びリン化合物を含むポリエステル樹脂(B)とを混合することによるポリエステル樹脂(A)の再生方法であって、前記ポリエステル樹脂(A)は下記(1)~(3)を満足し、前記ポリエステル樹脂(B)は下記(4)~(6)を満足することを特徴とするポリエステル樹脂(A)の再生方法。
(1)前記ポリエステル樹脂(A)はアンチモン、チタン、及びゲルマニウムから選ばれる少なくとも一種の元素を含む
(2)前記ポリエステル樹脂(A)中におけるアンチモン元素、チタン元素、及びゲルマニウム元素の合計の含有量が2~500質量ppm
(3)前記ポリエステル樹脂(A)の固有粘度が0.5~0.8dl/g
(4)前記ポリエステル樹脂(B)中におけるアルミニウム元素の含有量が9~20質量ppm
(5)前記ポリエステル樹脂(B)中におけるリン元素の含有量が13~31質量ppm
(6)前記ポリエステル樹脂(B)中におけるアルミニウム元素に対するリン元素の残存モル比が1.32以上1.80以下
 7.前記ポリエステル樹脂(B)の固有粘度が0.56dl/g以上である上記6.に記載のポリエステル樹脂(A)の再生方法。
 8.リン化合物が3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルエステルである上記6.又は7.に記載のポリエステル樹脂(A)の再生方法。
 9.前記ポリエステル樹脂(A)及び前記ポリエステル樹脂(B)の合計100質量部に対し、前記ポリエステル樹脂(A)が5~95質量部である上記6.~8.のいずれか1項に記載のポリエステル樹脂(A)の再生方法。
 10.回収されたポリエステル樹脂(A)とアルミニウム化合物及びリン化合物を含むポリエステル樹脂(B)との混合物であるポリエステル樹脂組成物(C)であって、前記ポリエステル樹脂(A)は下記(1)~(3)を満足し、前記ポリエステル樹脂(B)は下記(4)~(6)を満足することを特徴とするポリエステル樹脂組成物(C)。
(1)前記ポリエステル樹脂(A)はアンチモン、チタン、及びゲルマニウムから選ばれる少なくとも一種の元素を含む
(2)前記ポリエステル樹脂(A)中におけるアンチモン元素、チタン元素、及びゲルマニウム元素の合計の含有量が2~500質量ppm
(3)前記ポリエステル樹脂(A)の固有粘度が0.5~0.8dl/g
(4)前記ポリエステル樹脂(B)中におけるアルミニウム元素の含有量が9~20質量ppm
(5)前記ポリエステル樹脂(B)中におけるリン元素の含有量が13~31質量ppm
(6)前記ポリエステル樹脂(B)中におけるアルミニウム元素に対するリン元素の残存モル比が1.32以上1.80以下
 11.前記ポリエステル樹脂(B)の固有粘度が0.56dl/g以上である上記10.に記載のポリエステル樹脂組成物(C)。
 12.リン化合物が3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルエステルである上記10.又は11.に記載のポリエステル樹脂組成物(C)。
 13.前記ポリエステル樹脂(A)及び前記ポリエステル樹脂(B)の合計100質量部に対し、前記ポリエステル樹脂(A)が5~95質量部である上記10.~12.のいずれか1項に記載のポリエステル樹脂組成物(C)。
 14.上記10.~13.のいずれか1項に記載のポリエステル樹脂組成物(C)から形成された中空成形体(D)。
 所定量のアルミニウム化合物及びリン化合物を含むポリエステル樹脂(B)をアンチモン、チタン、及びゲルマニウムから選ばれる少なくとも一種の元素を含む回収されたポリエステル樹脂(A)に混合してポリエステル樹脂組成物(C)を製造することにより、ポリエステル樹脂組成物(C)の着色や分子量の低下を抑制でき、リサイクル性に優れたポリエステル樹脂組成物を低コストで得ることができる。換言すると、アンチモン、チタン、及びゲルマニウムから選ばれる少なくとも一種の元素を含む、使用済みの回収されたポリエステル樹脂(A)をリサイクル性に優れたポリエステル樹脂組成物(C)に再生することができる。
 本発明では、回収されたポリエステル樹脂(A)とアルミニウム化合物及びリン化合物を含むポリエステル樹脂(B)とを混合することによりポリエステル樹脂組成物(以下、ポリエステル樹脂組成物(C)ということがある)を製造する。回収されたポリエステル樹脂(A)とアルミニウム化合物及びリン化合物を含むポリエステル樹脂(B)とを混合することによりポリエステル樹脂(A)を再生することができる。なお、本明細書では回収されたポリエステル樹脂と回収されたものではないポリエステル樹脂との混合物をポリエステル樹脂組成物という。
[ポリエステル樹脂(A)]
 ポリエステル樹脂(A)は、エチレンテレフタレート構造単位を50モル%以上含むことが好ましく、70モル%以上含有していることがより好ましく、80モル%以上含むことがさらに好ましく、90モル%以上含有することが特に好ましい。テレフタル酸以外の多価カルボン酸成分、エチレングリコール以外の多価アルコール成分としては、後述するポリエステル樹脂(B)に記載の成分が使用可能である。
 ポリエステル樹脂(A)はアンチモン、チタン、及びゲルマニウムから選ばれる少なくとも一種の元素を含むものであり、すなわち、ポリエステル樹脂(A)は、アンチモン化合物、チタン化合物、及びゲルマニウム化合物から選ばれる少なくとも一種の重合触媒を触媒量用いて製造されている。
 ポリエステル樹脂(A)中におけるアンチモン元素、チタン元素、及びゲルマニウム元素の合計の含有量が2~500質量ppmであり、5~400質量ppmであることが好ましく、10~300質量ppmであることがより好ましく、50~250質量ppmであることがさらに好ましい。500質量ppmを超えると後述するポリエステル樹脂組成物(C)の固有粘度保持率が不十分となるおそれがある。なお、本明細書においては、質量ppmとは10-4質量%を意味する。
 ポリエステル樹脂(A)は使用済みのポリエステル樹脂が回収されたものであり、ポリエステル樹脂(A)の形状は限定されていないが、ポリエステル樹脂(B)と混合しやすい形状であることが好ましく、例えば、チップ、フレーク、粉末等を挙げることができる。
 ポリエステル樹脂(A)の固有粘度は0.5~0.8dl/g以上であり、好ましくは0.7~0.8dl/gである。ポリエステル樹脂(A)の固有粘度が上記未満の場合、ポリエステル樹脂(A)を用いて製造されたポリエステル樹脂組成物(C)の機械的強度や耐衝撃性が不十分になるおそれがある一方、ポリエステル樹脂(A)の固有粘度が上記範囲を超えた場合は、成形加工が困難になるおそれがある。
 ポリエステル樹脂(A)の固有粘度保持率が92%以下であることが好ましく、91%以下であることがより好ましく、90%以下であることがさらに好ましく、89%以下であることが特に好ましい。ポリエステル樹脂(A)の固有粘度保持率が92%を上回る場合は、ポリエステル樹脂(B)を配合することによるリサイクル性の向上効果が不十分となるおそれがある。固有粘度保持率の測定方法については後述する。
 ポリエステル樹脂(A)は、アンチモン化合物、チタン化合物、及びゲルマニウム化合物から選ばれる少なくとも一種の重合触媒を用いて製造されたポリエステル樹脂のみであることが好ましいが、アルミニウム化合物とリン化合物からなる重合触媒を用いて製造されたポリエステル樹脂が含まれていてもよいが少量であることが好ましい。ポリエステル樹脂(A)中におけるアンチモン化合物、チタン化合物、及びゲルマニウム化合物から選ばれる少なくとも一種の重合触媒を用いて製造されたポリエステル樹脂が50質量%超であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましい。
[ポリエステル樹脂(B)]
 ポリエステル樹脂(B)はアルミニウム化合物及びリン化合物を含むものであり、すなわち、ポリエステル樹脂(B)は、アルミニウム化合物とリン化合物からなる重合触媒を触媒量用いて製造されている。ポリエステル樹脂(B)は、回収されたポリエステル樹脂(A)に混合することで該ポリエステル樹脂(A)を再生することができる再生用ポリエステル樹脂である。
 ポリエステル樹脂(B)は、多価カルボン酸およびそのエステル形成性誘導体から選ばれる少なくとも一種と多価アルコールおよびそのエステル形成性誘導体から選ばれる少なくとも一種により形成された重合体である。
<多価カルボン酸成分>
 ポリエステル樹脂(B)を構成する主たる多価カルボン酸成分がジカルボン酸であることが好ましい。「主たる多価カルボン酸成分がジカルボン酸である」とは、全多価カルボン酸成分に対してジカルボン酸を50モル%より多く含有することであり、ジカルボン酸を70モル%以上含有することが好ましく、ジカルボン酸を80モル%以上含有することがより好ましく、ジカルボン酸を90モル%以上含有することがさらに好ましい。なお、ジカルボン酸を二種以上用いる場合はそれらの合計が上記範囲内であることが好ましい。
 ジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ドデカンジカルボン酸、テトラデカンジカルボン酸、ヘキサデカンジカルボン酸、1,3-シクロブタンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、2,5-ノルボルナンジカルボン酸、ダイマー酸などに例示される飽和脂肪族ジカルボン酸またはこれらのエステル形成性誘導体;フマル酸、マレイン酸、イタコン酸などに例示される不飽和脂肪族ジカルボン酸またはこれらのエステル形成性誘導体;オルソフタル酸、イソフタル酸、テレフタル酸、5-(アルカリ金属)スルホイソフタル酸、ジフェニン酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、4,4’-ビフェニルジカルボン酸、4,4’-ビフェニルスルホンジカルボン酸、4,4’-ビフェニルエーテルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸、パモイン酸、アントラセンジカルボン酸などに例示される芳香族ジカルボン酸、またはこれらのエステル形成性誘導体;が挙げられる。
 より好ましくは、主たる多価カルボン酸成分がテレフタル酸またはそのエステル形成性誘導体もしくはナフタレンジカルボン酸またはその形成性誘導体である。ナフタレンジカルボン酸またはそのエステル形成性誘導体としては、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、またはこれらのエステル形成性誘導体が挙げられる。
 「主たる多価カルボン酸成分がテレフタル酸またはそのエステル形成性誘導体もしくはナフタレンジカルボン酸またはそのエステル形成性誘導体である」とは、全多価カルボン酸成分に対してテレフタル酸またはそのエステル形成性誘導体とナフタレンジカルボン酸またはそのエステル形成性誘導体とを合計して50モル%より多く含有することであり、70モル%以上含有することが好ましく、80モル%以上含有することがより好ましく、90モル%以上含有することがさらに好ましい。
 特に好ましくは、テレフタル酸、2,6-ナフタレンジカルボン酸またはこれらのエステル形成性誘導体である。必要に応じて、他のジカルボン酸を構成成分としてもよい。
 これらジカルボン酸以外の多価カルボン酸として、少量であれば3価以上の多価カルボン酸やヒドロキシカルボン酸を併用してもよく、3~4価の多価カルボン酸であることが好ましい。多価カルボン酸として、例えば、エタントリカルボン酸、プロパントリカルボン酸、ブタンテトラカルボン酸、ピロメリット酸、トリメリット酸、トリメシン酸、3,4,3’,4’-ビフェニルテトラカルボン酸、およびこれらのエステル形成性誘導体などが挙げられる。全多価カルボン酸成分に対して3価以上の多価カルボン酸は20モル%以下であることが好ましく、より好ましくは10モル%以下であり、さらに好ましくは5モル%以下である。なお、3価以上の多価カルボン酸を二種以上用いる場合はそれらの合計が上記範囲内であることが好ましい。
 ヒドロキシカルボン酸としては、乳酸、クエン酸、リンゴ酸、酒石酸、ヒドロキシ酢酸、3-ヒドロキシ酪酸、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸、4-ヒドロキシシクロヘキサンカルボン酸、またはこれらのエステル形成性誘導体などが挙げられる。全多価カルボン酸成分に対してヒドロキシカルボン酸は20モル%以下であることが好ましく、より好ましくは10モル%以下であり、さらに好ましくは5モル%以下である。なお、ヒドロキシカルボン酸を二種以上用いる場合はそれらの合計が上記範囲内であることが好ましい。
 多価カルボン酸もしくはヒドロキシカルボン酸のエステル形成性誘導体としては、これらのアルキルエステル、酸クロライド、酸無水物などが挙げられる。
<多価アルコール成分>
 ポリエステル樹脂(B)を構成する主たる多価アルコール成分がグリコールであることが好ましい。「主たる多価アルコール成分がグリコールである」とは、全多価アルコール成分に対してグリコールを50モル%より多く含有することであり、70モル%以上含有することが好ましく、80モル%以上含有することがより好ましく、90モル%以上含有することがさらに好ましい。なお、グリコールを二種以上用いる場合はそれらの合計が上記範囲内であることが好ましい。
 グリコールとしては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、2,3-ブチレングリコール、1,4-ブチレングリコール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジエタノール、1,10-デカメチレングリコール、1,12-ドデカンジオールなどに例示されるアルキレングリコール;ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコールなどに例示される脂肪族グリコール;ヒドロキノン、4,4’-ジヒドロキシビスフェノール、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、1,4-ビス(β-ヒドロキシエトキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)エーテル、ビス(p-ヒドロキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)メタン、1,2-ビス(p-ヒドロキシフェニル)エタン、ビスフェノールA、ビスフェノールC、2,5-ナフタレンジオール、これらのグリコールにエチレンオキシドが付加したグリコール、などに例示される芳香族グリコール;が挙げられる。
 これらのグリコールのうち、アルキレングリコールが好ましく、より好ましくは、エチレングリコール、1,3-プロピレングリコール、1,4-ブチレングリコール、又は1,4-シクロヘキサンジメタノールである。また、前記アルキレングリコールは、分子鎖中に置換基や脂環構造を含んでいてもよく、同時に2種以上を使用してもよい。
 これらグリコール以外の多価アルコールとして、少量であれば3価以上の多価アルコールを併用してもよく、3~4価の多価アルコールであることが好ましい。3価以上の多価アルコールとしては、トリメチロールメタン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、グリセロール、ヘキサントリオールなどが挙げられる。
 全多価アルコール成分に対して3価以上の多価アルコールは20モル%以下であることが好ましく、より好ましくは10モル%以下であり、さらに好ましくは5モル%以下である。なお、3価以上の多価アルコールを二種以上用いる場合はそれらの合計が上記範囲内であることが好ましい。
 また、環状エステルの併用も許容される。環状エステルとしては、ε-カプロラクトン、β-プロピオラクトン、β-メチル-β-プロピオラクトン、δ-バレロラクトン、グリコリド、ラクチドなどが挙げられる。また、多価アルコールのエステル形成性誘導体としては、多価アルコールの酢酸等の低級脂肪族カルボン酸とのエステルが挙げられる。
 全多価カルボン酸成分及び全多価アルコール成分の合計に対して環状エステルは20モル%以下であることが好ましく、より好ましくは10モル%以下であり、さらに好ましくは5モル%以下である。なお、環状エステルを二種以上用いる場合はそれらの合計が上記範囲内であることが好ましい。
 ポリエステル樹脂(B)としては、エチレンテレフタレート、ブチレンテレフタレート、プロピレンテレフタレート、1,4-シクロヘキサンジメチレンテレフタレート、エチレンナフタレート、ブチレンナフタレート、もしくはプロピレンナフタレートから選択される1種のみのモノマーからなる重合体、又は2種類以上の上記モノマーからなる共重合体であることが好ましく、ポリエステル樹脂(B)はポリエチレンテレフタレート又はエチレンテレフタレートとエチレンテレフタレート以外の上記モノマーの少なくとも一種とからなる共重合体であることがより好ましく、ポリエチレンテレフタレートであることが特に好ましい。エチレンテレフタレートとエチレンテレフタレート以外の上記モノマーの少なくとも一種とからなる共重合体は、エチレンテレフタレートモノマー由来の成分が70モル%以上含有することが好ましく、80モル%以上含有することがより好ましく、90モル%以上含有することがさらに好ましい。
<重合触媒>
 上述のとおり、ポリエステル樹脂(B)は、アルミニウム化合物とリン化合物からなる重合触媒を用いて製造されている。
(アルミニウム化合物)
 ポリエステル樹脂(B)の重合触媒を構成するアルミニウム化合物は溶媒に溶解するものであれば限定されず、公知のアルミニウム化合物が限定なく使用できる。アルミニウム化合物として、例えば、ギ酸アルミニウム、酢酸アルミニウム、塩基性酢酸アルミニウム、プロピオン酸アルミニウム、シュウ酸アルミニウム、アクリル酸アルミニウム、ラウリン酸アルミニウム、ステアリン酸アルミニウム、安息香酸アルミニウム、トリクロロ酢酸アルミニウム、乳酸アルミニウム、クエン酸アルミニウム、酒石酸アルミニウム、サリチル酸アルミニウムなどのカルボン酸塩;塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウム、硝酸アルミニウム、硫酸アルミニウム、炭酸アルミニウム、リン酸アルミニウム、ホスホン酸アルミニウムなどの無機酸塩;アルミニウムメトキサイド、アルミニウムエトキサイド、アルミニウムn-プロポキサイド、アルミニウムイソプロポキサイド、アルミニウムn-ブトキサイド、アルミニウムt-ブトキサイドなどアルミニウムアルコキサイド;アルミニウムアセチルアセトネート、アルミニウムエチルアセトアセテート、アルミニウムエチルアセトアセテートジiso-プロポキサイドなどのキレート化合物;トリメチルアルミニウム、トリエチルアルミニウムなどの有機アルミニウム化合物およびこれらの部分加水分解物、アルミニウムのアルコキサイドやアルミニウムキレート化合物とヒドロキシカルボン酸からなる反応生成物、酸化アルミニウム、超微粒子酸化アルミニウム、アルミニウムシリケート、アルミニウムとチタンやケイ素やジルコニウムやアルカリ金属やアルカリ土類金属などとの複合酸化物などが挙げられる。これらのうちカルボン酸塩、無機酸塩、およびキレート化合物から選ばれる少なくとも1種が好ましく、これらの中でも酢酸アルミニウム、塩基性酢酸アルミニウム、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウム、及びアルミニウムアセチルアセトネートから選ばれる少なくとも1種がより好ましく、酢酸アルミニウム、塩基性酢酸アルミニウム、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウム、及びアルミニウムアセチルアセトネートから選ばれる少なくとも1種がさらに好ましく、酢酸アルミニウム及び塩基性酢酸アルミニウムから選ばれる少なくとも1種が特に好ましく、塩基性酢酸アルミニウムが最も好ましい。
 上記アルミニウム化合物は水やグリコールなどの溶剤に可溶化するアルミニウム化合物であることが好ましい。ポリエステル樹脂(B)の製造において使用できる溶媒とは、水およびアルキレングリコール類である。アルキレングリコール類には、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、トリメチレングリコール、ジトリメチレングリコール、テトラメチレングリコール、ジテトラメチレングリコール、ネオペンチルグリコールなどが挙げられる。好ましくは、水、エチレングリコール、トリメチレングリコール、及びテトラメチレングリコールから選ばれる少なくとも1種であり、さらに好ましくは水又はエチレングリコールである。
 ポリエステル樹脂(B)中におけるアルミニウム元素の含有率は、9~20質量ppmであり、好ましくは9~19質量ppm、より好ましくは10~17質量ppm、さらに好ましくは12~17質量ppmである。アルミニウム元素が9質量ppm未満では、重合活性が十分に発揮されないおそれがある。一方、20質量ppmを超えると、後述するリン元素の含有率との関係から、アルミニウム系異物量が増大するおそれがあり、加えて触媒のコストが増大する。
(リン化合物)
 ポリエステル樹脂(B)の重合触媒を構成するリン化合物としては、特に限定はされないが、ホスホン酸系化合物、ホスフィン酸系化合物を用いると触媒活性の向上効果が大きいため好ましく、これらの中でもホスホン酸系化合物を用いると触媒活性の向上効果が特に大きいためより好ましい。
 上記リン化合物のうち、同一分子内にリン元素とフェノール構造を有するリン化合物が好ましい。同一分子内にリン元素とフェノール構造を有するリン化合物であれば特に限定はされないが、同一分子内にリン元素とフェノール構造を有するホスホン酸系化合物、同一分子内にリン元素とフェノール構造を有するホスフィン酸系化合物からなる群より選ばれる一種または二種以上の化合物を用いると触媒活性の向上効果が大きいため好ましく、一種または二種以上の同一分子内にリン元素とフェノール構造を有するホスホン酸系化合物を用いると触媒活性の向上効果が非常に大きいためより好ましい。
 また、同一分子内にリン元素とフェノール構造を有するリン化合物としては、P(=O)R1(OR2)(OR3)やP(=O)R14(OR2)で表される化合物などが挙げられる。R1はフェノール部を含む炭素数6~50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基などの置換基およびフェノール構造を含む炭素数6~50の炭化水素基を表す。R4は、水素、炭素数1~50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基などの置換基を含む炭素数1~50の炭化水素基を表す。R2、R3はそれぞれ独立に水素、炭素数1~50の炭化水素基、水酸基またはアルコキシル基などの置換基を含む炭素数1~50の炭化水素基を表す。ただし、炭化水素基は分岐構造やシクロヘキシル等の脂環構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。R2とR4の末端どうしは結合していてもよい。
 同一分子内にリン元素とフェノール構造を有するリン化合物としては、例えば、p-ヒドロキシフェニルホスホン酸、p-ヒドロキシフェニルホスホン酸ジメチル、p-ヒドロキシフェニルホスホン酸ジエチル、p-ヒドロキシフェニルホスホン酸ジフェニル、ビス(p-ヒドロキシフェニル)ホスフィン酸、ビス(p-ヒドロキシフェニル)ホスフィン酸メチル、ビス(p-ヒドロキシフェニル)ホスフィン酸フェニル、p-ヒドロキシフェニルホスフィン酸、p-ヒドロキシフェニルホスフィン酸メチル、p-ヒドロキシフェニルホスフィン酸フェニルなどが挙げられる。
 同一分子内にリン元素とフェノール構造を有するリン化合物としては、上記の例示の他に同一分子内にリン元素とヒンダードフェノール構造(3級炭素を有するアルキル基(好ましくはt-ブチル基、テキシル基などの3級炭素をベンジル位に有するアルキル基;ネオペンチル基など)が水酸基の1つ又は2つのオルト位に結合しているフェノール構造など)を有するリン化合物が挙げられ、同一分子内にリン元素と下記(化式A)の構造を有するリン化合物であることが好ましく、中でも、下記(化式B)に示す3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルであることがより好ましい。なお、ポリエステル樹脂(B)の製造に用いられるリン化合物としては、下記(化式B)に示す3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルであることが好ましいが、それ以外に3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルの変性体も含まれていてもよい。変性体の詳細については後述する。
Figure JPOXMLDOC01-appb-C000001
((化式A)において、*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000002
((化式B)において、X1、X2は、それぞれ、水素、炭素数1~4のアルキル基を表す。)
 本明細書では、ヘキサフルオロイソプロパノール系溶媒に溶解した溶液のP-NMR測定方法により、ヒンダードフェノール構造の少なくとも1種が検出できるポリエステル樹脂を「ヒンダードフェノール構造を有する」という。すなわち、ポリエステル樹脂(B)は、同一分子内にリン元素とヒンダードフェノール構造とを有するリン化合物を重合触媒として製造されたポリエステル樹脂であることが好ましい。ポリエステル樹脂(B)中のヒンダードフェノール構造の検出方法(P-NMR測定方法)については後述する。
 上記(化式B)において、X1、X2はいずれも炭素数1~4のアルキル基であることが好ましく、炭素数1~2のアルキル基であることがより好ましい。特に、炭素数2のエチルエステル体は、Irganox1222(ビーエーエスエフ社製)が市販されており容易に入手できるので好ましい。
 リン化合物は溶媒中で熱処理して用いることが好ましい。なお、熱処理の詳細については後述する。リン化合物として、上記(化式B)で示したリン化合物である3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルを用いた場合、上記熱処理において、(化式B)で示したリン化合物である3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルの一部が構造変化する。例えば、t-ブチル基の脱離、エチルエステル基の加水分解およびヒドロキシエチルエステル交換構造(エチレングリコールとのエステル交換構造)などに変化する。従って、本発明においては、リン化合物としては、(化式B)で示した3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキル以外にも構造変化したリン化合物も含まれる。なお、t-ブチル基の脱離は、重合工程の高温下で顕著に起こる。
 以下では、リン化合物として3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジエチルを用いた場合に3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジエチルの一部が構造変化した9つのリン化合物を示している。グリコール溶液中での構造変化した各リン化合物の成分量はP-NMR測定方法により定量できる。
Figure JPOXMLDOC01-appb-C000003
 従って、本発明におけるリン化合物としては、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキル以外にも9つの上記化学式で示される3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルの変性体も含まれていてもよい。
 リン化合物として上記Irganox1222を用いた場合、ポリエステル樹脂中に下記表1に示した9種のリン化合物残基が含まれる。P-NMR測定方法により、表1に示した9種のヒンダードフェノール構造の中の少なくとも1種が検出された場合、ポリエステル樹脂(B)は、同一分子内にリン元素とヒンダードフェノール構造とを有するリン化合物を重合触媒として製造されたポリエステル樹脂であるといえる。ヒンダードフェノール構造を有するリン化合物を用いることにより、触媒のコストを抑えつつ、十分な重合活性を発揮することができる。
Figure JPOXMLDOC01-appb-T000004
 本発明においては、上記化式1、4、及び7の少なくとも1種が含まれていることが好ましい。
 ポリエステル樹脂(B)中におけるリン元素の含有率は13~31質量ppmであり、15~29質量ppmであることが好ましく、16~28質量ppmであることがより好ましい。リン元素が13質量ppm未満では、重合活性の低下やアルミニウム系異物量が増大するおそれがある。一方、31質量ppmを超えると逆に重合活性が低下するおそれやリン化合物の添加量が多くなり、触媒コストが増加する。
 ポリエステル樹脂(B)において、アルミニウム元素に対するリン元素のモル比(後述する「アルミニウム元素に対するリン元素の添加モル比」と区別するため、以下では「アルミニウム元素に対するリン元素の残存モル比」という)が1.32~1.80であり、1.38~1.68であることが好ましい。上述のように、ポリエステル樹脂(B)中のアルミニウム元素およびリン元素はそれぞれ、ポリエステル樹脂(B)の重合触媒として使用するアルミニウム化合物およびリン化合物に由来する。これらアルミニウム化合物とリン化合物を特定の比率で併用することで、重合系中で触媒活性を有する錯体が機能的に形成され、十分な重合活性を発揮することができる。また、アルミニウム化合物とリン化合物とからなる重合触媒を用いて製造された樹脂はアンチモン触媒などの触媒を用いて製造されてなるポリエステル樹脂と比べて触媒のコストが高く(製造コストが高く)なるが、アルミニウム化合物とリン化合物を特定の比率で併用することにより、触媒のコストを抑えつつ、十分な重合活性を発揮することができる。アルミニウム元素に対するリン元素の残存モル比が1.32未満では、熱安定性および熱酸化安定性が低下するおそれや、アルミニウム系異物量が増大するおそれがある。一方、アルミニウム元素に対するリン元素の残存モル比が1.80を超えると、リン化合物の添加量が多くなりすぎるため、触媒コストが増大する。
 ポリエステル樹脂(B)の製造に用いられる重合触媒として、上述のアルミニウム化合物およびリン化合物に加えて、アンチモン化合物、ゲルマニウム化合物、チタン化合物など他の重合触媒を、ポリエステル樹脂(B)の特性、加工性、色調等製品に問題を生じない範囲内において併用してもよい。ポリエステル樹脂(B)中におけるアンチモン元素の含有率は30質量ppm以下であることが好ましく、ポリエステル樹脂(B)中におけるゲルマニウム元素の含有率は10質量ppm以下であることが好ましく、ポリエステル樹脂(B)中におけるチタン元素の含有率は3質量ppm以下であることが好ましい。ただし、上記他の重縮合触媒は、極力使用しないことが好ましい。
 ポリエステル樹脂(B)中におけるアルミニウム系異物に相当するアルミニウム元素の含有率が3000質量ppm以下であることが好ましく、より好ましくは2800質量ppm以下であり、さらに好ましくは2000質量ppm以下であり、よりさらに好ましくは1500質量ppm以下である。アルミニウム系異物とは重合触媒として用いたアルミニウム化合物に起因するものであり、ポリエステル樹脂(B)に不溶の異物である。アルミニウム系異物の含有率が上記を超えると、ポリエステル樹脂(B)に不溶性の微細な異物が原因となり、成形体の品位が悪化するおそれがある。また、重縮合工程や成形工程でのポリエステルろ過時のフィルター詰まりが多くなるという課題にも繋がる。アルミニウム系異物に相当するアルミニウム元素の含有率の好ましい下限は0質量ppmであることが好ましいが、技術的な困難性より300質量ppm程度である。
 なお、本明細書では、実施例に後述した測定方法でアルミニウム元素量を測定していることからも分かるように、この指標は、アルミニウム元素量に基づき、アルミニウム系異物量を相対的に評価するものであり、ポリエステル樹脂中に含まれるアルミニウム系異物量の絶対値を示すものではない。
 ポリエステル樹脂(B)の固有粘度は0.56dl/g以上であることが好ましく、0.56~0.90dl/gであることがより好ましく、0.60~0.80dl/gであることがさらに好ましく、特に好ましくは0.65~0.75dl/gである。ポリエステル樹脂(B)の固有粘度が0.56dl/g未満の場合は、ポリエステル樹脂(B)を空送する際に、ポリエステル樹脂ペレット同士や空送配管との摩擦によってファインが大量に発生するおそれがある。なお、溶融重合のみで固有粘度が0.62dl/gを超えたポリエステル樹脂(B)を製造しようとした場合、経済性が低下するおそれがあるため、0.62dl/gを超えたポリエステル樹脂(B)が必要である場合は、溶融重合で得られたポリエステル樹脂(B)を固相重合法で重合することが好ましい。
 ポリエステル樹脂(B)の固有粘度保持率が93%以上であることが好ましく、94%以上であることがより好ましく、95%以上であることがさらに好ましい。ポリエステル樹脂(B)の固有粘度保持率が93%未満ではポリエステル樹脂組成物(C)の固有粘度保持率が低くなり、リサイクル性が不十分となるおそれがある。ポリエステル樹脂(B)の固有粘度保持率の上限は100%が好ましいが技術的な困難性より99%程度である。
 なお、ポリエステル樹脂(B)の製造方法は後述する。
[ポリエステル樹脂組成物(C)]
 ポリエステル樹脂(A)とポリエステル樹脂(B)を質量比で5:95~95:5で混合してポリエステル樹脂組成物(C)を製造することが好ましい。すなわち、ポリエステル樹脂組成物(C)において、ポリエステル樹脂(A)及びポリエステル樹脂(B)の合計100質量部に対してポリエステル樹脂(A)が5~95質量部であることが好ましい。上記範囲内とすることによりポリエステル樹脂組成物(C)の着色や分子量の低下を抑制できる。なお、本明細書での着色の抑制とはリサイクル回数を重ねた(再練りを繰り返した)場合であっても後述のL値の低下や後述のb値の上昇を抑制することを指す。ポリエステル樹脂(A)の配合割合が95質量部を超えた場合は、ポリエステル樹脂組成物(C)の固有粘度保持率が低くなり、リサイクル性が不十分となるおそれがある。一方、ポリエステル樹脂(A)の配合割合が5質量部未満の場合は、着色の抑制効果が飽和する上に経済性が低下するおそれがある。なお、ポリエステル樹脂(B)は、アルミニウム化合物とリン化合物とからなる重合触媒を用いて製造されているため、アルミニウム元素に対するリン元素の残存モル比を上記の所定の範囲内とした場合であってもアンチモン触媒などの触媒を用いて製造されてなるポリエステル樹脂と比べて触媒のコストが高く(製造コストが高く)なっているが、ポリエステル樹脂(A)とポリエステル樹脂(B)とを併用することにより製造コストを抑えつつ、リサイクル性も高めることができる。本発明では、できるだけポリエステル樹脂(B)の製造コストを低減している。ポリエステル樹脂(A)の配合割合を高くすると、ポリエステル樹脂組成物(C)の製造コストは抑えることができるが、リサイクル回数を重ねると色調が悪化しやすくなる。一方、ポリエステル樹脂(B)の配合割合を高めるとポリエステル樹脂組成物(C)のリサイクル回数を重ねた場合であっても色調の悪化は抑制できるが、製造コストは高くなるおそれがある。ポリエステル樹脂(A)とポリエステル樹脂(B)の質量比は20:80~80:20であることがより好ましく、25:75~75:25であることがさらに好ましい。
 ポリエステル樹脂(A)とポリエステル樹脂(B)とをドライブレンドしてポリエステル樹脂組成物(C)を製造することができる。また、ポリエステル樹脂(A)とポリエステル樹脂(B)とを溶融押出法で混練してポリエステル樹脂組成物(C)を製造してもよい。その場合、ポリエステル樹脂(A)とポリエステル樹脂(B)とをドライブレンド後に、バンバリーミキサー、ニーダー、単軸押出機、二軸押出機、四軸押出機、単軸遊星型押出機等の一般的な樹脂用混練装置を用いて溶融・混錬することによりポリエステル樹脂組成物(C)を製造することができる。中でも、二軸押出機、四軸押出機、単軸遊星型押出機等の表面更新の優れたものが好ましい。また、該押出機は、少なくとも1個以上、好ましくは2個以上、更に好ましくは3個以上のベント口を有し、ベント口は減圧系に接続してポリエステル樹脂組成物(C)の劣化を抑制することが好ましい実施態様である。
 ポリエステル樹脂組成物(C)の固有粘度は、0.56~0.90dl/gであることが好ましく、0.60~0.80dl/gであることが好ましく、0.70~0.75dl/gであることがより好ましい。ポリエステル樹脂組成物(C)の固有粘度が0.90dl/gを超えた場合は、経済性が低下するおそれがある。
 ポリエステル樹脂組成物(C)の固有粘度保持率が89%以上であることが好ましく、90%以上であることがより好ましく、92%以上であることがさらに好ましく、94%以上であることが特に好ましい。ポリエステル樹脂組成物(C)の固有粘度保持率が89%未満ではリサイクル性が不十分となるおそれがある。ポリエステル樹脂組成物(C)の固有粘度保持率の上限は100%が好ましいが技術的な困難性より99%程度である。また、ポリエステル樹脂組成物(C)の固有粘度保持率はポリエステル樹脂(A)の固有粘度保持率よりも高いことが好ましい。なお、本明細書ではポリエステル樹脂組成物(C)に関する記載で単に「固有粘度保持率」と記載されている場合には、ポリエステル樹脂組成物(C)を1回だけ再練りした再練り品の固有粘度保持率のことを指す。また、ポリエステル樹脂組成物(C)の物性は、固有粘度保持率以外の物性についても特段の記載がない限り、ポリエステル樹脂組成物(C)を1回だけ再練りした再練り品の物性を指す。
 ポリエステル樹脂組成物(C)を1回再練りした再練り品中に含まれるCT(環状三量体)量が6600ppm以下であることが好ましい。より好ましくは6400ppm以下であり、さらに好ましくは6000ppm以下である。下限は限定されないが、技術的な困難性より2500ppm程度である。CT量が6600ppmを超えると成形時の金型汚れが増加するおそれがある。
 ポリエステル樹脂組成物(C)を3回再練りした再練り品のCT量からポリエステル樹脂組成物(C)を1回再練りした再練り品のCT量を減じた値(ΔCT)は900ppm以下であることが好ましい。より好ましくは700ppm以下であり、さらに好ましくは600ppm以下である。下限は0ppmであることが好ましいが、技術的な困難性より200ppm程度である。ΔCTが900ppmを超えると成形時の金型汚れが増加するおそれがある。
 また、ポリエステル樹脂組成物(C)中にリン化合物として上記Irganox1222を用いて製造されたポリエステル樹脂(B)を含む場合、ポリエステル樹脂組成物(C)に対してP-NMR測定方法を行うと表1に示した9種のヒンダードフェノール構造の中の少なくとも1種が検出される。Irganox1222以外の同一分子内にリン元素とヒンダードフェノール構造とを有するリン化合物を重合触媒として用いた場合も同様である。
[中空成形体(D)]
 中空成形体(D)の製造方法としては、特に限定されないが、例えば、ポリエステル樹脂組成物(C)を溶融成形等の方法で成形して中空成形体(D)を製造する方法(混錬経由法)やポリエステル樹脂(A)とポリエステル樹脂(B)とをドライブレンド等によりブレンドしたブレンド物を中空成形体製造装置に直接供給して成形して中空成形体(D)を製造する方法(直接成形法)などが挙げられる。
 なお、ポリエステル樹脂(B)は、アルミニウム化合物とリン化合物とからなる重合触媒を用いて製造されているため、アンチモン触媒などの触媒を用いて製造されてなるポリエステル樹脂と比べて触媒のコストが高く(製造コストが高く)なっているが、ポリエステル樹脂(A)とポリエステル樹脂(B)とを併用して中空成形体(D)を製造することにより製造コストを抑えつつ、リサイクル性も高めることができる。本発明では、できるだけポリエステル樹脂(B)の製造コストを低減している。ポリエステル樹脂(A)の配合割合を高くすると、中空成形体(D)の製造コストは抑えることができるが、リサイクル回数を重ねると色調が悪化する。一方、ポリエステル樹脂(B)の配合割合を高めるとポリエステル樹脂組成物(C)のリサイクル回数を重ねても色調の悪化は抑制できるが、製造コストは高くなる。ポリエステル樹脂(A)とポリエステル樹脂(B)との配合割合は、市場要求により適宜設定すればよいが、ポリエステル樹脂(A)とポリエステル樹脂(B)を質量比で5:95~95:5で混合して中空成形体(D)を製造することが好ましい。
 中空成形体(D)の利用分野は、特に限定されないが、ミネラルウオーター、ジュース、ワイン、ウイスキー等の飲料容器、住居用および食器用洗剤容器、ほ乳瓶、瓶詰め食品容器、整髪料、化粧品等の各種容器等として用いることができる。中空成形体(D)は高品質であるポリエステル樹脂組成物(C)又は高品質であるポリエステル樹脂(B)を含むブレンド物を成形して作製しているので、中空成形体(D)は各種容器として使用された後に回収して再生しても、高品質を維持したまま、ポリエステル樹脂を再使用することが出来、ひいては、資源枯渇の抑制、海洋ごみの減少、地球温暖化の抑制など様々な課題解決に寄与することができる。
 中空成形体の製造方法は特に限定されておらず、例えば、ポリエステル樹脂(A)とポリエステル樹脂(B)とをドライブレンド等によりブレンドしたブレンド物を真空乾燥法等によって乾燥した後に押出成形機や射出成形機等の成形機によって成形する方法や、ポリエステル樹脂組成物(C)の溶融体を溶融状態のまま成形機に導入して成形する方法により、有底の予備成形体を得て、この予備成形体を延伸ブロー成形、ダイレクトブロー成形、押出ブロー成形などのブロー成形法により最終的な中空成形体を製造することができる。もちろん、上記の押出成形機や射出成形機等の成形機によって得られた成形体を最終的な中空成形体とすることもできる。
 さらには、中空成形体は、ポリビニルアルコールやポリメタキシリレンジアミンアジペートなどのガスバリア層、遮光性樹脂層などを設けた多層構造とすることも可能である。また、PVD(物理蒸着法)やCVD(化学蒸着法)等の方法を用いて、容器の内外をアルミニウムなどの金属やダイヤモンド状カーボンの層で被覆することも可能である。
 なお、中空成形体の口栓部等の結晶性を上げるため、ポリエチレンなどの他の樹脂やタルク等の無機核剤を添加することもできる。
 ポリエステル樹脂組成物(C)を上記方法で中空成形体(D)に成形してもよいが、例えば、ポリエステル樹脂組成物(C)を固相重合により固有粘度を上昇させたり、CT量を低減させたりした後に中空成形体(D)に成形してもよい。
 上記ポリエステル樹脂組成物(C)やポリエステル樹脂(A)とポリエステル樹脂(B)とをドライブレンドしたブレンド物は、固有粘度保持率の他にも着色度も抑制されているので、中空成形体(D)以外にも、繊維、不織布、シート、フィルム等の他の製品等にも好適に用いることが出来る。
[ポリエステル樹脂(B)の製造方法]
 次に、ポリエステル樹脂(B)の製造方法について説明する。ポリエステル樹脂(B)の製造方法としては、触媒としてアルミニウム化合物およびリン化合物からなるポリエステル重合触媒を用いる点以外は公知の工程を備えた方法で行うことができるが、下記(4)と(5)とを満足するように重合触媒を添加することが好ましく、下記(4)と(5)に加えて下記(6)も満足するように重合触媒を添加することがさらに好ましい。なお、下記(4)~(6)の好適な数値範囲については上述している。
(4)前記ポリエステル樹脂(B)中におけるアルミニウム元素の含有量が9~20質量ppm
(5)前記ポリエステル樹脂(B)中におけるリン元素の含有量が13~31質量ppm
(6)前記ポリエステル樹脂(B)中におけるアルミニウム元素に対するリン元素の残存モル比が1.32以上1.80以下
 ポリエステル樹脂(B)の製造方法としては、中間体として重縮合物(低次縮合物)であるポリエステル又はそのオリゴマーを合成する第1ステップと、前記中間体をさらに重縮合する第2ステップとを有することが好ましい。
 また、前記第1ステップ後であって前記第2ステップの前に前記中間体にアルミニウム化合物を溶解した溶液Sとリン化合物を溶解した溶液Tとを下記(7)~(9)を満足するように添加することが好ましい。ポリエステル樹脂(B)の製造に用いられる多価カルボン酸およびそのエステル形成性誘導体、少量添加してもよいヒドロキシカルボン酸およびこれらのエステル形成性誘導体、少量添加してもよい環状エステルは、重合中に反応系から系外へ留出せず、触媒として系に最初に添加された使用量のほぼ100%が重合によって製造されたポリエステル樹脂(B)中に残留するため、これらの仕込み量から「生成されるポリエステル樹脂」の質量を算出することができる。
 (7)生成するポリエステル樹脂(B)に対するアルミニウム元素の添加量が9~20質量ppm(より好ましくは9~19質量ppm、さらに好ましくは10~17質量ppm、特に好ましくは12~17質量ppm)
 (8)生成するポリエステル樹脂(B)に対するリン元素の添加量が20~40質量ppm(より好ましくは20~38質量ppm、さらに好ましくは21~36質量ppm)
 (9)前記(7)におけるアルミニウム元素の添加量に対する前記(8)におけるリン元素の添加量のモル比(以下、「アルミニウム元素に対するリン元素の添加モル比」という)が1.50以上2.50以下(より好ましくは1.50~2.30、さらに好ましくは1.60~2.20)
 上記第1ステップで合成される低次縮合物(低重合体)であるポリエステル又はそのオリゴマーの製造方法としては、特に限定されない。
 ポリエステル樹脂(B)の製造方法は、触媒としてアルミニウム化合物およびリン化合物からなるポリエステル重合触媒を用いる点並びにポリエステル重合触媒の添加量に留意する点以外は、従来公知の工程を備えた方法で行うことができる。例えば、ポリエチレンテレフタレートを製造する場合は、テレフタル酸とエチレングリコール、および必要により他の共重合成分を直接反応させて、水を留去しエステル化した後、常圧あるいは減圧下で重縮合を行う直接エステル化法、または、テレフタル酸ジメチルとエチレングリコール、および必要により他の共重合成分を反応させてメチルアルコールを留去しエステル交換させた後、常圧あるいは減圧下で重縮合を行うエステル交換法により製造される。さらに必要に応じて、極限粘度を増大させるために固相重合を行ってもよい。なお、原料として用いたジカルボン酸等を含む多価カルボン酸の量(質量)から、生成するポリエステル樹脂(B)の量(質量)は、算出可能である。
 これらいずれの方式においても、エステル化反応あるいはエステル交換反応は、1段階で行ってもよいし、また多段階に分けて行ってもよい。
 また、溶融重合法で製造されたポリエステル樹脂を固相重合法で追加重合してもよい。固相重合反応は、溶融重縮合反応と同様に連続式装置で行うことが出来る。
 3基以上の反応器よりなる連続重縮合装置(初期段階、中期段階および後期段階の3段階の重合方式)である場合は、1段階目を初期段階、最終段を後期段階、2段階目から最終段の一つ手前の段階までを中間段階とし、中間段階の重合反応の反応条件は、初期段階の反応条件と最終段階の反応条件の間の条件であることが好ましい。これらの重合反応工程の各々において到達される極限粘度の上昇の度合は滑らかに分配されることが好ましい。
(固相重合法)
 固有粘度を増大させるために溶融重合法で製造されたポリエステル樹脂を固相重合してもよい。固相重合は、バッチ式重合法であっても、連続重合法であってもよいが、固相重合は、溶融重合と同様に連続式装置で行うことが好ましい。
 ポリエステル樹脂(B)のCT量を下げるために、溶融重合法で製造されたポリエステル樹脂を固相重合法で追加重合するのが好ましい。固相重合は、前記第2ステップ(溶融重合)により得られたポリエステルを粉粒体状にして実施される。粉粒体とはチップ、ペレット、フレーク、粉末状のポリエステルを意味するが、好ましくはチップまたはペレットである。
 上記固相重合は粉粒体状のポリエステルをポリエステルの融点以下の温度にて、不活性ガス流通下あるいは減圧下で加熱することにより実施される。固相重合工程は1段階で行ってもよいし、また多段階に分けて行ってもよい。
 固相重合工程に供給される粉粒状ポリエステルは、あらかじめ固相重合を行なう場合の温度より低い温度に加熱して予備結晶化を行なった後、固相重合工程に供給してもよい。
 このような予備結晶化工程は、粉粒状ポリエステルを乾燥状態で通常120~200℃、好ましくは130~180℃の温度に1分~4時間加熱することによって行なってもよく、あるいは粉粒状ポリエステルを水蒸気雰囲気下又は水蒸気含有不活性ガス雰囲気下あるいは水蒸気含有空気雰囲気下で、通常120~200℃の温度に1分間以上加熱することによって行なってもよい。
 前記のようにして溶融重合されたポリエステルは、例えば、チップ化されたあと輸送配管中を貯蔵用サイロや固相重合工程に輸送される。このようなチップの輸送を、例えば空気を使用した強制的な低密度輸送方法で行うと、溶融重合ポリエステルのチップの表面には配管との衝突によって大きな衝撃力がかかり、この結果ファインやフィルム状物が多量に発生する。このようなファインやフィルム状物はポリエステルの結晶化を促進させる効果を持っており、多量に存在する場合には得られた成形体の透明性が非常に悪くなる。従って、このようなファインやフィルム状物を除去する工程を付加することは好ましい実施態様の一つである。
 上記のファインやフィルム状物を除去する方法は限定されないが、例えば、前記の固相重合工程と固相重合工程のあとに設置される後工程との中間工程に別々に設置した振動篩工程および空気流による気流分級工程、重力式分級工程等で処理する方法等が挙げられる。
 アルミニウム化合物およびリン化合物を触媒として用いる場合には、スラリー状または溶液状で添加するのが好ましく、水やグリコールなどの溶媒に溶解した溶液がより好ましく、水および/またはグリコールに溶解した溶液を用いることがさらに好ましく、エチレングリコールに溶解した溶液を用いることが最も好ましい。
 ポリエステル樹脂(B)の製造工程の重合反応の開始までの任意の段階でアルミニウム化合物を溶解した溶液Sとリン化合物を溶解した溶液Tをポリエステル樹脂(B)中の含有率(残存量)が上記(4)~(6)を満たす範囲になるように添加するのが好ましい。
 アルミニウム化合物を溶解した溶液Sとリン化合物を溶解した溶液Tとをポリエステル樹脂(B)中の含有率(残存量)が上記(4)~(6)を満たすように添加することで、触媒量(触媒コスト)を低く抑えた上で、重合系中で触媒活性を有する錯体が機能的に形成され、十分な重合活性を発揮することができる。また、アルミニウム系異物の生成も抑制することができる。
 なお、触媒として機能するアルミニウム化合物中のアルミニウム原子は、ポリエステル樹脂の重合時に減圧環境下に置かれても、触媒として系に最初に添加された使用量のほぼ100%が、重合によって製造されたポリエステル樹脂(B)中に残留する。すなわち、アルミニウム化合物の量は重合の前後でほぼ変化しないため、前記中間体に対するアルミニウム原子の添加量が9~20質量ppmとなるようにすると、ポリエステル樹脂(B)中におけるアルミニウム原子の含有率も9~20質量ppmとなる。
 また、アルミニウム化合物とともに触媒として機能するリン化合物は、ポリエステル樹脂の重合時に減圧環境下に置かれる際、触媒として系に最初に添加された使用量の一部(10~40%程度)が系外に除去されるが、この除去割合はアルミニウム原子に対するリン原子の添加モル比、添加するアルミニウム化合物を溶解した溶液やリン化合物を溶解した溶液の塩基性度や酸性度、アルミニウム含有溶液やリン含有溶液の添加方法(一液化して添加するか、別々に添加するか)等により変化する。したがって、最終生成物となるポリエステル樹脂(B)中のリン化合物の添加量が上記(5)を満たすように適宜設定するのが好ましい。
 アルミニウム化合物を溶解した溶液Sとリン化合物を溶解した溶液Tとを同時に添加することが好ましく、アルミニウム化合物を溶解した溶液Sとリン化合物を溶解した溶液Tとを、あらかじめ前記中間体に添加する比率で混合して混合液を作製しておき、一液化した混合液を前記中間体に添加することがより好ましい実施態様である。あらかじめ一液化する方法としては、それぞれの溶液をタンクで混合する方法、触媒を添加する配管を途中で合流して混合させる方法などが挙げられる。
 なお、反応容器に添加する場合には、反応容器の撹拌を高くすることが好ましい。反応容器間の配管に添加する場合には、インラインミキサーなどを設置して、添加された触媒溶液が速やかに均一混合されるようにすることが好ましい。
 アルミニウム化合物を溶解した溶液Sとリン化合物を溶解した溶液Tとを別々に添加した場合、アルミニウム化合物に起因する異物が多く発生しやすく、昇温結晶化温度が低くなったり、降温結晶化温度が高くなったり、十分な触媒活性が得られなくなる場合がある。アルミニウム化合物とリン化合物を同時に添加することで、重合活性をもたらすアルミニウム化合物とリン化合物の複合体が速やかに無駄なく生成できるが、別々に添加した場合には、アルミニウム化合物とリン化合物の複合体の生成が不十分であり、また、リン化合物との複合体を生成できなかったアルミニウム化合物が異物として析出するおそれがある。
 また、アルミニウム化合物を溶解した溶液Sとリン化合物を溶解した溶液Tとは、重合反応の開始前であり、かつ、エステル化反応またはエステル交換反応終了後に添加することが好ましく、前記第1ステップ後であって前記第2ステップの前に前記中間体にアルミニウム化合物を溶解した溶液Sとリン化合物を溶解した溶液Tを添加することがより好ましい。エステル化反応またはエステル交換反応終了前に添加すると、アルミニウム系異物量が増大するおそれがある。
 ポリエステル樹脂(B)が、多価カルボン酸およびそのエステル形成性誘導体から選ばれる少なくとも一種と多価アルコールおよびそのエステル形成性誘導体から選ばれる少なくとも一種とからなるものであるときは、アルミニウム化合物を溶解した溶液Sは、アルミニウム化合物を溶解したグリコール溶液であることが好ましく、リン化合物を溶解した溶液Tは、リン化合物を溶解したグリコール溶液であることが好ましい。
<リン化合物の熱処理>
 また、ポリエステル樹脂(B)の製造に使用するリン化合物は溶媒中で熱処理されたものであることが好ましい。使用する溶媒としては、水およびアルキレングリコールからなる群から選ばれる少なくとも1種であれば限定されないが、アルキレングリコールとしては、リン化合物を溶解する溶媒を用いることが好ましく、エチレングリコール等のポリエステル樹脂(B)の構成成分であるグリコールを用いることがより好ましい。溶媒中での加熱処理は、リン化合物を溶解してから行うのが好ましいが、完全に溶解していなくてもよい。
 上記熱処理の条件は、熱処理温度が170~196℃であることが好ましく、より好ましくは175~185℃、さらに好ましくは175~180℃である。熱処理時間は30~240分が好ましく、より好ましくは50~210分である。
 上記熱処理時のリン化合物の濃度は3~10質量%が好ましい。
 上記の熱処理により、グリコール溶液中に含まれるリン化合物の酸性度を一定にすることができ、アルミニウム化合物と併用することによる重合活性が向上するとともに、重合触媒に起因するアルミニウム系異物量の生成を低下させることができ、かつ重合工程におけるリン化合物の留去量が抑制でき経済性が高めることができる。よって、上記熱処理を行うことが好ましい。
 以下、本発明を実施例により説明するが、本発明はもとよりこれらの実施例に限定されるものではない。なお、各実施例および比較例において用いた評価方法は以下の通りである。
〔評価方法〕
(1)固有粘度(IV)
 試料またはそのプリフォームを約3g凍結粉砕して140℃15分間乾燥した後、0.20g計量し、1,1,2,2-テトラクロロエタンとp-クロロフェノールとを1:3(質量比)で混ぜた混合溶媒を用いて20mlの溶液とし、100℃で60分間撹拌して完全に溶解して室温まで冷却した後グラスフィルターを通して試料とした。30℃に温調されたウベローデ粘度計((株)離合社製)を用いて試料および溶媒の落下時間を計測し、次式により固有粘度[η]を求めた。
  [η]=(-1+√(1+4K’ηSp))/2K’C
  ηSp=(τ-τ0)τ0
  ここで、
  [η]:固有粘度(dl/g)
  ηSp:比粘度(-)
  K’:ハギンスの恒数(=0.33)
  C:濃度(=1g/dl)
  τ:試料の落下時間(sec)
  τ0:溶媒の落下時間(sec)
(2)試料中における所定の金属元素の含有率
 白金製るつぼに後述するポリエステル樹脂(A-1)を秤量し、電気コンロでの炭化の後、マッフル炉で550℃、8時間の条件で灰化した。灰化後のサンプルを1.2M塩酸に溶解し、試料溶液とした。調製した試料溶液を下記の条件で測定し、高周波誘導結合プラズマ発光分析法によりポリエステル樹脂(A-1)中におけるアンチモン元素、ゲルマニウム元素、及びチタン元素の濃度を求めた。同様に後述するポリエステル樹脂(E)~(G)中におけるアンチモン元素、ゲルマニウム元素、及びチタン元素の濃度を求めたが、含有量が1質量ppm以下である元素については記載を省略した。また、上記と同様の方法で後述するポリエステル樹脂(B)中におけるアルミニウム元素の濃度を求めた。
  装置:SPECTRO社製 CIROS-120
  プラズマ出力:1400W
  プラズマガス:13.0L/min
  補助ガス:2.0L/min
  ネブライザー:クロスフローネブライザー
  チャンバー:サイクロンチャンバー
  測定波長:167.078nm
(3)ポリエステル樹脂(B)中におけるリン元素の含有率
 ポリエステル樹脂(B)を硫酸、硝酸、過塩素酸で湿式分解を行った後、アンモニア水で中和した。調整した溶液にモリブデン酸アンモニウムおよび硫酸ヒドラジンを加えた後、紫外可視吸光光度計(島津製作所社製、UV-1700)を用いて、波長830nmでの吸光度を測定した。あらかじめ作製した検量線から、ポリエステル樹脂(B)中のリン元素の濃度を求めた。
(4)ポリエステル樹脂(B)中におけるアルミニウム系異物量
 ポリエステル樹脂(B)30gおよびp-クロロフェノール/テトラクロロエタン(3/1:質量比)混合溶液250mLを、撹拌子を入れた500mL三角フラスコに投入し、ホットスターラーを使用して100~105℃、1.5時間で加熱溶解した。該溶液を、直径47mm/孔径1.0μmのポリテトラフルオロエチレン製のメンブレンフィルター(Advantec社製PTFEメンブレンフィルター、品名:T100A047A)を用いて、異物を濾別した。有効濾過直径は37.5mmとした。濾過終了後、引き続きクロロホルム50mLを用いて洗浄し、次いでフィルターを乾燥させた。
 該メンブレンフィルターの濾過面を、走査型蛍光X線分析装置(RIGAKU社製、ZSX100e、Rhライン球4.0kW)でアルミニウム元素量を定量した。定量はメンブレンフィルターの中心部直径30mmの部分について行った。なお、該蛍光X線分析法の検量線はアルミニウム元素含有率が既知のポリエチレンテレフタレート樹脂を用いて求め、見掛けのアルミニウム元素量をppmで表示した。測定はX線出力50kV-70mAで分光結晶としてペンタエリスリトール、検出器としてPC(プロポーショナルカウンター)を用い、PHA(波高分析器)100-300の条件でAl-Kα線強度を測定することにより実施した。検量線用ポリエチレンテレフタレート樹脂中のアルミニウム元素量は、高周波誘導結合プラズマ発光分析法で定量した。
(5)試料中のヒンダードフェノール構造又はその分解残基の存在確認
 試料420mgをヘキサフルオロイソプロパノールと重ベンゼンとを1:1(質量比)で混ぜた混合溶媒2.7mLに溶解し、リン酸25%重アセトン溶液を10μL添加して遠心分離を行った。その後、上澄み液にトリフルオロ酢酸100~150mgを添加し、すぐに下記の条件でP-NMR測定を行った。
  装置:フーリエ変換核磁気共鳴装置(BRUKER製、AVANCE500)
  31P共鳴周波数:202.456MHz
  ロック溶媒:重ベンゼン
  検出パルスのフリップ角:65°
  データ取り込み時間:1.5秒
  遅延時間:0.5秒
  プロトンデカップリング:フルデカップル
  測定温度:25~35℃
  積算回数:20000~30000回程度
 表1に示した化式番号残基のピーク波長を以下に示す。これらのピーク波長が検出されたときには、試料中にヒンダードフェノール構造を有すると判断した。
 化学式1:34.5ppm、化学式4:30.5ppm、化学式7:53.6ppm
 化学式2:33.8ppm、化学式5:30.1ppm、化学式8:53.0ppm
 化学式3:31.9ppm、化学式6:28.7ppm、化学式9:51.3ppm
(6)環状三量体の定量
 試料を冷凍粉砕あるいは細片化し、試料100mgを精秤した。これを、ヘキサフルオロイソプロパノ-ル/クロロホルム混合液(容量比=2/3)3mLに溶解し、さらにクロロホルム20mLを加えて希釈した。これにメタノ-ル10mLを加えてポリマーを沈殿させた後、濾過した。濾液を蒸発乾固し、ジメチルホルムアミド10mLで定容とした。次いで下記の高速液体クロマトグラフ法でポリエステル樹脂中あるいは中空成形体中の環状三量体量を定量した。前記操作を5回繰返し、その平均値をCT含有量とした。
  装置:L-7000(日立製作所製)
  カラム:μ-Bondasphere C18 5μ 100オングストローム 3.9mm×15cm(Waters製)
  溶媒:溶離液A:2%酢酸/水(v/v)
     溶離液B:アセトニトリル
     グラジエントB%:10→100%(0→55分)
  流速:0.8mL/分
  温度:30℃
  検出器:UV-259nm
(7)試料の固有粘度保持率
 試料を真空乾燥140℃、16時間乾燥し、水分率150ppm以下の乾燥ポリエステルを作製した。この乾燥ポリエステルを用いて以下の条件で二軸押出機にて再練り処理を1回行った後に再練り品の固有粘度を測定し、下記の式を用いて固有粘度保持率を算出した。また、上記乾燥ポリエステル樹脂を用いて以下の条件で二軸押出機にて再練り処理を3回行った後に再練り品の固有粘度を測定し、下記の式を用いて固有粘度保持率を算出した。なお、固有粘度の測定方法は上記(1)に記載のとおりである。
  二軸押出機:テクノベル社製KZW15TW-45/60MG-NH(-2200)
  設定温度:260℃(実温268~270℃)
  スクリュー回転数:200rpm
  吐出量1.7~2.0kg/h
 固有粘度保持率(%)=100×再練り品の固有粘度/試料の固有粘度
 なお、水分率は、電量滴定法であるカールフィッシャー水分計(株式会社三菱ケミカルアナリテック製、CA-200)を用いて、試料0.6gを230℃,5分間、250mL/minの窒素気流下の条件で測定した。
(8)カラー測定
 試料の非晶ペレットを測定セルに詰め込み(約50g)回転させながら測定を実施した。
  装置:東京電色社製 精密型分光光度色彩計TC-1500SX
  測定方法:JIS Z8722準拠 透過光 0度、-0度法
  検出素子:シリコンフォトダイオードアレー
  光源:ハロゲンランプ 12V100W 2000H
  測定面積:透過25mmφ
  湿温度条件:25℃、RH50%
  測定セル:φ35mm、高さ25mm 回転式(ペレット)
  測定内容:X,Y,Z3刺激値 CIE色度座標 x=X/X+Y+Z y=Y/X+Y+Z
       ハンターLab表色系
 上記(7)と同じ方法で再練り処理を行い、再練り処理を1回行った後の再練り品におけるL値及びb値と、再練り処理を3回行った後の再練り品におけるL値及びb値とを求めた。
(9)ポリエステル樹脂(A-1)の組成分析
 ポリエステル樹脂(A-1)20mgを重ヘキサフルオロイソプロパノールと重クロロホルムとを1:9(容量比)で混ぜた混合溶媒0.6mlに溶解し、遠心分離を行った。その後、上澄み液を採取し、下記の条件でH-NMR測定を行った。
  装置:フーリエ変換核磁気共鳴装置(BRUKER製、AVANCE NEO600)
  1H共鳴周波数:600.13MHz
  ロック溶媒:重クロロホルム
  フリップ角:30°
  データ取り込み時間:4秒
  遅延時間:1秒
  測定温度:30℃
  積算回数:128回
 以下、アルミニウム含有エチレングリコール溶液及びリン含有エチレングリコール溶液の調製について説明する。
<アルミニウム含有エチレングリコール溶液sの調製>
 塩基性酢酸アルミニウムの20g/L水溶液に対して、等量(容量比)のエチレングリコールをともに調合タンクに仕込み、室温(23℃)で数時間撹拌した後、減圧(3kPa)下、50~90℃で数時間撹拌しながら系から水を留去し、アルミニウム化合物が20g/L含まれたアルミニウム含有エチレングリコール溶液sを調製した。
<リン含有エチレングリコール溶液tの調製>
 リン化合物として、Irganox1222(ビーエーエスエフ社製)を、エチレングリコールとともに調合タンクに仕込み、窒素置換下撹拌しながら175℃で150分熱処理し、リン化合物が50g/L含まれたリン含有エチレングリコール溶液tを調製した。
<ポリエステル樹脂(B)>
ポリエステル樹脂(B’-1)(参考例のためのポリエステル樹脂であり、従来、最適と考えられていたアルミニウム元素の残存量、リン元素の残存量である)
 撹拌機付き10Lステンレス製オートクレーブに、事前に調合した高純度テレフタル酸とエチレングリコールからなるエステル化率が約95%のポリエステルオリゴマーと、高純度テレフタル酸を仕込み、260℃でエステル化反応を行って、オリゴマー混合物を得た。得られたオリゴマー混合物は酸末端基の濃度が750eq/tonであり、水酸基末端の割合(OH%)は59モル%であった。
 得られたオリゴマー混合物に、上記方法で調製したアルミニウム含有エチレングリコール溶液sおよびリン含有エチレングリコール溶液tを混合し一液化した混合液を添加した。該混合液は、それぞれオリゴマー混合物の質量に対して、アルミニウム元素およびリン元素として21質量ppmおよび58質量ppmとなるように作製した。アルミニウム元素に対するリン元素の添加モル比は2.41であった。なお、生成されるポリエステル樹脂の量は、添加するテレフタル酸の量より算出可能であり、本実施例では、生成されるポリエステル樹脂に対してアルミニウム元素およびリン元素として21質量ppmおよび58質量ppmとなるように混合液が添加されている。
 その後、1時間で系の温度を280℃まで昇温して、この間に系の圧力を徐々に減じて0.15kPaとし、この条件下で重縮合反応を行い、IVが0.60dl/gのポリエステル樹脂を得た。その後、得られたポリエステル樹脂を、バッチ式の固相重合装置を使用し、230℃にて、減圧下、7時間固相重合し、固有粘度が0.70dl/gのポリエステル樹脂(B’-1)を得た。ポリエステル樹脂(B’-1)におけるアルミニウム元素の残存量は21質量ppm、リン元素の残存量は45質量ppm、アルミニウム元素に対するリン元素の残存モル比は1.87であった。ポリエステル樹脂(B’-1)中におけるアルミニウム系異物に相当するアルミニウム元素の含有率は710質量ppm、ポリエステル樹脂(B’-1)のL値は58.7であり、ポリエステル樹脂(B’-1)中にヒンダードフェノール構造を有することが確認できた。
ポリエステル樹脂(B-1)
 アルミニウム元素およびリン元素としての添加量が異なる以外は、ポリエステル樹脂(B’-1)と同様の方法で、ポリエステル樹脂(B-1)を得た。ポリエステル樹脂(B-1)におけるアルミニウム元素の残存量は16質量ppm、リン元素の残存量は26質量ppm、アルミニウム元素に対するリン元素の残存モル比は1.42であった。ポリエステル樹脂(B-1)中におけるアルミニウム系異物に相当するアルミニウム元素の含有率は2000質量ppm、ポリエステル樹脂(B-1)のL値は58.5であり、ポリエステル樹脂(B-1)中にヒンダードフェノール構造を有することが確認できた。
ポリエステル樹脂(B-2)
 アルミニウム元素およびリン元素としての添加量が異なる以外は、ポリエステル樹脂(B’-1)と同様の方法で、ポリエステル樹脂(B-2)を得た。ポリエステル樹脂(B-2)におけるアルミニウム元素の残存量は10質量ppm、リン元素の残存量は16質量ppm、アルミニウム元素に対するリン元素の残存モル比は1.39であった。ポリエステル樹脂(B-2)中におけるアルミニウム系異物に相当するアルミニウム元素の含有率は2300質量ppm、ポリエステル樹脂(B-2)のL値は56.6であり、ポリエステル樹脂(B-2)中にヒンダードフェノール構造を有することが確認できた。
<ポリエステル樹脂(A-1)>
 ポリエステル樹脂(A-1)として、協栄産業株式会社より提供された回収ポリエステル樹脂フレークを用いた。該回収ポリエステル樹脂フレークは、組成分析の結果、エチレンテレフタレート構造単位を97モル%以上含むことを確認した。該回収ポリエステル樹脂フレークの固有粘度は0.750dl/gであった。また、上記回収ポリエステル樹脂フレーク中におけるアンチモン元素の含有率は190質量ppm、ゲルマニウム元素の含有率は1.6質量ppmであった。なお、チタン元素の含有率は1質量ppm以下と非常に少量であるため、表2及び表3ではチタン元素の含有率の記載は省略した。アンチモン、ゲルマニウム、チタンの各元素の含有率から、上記回収ポリエステル樹脂フレークは、アンチモン触媒で製造されたポリエステル樹脂を用いた中空成形体を主体とした回収ポリエステル樹脂フレークであることを裏付けることができた。
(実施例1~7、参考例6)
 ポリエステル樹脂(A-1)とポリエステル樹脂(B)とを表2、3に示した配合比で溶融混練することでポリエステル樹脂組成物を得ることができた。ポリエステル樹脂組成物の各種特性を表2、3に示す。
(比較例1、参考例1~5)
 ポリエステル樹脂(A-1)、ポリエステル樹脂(B-1)、ポリエステル樹脂(B-2)、及び下記ポリエステル樹脂(E)~(G)単体の各種特性を表3に示す。なお、ポリエステル樹脂(E)~(G)はアンチモン触媒、チタン触媒、及びゲルマニウム触媒の少なくとも一つを用いて作製されたポリエステル樹脂であり、アンチモン、チタン、ゲルマニウムの各元素の含有率は上記の測定方法で測定されている。
ポリエステル樹脂(E):インドラマ社製N1(アンチモン元素の含有量:270質量ppm、固有粘度:0.789dl/g)
ポリエステル樹脂(F):インドラマ社製H0AF(チタン元素の含有量:7質量ppm、固有粘度:0.753dl/g)
ポリエステル樹脂(G):インドラマ社製N2G(ゲルマニウム元素の含有量:30質量ppm、固有粘度:0.739dl/g)
(比較例2~4)
 ポリエステル樹脂(A-1)とポリエステル樹脂(E)~(G)のいずれかとを表3に示した配合比で溶融混練することでポリエステル樹脂組成物を得ることができた。ポリエステル樹脂組成物の各種特性を表3に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 実施例1~実施例7では、回収されたポリエステル樹脂(A-1)に対してポリエステル樹脂(B-1)又はポリエステル樹脂(B-2)を混合することにより複数回リサイクルを行っても極限粘度保持率が高いポリエステル樹脂組成物を得ることができた。
 また、実施例1~実施例7では、回収されたポリエステル樹脂(A-1)に対してポリエステル樹脂(B-1)又はポリエステル樹脂(B-2)を混合することにより複数回リサイクルを行っても黒ずみの尺度であるL値が高いままであり、かつ、黄色みの尺度であるb値が低いままであるポリエステル樹脂組成物を得ることができた。これら特性は、参考例6と同程度である。
 ポリエステル樹脂(B-1)、ポリエステル樹脂(B-2)は、ポリエステル樹脂(B’-1)に比べ、アルミニウム元素及びリン元素の添加量が少ないにもかかわらず、重合時間が短くなっている上にアルミニウム系異物量も少ないため高品質である。また、触媒添加量も少ないことから、触媒のコストを低減できる。
 ポリエステル樹脂(B-1)を用いた参考例1及びポリエステル樹脂(B-2)を用いた参考例2は、リサイクル性は優れている。
 比較例1では、回収されたポリエステル樹脂(A-1)をリサイクルしているが、リサイクル回数を重ねるにつれて極限粘度保持率が低下して分子量が低下してしまい、さらに、L値が低下し、b値が高くなり、着色が見られた。
 参考例3~5では、アンチモン元素、チタン元素、又はゲルマニウム元素を含むポリエステル樹脂を用いた場合であり、比較例2~4では、アンチモン元素、チタン元素、又はゲルマニウム元素を含むポリエステル樹脂を回収されたポリエステル樹脂(A-1)と混合した場合である。アンチモン元素、チタン元素、又はゲルマニウム元素を含むポリエステル樹脂の固有粘度保持率が高くなっている(参考例3~5)にもかかわらず、回収されたポリエステル樹脂(A-1)に対してアンチモン元素、チタン元素、又はゲルマニウム元素を含むポリエステル樹脂を混合してもポリエステル樹脂(A-1)のみをリサイクルした場合と固有粘度保持率が同程度であり(比較例2~4)、回収されたポリエステル樹脂(A-1)に対してアンチモン元素、チタン元素、又はゲルマニウム元素を含むポリエステル樹脂を混合しても分子量の低下を抑制することはできなかった。また、アンチモン元素、チタン元素、又はゲルマニウム元素を含むポリエステル樹脂を回収されたポリエステル樹脂(A-1)と混合した場合、リサイクル回数を重ねるとCT量やΔCTが多くなってしまい、リサイクル性を高めることはできなかった。
 所定量のアルミニウム化合物及びリン化合物を含むポリエステル樹脂(B)を回収されたポリエステル樹脂(A)と混合してポリエステル樹脂組成物(C)を製造することにより、ポリエステル樹脂組成物(C)の着色や分子量の低下を抑制でき、リサイクル性に優れたポリエステル樹脂組成物を低コストで得ることができる。また、アルミニウム化合物及びリン化合物を含むポリエステル樹脂(B)を回収されたポリエステル樹脂(A)と混合して中空成形体(D)を製造することにより、中空成形体(D)の着色や分子量の低下を抑制でき、リサイクル性に優れたポリエステル樹脂組成物を得ることができる。
 また、ポリエステル樹脂組成物(C)や中空成形体(D)は再使用することが出来るので、資源枯渇の抑制、海洋ごみの減少、地球温暖化の抑制など様々な課題解決に寄与することができる。
(まとめ)
 以上から明らかなように、本開示に係る第一の態様のポリエステル樹脂組成物(C)の製造方法は、回収されたポリエステル樹脂(A)とアルミニウム化合物及びリン化合物を含むポリエステル樹脂(B)とを混合する工程を含み、前記ポリエステル樹脂(A)は下記(1)~(3)を満足し、前記ポリエステル樹脂(B)は下記(4)~(6)を満足する。
(1)前記ポリエステル樹脂(A)はアンチモン、チタン、及びゲルマニウムから選ばれる少なくとも一種の元素を含む
(2)前記ポリエステル樹脂(A)中におけるアンチモン元素、チタン元素、及びゲルマニウム元素の合計の含有量が2~500質量ppmである
(3)前記ポリエステル樹脂(A)の固有粘度が0.5~0.8dl/gである
(4)前記ポリエステル樹脂(B)中におけるアルミニウム元素の含有量が9~20質量ppmである
(5)前記ポリエステル樹脂(B)中におけるリン元素の含有量が13~31質量ppmである
(6)前記ポリエステル樹脂(B)中におけるアルミニウム元素に対するリン元素の残存モル比が1.32以上1.80以下である
 第一の態様によれば、所定量のアルミニウム化合物及びリン化合物を含むポリエステル樹脂(B)をアンチモン、チタン、及びゲルマニウムから選ばれる少なくとも一種の元素を含む回収されたポリエステル樹脂(A)に混合してポリエステル樹脂組成物(C)を製造することにより、ポリエステル樹脂組成物(C)の着色や分子量の低下を抑制でき、リサイクル性に優れたポリエステル樹脂組成物を低コストで得ることができる。
 第二の態様のポリエステル樹脂組成物(C)の製造方法では、第一の態様において、
前記ポリエステル樹脂(B)の固有粘度が0.56dl/g以上である。
 第二の態様によれば、ポリエステル樹脂(B)を空送する際に、ポリエステル樹脂ペレット同士や空送配管との摩擦によってファインが大量に発生しにくい。
 第三の態様のポリエステル樹脂組成物(C)の製造方法では、第一の態様において、リン化合物が3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルエステルである。
 第三の態様によれば、触媒のコストを抑えつつ、十分な重合活性を発揮することができる。
 第四の態様のポリエステル樹脂組成物(C)の製造方法では、第一の態様において、
前記ポリエステル樹脂(A)及び前記ポリエステル樹脂(B)の合計100質量部に対し、前記ポリエステル樹脂(A)が5~95質量部である。
 第四の態様によれば、ポリエステル樹脂組成物(C)の着色や分子量の低下を抑制できる。
 第五の態様の中空成形体(D)の製造方法では、第一から第四のいずれか一の態様における製造方法で製造されたポリエステル樹脂組成物(C)を溶融成形する工程を含む。
第五の態様によれば、製造コストを抑えつつ、リサイクル性も高めることができる。中空成形体(D)は、溶融体を溶融状態のまま成形機に導入して成形する工程を含む。
 第六の態様のポリエステル樹脂(A)の再生方法では、回収されたポリエステル樹脂(A)とアルミニウム化合物及びリン化合物を含むポリエステル樹脂(B)とを混合する。前記ポリエステル樹脂(A)は下記(1)~(3)を満足し、前記ポリエステル樹脂(B)は下記(4)~(6)を満足する。
(1)前記ポリエステル樹脂(A)はアンチモン、チタン、及びゲルマニウムから選ばれる少なくとも一種の元素を含む
(2)前記ポリエステル樹脂(A)中におけるアンチモン元素、チタン元素、及びゲルマニウム元素の合計の含有量が2~500質量ppmである
(3)前記ポリエステル樹脂(A)の固有粘度が0.5~0.8dl/gである
(4)前記ポリエステル樹脂(B)中におけるアルミニウム元素の含有量が9~20質量ppmである
(5)前記ポリエステル樹脂(B)中におけるリン元素の含有量が13~31質量ppmである
(6)前記ポリエステル樹脂(B)中におけるアルミニウム元素に対するリン元素の残存モル比が1.32以上1.80以下である
 第六の態様によれば、アンチモン、チタン、及びゲルマニウムから選ばれる少なくとも一種の元素を含む、使用済みの回収されたポリエステル樹脂(A)をリサイクル性に優れたポリエステル樹脂組成物(C)に再生することができる。
 第七の態様のポリエステル樹脂(A)の再生方法では、第六の態様において、前記ポリエステル樹脂(B)の固有粘度が0.56dl/g以上である。
 第七の態様によれば、ポリエステル樹脂(B)を空送する際に、ポリエステル樹脂ペレット同士や空送配管との摩擦によってファインが大量に発生しにくい。
 第八の態様のポリエステル樹脂(A)の再生方法では、第六の態様において、リン化合物が3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルエステルである。
第八の態様によれば、触媒のコストを抑えつつ、十分な重合活性を発揮することができる。
第九の態様のポリエステル樹脂(A)の再生方法では、第六の態様において、前記ポリエステル樹脂(A)及び前記ポリエステル樹脂(B)の合計100質量部に対し、前記ポリエステル樹脂(A)が5~95質量部である。
第九の態様によれば、再生されるポリエステル樹脂組成物(C)の着色や分子量の低下を抑制できる。
 第十の態様のポリエステル樹脂組成物(C)は、回収されたポリエステル樹脂(A)とアルミニウム化合物及びリン化合物を含むポリエステル樹脂(B)との混合物である。前記ポリエステル樹脂(A)は下記(1)~(3)を満足し、前記ポリエステル樹脂(B)は下記(4)~(6)を満足する。
(1)前記ポリエステル樹脂(A)はアンチモン、チタン、及びゲルマニウムから選ばれる少なくとも一種の元素を含む
(2)前記ポリエステル樹脂(A)中におけるアンチモン元素、チタン元素、及びゲルマニウム元素の合計の含有量が2~500質量ppmである
(3)前記ポリエステル樹脂(A)の固有粘度が0.5~0.8dl/gである
(4)前記ポリエステル樹脂(B)中におけるアルミニウム元素の含有量が9~20質量ppmである
(5)前記ポリエステル樹脂(B)中におけるリン元素の含有量が13~31質量ppmである
(6)前記ポリエステル樹脂(B)中におけるアルミニウム元素に対するリン元素の残存モル比が1.32以上1.80以下である
 第十の態様によれば、ポリエステル樹脂組成物(C)の着色や分子量の低下を抑制でき、リサイクル性に優れたポリエステル樹脂組成物を低コストで得ることができる。
第十一の態様のポリエステル樹脂組成物(C)は、第十の態様において、前記ポリエステル樹脂(B)の固有粘度が0.56dl/g以上である。
第十一の態様によれば、ポリエステル樹脂(B)を空送する際に、ポリエステル樹脂ペレット同士や空送配管との摩擦によってファインが大量に発生しにくい。
第十二の態様のポリエステル樹脂組成物(C)は、第十の態様において、リン化合物が3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルエステルである。
 第十二の態様によれば、触媒のコストを抑えつつ、十分な重合活性を発揮することができる。
 第十三の態様のポリエステル樹脂組成物(C)は、第十の態様において、前記ポリエステル樹脂(A)及び前記ポリエステル樹脂(B)の合計100質量部に対し、前記ポリエステル樹脂(A)が5~95質量部である。
 第十三の態様によれば、ポリエステル樹脂組成物(C)の着色や分子量の低下を抑制できる。
第十四の態様の中空成形体(D)は、第十から第十三のいずれか一の態様に記載のポリエステル樹脂組成物(C)から形成される。
第十四の態様によれば、中空成形体(D)は、製造コストを抑えつつ、リサイクル性も高めることができる。また、中空成形体(D)は高品質であるポリエステル樹脂組成物(C)から成形して作製することにより、各種容器として使用された後に回収して再生しても、高品質を維持したまま、ポリエステル樹脂を再使用することが出来、ひいては、資源枯渇の抑制、海洋ごみの減少、地球温暖化の抑制など様々な課題解決に寄与することができる。

Claims (14)

  1.  回収されたポリエステル樹脂(A)とアルミニウム化合物及びリン化合物を含むポリエステル樹脂(B)とを混合する工程を含み、前記ポリエステル樹脂(A)は下記(1)~(3)を満足し、前記ポリエステル樹脂(B)は下記(4)~(6)を満足することを特徴とするポリエステル樹脂組成物(C)の製造方法。
    (1)前記ポリエステル樹脂(A)はアンチモン、チタン、及びゲルマニウムから選ばれる少なくとも一種の元素を含む
    (2)前記ポリエステル樹脂(A)中におけるアンチモン元素、チタン元素、及びゲルマニウム元素の合計の含有量が2~500質量ppm
    (3)前記ポリエステル樹脂(A)の固有粘度が0.5~0.8dl/g
    (4)前記ポリエステル樹脂(B)中におけるアルミニウム元素の含有量が9~20質量ppm
    (5)前記ポリエステル樹脂(B)中におけるリン元素の含有量が13~31質量ppm
    (6)前記ポリエステル樹脂(B)中におけるアルミニウム元素に対するリン元素の残存モル比が1.32以上1.80以下
  2.  前記ポリエステル樹脂(B)の固有粘度が0.56dl/g以上である請求項1に記載のポリエステル樹脂組成物(C)の製造方法。
  3.  リン化合物が3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルエステルである請求項1に記載のポリエステル樹脂組成物(C)の製造方法。
  4.  前記ポリエステル樹脂(A)及び前記ポリエステル樹脂(B)の合計100質量部に対し、前記ポリエステル樹脂(A)が5~95質量部である請求項1に記載のポリエステル樹脂組成物(C)の製造方法。
  5.  請求項1~4のいずれか1項に記載の製造方法で製造されたポリエステル樹脂組成物(C)を溶融成形する工程を含む中空成形体(D)の製造方法。
  6.  回収されたポリエステル樹脂(A)とアルミニウム化合物及びリン化合物を含むポリエステル樹脂(B)とを混合することによるポリエステル樹脂(A)の再生方法であって、前記ポリエステル樹脂(A)は下記(1)~(3)を満足し、前記ポリエステル樹脂(B)は下記(4)~(6)を満足することを特徴とするポリエステル樹脂(A)の再生方法。
    (1)前記ポリエステル樹脂(A)はアンチモン、チタン、及びゲルマニウムから選ばれる少なくとも一種の元素を含む
    (2)前記ポリエステル樹脂(A)中におけるアンチモン元素、チタン元素、及びゲルマニウム元素の合計の含有量が2~500質量ppm
    (3)前記ポリエステル樹脂(A)の固有粘度が0.5~0.8dl/g
    (4)前記ポリエステル樹脂(B)中におけるアルミニウム元素の含有量が9~20質量ppm
    (5)前記ポリエステル樹脂(B)中におけるリン元素の含有量が13~31質量ppm
    (6)前記ポリエステル樹脂(B)中におけるアルミニウム元素に対するリン元素の残存モル比が1.32以上1.80以下
  7.  前記ポリエステル樹脂(B)の固有粘度が0.56dl/g以上である請求項6に記載のポリエステル樹脂(A)の再生方法。
  8.  リン化合物が3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルエステルである請求項6に記載のポリエステル樹脂(A)の再生方法。
  9.  前記ポリエステル樹脂(A)及び前記ポリエステル樹脂(B)の合計100質量部に対し、前記ポリエステル樹脂(A)が5~95質量部である請求項6に記載のポリエステル樹脂(A)の再生方法。
  10.  回収されたポリエステル樹脂(A)とアルミニウム化合物及びリン化合物を含むポリエステル樹脂(B)との混合物であるポリエステル樹脂組成物(C)であって、前記ポリエステル樹脂(A)は下記(1)~(3)を満足し、前記ポリエステル樹脂(B)は下記(4)~(6)を満足することを特徴とするポリエステル樹脂組成物(C)。
    (1)前記ポリエステル樹脂(A)はアンチモン、チタン、及びゲルマニウムから選ばれる少なくとも一種の元素を含む
    (2)前記ポリエステル樹脂(A)中におけるアンチモン元素、チタン元素、及びゲルマニウム元素の合計の含有量が2~500質量ppm
    (3)前記ポリエステル樹脂(A)の固有粘度が0.5~0.8dl/g
    (4)前記ポリエステル樹脂(B)中におけるアルミニウム元素の含有量が9~20質量ppm
    (5)前記ポリエステル樹脂(B)中におけるリン元素の含有量が13~31質量ppm
    (6)前記ポリエステル樹脂(B)中におけるアルミニウム元素に対するリン元素の残存モル比が1.32以上1.80以下
  11.  前記ポリエステル樹脂(B)の固有粘度が0.56dl/g以上である請求項10に記載のポリエステル樹脂組成物(C)。
  12.  リン化合物が3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルエステルである請求項10に記載のポリエステル樹脂組成物(C)。
  13.  前記ポリエステル樹脂(A)及び前記ポリエステル樹脂(B)の合計100質量部に対し、前記ポリエステル樹脂(A)が5~95質量部である請求項10記載のポリエステル樹脂組成物(C)。
  14.  請求項10~13のいずれか1項に記載のポリエステル樹脂組成物(C)から形成された中空成形体(D)。
PCT/JP2022/024734 2021-06-23 2022-06-21 ポリエステル樹脂組成物の製造方法及び回収されたポリエステル樹脂の再生方法並びにポリエステル樹脂組成物 WO2022270505A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020247002444A KR20240023168A (ko) 2021-06-23 2022-06-21 폴리에스테르 수지 조성물의 제조 방법 및 회수된 폴리에스테르 수지의 재생 방법 및 폴리에스테르 수지 조성물
EP22828421.2A EP4361218A1 (en) 2021-06-23 2022-06-21 Polyester resin composition production method, method for regenerating recovered polyester resin, and polyester resin composition
CN202280044183.XA CN117545804A (zh) 2021-06-23 2022-06-21 聚酯树脂组合物的制造方法以及回收的聚酯树脂的再生方法和聚酯树脂组合物
US18/572,417 US20240309202A1 (en) 2021-06-23 2022-06-21 Method for producing polyester resin composition, method for regenerating polyester resin collected for recycling, and polyester resin composition
JP2022566462A JP7521601B2 (ja) 2021-06-23 2022-06-21 ポリエステル樹脂組成物の製造方法及び回収されたポリエステル樹脂の再生方法並びにポリエステル樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021103872 2021-06-23
JP2021-103872 2021-06-23

Publications (1)

Publication Number Publication Date
WO2022270505A1 true WO2022270505A1 (ja) 2022-12-29

Family

ID=84545774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024734 WO2022270505A1 (ja) 2021-06-23 2022-06-21 ポリエステル樹脂組成物の製造方法及び回収されたポリエステル樹脂の再生方法並びにポリエステル樹脂組成物

Country Status (7)

Country Link
US (1) US20240309202A1 (ja)
EP (1) EP4361218A1 (ja)
JP (1) JP7521601B2 (ja)
KR (1) KR20240023168A (ja)
CN (1) CN117545804A (ja)
TW (1) TWI818595B (ja)
WO (1) WO2022270505A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023182131A1 (ja) * 2022-03-25 2023-09-28 東洋紡株式会社 回収ポリエステル樹脂を用いたポリエステルフィルムの製造方法およびポリエステルフィルム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249650A (ja) * 2001-02-23 2002-09-06 Toyobo Co Ltd ポリエステル組成物、中空成形体、および、シート状物質
JP2002322254A (ja) * 2001-02-20 2002-11-08 Toyobo Co Ltd ポリエステルおよびその製造方法
JP2003301038A (ja) * 2002-02-05 2003-10-21 Toyobo Co Ltd ポリエステル並びにそれからなる中空成形体、シ−ト状物及び延伸フイルム
JP2006169432A (ja) 2004-12-17 2006-06-29 Toyobo Co Ltd ポリエステルならびにポリエステルの製造方法
WO2007032325A1 (ja) 2005-09-14 2007-03-22 Toyo Boseki Kabushiki Kaisha ポリエステルおよびポリエステルの製造方法、ならびにポリエステル成形体
WO2013154043A1 (ja) 2012-04-11 2013-10-17 東洋紡株式会社 ポリエステル中空成形体およびポリエステル中空成形体を成形する方法
WO2013154042A1 (ja) 2012-04-11 2013-10-17 東洋紡株式会社 ポリエステル中空成形体およびポリエステル中空成形体を成形する方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100905831B1 (ko) * 2001-01-18 2009-07-02 토요 보세키 가부시기가이샤 폴리에스테르 중합촉매, 폴리에스테르 및 폴리에스테르의제조방법
JP5821416B2 (ja) * 2010-09-01 2015-11-24 東洋紡株式会社 ポリエステル組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322254A (ja) * 2001-02-20 2002-11-08 Toyobo Co Ltd ポリエステルおよびその製造方法
JP2002249650A (ja) * 2001-02-23 2002-09-06 Toyobo Co Ltd ポリエステル組成物、中空成形体、および、シート状物質
JP2003301038A (ja) * 2002-02-05 2003-10-21 Toyobo Co Ltd ポリエステル並びにそれからなる中空成形体、シ−ト状物及び延伸フイルム
JP2006169432A (ja) 2004-12-17 2006-06-29 Toyobo Co Ltd ポリエステルならびにポリエステルの製造方法
WO2007032325A1 (ja) 2005-09-14 2007-03-22 Toyo Boseki Kabushiki Kaisha ポリエステルおよびポリエステルの製造方法、ならびにポリエステル成形体
WO2013154043A1 (ja) 2012-04-11 2013-10-17 東洋紡株式会社 ポリエステル中空成形体およびポリエステル中空成形体を成形する方法
WO2013154042A1 (ja) 2012-04-11 2013-10-17 東洋紡株式会社 ポリエステル中空成形体およびポリエステル中空成形体を成形する方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023182131A1 (ja) * 2022-03-25 2023-09-28 東洋紡株式会社 回収ポリエステル樹脂を用いたポリエステルフィルムの製造方法およびポリエステルフィルム

Also Published As

Publication number Publication date
CN117545804A (zh) 2024-02-09
TW202309138A (zh) 2023-03-01
KR20240023168A (ko) 2024-02-20
JPWO2022270505A1 (ja) 2022-12-29
US20240309202A1 (en) 2024-09-19
TWI818595B (zh) 2023-10-11
EP4361218A1 (en) 2024-05-01
JP7521601B2 (ja) 2024-07-24

Similar Documents

Publication Publication Date Title
JP5533898B2 (ja) ポリエステル系樹脂組成物及び成形品
EP1719790A1 (en) Polyester polymerization catalyst, polyester produced therewith and process for producing the polyester
JP7521601B2 (ja) ポリエステル樹脂組成物の製造方法及び回収されたポリエステル樹脂の再生方法並びにポリエステル樹脂組成物
JP7485214B2 (ja) ポリエステル樹脂組成物の製造方法及び回収されたポリエステル樹脂の再生方法
JP4951951B2 (ja) ポリエステル系樹脂組成物の製造方法
EP4130095B1 (en) Polyester resin and method for producing blow molded body formed of polyester resin
WO2024038815A1 (ja) ポリエステル樹脂組成物の製造方法及び回収されたポリエステル樹脂の再生方法並びにポリエステル樹脂組成物
WO2022059511A1 (ja) ポリエステル樹脂及びそれから成形された中空成形体、並びにそれらの製造方法
JP2004307597A (ja) ポリエチレンテレフタレートの製造方法
JP7548420B2 (ja) 再生ポリエステル樹脂の製造方法
JP7452174B2 (ja) ポリエステル樹脂及びポリエステル樹脂製ブロー成形体
TWI856245B (zh) 聚酯樹脂及聚酯樹脂製吹塑成形體之製造方法
JP7475364B2 (ja) ポリエステル重合触媒及びこれを用いたポリエステルの製造方法
WO2024038867A1 (ja) 回収ポリエステル樹脂を用いたポリエステルフィルムの製造方法およびポリエステルフィルム
WO2023182131A1 (ja) 回収ポリエステル樹脂を用いたポリエステルフィルムの製造方法およびポリエステルフィルム
JP2023538395A (ja) ポリエステル成形体及びその製造方法
JP2004307595A (ja) ポリエチレンテレフタレートの製造方法
JP2001114886A (ja) ポリエチレンテレフタレートおよびその用途

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022566462

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828421

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2301008287

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 202280044183.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 202447000178

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20247002444

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247002444

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022828421

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022828421

Country of ref document: EP

Effective date: 20240123