WO2022270226A1 - 溶鋼の精錬方法 - Google Patents

溶鋼の精錬方法 Download PDF

Info

Publication number
WO2022270226A1
WO2022270226A1 PCT/JP2022/021634 JP2022021634W WO2022270226A1 WO 2022270226 A1 WO2022270226 A1 WO 2022270226A1 JP 2022021634 W JP2022021634 W JP 2022021634W WO 2022270226 A1 WO2022270226 A1 WO 2022270226A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten steel
gas
ladle
plasma
stirring
Prior art date
Application number
PCT/JP2022/021634
Other languages
English (en)
French (fr)
Inventor
晃史 原田
由枝 中井
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202280042959.4A priority Critical patent/CN117500946A/zh
Priority to EP22828145.7A priority patent/EP4339302A1/en
Priority to AU2022297943A priority patent/AU2022297943A1/en
Priority to JP2022544246A priority patent/JP7180821B1/ja
Priority to KR1020237043347A priority patent/KR20240008923A/ko
Publication of WO2022270226A1 publication Critical patent/WO2022270226A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases

Definitions

  • the present invention relates to a refining method for producing molten steel with a low content of impurity elements oxygen, nitrogen, and sulfur.
  • the present invention relates to a method of refining molten steel by irradiation and removal of impurities by plasma gas.
  • Non-metallic inclusions in steel materials are generally known to adversely affect material properties and quality.
  • oxide-based non-metallic inclusions clog submerged nozzles in continuous casting, reducing productivity due to a decrease in casting speed and, in the worst case, interrupting casting.
  • Examples of non-metallic inclusions include oxide-based deoxidation products generated during deoxidation of molten steel, sulfides and nitrides of alloying elements in steel, and the like.
  • inclusions In order to reduce the amount of these non-metallic inclusions (hereinafter also simply referred to as "inclusions"), it is important to reduce oxygen, nitrogen and sulfur in molten steel as much as possible, and various efforts have been made in the past. It's here.
  • oxygen in the molten steel by adding a deoxidizer such as aluminum (Al) or silicon (Si), dissolved oxygen in the molten steel is fixed as Al 2 O 3 or SiO 2 .
  • the generated oxide-based inclusions are floated and removed by gas stirring treatment of molten steel, circulation treatment in an RH vacuum degassing device, etc., utilizing the difference in specific gravity from molten steel.
  • Nitrogen in molten steel is reduced by vacuum processing in vacuum degassing equipment.
  • nitrogen in molten steel is affected by surface-active elements such as oxygen and sulfur, and it is difficult to avoid absorption of nitrogen by atmospheric entrainment from outside the vacuum system. The current situation is that there is none.
  • Sulfur in molten steel is reduced by adding CaO-based flux or CaO—Al 2 O 3 -based flux (addition of desulfurizing agent).
  • CaO-based flux or CaO—Al 2 O 3 -based flux addition of desulfurizing agent.
  • argon gas is blown into the molten steel from the bottom of the ladle and stirred to promote the reaction between the molten steel in the ladle and the CaO—Al 2 O 3 system flux, and the flux Sulfur is moved to the side (slag side) to reduce sulfur in the molten steel.
  • arc heating is performed by graphite electrodes, carbon is dissolved in the molten steel, and it is difficult to apply the treatment to steel grades such as ultra-low carbon steel.
  • the RH vacuum degassing apparatus there is a method of desulfurizing by adding a CaO-based flux or a CaO--Al 2 O 3 -based flux to the molten steel circulating in the vacuum chamber. Furthermore, desulfurization is performed by projecting (spraying) CaO-based flux or CaO-Al 2 O 3 -based flux from a top-blowing lance onto the molten steel circulating in the vacuum chamber using an inert gas such as argon gas as a carrier gas. There is a way. However, with these methods, the reaction time between molten steel and flux is not sufficient, and it is difficult to efficiently obtain molten steel with a low sulfur concentration.
  • the use of hydrogen plasma is known as a refining technology that reduces impurities in metals. Since the temperature in the plasma reaches several thousand degrees or more, the hydrogen gas in the plasma gas becomes atoms or ions and becomes very active. By irradiating the surface of molten steel with this, an excellent refining effect that cannot be achieved by normal hydrogen gas irradiation alone can be expected. That is, oxygen, nitrogen, and sulfur in molten steel can be rapidly removed by the reactions of formulas (6) to (8) shown below.
  • Patent Document 1 discloses a plasma gas for reducing oxygen, nitrogen, or carbon in metals when melting metals using hydrogen plasma.
  • the preferred ranges of the hydrogen concentration and the pressure inside the furnace are disclosed.
  • Patent Document 1 there are the following problems in applying the technology of Patent Document 1 to an industrial-scale steelmaking process.
  • Patent Document 1 the refining effect is described when several tens of grams to several tens of kilograms of metal is treated in a plasma melting furnace.
  • it is necessary to process molten steel exceeding 100 tons, and it is difficult to irradiate the entire molten steel with plasma gas. Therefore, there is a concern that the technology disclosed in Patent Document 1 cannot obtain a rapid impurity removal effect.
  • it is important to optimize not only the plasma conditions but also the flow conditions on the molten steel side and perform the hydrogen plasma treatment efficiently.
  • Patent Document 1 does not specify the amount of metal to be applied with hydrogen plasma or the relationship between the amount of metal and the plasma gas flow rate. Therefore, even if the plasma gas composition and atmospheric pressure are appropriately controlled, there may be cases where the plasma gas flow rate and the amount of hydrogen are insufficient with respect to the amount of metal, and a sufficient effect of reducing impurities cannot be obtained. Furthermore, Patent Document 1 is not a technique of applying hydrogen plasma to already molten iron, but also has a role of heating and melting a target metal by plasma. Therefore, even if the disclosed plasma gas conditions are applied to steel that has already been melted, as in the steelmaking process, there is concern that the same expected effects may not be obtained.
  • the present invention has been made in view of the above circumstances, and the object thereof is to speed up the refining reactions of deoxidation, denitrification, and desulfurization when hydrogen plasma is applied to molten steel in a ladle in the steelmaking process.
  • the gist of the present invention for solving the above problems is as follows.
  • GP is the plasma gas flow rate (Nm 3 /min)
  • H 2 is the hydrogen gas concentration (vol%) in the plasma gas
  • Q is the molten steel circulation flow rate (ton/min) of the molten steel in the ladle.
  • the gas stirring process is performed by installing one or more gas blowing parts at the bottom of the ladle and blowing gas for stirring into the molten steel in the ladle from the gas blowing part. , and the stirring power ( ⁇ ) calculated by the formula (4) at that time is 25 W/ton or more.
  • r is the plasma irradiation range radius (m)
  • gB is the injection flow rate of the stirring gas (Nm 3 /min/one gas injection portion).
  • the slag floating on the surface of the molten steel contained in the ladle has a total concentration of iron oxides and manganese oxides of 5% by mass or less.
  • molten steel contained in a ladle can be appropriately subjected to hydrogen plasma treatment, and as a result, high-purity steel with few impurities can be quickly melted, which is industrially beneficial. effect is brought about.
  • the method for refining molten steel according to the present invention is a process in which a stirring gas is blown into the molten steel contained in the ladle to stir the molten steel in the ladle, and the molten steel is in a fluid state due to the gas stirring process.
  • the surface of the molten steel in the ladle is irradiated with plasma hydrogen gas or a mixed gas of plasma hydrogen gas and inert gas as plasma gas from a plasma generator installed above the molten steel in the ladle,
  • This melting method removes one or more elements selected from among oxygen, nitrogen, and sulfur in molten steel by irradiating the plasma gas to reduce the content thereof.
  • irradiating the molten steel surface with hydrogen gas or an inert gas containing hydrogen gas as plasma gas is referred to as "plasma treatment” or "hydrogen plasma treatment”.
  • Refining equipment that can implement the present invention is a secondary refining furnace that can stir the molten steel by blowing a stirring gas into the molten steel in the ladle.
  • Furnace (Vacuum OxygenDecarburization Furnace), VAD Furnace (Vacuum Arc Decarburization Furnace), REDA (Revolutionary Degassing Activator) vacuum degassing equipment, etc.
  • Fig. 1 shows an example of a general ladle smelting furnace in a schematic vertical cross-sectional view.
  • reference numeral 1 is a ladle smelting furnace
  • 2 is a ladle
  • 3 is an upper lid
  • 4 is a black smoke electrode
  • 5 is a steel shell
  • 6 is a lining refractory
  • 7 is a permanent refractory
  • 8 and 8a are bottom blowing
  • a plug 9 is molten steel
  • 10 is slag
  • 11 and 12 are plasma torches
  • 13 is gas bubbles for stirring.
  • a ladle 2 for containing molten steel 9 has an outer shell of iron shell 5, and inside the iron shell 5, permanent refractory 7 and lining refractory 6 are applied in this order.
  • At least a portion (mainly the slag line) is constructed with MgO-based refractories.
  • bottom blowing plugs 8, 8a for blowing in a stirring gas such as a rare gas are installed as gas blowing portions.
  • the plasma torches 11 and 12 are devices that constitute a part of the plasma generator, and are devices that perform hydrogen plasma treatment by irradiating the surface of the molten steel 9 in the ladle with plasma gas from the tip thereof. 3, and can move up and down in the space surrounded by the ladle 2 and the upper lid 3.
  • the number of plasma torches may be one or three or more.
  • two bottom blowing plugs are installed, but one bottom blowing plug or three or more bottom blowing plugs may be installed.
  • the ladle refining furnace 1 blows a stirring gas such as argon gas into the molten steel 9 in the ladle from the bottom blow plugs 8 and 8a, and adds a refining flux and an alloy material while stirring the molten steel 9.
  • Equipment the ladle refining furnace 1 is also equipment for applying electric heating by the graphite electrodes 4 and adjusting the composition and temperature of the molten steel 9 to target values.
  • three graphite electrodes 4 are often installed in a facility that conducts heating using an AC power supply, two of the three graphite electrodes 4 are omitted in FIG. It is a diagram showing one.
  • the added refining flux is melted to form slag 10 having a desired composition.
  • a reaction takes place.
  • the reason why the refractory lining 6 of the slag line of the ladle 2 is made of MgO-based refractory is that the MgO-based refractory has high corrosion resistance to the slag 10 .
  • the pressure of the atmosphere in the space surrounded by the ladle 2 and the upper lid 3 is equivalent to the atmospheric pressure. That is, in the ladle refining furnace 1, refining under reduced pressure cannot be performed.
  • a VOD furnace (not shown) and a VAD furnace (not shown) are equipped with a vacuum chamber connected to an exhaust device, and a ladle 2 containing molten steel 9 is placed inside the vacuum chamber.
  • the interior of the vacuum chamber is decompressed, and a rare gas or non-oxidizing gas for stirring is blown in from bottom blow plugs 8 and 8a arranged at the bottom of the ladle 2 .
  • a refining agent such as a desulfurizing agent is sprayed onto the molten steel 9 in the ladle from a top-blowing lance installed to penetrate the vacuum chamber, together with oxygen gas or a carrier gas. is.
  • the VAD furnace like the ladle refining furnace 1, has black smoke electrodes for heating the molten steel 9.
  • VOD and VAD furnaces typically perform refining under reduced pressure.
  • the present invention can be carried out by installing a plasma torch in the upper part of the vacuum chamber so as to penetrate the vacuum chamber.
  • the REDA vacuum degassing device (not shown) combines bottom-blown stirring of the molten steel in the ladle with a stirring gas and a large-diameter immersion tank whose tip is immersed in the molten steel in the ladle and whose interior is decompressed. It is a degassing furnace, and it refines molten steel by raising it into a large-diameter immersion tank while bottom-blowing and stirring it.
  • refining is normally carried out under reduced pressure.
  • the present invention can be carried out by placing a plasma torch above the large-diameter immersion tank so as to penetrate the large-diameter immersion tank.
  • the surface of the molten steel 9 in the secondary refining furnace such as the ladle refining furnace 1 and the VOD furnace
  • a stirring gas such as argon gas
  • plasma torches 11 and 12 irradiate hydrogen gas or inert gas containing hydrogen gas as plasma gas. Since the temperature in the plasma reaches several thousand degrees or more, the hydrogen gas in the plasma gas becomes atoms or ions and becomes very active.
  • the following reactions (6), (7), and (8) are formed, and oxygen, nitrogen, and sulfur in the molten steel are quickly can be removed.
  • the stirring gas is blown from the bottom blow plugs 8 and 8a, but an injection lance (not shown) may be immersed in the molten steel 9 and the stirring gas may be blown into the molten steel 9 from the tip of the injection lance.
  • Argon which is an inert gas, or hydrogen gas or propane, which is a reducing gas, can be used as the stirring gas.
  • nitrogen gas can be used as the stirring gas when the denitrification reaction is not intended.
  • an inert gas or nitrogen gas can be mixed and used, or can be used by appropriately switching during the hydrogen plasma treatment.
  • the plasma torches 11 and 12 are one of the devices that generate arc plasma in a form suitable for various applications in a stable and well-controlled manner, mainly using a direct current and by the action of an air current, a water-cooled nozzle, or the like.
  • the above-mentioned plasma torch using a DC power supply has a non-transfer type and a transfer type. Since the non-transfer type plasma torch does not require an electrode on the molten steel side, there are few facility restrictions and the installation cost is low. From this point of view, a non-transfer type plasma torch using direct current arc discharge is used. is preferred.
  • the plasma generator is not particularly limited as long as it can be installed above the molten steel 9 and can stably supply hydrogen plasma to the surface of the molten steel.
  • hydrogen plasma treatment is performed in the ladle refining furnace 1, hydrogen gas or an inert gas containing hydrogen is supplied into the arc generated from the graphite electrode 4, and the hydrogen gas or the inert gas containing hydrogen gas is plasmatized. It is also possible to use a method that allows In addition, for a process that does not have a heating electrode such as a VOD furnace, an electrode for generating an AC arc is provided above the molten steel 9, and hydrogen gas or an inert gas containing hydrogen gas is supplied between the electrodes. Thus, hydrogen plasma treatment can be performed.
  • hydrogen gas or a mixed gas of hydrogen gas and inert gas is used.
  • the reason for using hydrogen gas is that impurities in molten steel can be directly removed by converting hydrogen gas into plasma, as described above. In order to obtain a rapid impurity removal effect, it is preferable to mix 0.5% by volume or more of hydrogen gas in the plasma gas.
  • Argon gas or helium gas can be used as the inert gas.
  • the three factors of plasma gas flow rate, hydrogen gas concentration in plasma gas, and molten steel circulation flow rate of molten steel in the ladle are appropriately controlled. should be controlled within a reasonable range.
  • the plasma gas flow rate ( GP ), the hydrogen concentration in the plasma gas ( H2), and the molten steel circulation flow rate (Q) of the molten steel in the ladle It is necessary that the three elements satisfy the relationship of the following formula (1). Also, the relationship between the three elements ( GP ⁇ (H 2 )/Q) is preferably 0.1 or more, more preferably 0.5 or more.
  • GP is the plasma gas flow rate (Nm 3 /min)
  • H 2 is the hydrogen gas concentration (% by volume) in the plasma gas
  • Q is the molten steel circulation flow rate of the molten steel in the ladle. (ton/min).
  • the "Nm 3 /min" of the flow rate of the plasma gas is a unit indicating the volume flow rate of the plasma gas
  • “Nm 3 " means the volume of the plasma gas in the standard state.
  • the standard state of plasma gas is 0° C. and 1 atm (101325 Pa).
  • the molten steel circulation flow rate (Q) of the molten steel in the ladle is affected by the molten steel mass in the ladle and the stirring power of the bottom-blowing gas. Therefore, for each of these conditions, the molten steel circulation time in the ladle is measured in the actual ladle 2, and the molten steel mass in the ladle is divided by the measured molten steel circulation time. The molten steel circulation flow rate (Q) of the molten steel 9 can be obtained.
  • a tracer element for example, copper, nickel, etc.
  • the fluctuation of the tracer element concentration of the sample for component analysis taken in time series from the ladle is within ⁇ 5%.
  • the uniform mixing time is the time required for uniform mixing
  • the molten steel circulation time is about 1/3 of the uniform mixing time. can.
  • the molten steel circulation time in the molten steel in the ladle can be obtained by an empirical regression equation shown in the following equation (3), and the stirring power ( ⁇ ) in the following equation (3) is It is well known that it can be obtained by an empirical regression formula shown by the following equation (4). Therefore, it is preferable to obtain the molten steel circulation flow rate (Q) of the molten steel in the ladle using the following formulas (2), (3) and (4).
  • Q is the molten steel circulation flow rate (ton/min) of molten steel in the ladle
  • Wm is the mass of molten steel in the ladle (ton)
  • tc is the molten steel circulation of molten steel in the ladle.
  • Time (min) D is the average diameter of the molten steel bath in the ladle (m)
  • H is the depth of the molten steel bath in the ladle (m)
  • is the stirring power (W/ton)
  • GB is the molten steel in the ladle total stirring gas blowing flow rate (Nm 3 /min)
  • TL is the molten steel temperature (K) of the molten steel in the ladle
  • P 0 is the atmospheric pressure (torr) of the plasma irradiation area.
  • Nm 3 means the total volume of gas for stirring under standard conditions, and 0° C.
  • the side wall of the ladle 2 may have an upwardly sloping shape. It is the average value with the diameter.
  • Molten steel 9 stored in a ladle and before being subjected to hydrogen plasma treatment is tapped from a converter or an electric furnace into a ladle 2, for example, vacuum degassing in a vacuum degassing equipment such as an RH vacuum degassing device. After passing through the gas refining process, it may be transported to a gas stirring process in which a stirring gas is blown to stir the molten steel in the ladle.
  • the molten steel 9 before the hydrogen plasma treatment may be in a non-deoxidized state. It may be deoxidized. Preliminary deoxidation with a reducing gas prior to plasma treatment makes it possible to start plasma treatment in a state where the oxygen concentration in the molten steel has decreased to some extent. can be timed.
  • the molten steel 9 is deoxidized by adding a deoxidizing agent such as aluminum or silicon before the plasma treatment to reduce the oxygen concentration in the molten steel in advance.
  • a deoxidizing agent such as aluminum or silicon
  • the deoxidizing effect of plasma treatment is limited.
  • Oxygen in molten steel functions as a surface-active element, and by reducing the oxygen concentration in molten steel through deoxidation, nitrogen gas, hydrogen nitride, and hydrogen sulfide are released from the molten steel surface into the gas phase (atmosphere in the ladle).
  • the plasma output (E) more preferably satisfies the following formula (9).
  • the plasma output should satisfy the relationship of the expression (9).
  • the plasma output should be selected according to the desired balance between quality and cost.
  • E is the plasma power (kW).
  • Impurities can be reduced more efficiently by giving the molten steel 9 in the ladle more than a certain level of flow during plasma treatment. That is, since the plasma irradiation is a relatively localized area of the surface of the molten steel, the concentration of impurities in the entire molten steel in the ladle can be quickly reduced by continuing to send new molten steel 9 to the plasma irradiation part by stirring the molten steel.
  • the stirring power ( ⁇ ) is preferably 25 W/ton or more. If the stirring power ( ⁇ ) is less than 25 W/ton, the circulation and mixing between the surface of the molten steel, which is the plasma-irradiated portion, and the bulk molten steel are stagnant, and a rapid impurity reduction effect cannot be obtained. There is no particular upper limit for the stirring power ( ⁇ ), but if the stirring power ( ⁇ ) is too large, the blow-through of gas and the scattering of molten steel increase, so it is desirable to set it to 150 W/ton or less.
  • a suitable range for the position to be irradiated with plasma there is a suitable range for the position to be irradiated with plasma. That is, it is preferable to irradiate the hydrogen plasma at or near the position where the stirring gas blown from the bottom blowing plugs 8, 8a forms the stirring gas bubbles 13 and floats on the surface of the molten steel.
  • a plasma torch 11 is installed vertically above the bottom blowing plug 8
  • a plasma torch 12 is installed vertically above the bottom blowing plug 8a. That is, in the present invention, within the plasma irradiation range radius (r) calculated by the following formula (5), centered on the surface of the molten steel vertically above at least one of the gas injection parts (bottom blow plug) is preferably irradiated with the plasma gas.
  • r is the radius of the plasma irradiation range (m)
  • gB is the blowing flow rate of the stirring gas (Nm 3 /min/one gas blowing portion).
  • Nm 3 means the volume of the stirring gas in the standard state, and the standard state is 0° C. and 1 atm (101325 Pa).
  • the area within the plasma irradiation range radius (r) is the area where the flow is the fastest (intense) on the surface of the molten steel in the ladle, and by irradiating the plasma there, the reaction between the hydrogen plasma and the molten steel in the ladle progresses rapidly.
  • the region corresponding to the radius (r) of the plasma irradiation range is a region where the molten steel 9 rising together with the stirring gas bubbles 13 pushes the slag 10 away and the surface of the molten steel is exposed, or where the slag thickness is relatively thin. Therefore, plasma treatment can be performed on the molten steel surface without being hindered by the slag 10 .
  • the atmosphere is preferably under reduced pressure, specifically at 150 torr or less.
  • the plasma gas By irradiating the plasma gas under a reduced pressure of 150 torr or less, it is expected to increase the flow velocity of the plasma jet and further promote the dissociation of hydrogen gas molecules into atoms and ions.
  • the effect of reducing impurities is increased. If the atmospheric pressure is higher than 150 torr, the effect of reducing the pressure is not obtained because the above effect is small.
  • a specific example for performing hydrogen plasma treatment under reduced pressure is shown below.
  • a ladle 2 containing molten steel 9 is placed in a vacuum chamber, and the surface of the molten steel in the ladle is irradiated with hydrogen plasma from a plasma generator installed above the vacuum chamber.
  • the large-diameter immersion tank is immersed in the molten steel in the ladle, the inside of the large-diameter immersion tank is evacuated to create a reduced pressure atmosphere, and the plasma provided at the top of the large-diameter immersion tank Plasma is applied to the surface of the molten steel sucked into the large-diameter immersion tank from the generator.
  • the atmospheric pressure during plasma irradiation is more preferably 100 torr or less, and still more preferably 50 torr or less.
  • the total concentration of iron oxides and manganese oxides in the slag 10 is preferably 5% by mass or less, more preferably 3% by mass or less, and even more preferably 1% by mass or less.
  • the total concentration of iron oxide concentration and manganese oxide concentration is higher than 5% by mass, the supply of oxygen from the slag 10 to the molten steel 9 proceeds simultaneously during the plasma treatment, and the impurity reduction effect is sufficiently obtained.
  • metal aluminum or aluminum dross is added to the slag 10 floating on the molten steel before plasma treatment, and aluminum is added to iron oxides and manganese oxides. It is effective to carry out the reduction of oxides. It is also effective to remove the slag 10 from the ladle 2 and then add a slag-forming agent to the ladle to newly produce slag with less iron oxides and manganese oxides. Further, by irradiating the slag 10 with hydrogen plasma gas, iron oxides and manganese oxides in the slag can be reduced.
  • the timing of adding a deoxidizer such as aluminum or silicon is not particularly limited.
  • oxygen is supplied to the molten steel 9 from the atmosphere, the slag 10, or the ladle refractory, and the oxygen concentration in the molten steel increases. It is preferable to add a deoxidizer such as , and keep the oxygen concentration in the molten steel, which has been reduced by the hydrogen plasma treatment, at a low level. If it is necessary to adjust the components of the molten steel in addition to deoxidizers such as aluminum and silicon, predetermined ferroalloys and pure metals are added to the molten steel 9 in the ladle after the hydrogen plasma treatment.
  • the hydrogen concentration in the molten steel increases to several ppm by mass or more due to the hydrogen plasma treatment, it is preferable to carry out dehydrogenation treatment for 5 minutes or more under a reduced pressure of 10 torr or less after the hydrogen plasma treatment.
  • a vacuum degassing equipment such as an RH vacuum degassing equipment is provided as a post-process, and dehydrogenation is performed in the vacuum degassing equipment.
  • dehydrogenation processing is continuously performed after plasma processing.
  • oxygen, nitrogen and sulfur in molten steel can be rapidly reduced to 30 ppm by mass or less.
  • LF ladle refining furnace
  • a VOD furnace was used in an actual machine with a molten steel amount of 200 tons or more and 350 tons or less per charge, and the molten steel tapped from the converter was decompressed.
  • a non-transfer type plasma torch using direct current arc discharge was installed on the top of the furnace lid.
  • a non-transfer type plasma torch by DC arc discharge is installed in the upper part of the vacuum chamber, and from these plasma torches, the plasma gas flow rate and hydrogen gas concentration in the plasma gas are changed, The surface of molten steel was irradiated with hydrogen plasma.
  • the operating conditions and molten steel composition (oxygen concentration, nitrogen concentration, sulfur concentration, etc.) in the ladle refining furnace and VOD furnace were changed.
  • the hydrogen plasma treatment in the ladle refining furnace was performed while the arc heating by the black smoke electrode was stopped.
  • samples for component analysis were taken from the molten steel in the ladle, and the oxygen concentration, nitrogen concentration, and sulfur concentration in the molten steel were analyzed to confirm the effect of the plasma treatment.
  • the plasma treatment time was unified to 15 minutes.
  • a deoxidizing agent such as aluminum was not added after the steel was discharged from the converter until the plasma treatment.
  • the iron oxide concentration and manganese oxide concentration of the slag in the ladle were adjusted by adding aluminum dross to the slag in the ladle before starting treatment in the ladle smelting furnace or VOD furnace.
  • Table 1 shows the test conditions for each test, and Table 2 shows the evaluation results.
  • the removal rate of each element from before the start of the plasma treatment to after the end was 94% or more for oxygen in the molten steel, 33% or more for nitrogen in the molten steel, and 20% or more for sulfur in the molten steel.
  • the reduction of oxygen, nitrogen, and sulfur in the molten steel was insufficient even after the hydrogen plasma treatment.
  • the oxygen content in the molten steel was 90% or less
  • the nitrogen content in the molten steel was 19% or less
  • the sulfur content in the molten steel was 15% or less, all of which were low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

製鋼工程において、取鍋内の溶鋼へ水素プラズマを付与した際の脱酸、脱窒、脱硫の精錬反応を迅速に進行させ、不純物の少ない高純度溶鋼を効率良く溶製する。 溶鋼の精錬方法であって、取鍋内に収容された溶鋼9に攪拌用ガスを吹き込んで溶鋼を攪拌する工程において、攪拌処理によって流動状態にある溶鋼の表面に、取鍋内溶鋼の上方に設置されたプラズマ発生装置11、12から、水素ガスまたは水素ガスを含む不活性ガスをプラズマガスとして下記の(1)式を満たす条件で照射するプラズマ処理を行ない、溶鋼中に含まれる酸素、窒素、硫黄のうちから選ばれる1種または2種以上の元素の含有量を低減する。(1)式において、Gはプラズマガスの流量(Nm/min)、(H)はプラズマガス中の水素ガス濃度(体積%)、Qは溶鋼循環流量(ton/min)である。 (GP×(H2)/Q)≧0.05…(1)

Description

溶鋼の精錬方法
 本発明は、不純物元素である酸素、窒素、硫黄の含有量が少ない溶鋼を製造する精錬方法に関し、詳しくは、水素ガスまたは水素ガスを含む不活性ガスをプラズマガスとして取鍋内の溶鋼表面に照射し、プラズマガスによって不純物を除去する、溶鋼の精錬方法に関する。
 鉄鋼材料中の非金属介在物は、一般的に、材料特性や品質に悪影響を及ぼすことが知られている。また、酸化物系の非金属介在物は、連続鋳造において浸漬ノズルの閉塞を引き起こし、鋳造速度の減少による生産性低下や、最悪の場合には鋳造を中断せざるを得なくなる。非金属介在物としては、溶鋼の脱酸時に生成する酸化物系の脱酸生成物や鋼中合金元素の硫化物、窒化物などが挙げられる。これらの非金属介在物(以下、単に「介在物」とも記す)の量を低減するには、溶鋼中の酸素、窒素及び硫黄を極力低減することが重要であり、従来、様々な取り組みがなされてきた。
 溶鋼中の酸素については、アルミニウム(Al)や珪素(Si)のような脱酸材を添加することで、溶鋼中の溶存酸素をAlやSiOとして固定している。生成した酸化物系介在物は、溶鋼との比重差を利用して、溶鋼のガス攪拌処理やRH真空脱ガス装置での環流処理などによって浮上除去が図られている。しかしながら、現状では全ての酸化物系介在物の分離除去は不可能であり、酸化物系介在物の溶鋼中への残留は避けられない。
 溶鋼中の窒素については、真空脱ガス設備における真空処理により低減が図られる。しかしながら、溶鋼中の窒素は、界面活性元素である酸素や硫黄の影響を受けるほか、真空系外からの大気巻き込みによる吸窒を避けることが難しく、安定的に低濃度の窒素レベルを達成できていないのが現状である。
 溶鋼中の硫黄については、CaO系フラックスやCaO-Al系フラックスの添加(脱硫剤添加)により低減が図られる。例えば、取鍋精錬炉における取鍋精錬では、取鍋底からアルゴンガスを溶鋼中に吹き込んで攪拌することで、取鍋内の溶鋼とCaO-Al系フラックスとの反応を促進させ、フラックス側(スラグ側)に硫黄を移動させて、溶鋼中硫黄の低減を図っている。しかしながら、このような取鍋精錬炉での処理では、黒鉛電極によるアーク加熱を行うことから、溶鋼中への炭素の溶け込みが発生し、極低炭素鋼のような鋼種には適用し難い。
 また、RH真空脱ガス装置において、真空槽内を環流する溶鋼へのCaO系フラックスまたはCaO-Al系フラックスを添加することによって脱硫を行う方法がある。さらに、アルゴンガスのような不活性ガスを搬送用ガスとして上吹きランスから真空槽内を環流する溶鋼へCaO系フラックスまたはCaO-Al系フラックスを投射(吹き付ける)することで脱硫を行う方法もある。しかしながら、これらの方法では、溶鋼とフラックスとの反応時間が十分ではなく、効率的に低位の硫黄濃度の溶鋼を得ることは難しい。
 ところで、金属中の不純物を低減する精錬技術として、水素プラズマの利用が知られている。プラズマ内の温度は数千度以上にも達するために、プラズマガス中の水素ガスが原子またはイオン状態となり、非常に活性な状態となる。これを溶鋼表面に照射することで、通常の水素ガス照射だけでは成し得ない優れた精錬効果が期待できる。即ち、下記に示す(6)式から(8)式の反応により、溶鋼中の酸素、窒素、硫黄を迅速に除去することができる。
 2H+[O]=HO ……(6)
  xH+[N]=NH ……(7)
  yH+[S]=HS ……(8)
  ここで、[O]は溶鋼中の酸素、[N]は溶鋼中の窒素、[S]は溶鋼中の硫黄を表す。
 溶鋼中の酸素、窒素及び硫黄を、HO、NH及びHSとして、それぞれガスとして系外へ除去できることに加え、酸素除去時(脱酸時)に介在物を生じないので清浄性の高い鋼が得られる。
 このような水素プラズマを利用した高純度金属の精製技術として、特許文献1には、水素プラズマを用いて金属の溶融を行うに際し、金属中の酸素、窒素または炭素を低減するためのプラズマガス中の水素濃度や炉内圧力の好適範囲が開示されている。
特許第4305792号公報
 しかしながら、上記特許文献1の技術を工業規模の製鋼工程に適用するには、以下の問題点がある。
 特許文献1に記載の実施例では、数十gから数十kgレベルの金属をプラズマ溶解炉で処理した場合の精錬効果が記載されている。しかしながら、工業規模の製鋼工程では100トンを超える溶鋼を処理する必要があり、プラズマガスを溶鋼全体へ照射することが難しい。そのために、特許文献1の開示技術では迅速な不純物除去効果を得られないことが懸念される。迅速な不純物除去効果を得るためには、プラズマ条件だけでなく、溶鋼側の流動条件を適切にし、効率良く水素プラズマ処理を行うことが重要である。
 また、特許文献1の開示技術には、水素プラズマを付与する対象の金属量や、金属量とプラズマガス流量との関係が規定されていない。そのため、プラズマガス組成や雰囲気圧力を適切に制御しても、金属量に対するプラズマガス流量や水素量が不足し、十分な不純物低減効果を得られないケースが想定される。更には、特許文献1は、すでに溶融している鉄に水素プラズマを付与する技術ではなく、プラズマによる対象金属の加熱溶融の役割も有している。そのため、製鋼工程のように、すでに溶融している鋼に対して開示されるプラズマガス条件を適用しても、同様の期待効果が得られない可能性も懸念される。
 本発明は上記事情に鑑みてなされたもので、その目的とするところは、製鋼工程において、取鍋内の溶鋼へ水素プラズマを付与した際の脱酸、脱窒、脱硫の精錬反応を迅速に進行させ、不純物の少ない高純度溶鋼を効率良く溶製する、溶鋼の精錬方法を提供することである。
 上記課題を解決するための本発明の要旨は以下のとおりである。
 [1]取鍋内に収容された溶鋼に攪拌用ガスを吹き込んで取鍋内の溶鋼を攪拌するガス攪拌処理を行う工程において、
 前記ガス攪拌処理によって流動状態にある取鍋内溶鋼の表面に、当該取鍋内溶鋼の上方に設置されたプラズマ発生装置から、水素ガスまたは水素ガスを含む不活性ガスをプラズマガスとして下記の(1)式を満たす条件で照射するプラズマ処理を行ない、当該プラズマ処理によって溶鋼中に含まれる酸素、窒素、硫黄のうちから選ばれる1種または2種以上の元素の含有量を低減する、溶鋼の精錬方法。
Figure JPOXMLDOC01-appb-M000004
 
  ここで、Gはプラズマガスの流量(Nm/min)、(H)はプラズマガス中の水素ガス濃度(体積%)、Qは取鍋内溶鋼の溶鋼循環流量(ton/min)である。
 [2]前記取鍋内溶鋼の溶鋼循環流量を、下記の(2)式、(3)式、(4)式を用いて算出する、上記[1]に記載の溶鋼の精錬方法。
Figure JPOXMLDOC01-appb-M000005
 
  ここで、Qは取鍋内溶鋼の溶鋼循環流量(ton/min)、Wは取鍋内溶鋼の質量(ton)、tは取鍋内溶鋼の溶鋼循環時間(min)、Dは取鍋内溶鋼浴の平均直径(m)、Hは取鍋内溶鋼浴の深さ(m)、εは攪拌動力(W/ton)、Gは取鍋内溶鋼への合計攪拌用ガス吹き込み流量(Nm/min)、Tは取鍋内溶鋼の溶鋼温度(K)、Pはプラズマ照射領域の雰囲気圧力(torr)である。
 [3]前記ガス攪拌処理は、前記取鍋の底部に1箇所または2箇所以上のガス吹き込み部を設置し、当該ガス吹き込み部から前記取鍋内溶鋼中に攪拌用ガスを吹き込むことで行われ、そのときの(4)式で算出される攪拌動力(ε)が、25W/ton以上である、上記[1]または上記[2]に記載の溶鋼の精錬方法。
 [4]前記ガス吹き込み部のうちの少なくとも1箇所の鉛直上方の溶鋼表面直上を中心とし、下記の(5)式で算出されるプラズマ照射範囲半径(r)以内の範囲に前記プラズマガスを照射する、上記[3]に記載の溶鋼の精錬方法。
Figure JPOXMLDOC01-appb-M000006
 
  ここで、rはプラズマ照射範囲半径(m)、gは攪拌用ガスの吹き込み流量(Nm/min/ガス吹き込み部1箇所)である。
 [5]前記取鍋内溶鋼にプラズマガスを照射する際の雰囲気圧力が150torr以下である、上記[1]から上記[4]のいずれかに記載の溶鋼の精錬方法。
 [6]取鍋内に収容した溶鋼の表面に浮遊するスラグは、鉄酸化物の濃度とマンガン酸化物の濃度との合計が5質量%以下である、上記[1]から上記[5]のいずれかに記載の溶鋼の精錬方法。
 [7]前記プラズマ処理により、溶鋼に含まれる酸素、窒素、硫黄の3元素の含有量を同時に低減する、上記[1]から上記[6]のいずれかに記載の溶鋼の精錬方法。
 本発明によれば、取鍋に収容された溶鋼に、水素プラズマ処理を適切に実施することができ、その結果、不純物の少ない高純度鋼を迅速に溶製することができ、工業上有益な効果がもたらされる。
一般的な取鍋精錬炉の一例を示す概略縦断面図である。
 以下、本発明について詳細に説明する。
 本発明に係る溶鋼の精錬方法は、取鍋内に収容された溶鋼に攪拌用ガスを吹き込んで取鍋内の溶鋼を攪拌するガス攪拌処理を行う工程において、ガス攪拌処理によって流動状態にある取鍋内溶鋼の表面に、取鍋内溶鋼の上方に設置されたプラズマ発生装置から、プラズマ化した水素ガス、または、プラズマ化した水素ガスと不活性ガスとの混合ガスをプラズマガスとして照射し、このプラズマガスの照射によって溶鋼中の酸素、窒素、硫黄のうちから選ばれる1種または2種以上の元素を除去し、その含有量を低減する溶製方法である。本明細書では、水素ガスまたは水素ガスを含む不活性ガスをプラズマガスとして溶鋼表面に照射することを「プラズマ処理」または「水素プラズマ処理」と称す。
 本発明を実施可能な精錬設備は、攪拌用ガスを取鍋内の溶鋼に吹き込んで溶鋼を攪拌することのできる二次精錬炉であり、例えば、取鍋精錬炉(LF:Ladle Furnace)、VOD炉(Vacuum OxygenDecarburization 炉)、VAD炉(Vacuum Arc Decarburization 炉)、REDA(Revolutionary Degassing Activator)真空脱ガス装置などがある。
 図1に、一般的な取鍋精錬炉の一例を概略縦断面図で示す。図1において、符号1は取鍋精錬炉、2は取鍋、3は上蓋、4は黒煙電極、5は鉄皮、6は内張り耐火物、7は永久耐火物、8、8aは底吹きプラグ、9は溶鋼、10はスラグ、11、12はプラズマトーチ、13は攪拌用ガス気泡である。溶鋼9を収容する取鍋2は、外殻を鉄皮5とし、鉄皮5の内側に、永久耐火物7、内張り耐火物6の順で耐火物が施工されており、内張り耐火物6の少なくとも一部(主にスラグライン)はMgO系耐火物で施工されている。また、取鍋2の底部には、ガス吹き込み部として、希ガスなどの攪拌用ガスを吹き込むための底吹きプラグ8、8aが設置されている。プラズマトーチ11、12は、プラズマ発生装置の一部分を構成する装置であって、その先端部から取鍋内の溶鋼9の表面にプラズマガスを照射して水素プラズマ処理を実施する装置であり、上蓋3を貫通して設置されており、取鍋2と上蓋3とで囲まれる空間内での上下移動が可能となっている。図1では、プラズマトーチが2基設置されているが、プラズマトーチは1基でも、また、3基以上でも構わない。また、図1では、底吹きプラグが2箇所に設置されているが、底吹きプラグは1箇所でも、また、3箇所以上でも構わない。
 取鍋精錬炉1は、取鍋内の溶鋼9に対して、底吹きプラグ8、8aからアルゴンガスなどの攪拌用ガスを吹き込み、溶鋼9を攪拌しながら、精錬用フラックス及び合金材を添加する設備である。並びに、取鍋精錬炉1は、黒鉛電極4による通電加熱を施し、溶鋼9の成分及び温度を目標値に調整する設備でもある。尚、交流電源により通電加熱を行なう設備では、黒鉛電極4が3本設置される場合が多いが、図1では、3本の黒鉛電極4のうち2本の記載を省略し、黒鉛電極4が1本記載された図となっている。また、取鍋精錬炉1では、添加した精錬用フラックスが溶融して所望する組成のスラグ10が形成され、このスラグ10と溶鋼9との反応により、溶鋼中介在物の形態制御や溶鋼の脱硫反応が行われる。取鍋2のスラグラインの内張り耐火物6をMgO系耐火物とする理由は、MgO系耐火物はスラグ10に対する耐蝕性が高いことに基づく。取鍋精錬炉1では、取鍋2と上蓋3とで囲まれる空間内雰囲気の圧力は大気圧と同等である。つまり、取鍋精錬炉1では、減圧下の精錬は実施できない。
 VOD炉(図示せず)及びVAD炉(図示せず)は、排気装置に連結された真空チャンバーを備え、溶鋼9を収容した取鍋2を真空チャンバーの内部に配置する。そして、真空チャンバーの内部を減圧し、取鍋2の底部に配置した底吹きプラグ8、8aから攪拌用の希ガスまたは非酸化性ガスを吹き込むように構成されている。こうして取鍋内の溶鋼9を攪拌させながら、真空チャンバーを貫通させて設置した上吹きランスから酸素ガス或いは搬送用ガスとともに脱硫剤などの精錬剤を取鍋内の溶鋼9に吹き付けて精錬する設備である。VAD炉は、取鍋精錬炉1と同様に、溶鋼9を加熱するための黒煙電極を備えている。VOD炉及びVAD炉では、通常、減圧下で精錬が行われる。プラズマトーチを、真空チャンバーの上部に真空チャンバーを貫通させて設置することで、本発明を実施することができる。
 REDA真空脱ガス装置(図示せず)は、攪拌用ガスによる取鍋内溶鋼の底吹き攪拌と、取鍋内溶鋼に先端部を浸漬させた、内部が減圧される大径浸漬槽とを組み合わせた脱ガス炉であり、底吹き攪拌しながら、大径浸漬槽内に溶鋼を上昇させて精錬する装置である。REDA真空脱ガス装置では、通常、減圧下で精錬が行われる。プラズマトーチを、大径浸漬槽の上部に大径浸漬槽を貫通させて設置することで、本発明を実施することができる。
 本実施形態に係る溶鋼の精錬方法では、取鍋精錬炉1やVOD炉などの二次精錬炉での溶鋼9の精錬中、アルゴンガスなどの攪拌用ガスによって攪拌されている溶鋼9の表面へ、プラズマトーチ11、12から、水素ガスまたは水素ガスを含む不活性ガスをプラズマガスとして照射する。プラズマ内の温度は数千度以上にも達するので、プラズマガス中の水素ガスが原子またはイオン状態となり、非常に活性な状態となる。原子またはイオン状態の活性な水素を溶鋼表面に照射することで、下記に示す(6)式、(7)式、(8)式の反応が形成され、溶鋼中の酸素、窒素、硫黄を迅速に除去することができる。
 2H+[O]=HO ……(6)
  xH+[N]=NH ……(7)
  yH+[S]=HS ……(8)
  (6)式、(7)式、(8)式において、[O]は溶鋼中の酸素、[N]は溶鋼中の窒素、[S]は溶鋼中の硫黄を表す。
 図1では、底吹きプラグ8、8aから攪拌用ガスを吹き込んでいるが、溶鋼9にインジェクションランス(図示せず)を浸漬させ、インジェクションランスの先端部から攪拌用ガスを溶鋼9に吹き込んでもよい。攪拌用ガスとしては、不活性ガスであるアルゴンや、還元ガスである水素ガスやプロパンを用いることができる。水素プラズマ処理において、脱窒反応を目的としない場合は、攪拌用ガスとして窒素ガスを用いることもできる。また、不活性ガスや窒素ガスを混合して用いたり、水素プラズマ処理中に適宜切り替えて使用したりすることができる。
 プラズマを発生させるには様々な方式があるが、図1に示すように、プラズマトーチ11、12を用いてプラズマを発生させる方式が一般的である。プラズマトーチ11、12は、主に直流電流を用い、気流や水冷ノズルなどの作用で、アークプラズマを各種用途に適した形態で、安定的に且つ制御良く発生させる装置の一つである。
 前述した直流電源を用いたプラズマトーチには非移行型と移行型がある。非移行型のプラズマトーチでは、溶鋼側に電極を設ける必要が無いために、設備制約が少なく、また、設置費用が安価であり、この観点から、直流アーク放電による非移行型のプラズマトーチを用いることが好ましい。
 尚、プラズマ発生装置は、溶鋼9の上方に設置でき、且つ、水素プラズマを溶鋼表面へ安定的に供給可能な形態であるならば、特に、方式は制限されない。例えば、取鍋精錬炉1で水素プラズマ処理を行う場合、黒鉛電極4より生成するアーク中に水素ガスまたは水素を含む不活性ガスを供給し、水素ガスまたは水素ガスを含む不活性ガスをプラズマ化させる方式でもよい。また、VOD炉のような加熱用の電極をもたないプロセスについては、溶鋼9の上方に交流アークを発生させる電極を設け、この電極間に水素ガスまたは水素ガスを含む不活性ガスを供給することで、水素プラズマ処理を行うことができる。
 プラズマガスとしては、水素ガス、または、水素ガスと不活性ガスとを混合した混合ガスを使用する。水素ガスを用いる理由は、前述したように、水素ガスをプラズマ化させることで、直接的に溶鋼中の不純物を除去できるからである。迅速な不純物除去効果を得るためには、プラズマガス中に水素ガスを0.5体積%以上混合することが好ましい。水素プラズマガス中の水素ガス濃度が高い程、不純物除去効果が上昇するので、水素プラズマガス中の水素ガス濃度の上限は特に設けない。不活性ガスとしては、アルゴンガスやヘリウムガスを使用することができる。
 溶鋼中の酸素、窒素及び硫黄のような不純物を迅速に低減するには、プラズマガスの流量、プラズマガス中の水素ガス濃度、及び、取鍋内溶鋼の溶鋼循環流量の3つの要素を、適切な範囲に制御する必要がある。
 即ち、迅速な不純物除去効果を得るためには、プラズマガス中の水素ガス濃度を高めるだけではなく、底吹きガス攪拌によって取鍋内溶鋼浴内を循環する溶鋼循環流量に対して適切な水素ガス量を供給することが必要である。具体的には、下記の(1)式に示すように、プラズマガスの流量(G)、プラズマガス中の水素濃度(H)、及び、取鍋内溶鋼の溶鋼循環流量(Q)の3つの要素が、下記の(1)式の関係を満たす条件であることが必要である。また、好ましくは、3つの要素の関係(G×(H)/Q)を0.1以上とすることであり、より好ましくは、0.5以上とすることである。一方、(G×(H)/Q)が3.0より大きくなると、プラズマガス中の水素を解離あるいは電離するために大きな出力を要するようになる。さらには、それに伴うプラズマトーチの損耗が顕著になってくるため、(G×(H)/Q)を3.0以下とすることがより好ましい。
Figure JPOXMLDOC01-appb-M000007
 (1)式において、Gは、プラズマガスの流量(Nm/min)、(H)は、プラズマガス中の水素ガス濃度(体積%)、Qは、取鍋内溶鋼の溶鋼循環流量(ton/min)である。尚、プラズマガスの流量の「Nm/min」は、プラズマガスの体積流量を示す単位であり、「Nm」は、標準状態におけるプラズマガスの体積を意味する。本明細書では、プラズマガスの標準状態を0℃、1atm(101325Pa)とする。
 取鍋内溶鋼の溶鋼循環流量(Q)は、取鍋内の溶鋼質量及び底吹きガスによる攪拌動力に影響される。そのため、これらの条件毎に、取鍋内溶鋼における溶鋼循環時間を実機の取鍋2において測定し、取鍋内の溶鋼質量を、測定された溶鋼循環時間で除算することで、取鍋内における溶鋼9の溶鋼循環流量(Q)を求めることができる。
 ここで、取鍋内の溶鋼9に、トレーサー元素(例えば、銅、ニッケルなど)を添加し、取鍋内から時系列に採取した成分分析用試料のトレーサー元素濃度の変動が±5%以内になるのに要する時間を均一混合時間とすると、溶鋼循環時間は均一混合時間の約1/3となることから、得られた均一混合時間の1/3となる時間を溶鋼循環時間として用いることができる。
 また、取鍋内溶鋼における溶鋼循環時間は、下記の(3)式で示される、経験的な回帰式で求めることができ、更に、下記の(3)式における攪拌動力(ε)は、下記の(4)式で示される、経験的な回帰式で求めることができることが周知である。したがって、下記の(2)式、(3)式、(4)式を用いて取鍋内溶鋼の溶鋼循環流量(Q)を求めることが好ましい。
Figure JPOXMLDOC01-appb-M000008
 
 (2)式ないし(4)式において、Qは取鍋内溶鋼の溶鋼循環流量(ton/min)、Wは取鍋内溶鋼の質量(ton)、tは取鍋内溶鋼の溶鋼循環時間(min)、Dは取鍋内溶鋼浴の平均直径(m)、Hは取鍋内溶鋼浴の深さ(m)、εは攪拌動力(W/ton)、Gは取鍋内溶鋼への合計攪拌用ガス吹き込み流量(Nm/min)、Tは取鍋内溶鋼の溶鋼温度(K)、Pはプラズマ照射領域の雰囲気圧力(torr)である。尚、取鍋内溶鋼への合計攪拌用ガス吹き込み流量(G)についても、「Nm」は、標準状態における合計攪拌用ガスの体積を意味し、0℃、1atm(101325Pa)を標準状態とする。また、「torr」は、圧力単位であり、1torrが133.32Paとなる。また更に、取鍋2の側壁は上広がりに傾斜している形状であることがあり、したがって、取鍋内溶鋼浴の平均直径とは、取鍋内溶鋼浴の下端部の直径と上端部の直径との平均値である。
 取鍋内に収容され、水素プラズマ処理を行う前の溶鋼9は、転炉または電気炉から取鍋2に出鋼され、例えば、RH真空脱ガス装置のような真空脱ガス設備での真空脱ガス精錬工程を経て、攪拌用ガスを吹き込んで取鍋内の溶鋼を攪拌するガス攪拌処理工程に搬送されたものであってもよい。
 水素プラズマ処理を行う前の溶鋼9は未脱酸状態であってもよいが、水素プラズマ処理を行う前に、水素ガスやプロパンのような還元ガスを溶鋼9へ供給して、溶鋼9を予備脱酸してもよい。プラズマ処理前の還元ガスによる予備脱酸により、溶鋼中酸素濃度が或る程度低下した状態からプラズマ処理を開始できるので、上記の(6)式による反応の負荷が軽減され、プラズマ処理時間を短時間化できる。
 また、溶鋼中の窒素及び硫黄の除去を重点的に行う場合は、プラズマ処理前にアルミニウムや珪素のような脱酸材を添加して溶鋼9を脱酸し、溶鋼中酸素濃度を予め低減してもよい。この場合には、溶鋼中酸素濃度がすでに低いので、プラズマ処理による脱酸効果は限定的である。溶鋼中酸素は界面活性元素として機能しており、脱酸によって溶鋼中酸素濃度を低減することで、溶鋼表面からの窒素ガス、窒化水素、硫化水素の気相(取鍋内雰囲気)への離脱を阻害し得る。しかしながら、アルミニウムや珪素による脱酸処理によって溶鋼中酸素濃度を低位にしておくことで、速やかに水素プラズマによる溶鋼中の酸素、窒素、硫黄などの除去効果を得ることができる。また、溶鋼9を脱酸しておくことで、水素プラズマ処理による直接的な硫黄除去効果だけでなく、溶鋼-スラグ間反応による脱硫反応促進も期待できる。
 プラズマ出力(E)は下記の(9)式を満たすことがより好ましい。水素ガスを高割合で原子状態へ解離させるためには一定以上の出力が必要となるが、導入するプラズマガスの流量あるいはプラズマガス中の水素濃度によって必要となる出力は異なる。それらを調査した結果、プラズマ出力は(9)式の関係を満たすと良いことが分かった。出力を増加させると、水素原子への解離だけでなく、水素イオンへの電離割合が増加するため、より不純物除去効果が顕著となる。一方で、出力増加に伴い電力コストが増加するため、求める品質とコストのバランスによりプラズマ出力を選択すれば良い。
  E ≧ G×{1.5×(H)+11.5)  …(9)
  (9)式において、Eは、プラズマ出力(kW)である。
 プラズマ処理の際、取鍋内の溶鋼9に一定以上の流動を与えることで、更に効率良く不純物を低減することができる。即ち、プラズマの照射は溶鋼表面の比較的局所的な領域となるために、溶鋼攪拌によりプラズマ照射部へ新しい溶鋼9を送り続けることで、取鍋内溶鋼全体の不純物濃度を迅速に低減できる。
 溶鋼表面の流動は上記の(4)式で表される攪拌動力(ε)と相関関係にあることがわかっており、攪拌動力(ε)が大きくなるほど溶鋼表面の流動は大きくなる。したがって、プラズマ処理を効率化する観点から、攪拌動力(ε)は25W/ton以上とすることが好ましい。攪拌動力(ε)が25W/tonより小さい場合は、プラズマ照射部である溶鋼表面とバルク溶鋼との循環、混合が停滞し、迅速な不純物低減効果が得られない。攪拌動力(ε)の上限は特に設けないが、攪拌動力(ε)が大きすぎる場合はガスの吹き抜けや溶鋼飛散が増大するので、150W/ton以下とすることが望ましい。
 また、プラズマを照射する位置には好適な範囲がある。即ち、底吹きプラグ8、8aから吹き込まれた攪拌用ガスが、攪拌用ガス気泡13となって溶鋼表面に浮上する位置またはその近傍に水素プラズマを照射することが好ましい。図1では、底吹きプラグ8の鉛直上方にプラズマトーチ11が設置され、また、底吹きプラグ8aの鉛直上方にプラズマトーチ12が設置されている。つまり、本発明においては、ガス吹き込み部(底吹きプラグ)のうちの少なくとも1箇所の鉛直上方の溶鋼表面直上を中心とし、下記の(5)式で算出されるプラズマ照射範囲半径(r)以内の範囲に、プラズマガスを照射することが好ましい。
Figure JPOXMLDOC01-appb-M000009
 
 (5)式において、rはプラズマ照射範囲半径(m)、gは攪拌用ガスの吹き込み流量(Nm/min/ガス吹き込み部1箇所)である。尚、攪拌用ガス吹込み流量(g)についても、「Nm」は、標準状態における攪拌用ガスの体積を意味し、0℃、1atm(101325Pa)を標準状態とする。
 プラズマ照射範囲半径(r)の領域内は、取鍋内溶鋼表面のなかで最も流動が速い(激しい)領域であり、そこにプラズマを照射することで、水素プラズマと取鍋内溶鋼との反応が迅速に進行する。また、プラズマ照射範囲半径(r)に該当する領域は、攪拌用ガス気泡13とともに上昇する溶鋼9がスラグ10を押しのけて溶鋼湯面が露出しているか、または、スラグ厚みが比較的薄い領域であるので、スラグ10に阻害されることなく、溶鋼表面へプラズマ処理を行うことができる。
 一方、プラズマ照射範囲半径(r)の領域外にプラズマを照射した場合には、溶鋼流動の遅い範囲であるため、押しのけられたスラグ10が堆積しスラグ厚みが大きくなっており、プラズマが溶鋼9まで到達できないおそれがある。
 取鍋内の溶鋼表面へプラズマ照射を行う際、その雰囲気は減圧下、具体的には150torr以下であることが好ましい。150torr以下の減圧下でプラズマガスを照射することで、プラズマジェットの流速増加、更には水素ガス分子の原子やイオンへの解離促進が期待できるため、大気圧下でプラズマ処理するよりも、溶鋼中不純物低減効果が大きくなる。雰囲気圧力が150torrよりも高い場合は、上記の効果が小さいために、減圧による効果は得られない。
 減圧下で水素プラズマ処理を行うための具体例を以下に示す。例えば、VOD炉のように溶鋼9を収納した取鍋2ごと真空チャンバー内に入れ、真空チャンバーの上部に設置したプラズマ発生装置から取鍋内の溶鋼表面へ水素プラズマの照射を行う。または、REDA真空脱ガス装置のように大径浸漬槽を取鍋内溶鋼に浸漬し、大径浸漬槽内を真空排気して減圧雰囲気とした上で、大径浸漬槽の上部に備えたプラズマ発生装置から大径浸漬槽内に吸い上げられた溶鋼の表面へのプラズマ照射を行う。これらは、減圧下での処理の一例であり、これらの方法に限定されるものではない。尚、プラズマ照射を行う際の雰囲気圧力は、より好ましくは100torr以下であり、更に好ましくは50torr以下である。
 取鍋内の溶鋼9の表面に浮遊するスラグ10の成分のうち、特に、スラグ中の鉄酸化物及びマンガン酸化物は、溶鋼9への酸素供給源と成り得る。このため、スラグ10の鉄酸化物の濃度とマンガン酸化物の濃度との合計を5質量%以下とすることが好ましく、より好ましくは3質量%以下、更に好ましくは1質量%以下とする。鉄酸化物濃度とマンガン酸化物濃度との合計濃度が5質量%よりも高い場合には、プラズマ処理中にスラグ10から溶鋼9への酸素供給が同時に進行し、不純物低減効果を十分に得ることができない。
 スラグ10の鉄酸化物やマンガン酸化物を低減する方法としては、プラズマ処理前に、溶鋼上に浮遊するスラグ10に対して、金属アルミニウムやアルミニウムドロスを添加して、アルミニウムで鉄酸化物やマンガン酸化物の還元を行うことが有効である。また、スラグ10を取鍋2から除去し、その後、取鍋内に造滓剤を添加して、鉄酸化物やマンガン酸化物の少ないスラグを新たに造ることも有効である。また、スラグ10に対して水素プラズマガスを照射することで、スラグ中の鉄酸化物及びマンガン酸化物の還元処理を行うこともできる。
 水素プラズマ処理後、アルミニウムや珪素のような脱酸材の添加時期は特には限定されない。例えば、水素プラズマの停止後、大気、スラグ10または取鍋耐火物から酸素が溶鋼9に供給され、溶鋼中の酸素濃度が上昇するので、水素プラズマ処理後、溶鋼9に、速やかにアルミニウムや珪素のような脱酸材を添加し、水素プラズマ処理によって低減された溶鋼中酸素濃度を低位に保持することが好ましい。アルミニウムや珪素のような脱酸材以外にも溶鋼成分を調整する必要がある場合には、水素プラズマ処理後、所定の合金鉄や純金属を取鍋内の溶鋼9に添加する。
 また、水素プラズマ処理によって溶鋼中の水素濃度は数質量ppm以上に上昇するので、水素プラズマ処理後、10torr以下の減圧下で5分間以上、脱水素処理を実施することが好ましい。例えば、プラズマ処理を取鍋精錬炉1で行う場合には、後工程にRH真空脱ガス装置などの真空脱ガス設備での精錬を設け、真空脱ガス設備で脱水素処理を行う。脱ガス機能を有するVOD炉やREDA真空脱ガス装置でプラズマ処理を行う場合には、プラズマ処理の後、脱水素処理を継続して行う。
 以上のような水素プラズマ処理を用いた精錬方法により、溶鋼中の酸素、窒素及び硫黄をそれぞれ30質量ppm以下までに迅速に低減することができる。
 1チャージの溶鋼量が200トン以上350トン以下の規模の実機において、取鍋精錬炉(LF)を用いて、転炉から出鋼した溶鋼に対して大気圧下で水素プラズマ処理を実施する試験を行った(本発明例1ないし9、比較例1ないし3)。また、減圧下での雰囲気の影響を評価する試験では、1チャージの溶鋼量が200トン以上350トン以下規模の実機にて、VOD炉を用いて、転炉から出鋼した溶鋼に対して減圧下で水素プラズマ処理を実施する試験を行った(本発明例10ないし19、比較例4、5)。
 取鍋精錬炉では炉蓋の上部に、直流アーク放電による非移行型のプラズマトーチを設置した。また、VOD炉では真空チャンバーの上部に、直流アーク放電による非移行型のプラズマトーチを設置し、これらのプラズマトーチから、プラズマガス流量やプラズマガス中の水素ガス濃度を変化させて、取鍋内溶鋼の表面に水素プラズマを照射した。更に、取鍋精錬炉やVOD炉における操業条件や溶鋼組成(酸素濃度、窒素濃度、硫黄濃度など)を変化させた。尚、取鍋精錬炉における水素プラズマ処理は、黒煙電極によるアーク加熱を停止した状態で行った。
 水素プラズマ処理の前後に、成分分析用試料を取鍋内の溶鋼から採取し、溶鋼中酸素濃度、窒素濃度、硫黄濃度の分析を行い、プラズマ処理による効果の確認を行った。プラズマ処理時間は15分間に統一した。尚、転炉出鋼後からプラズマ処理までの間、アルミニウムなどの脱酸材の添加は行っていない。取鍋内スラグの鉄酸化物濃度及びマンガン酸化物濃度は、取鍋精錬炉またはVOD炉での処理開始前に、取鍋内のスラグにアルミニウムドロスを添加して調整した。
 表1に各試験の試験条件を示し、表2に評価結果を示す。
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000011
 
 本発明例においては、15分間の水素プラズマ処理を行うことにより、溶鋼中の酸素濃度、窒素濃度及び硫黄濃度は、同時に且つ速やかに30質量ppm以下まで低減した。プラズマ処理の開始前から終了後までのそれぞれの元素の除去率は、溶鋼中酸素が94%以上、溶鋼中窒素が33%以上、溶鋼中硫黄が20%以上であった。
 一方、本発明の条件を満たさない比較例においては、水素プラズマ処理後も溶鋼中の酸素、窒素及び硫黄の低減は不十分であり、プラズマ処理の開始前から終了後までのそれぞれの元素の除去率は、溶鋼中酸素が90%以下、溶鋼中窒素が19%以下、溶鋼中硫黄が15%以下であり、いずれも低位であった。
 1 取鍋精錬炉
 2 取鍋
 3 上蓋
 4 黒煙電極
 5 鉄皮
 6 内張り耐火物
 7 永久耐火物
 8 底吹きプラグ
 9 溶鋼
 10 スラグ
 11 プラズマトーチ
 12 プラズマトーチ
 13 攪拌用ガス気泡

Claims (7)

  1.  取鍋内に収容された溶鋼に攪拌用ガスを吹き込んで取鍋内の溶鋼を攪拌するガス攪拌処理を行う工程において、
     前記ガス攪拌処理によって流動状態にある取鍋内溶鋼の表面に、当該取鍋内溶鋼の上方に設置されたプラズマ発生装置から、水素ガスまたは水素ガスを含む不活性ガスをプラズマガスとして下記の(1)式を満たす条件で照射するプラズマ処理を行ない、当該プラズマ処理によって溶鋼中に含まれる酸素、窒素、硫黄のうちから選ばれる1種または2種以上の元素の含有量を低減する、溶鋼の精錬方法。
    Figure JPOXMLDOC01-appb-M000001
     
     ここで、Gはプラズマガスの流量(Nm/min)、(H)はプラズマガス中の水素ガス濃度(体積%)、Qは取鍋内溶鋼の溶鋼循環流量(ton/min)である。
  2.  前記取鍋内溶鋼の溶鋼循環流量を、下記の(2)式、(3)式、(4)式を用いて算出する、請求項1に記載の溶鋼の精錬方法。
    Figure JPOXMLDOC01-appb-M000002
     
     ここで、Qは取鍋内溶鋼の溶鋼循環流量(ton/min)、Wは取鍋内溶鋼の質量(ton)、tは取鍋内溶鋼の溶鋼循環時間(min)、Dは取鍋内溶鋼浴の平均直径(m)、Hは取鍋内溶鋼浴の深さ(m)、εは攪拌動力(W/ton)、Gは取鍋内溶鋼への合計攪拌用ガス吹き込み流量(Nm/min)、Tは取鍋内溶鋼の溶鋼温度(K)、Pはプラズマ照射領域の雰囲気圧力(torr)である。
  3.  前記ガス攪拌処理は、前記取鍋の底部に1箇所または2箇所以上のガス吹き込み部を設置し、当該ガス吹き込み部から前記取鍋内溶鋼中に攪拌用ガスを吹き込むことで行われ、そのときの(4)式で算出される攪拌動力(ε)が、25W/ton以上である、請求項1または請求項2に記載の溶鋼の精錬方法。
  4.  前記ガス吹き込み部のうちの少なくとも1箇所の鉛直上方の溶鋼表面直上を中心とし、下記の(5)式で算出されるプラズマ照射範囲半径(r)以内の範囲に前記プラズマガスを照射する、請求項3に記載の溶鋼の精錬方法。
    Figure JPOXMLDOC01-appb-M000003
     
     ここで、rはプラズマ照射範囲半径(m)、gは攪拌用ガスの吹き込み流量(Nm/min/ガス吹き込み部1箇所)である。
  5.  前記取鍋内溶鋼にプラズマガスを照射する際の雰囲気圧力が150torr以下である、請求項1から請求項4のいずれか1項に記載の溶鋼の精錬方法。
  6.  取鍋内に収容した溶鋼の表面に浮遊するスラグは、鉄酸化物の濃度とマンガン酸化物の濃度との合計が5質量%以下である、請求項1から請求項5のいずれか1項に記載の溶鋼の精錬方法。
  7.  前記プラズマ処理により、溶鋼に含まれる酸素、窒素、硫黄の3元素の含有量を同時に低減する、請求項1から請求項6のいずれか1項に記載の溶鋼の精錬方法。
     
     
     
     
     
     
PCT/JP2022/021634 2021-06-23 2022-05-26 溶鋼の精錬方法 WO2022270226A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202280042959.4A CN117500946A (zh) 2021-06-23 2022-05-26 钢水的精炼方法
EP22828145.7A EP4339302A1 (en) 2021-06-23 2022-05-26 Method for refining molten steel
AU2022297943A AU2022297943A1 (en) 2021-06-23 2022-05-26 Molten steel refining method
JP2022544246A JP7180821B1 (ja) 2021-06-23 2022-05-26 溶鋼の精錬方法
KR1020237043347A KR20240008923A (ko) 2021-06-23 2022-05-26 용강의 정련 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-104031 2021-06-23
JP2021104031 2021-06-23

Publications (1)

Publication Number Publication Date
WO2022270226A1 true WO2022270226A1 (ja) 2022-12-29

Family

ID=84544512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021634 WO2022270226A1 (ja) 2021-06-23 2022-05-26 溶鋼の精錬方法

Country Status (2)

Country Link
TW (1) TWI816422B (ja)
WO (1) WO2022270226A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116356119A (zh) * 2023-05-31 2023-06-30 北京科技大学 基于含氢等离子体喷吹的炼钢高效控氮方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149415A (ja) * 1984-12-24 1986-07-08 Sumitomo Metal Ind Ltd 溶鉄からの脱銅・脱錫法
JP4305792B2 (ja) 1999-03-25 2009-07-29 ソニー株式会社 金属の精製方法及び精錬方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149415A (ja) * 1984-12-24 1986-07-08 Sumitomo Metal Ind Ltd 溶鉄からの脱銅・脱錫法
JP4305792B2 (ja) 1999-03-25 2009-07-29 ソニー株式会社 金属の精製方法及び精錬方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116356119A (zh) * 2023-05-31 2023-06-30 北京科技大学 基于含氢等离子体喷吹的炼钢高效控氮方法
CN116356119B (zh) * 2023-05-31 2023-08-08 北京科技大学 基于含氢等离子体喷吹的炼钢高效控氮方法

Also Published As

Publication number Publication date
TWI816422B (zh) 2023-09-21
TW202313994A (zh) 2023-04-01

Similar Documents

Publication Publication Date Title
WO2022270226A1 (ja) 溶鋼の精錬方法
JP2015042777A (ja) 高窒素鋼の溶製方法
JP7180820B1 (ja) 溶鋼の精錬方法
JP5272479B2 (ja) 溶鉄の脱硫精錬方法
JP7180821B1 (ja) 溶鋼の精錬方法
JP2020180341A (ja) 極低窒素鋼の溶製方法
JP5458706B2 (ja) 溶鉄の脱硫精錬方法
WO2022270225A1 (ja) 溶鋼の精錬方法
CN111172355A (zh) 一种感应加热单嘴真空精炼炉及洁净钢冶炼工艺
JP7211454B2 (ja) 溶鋼の脱窒方法、脱窒及び脱硫同時処理方法および鋼の製造方法
JP2000212641A (ja) 溶鋼の高速真空精錬方法
WO2022259806A1 (ja) 溶鋼の脱窒方法および鋼の製造方法
JP7424350B2 (ja) 溶鋼の脱窒方法および鋼の製造方法
WO2022270346A1 (ja) 溶鋼の処理方法および鋼の製造方法
WO2022259807A1 (ja) 溶鋼の二次精錬方法および鋼の製造方法
JP3918695B2 (ja) 極低硫鋼の製造方法
JP2009263705A (ja) 溶鉄の脱硫精錬方法
JP2023003384A (ja) 溶鋼の脱窒処理方法
JP2011140684A (ja) 溶鉄の脱硫精錬方法
JPH07126726A (ja) 溶鉄からの脱銅・脱錫法
JPH08143932A (ja) 溶湯の精錬方法
JPH07126727A (ja) 溶鉄からの脱銅・脱錫法
JPH07126728A (ja) 溶鉄からの脱銅・脱錫法
JPH10212518A (ja) 高清浄度の低Si鋼の製造方法
JPH05239531A (ja) 極低炭素鋼の溶製方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022544246

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828145

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022297943

Country of ref document: AU

Ref document number: AU2022297943

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022297943

Country of ref document: AU

Date of ref document: 20220526

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023133094

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 20237043347

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237043347

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 18570789

Country of ref document: US

Ref document number: 202280042959.4

Country of ref document: CN

Ref document number: 2022828145

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022828145

Country of ref document: EP

Effective date: 20231215

NENP Non-entry into the national phase

Ref country code: DE