WO2022266894A1 - 电化学装置及电子装置 - Google Patents

电化学装置及电子装置 Download PDF

Info

Publication number
WO2022266894A1
WO2022266894A1 PCT/CN2021/101876 CN2021101876W WO2022266894A1 WO 2022266894 A1 WO2022266894 A1 WO 2022266894A1 CN 2021101876 W CN2021101876 W CN 2021101876W WO 2022266894 A1 WO2022266894 A1 WO 2022266894A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
pole piece
region
electrochemical device
current collector
Prior art date
Application number
PCT/CN2021/101876
Other languages
English (en)
French (fr)
Inventor
李学成
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to CN202180002888.0A priority Critical patent/CN113692675B/zh
Priority to EP21946394.0A priority patent/EP4362214A1/en
Priority to PCT/CN2021/101876 priority patent/WO2022266894A1/zh
Priority to US17/710,508 priority patent/US20220416246A1/en
Publication of WO2022266894A1 publication Critical patent/WO2022266894A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/664Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of electrochemical technology, in particular to an electrochemical device and an electronic device.
  • the voltage drop failure is the most important failure mode in the drop failure, and it is also the most difficult failure mode.
  • the failure of the voltage drop is due to the electrode assembly moving in the storage device (such as aluminum-plastic film) when the battery is dropped, and the electrolyte impacts the diaphragm at the head and tail of the electrode assembly, causing the diaphragm to shrink, and the positive and negative electrodes at the diaphragm contraction are short-circuited. of.
  • one approach is to suppress the shrinkage of the separator by increasing the adhesive force of the separator, thereby improving the voltage drop failure.
  • improving the adhesive force of the separator will lead to deterioration of the electrical performance of the battery, especially in a high-rate fast charging system (for example, a charging system with a charging rate of not less than 3C), this deterioration is more obvious.
  • Another method is to reduce the impact of free electrolyte on the diaphragm by reducing the electrolyte content in the battery, but if the electrolyte content is too low, it will affect the later cycle of the battery, accelerate battery aging, and reduce service life. Therefore, it is necessary to provide a design to solve the aforementioned problems.
  • the present application provides an electrochemical device, which can improve the failure problem of voltage drop without affecting the electrical performance.
  • an electrochemical device which includes an electrode assembly, and the electrode assembly includes a first pole piece, a second pole piece, and an electrode located between the first pole piece and the second pole piece. diaphragm.
  • the first pole piece includes a first current collector, a first active material layer and a first insulating layer, the first current collector includes a first surface and a second surface oppositely arranged, and the first active material layer is arranged on The first surface and the first insulating layer are located between the first current collector and the first active material layer.
  • An insulating layer is first provided on the current collector and then an active material layer is coated.
  • the insulating layer can prevent electrons in this area from flowing from the current collector to the active material layer, so that the pole piece in this area is not charged. During the drop process, it can prevent the short circuit of the positive and negative electrodes of the outermost ring of the battery due to the contraction of the diaphragm, thereby improving the failure risk of the drop voltage drop. If the active material layer is first coated on the current collector, and then an insulating layer is provided on the active material layer, the active material layer will be in contact with the current collector, and the active material layer can still gain and lose electrons and intercalate and remove lithium normally. At this time, the electrode sheet in this area is in a charged state.
  • the interface bonding force between the active material layer and the current collector is weaker than that between the insulating layer and the current collector.
  • the electrochemical device with the active material layer first and then the insulating layer is prone to fall off of the active material layer. Phenomenon, the current collector is exposed, and then the positive and negative electrodes are short-circuited and heat is generated rapidly, the voltage drops, and the safety performance decreases. Therefore, the problem of voltage drop failure can be improved by first disposing an insulating layer on the current collector and then coating an active material layer.
  • this technical solution does not reduce the electrolyte content, and the electrical performance of the electrochemical device will not be affected.
  • the electrode assembly is formed by winding the first pole piece, the second pole piece and the separator, the first surface is set facing the winding center, and the second surface is set away from the winding center.
  • the electrochemical device further includes a second active material layer disposed on the second surface
  • the first current collector includes a first region and a second region disposed along the length direction of the pole piece, and the first active material layer is disposed on the The first surface of the first region and the first surface of the second region; the second active material layer is disposed on the second surface of the first region.
  • the electrochemical device further includes a tab electrically connected to the first current collector, the first current collector includes a first end portion and a second end portion disposed along the width direction of the pole piece, and the tab is disposed at the the first end.
  • the first insulating layer is disposed on at least one of: a first end of the first region, a first end of the second region, and a first end of the third region; or A second end of the first region, a second end of the second region, and a second end of the third region.
  • the shrinkage of the diaphragm mainly shrinks toward the middle of the diaphragm along the width direction of the pole piece, that is, the diaphragm located at the first end or the second end is easy to shrink. Therefore, the first end of the first region, the The first end of the second area, the first end of the third area, the second end of the first area, the second end of the second area, and the second end of the third area
  • the risk of voltage drop failure at these positions at the end is relatively high, and the placement of the first insulating layer at these positions can better prevent the risk of voltage drop failure and improve the safety performance of the electrochemical device.
  • the extension length of the first insulating layer is not greater than 10 mm.
  • the longer the first insulating layer extends the better it can prevent voltage drop failure, but at the same time, the first insulating layer occupies the inner space of the electrode assembly, which will reduce the energy density of the electrode assembly.
  • the first insulating layer includes a first insulating material, and the first insulating material includes at least one of aluminum oxide, zirconium oxide, or chromium oxide. In some embodiments, the first insulating material includes at least one of alumina ceramics, zirconia ceramics, or chromium oxide ceramics.
  • the electrochemical device further includes a second insulating layer disposed on the second surface, and the second insulating layer is disposed at least in the first end or the second end of the first region and the second insulating layer is located between the first current collector and the second active material layer.
  • a second insulating layer is arranged on the first region of the second surface.
  • the diaphragm shrinks mainly toward the middle of the diaphragm along the pole piece width direction, that is, the diaphragm located at the first end or the second end is easy to shrink, therefore, the first end of the first region, the first region
  • These positions of the second end of the second end are prone to voltage drop failure, and disposing the second insulating layer on these positions can better prevent the risk of voltage drop failure and further improve the safety performance of the electrochemical device.
  • the extension length of the second insulating layer disposed in the first region is not greater than 10 mm.
  • the longer the second insulating layer extends the better it can prevent voltage drop failure, but at the same time, the second insulating layer occupies the inner space of the electrode assembly, which will reduce the energy density of the electrode assembly.
  • the second insulating layer is further disposed on at least one of the second region or the third region. It can be understood that the separator corresponding to the empty foil area at the tail of the electrode assembly (the area not coated with the active material layer) is prone to shrinkage, and the risk of voltage drop failure in this area is relatively high. After the second insulating layer is provided on the second region and/or the third region, the second insulating layer can prevent the electron transfer between the first current collector and the second pole piece, even if the first pole piece and the second pole piece No short circuit will occur in the contact of the two electrodes, which improves the safety performance of the electrochemical device.
  • the second region includes a first portion and a second portion disposed along the length direction of the pole piece, and the second insulating layer is further disposed on the second portion.
  • the second insulating layer arranged on the second part can prevent electron transfer between the first current collector and the second pole piece, even if the first pole piece and the second pole piece are in contact, no short circuit will occur, which improves the electrochemical device. safety performance.
  • the ratio of the extension length of the second insulating layer disposed in the second region or the third region along the width direction of the pole piece to the extension length of the first current collector along the width direction of the pole piece is not equal to less than 50%.
  • the second insulating layer includes a second insulating material, and the second insulating material includes at least one of aluminum oxide, zirconium oxide, or chromium oxide. In some embodiments, the second insulating material includes at least one of alumina ceramics, zirconia ceramics, or chromium oxide ceramics.
  • the electrochemical device further includes a housing device for housing the electrode assembly, the housing device includes a first housing part and a second housing part, and the depth of the first housing part is smaller than the depth of the second housing part.
  • the first part is in contact with the first storage part
  • the second part is in contact with the second storage part.
  • the first pole piece is a positive pole piece
  • the second pole piece includes a second current collector
  • the difference between the extension length of the first current collector and the extension length of the second current collector is Not more than 5%. It can be understood that the difference between the two is not more than 5%, and it can be considered that the extension length of the first current collector along the width direction of the pole piece is equal to the extension length of the second current collector along the width direction of the pole piece. In this way, the edges of the first current collector and the second current collector can clamp the diaphragm, the diaphragm is less likely to slide, and the risk of voltage drop failure can be better prevented.
  • the electrode assembly is formed by stacking the first pole piece, the second pole piece and the separator along the first direction.
  • the first current collector includes a first end and a second end arranged along the second direction, and a third end and a fourth end arranged along the third direction.
  • the second direction is perpendicular to the first direction
  • the third direction is perpendicular to the second direction
  • the first insulating layer is disposed on at least one of the first end, the second end, the third end or the fourth end. . It can be understood that when the diaphragm shrinks, there is a risk of voltage drop failure at the first end, the second end, the third end or the fourth end of the stacked electrode assembly. Relatively high, disposing the first insulating layer at these positions can better prevent the risk of voltage drop failure and improve the safety performance of the electrochemical device.
  • the extension length of the first insulating layer is not greater than 10 mm. Such setting can not only better prevent the risk of voltage drop failure, but also have almost negligible impact on the energy density of the electrode assembly.
  • the electrochemical device further includes a second insulating layer disposed on the second surface, and the second insulating layer is disposed at the first end, the second end, the third end or the fourth end. at least one up. Further setting the second insulating layer can better prevent voltage drop failure and improve the safety performance of the electrochemical device.
  • the extension length of the second insulating layer is not greater than 10 mm. Such setting can not only better prevent the risk of voltage drop failure, but also have almost negligible impact on the energy density of the electrode assembly.
  • the present application also provides an electronic device, which includes the above-mentioned electrochemical device, and the electrochemical device supplies power to the electronic device.
  • an insulating layer is set between the current collector and the active material layer to block the electron channel in this area. There will be no short circuit in the chip contact, thereby improving the problem of voltage drop failure. Moreover, the electrolyte content of the electrochemical device provided by the present application is not reduced, and the electrical performance of the electrochemical device and the electronic device will not be affected.
  • FIG. 1 is a schematic structural diagram of an electrochemical device provided by an embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of a first current collector provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a storage device provided by an embodiment of the present application.
  • Fig. 4a is a schematic structural diagram of a first pole piece provided by an embodiment of the present application.
  • Fig. 4b is a schematic structural view of the first pole piece in Fig. 4a after being coated with an active material layer.
  • Fig. 5a is a schematic structural diagram of a first pole piece provided by an embodiment of the present application.
  • Fig. 5b is a schematic structural view of the first pole piece in Fig. 5a after being coated with an active material layer.
  • FIG. 6 is a schematic structural diagram of an electrochemical device provided by an embodiment of the present application.
  • Fig. 7a is a schematic structural diagram of a first pole piece provided by an embodiment of the present application.
  • Fig. 7b is a schematic structural view of the first pole piece in Fig. 7a after being coated with an active material layer.
  • FIG. 8 is a schematic structural diagram of an electrochemical device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an electrochemical device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural view of a first current collector provided in an embodiment of the present application.
  • Fig. 11a is a schematic structural diagram of a first pole piece provided by an embodiment of the present application.
  • Fig. 11b is a schematic structural view of the first pole piece in Fig. 11a after being coated with an active material layer.
  • FIG. 12 is an enlarged view at A in FIG. 9 .
  • the first pole piece 101 is the first pole piece 101
  • Second pole piece 103 Second pole piece 103
  • Diaphragm 105 Diaphragm 105
  • the first active material layer 1013 is the first active material layer 1013
  • the ratio of the difference between the first object and the second object to the second object in this application is limited to be greater than 5%, which can eliminate the difference caused by the error, indicating that the first object is substantially greater than or smaller than the second object Two objects. It should be understood that the ratio can also be adjusted to 10%, 15%, 20%, etc. based on the actual situation.
  • the technical solution of the present application can improve the safety performance of the battery by disposing an insulating layer on at least one of the positive pole piece and the negative pole piece of the battery, and disposing the insulating layer between the current collector and the active material layer.
  • the insulating layer is arranged on a certain area of the pole piece.
  • the insulating layer can prevent electrons from flowing from the current collector in this region to the active material layer in this region, and the pole piece in this region is insulated as a whole. In this way, during the drop process, it is possible to prevent the contact short circuit of the positive and negative electrodes due to the contraction of the diaphragm, thereby improving the failure risk of the drop voltage drop. If the active material layer is coated on the current collector first, and then an insulating layer is provided on the active material layer, the active material layer will be in contact with the current collector, and the active material layer can still gain and lose electrons normally and intercalate and delithiate lithium.
  • the electrode sheet in this area is in a charged state.
  • the insulating layer on the active material layer is too thin or the coating is leaked, there is still a risk of contact short circuit between the positive and negative electrode sheets.
  • the interfacial adhesion between the active material layer and the current collector is weaker than that between the insulating layer and the current collector.
  • the electrochemical device that first coats the active material layer and then installs the insulating layer is prone to the active material layer falling off.
  • the phenomenon of exposing the current collector leads to a short circuit between the positive and negative electrodes, rapid heat generation and voltage drop, and a decrease in safety performance. Therefore, the problem of voltage drop failure can be improved by directly coating the insulating layer on the current collector and then coating the active material layer.
  • this technical solution does not reduce the electrolyte content, and the electrical performance of the electrochemical device is also guaranteed.
  • the present application provides an electrochemical device 100 including an electrode assembly 10 .
  • the direction Z shown in the figure is the thickness direction of the electrode assembly 10 .
  • the electrochemical device 100 may be a battery, for example, a secondary battery (such as a lithium-ion secondary battery, a sodium-ion battery, a magnesium-ion battery, etc.), a primary battery (such as a lithium primary battery, etc.), but is not limited thereto.
  • the electrochemical device 100 may include an electrode assembly 10 and an electrolyte.
  • the electrode assembly 10 includes a first pole piece 101 , a second pole piece 103 and a diaphragm 105 located between the first pole piece 101 and the second pole piece 103 .
  • the first pole piece 101 includes a first current collector 1011 , a first active material layer 1013 and a first insulating layer 1015 .
  • the first pole piece 101 may be a positive pole piece or a negative pole piece.
  • the second pole piece 103 is a negative pole piece, and when the first pole piece 101 is a negative pole piece, the second pole piece 103 is a positive pole piece.
  • the first current collector 1011 may be a positive current collector or a negative current collector.
  • the first active material layer 1013 may be a positive active material layer or a negative active material layer.
  • Al foil can be used as the positive current collector, and of course, other current collectors commonly used in this field can also be used.
  • the thickness of the current collector of the positive electrode sheet may be 1 ⁇ m to 50 ⁇ m.
  • the current collector of the negative electrode sheet can be at least one of copper foil, nickel foil, or carbon-based current collector. In some embodiments, the thickness of the current collector of the negative electrode sheet may be 1 ⁇ m to 50 ⁇ m.
  • the negative electrode current collector may be a negative electrode current collector commonly used in the art.
  • the negative electrode current collector can use materials such as metal foil or porous metal plate, such as copper, nickel, titanium or iron or their alloy foil or porous plate, such as copper foil.
  • the positive electrode active material layer is provided on at least one surface of the positive electrode current collector.
  • the positive electrode active material layer contains a positive electrode active material including a compound that reversibly intercalates and deintercalates lithium ions (ie, a lithiated intercalation compound).
  • the positive active material may include a lithium transition metal composite oxide.
  • the lithium transition metal composite oxide contains lithium and at least one element selected from cobalt, manganese and nickel.
  • the positive electrode active material is selected from at least one of the following: lithium cobaltate (LiCoO 2 ), lithium nickel manganese cobalt ternary material (NCM), lithium manganate (LiMn 2 O 4 ), nickel Lithium manganese oxide (LiNi 0.5 Mn 1.5 O 4 ) or lithium iron phosphate (LiFePO 4 ).
  • the negative electrode active material layer is provided on at least one surface of the negative electrode current collector.
  • the negative electrode active material layer contains negative electrode active materials, and adopts negative electrode active materials known in the art that can carry out reversible deintercalation of active ions, which is not limited in the present application.
  • it may be one of, but not limited to, graphite, soft carbon, hard carbon, carbon fiber, mesocarbon microspheres, silicon-based materials, tin-based materials, lithium titanate or other metals that can form alloys with lithium, etc. or Various combinations.
  • graphite can be selected from one or more combinations of artificial graphite, natural graphite and modified graphite; silicon-based materials can be selected from one or more of elemental silicon, silicon oxide compounds, silicon-carbon composites, silicon alloys A variety of combinations; the tin-based material can be selected from one or more combinations of simple tin, tin oxide compounds, tin alloys, and the like.
  • the separator includes at least one of polyethylene, polypropylene, polyvinylidene fluoride, polyethylene terephthalate, polyimide, or aramid.
  • polyethylene includes at least one selected from high-density polyethylene, low-density polyethylene, or ultra-high molecular weight polyethylene.
  • polyethylene and polypropylene which have a good effect on preventing short circuits and can improve the stability of the battery through the shutdown effect.
  • the thickness of the membrane is in the range of about 5 ⁇ m to 50 ⁇ m.
  • the first insulating layer 1015 is disposed on the first pole piece 101 and can prevent the electrons of the current collector where it is located from passing to the first active material layer 1013 .
  • the electrical conductivity of the first insulating layer 1015 is not greater than 1010 ⁇ m.
  • the first insulating layer 1015 may include a first insulating material including at least one of alumina ceramics, zirconia ceramics, or chromium oxide ceramics.
  • the first insulating material includes alumina ceramics.
  • the first insulating layer 1015 may further include an adhesive to better bond the first insulating material to the first pole piece 101 .
  • the adhesive may include carboxymethylcellulose (CMC), polyacrylic acid, polyvinylpyrrolidone, polyaniline, polyimide, polyamideimide, polysiloxane, styrene-butadiene rubber, epoxy resin , polyester resin, polyurethane resin or polyfluorene at least one.
  • the extension length of the first insulating layer 1015 is not greater than 10 mm. In some embodiments, the extension length of the first insulating layer 1015 is between 2 mm to 10 mm, for example, 4 mm to 8 mm, 4 mm to 6 mm and so on. In some embodiments, the extension length of the first insulating layer 1015 is not less than 2 mm. Generally speaking, along the pole piece width direction Y, the longer the first insulating layer 1015 extends, the better it can prevent voltage drop failure, but at the same time, the first insulating layer 1015 occupies the inner space of the electrode assembly 10, which will reduce the Energy density of the electrode assembly 10 .
  • the first current collector 1011 includes a first surface 1012 and a second surface 1014 opposite to each other, the first active material layer 1013 is disposed on the first surface 1012, and the first insulating layer 1015 is located on the first current collector 1011 and the first active material layer 1013. between.
  • a first insulating layer 1015 is firstly provided on the first current collector 1011 and then a first active material layer 1013 is coated.
  • the first insulating layer 1015 is disposed on the first pole piece 101 , and the portion of the first pole piece 101 provided with the first insulating layer 1015 is called a region corresponding to the first insulating layer 1015 .
  • the first current collector 1011 in this region is called a current collector corresponding to the first insulating layer 1015
  • the first active material layer 1013 in this region is called an active material layer corresponding to the first insulating layer 1015 .
  • the first insulating layer 1015 can prevent electrons from flowing from the corresponding current collector to the corresponding active material layer, so that the pole piece in this area is not charged, and the safety performance of the battery is improved.
  • the first insulating layer 1015 is directly disposed on the first pole piece 101 . Because the active material layer usually contains components with poor adhesion such as conductive agents and active materials, compared with the active material layer, the first insulating layer 1015 and the first current collector 1011 have better adhesion, more Not easy to fall off.
  • the electrode assembly 10 is formed by winding a first pole piece 101 , a second pole piece 103 and a separator 105 .
  • the first surface 1012 is disposed facing the winding center of the electrode assembly 10 (or simply referred to as the winding center), and the second surface 1014 is disposed away from the winding center.
  • the electrochemical device 100 further includes a second active material layer 1017 disposed on the second surface 1014 .
  • the electrochemical device 100 further includes a tab 30 electrically connected to the first current collector 1011, and the first current collector 1011 includes a first end 1016 and a second end 1018 arranged along the width direction Y of the pole piece, The tab 30 is disposed on the first end portion 1016 .
  • the first current collector 1011 includes a first region 102 , a second region 104 and a third region 106 arranged along the length direction X of the pole piece.
  • the second region 104 and the third region 106 are located at the ends of the first current collector 1011 .
  • the ending end of the first current collector 1011 is located at the outermost circle of the electrode assembly 10 .
  • the ending end of the first current collector 1011 is located at the outermost circle and the second outer circle of the electrode assembly 10 .
  • the second region 104 includes a first portion 1041 and a second portion 1042 arranged along the length direction X of the pole piece.
  • the second part 1042 is stored in the deep cavity of the receiving device.
  • the deep pit part please refer to other related parts in this application.
  • the first active material layer 1013 is disposed on the first surface 1012 of the first region 102 and the first surface 1012 of the second region 104, and the second active material layer 1017 is disposed on the first surface 1012 of the first region 102. On two surfaces 1014 .
  • end refers to the area extending 30% inwardly from the edge.
  • first end 1016 of the first pole piece 101 has a first edge
  • first end 1016 of the first pole piece 101 refers to the area extending 30% from the first edge to the inside of the first pole piece 101 .
  • the first insulating layer 1015 is at least disposed on at least one of the following regions: the first end portion 1016 of the first region 102 , the first end portion 1016 of the second region 104 and the first end portion 1016 of the third region 106 one end 1016 ; or, the second end 1018 of the first region 102 , the second end 1018 of the second region 104 and the second end 1018 of the third region 106 .
  • the first insulating layer 1015 penetrates the first pole piece 101 along the length direction of the pole piece (X direction). Specifically, the length of the first insulating layer 1015 along the length direction of the pole piece is approximately equal to the length of the first pole piece 101 along the length direction of the pole piece. It should be pointed out that, along the length direction of the pole piece, the widths of the first insulating layer 1015 in different regions of the first pole piece 101 may be substantially equal. For example, the first insulating layer 1015 on at least two of the first region 102 , the second region 104 and the third region 106 of the first pole piece 101 has the same width—the length along the width direction Y of the pole piece.
  • the width of the first insulating layer 1015 provided on the first surface of the first region 102, the width of the first insulating layer 1015 provided on the first surface of the second region 104, the width of the first insulating layer 1015 provided on the first surface of the third region 106, The widths of at least two of the three first insulating layers 1015 provided on the surface are substantially equal. Two values are approximately the same, which means that the difference between the two values is within 20%. It should be understood that, according to different test methods, two numerical values are approximately the same, and it may also mean that the difference between these two numerical values is within 15%, within 10%, within 5%, etc. The difference between two values refers to the ratio of the absolute value of the difference between the two values to the smaller value of the two values.
  • the electrochemical device 100 further includes a housing device 50 for housing the electrode assembly 10 .
  • the storage device 50 includes a first storage portion 51 and a second storage portion 52 , the depth of the first storage portion 51 is smaller than the depth of the second storage portion 52 .
  • the receiving device 50 may be an aluminum-plastic film commonly used in the field, which is not limited in this application.
  • the depth of the first receiving portion 51 and the depth of the second receiving portion 52 are the lengths extending along the M direction.
  • the electrochemical device 100 further includes a second insulating layer 1019 disposed on the second surface 1014, and the second insulating layer 1019 is disposed at least at the first end 1016 of the first region 102 or the second end of the first region 102. At least one of the two ends 1018 , and the second insulating layer 1019 is located between the first current collector 1011 and the second active material layer 1017 .
  • the second insulating layer 1019 is provided on the first region 102 of the second surface 1014. When the diaphragm 105 close to the second surface 1014 shrinks, the second insulating layer 1019 can prevent electrons from the current collector at its position from passing to the second active layer.
  • the material layer 1017 makes the pole pieces in this area uncharged, and even if the first pole piece 101 and the second pole piece 103 are in contact, no short circuit will occur, which improves the safety performance of the electrochemical device 100 . Since the diaphragm 105 shrinks mainly along the pole piece width direction Y toward the middle of the diaphragm 105, that is, the diaphragm 105 located at the first end 1016 or the second end 1018 is easy to shrink, therefore, the first end of the first region 102 Part 1016 and the second end 1018 of the first region 102 are prone to voltage drop failures, and placing the second insulating layer 1019 on these positions can better prevent the risk of voltage drop failures and further improve The safety performance of the electrochemical device 100.
  • the second insulating layer 1019 penetrates the second pole piece 103 along the pole piece length direction (X direction). Specifically, the length of the second insulating layer 1019 along the length direction of the pole piece is substantially equal to the length of the second pole piece 103 along the length direction of the pole piece. It should be pointed out that, along the length direction of the pole piece, the arrangement of the second insulating layer 1019 in different regions of the second pole piece 103 can be different. For example, the second insulating layer 1019 on at least two of the first region 102 , the second region 104 , and the third region 106 of the second pole piece 103 have different widths—lengths along the width direction Y of the pole piece.
  • the width of the second insulating layer 1019 disposed on the second surface of the third region 106 is greater than the width of the second insulating layer 1019 disposed on the second surface of the first region 102 .
  • the width of the second insulating layer 1019 disposed on the second surface of the third region 106 is greater than the width of the second insulating layer 1019 disposed on the second surface of the second region 104 .
  • the electrochemical device 100 includes a first insulating layer disposed on the first surface 1012 and a second insulating layer 1019 disposed on the second surface 1014.
  • the first insulating layer 1015 is disposed on the first end 1016 of the first region 102 , the first end 1016 of the second region 104 , the first end 1016 of the third region 106 , and the second end 1018 of the first region 102 , the second end 1018 of the second region 104 and the second end 1018 of the third region 106
  • the second insulating layer 1019 is disposed on the first end 1016 of the first region 102 and the second end of the first region 102 Section 1018 on.
  • An active material layer is then coated on the first pole piece 101 shown in FIG. 4a to obtain the first pole piece 101 as shown in FIG. 4b.
  • the first active material layer 1013 is disposed on the first surface 1012 of the first region 102 and the first surface 1012 of the second region 104
  • the second active material layer 1017 is disposed on the second surface of the first region 102 . on the surface 1014 .
  • the first area 102 is a double-sided coating area, and the side facing the winding center and the side facing away from the winding center are both coated with an active material layer.
  • the second area 104 is a single-side coating area, the side facing the winding center is coated with an active material layer, and the side facing away from the winding center is not coated with an active material layer.
  • the electrode assembly 10 shown in FIG. 1 is housed in a housing device 50 .
  • the first part 1041 is accommodated at least in the first housing part 51
  • the second part 1042 is accommodated in the second housing part 52 .
  • a part of the first part 1041 is accommodated in the first receiving part 51
  • the first receiving part 51 covers a part of the first part 1041, and a part of the first part 1041 is in direct contact with the first receiving part 51 or is in contact with the first receiving part 51 through other intermediate components.
  • the first receiving parts are in contact with each other.
  • the second part 1042 is accommodated in the second receiving part 52, the second receiving part 52 covers the second part 1042, and the second part 1042 is in direct contact with the second receiving part 52 or is in contact with the first receiving part through other intermediate components.
  • a containment unit makes contact.
  • Part of the first part 1041 is in contact with the first receiving part 51
  • the second part 1042 is in contact with the second receiving part 52 .
  • the first portion 1041 and the second portion 1042 are respectively referred to as a shallow pit surface and a deep pit surface. It can be understood that the first insulating layer 1015 disposed on the first end portion 1016 of the second region 104 and the second end portion 1018 of the second region 104 is located in both the first receiving portion 51 and the second receiving portion. Section 52.
  • the first insulating layer 1015 can prevent electrons from flowing from the current collector to the active material layer, The first pole piece 101 in the area corresponding to the first insulating layer 1015 is not charged. In this area, even if the area is in contact with the second pole piece 103 , no short circuit will occur, thereby reducing the risk of voltage drop failure.
  • the second insulating layer 1019 can prevent electrons from flowing from the current collector to the active material layer, and the first pole piece 101 in the area corresponding to the second insulating layer 1019 is not charged. 103 contacts, there will be no short circuit, further improving the failure risk of voltage drop.
  • the second insulating layer 1019 is further disposed on at least one of the second region 104 or the third region 106 .
  • the first insulating layer 1015 is disposed on the first end 1016 of the first region 102, the first end 1016 of the second region 104, the first end 1016 of the third region 106, the first On the second end 1018 of the region 102 , the second end 1018 of the second region 104 and the second end 1018 of the third region 106
  • the second insulating layer 1019 is disposed on the first end 1016 of the first region 102 , On the second end 1018 and the second portion 1042 of the first region 102 .
  • the second insulating layer 1019 can also be disposed on the first end portion 1016 of the first region 102 , the second end portion 1018 of the first region 102 and the first portion 1041 .
  • FIG. 5 b An active material layer is then coated on the first pole piece 101 shown in FIG. 5 a to obtain the first pole piece 101 as shown in FIG. 5 b .
  • the first active material layer 1013 is disposed on the first surface 1012 of the first region 102 and the first surface 1012 of the second region 104
  • the second active material layer 1017 is disposed on the second surface of the first region 102 . on the surface 1014 .
  • the electrode assembly 10 shown in FIG. 6 is housed in the housing device 50 , the first part 1041 is in contact with the first housing part 51 , and the second part 1042 is in contact with the second housing part 52 . It can be understood that the first insulating layer 1015 disposed on the first end portion 1016 of the second region 104 and the second end portion 1018 of the second region 104 is located in both the first receiving portion 51 and the second receiving portion. portion 52 ; the second insulating layer 1019 disposed on the second portion 1042 is located in the second receiving portion 52 .
  • the first insulating layer 1015 is disposed on the first end 1016 of the first region 102, the first end 1016 of the second region 104, the first end 1016 of the third region 106, the first On the second end 1018 of the region 102 , the second end 1018 of the second region 104 and the second end 1018 of the third region 106 , the second insulating layer 1019 is disposed on the first end 1016 of the first region 102 , On the second end 1018 of the first region 102 , the second region 104 and the third region 106 .
  • An active material layer is then coated on the first pole piece 101 shown in FIG. 7a to obtain the first pole piece 101 as shown in FIG. 7b. Referring to FIG.
  • the first active material layer 1013 is disposed on the first surface 1012 of the first region 102 and the first surface 1012 of the second region 104, and the second active material layer 1017 is disposed on the second surface of the first region 102. on the surface 1014 .
  • the electrode assembly 10 shown in FIG. 8 is housed in the housing device 50 , the first part 1041 is in contact with the first housing part 51 , and the second part 1042 is in contact with the second housing part 52 .
  • the first insulating layer 1015 disposed on the first end portion 1016 of the second region 104 and the second end portion 1018 of the second region 104 is located in both the first receiving portion 51 and the second receiving portion. portion 52 ; the second insulating layer 1019 disposed in the second region 104 is located in both the first receiving portion 51 and the second receiving portion 52 .
  • the material composition of the second insulating layer 1019 can refer to the material composition of the first insulating layer 1015 , which will not be repeated here.
  • the second insulating layer 1019 and the first insulating layer 1015 include the same material, and the components corresponding to the same material have substantially the same content.
  • the component content of the material in the insulating layer refers to the mass percentage of the component in the insulating layer.
  • two numerical values are approximately the same, which means that the difference between the two numerical values is within 20%. It should be understood that, according to different test methods, two numerical values are approximately the same, and it may also mean that the difference between these two numerical values is within 15%, within 10%, within 5%, etc.
  • the difference between two values refers to the ratio of the absolute value of the difference between the two values to the smaller value of the two values.
  • the second insulating layer 1019 and the first insulating layer 1015 include different materials.
  • the extension length of the second insulating layer 1019 located on the first region 102 along the width direction of the pole piece is not greater than 10 mm.
  • the extension length of the first insulating layer 1015 is between 2 mm to 10 mm, for example, 4 mm to 8 mm, 4 mm to 6 mm and so on. In some embodiments, the extension length of the first insulating layer 1015 is not less than 2 mm.
  • the longer the second insulating layer 1019 extends the better it can prevent voltage drop failure, but at the same time, the second insulating layer 1019 occupies the inner space of the electrode assembly 10, which will reduce the Energy density of the electrode assembly 10 .
  • the ratio of the extension length of the second insulating layer 1019 located on the second region 104 or the third region 106 along the pole piece width direction Y to the extension length of the first current collector 1011 along the pole piece width direction Y is not less than 50%. .
  • the first pole piece 101 is a positive pole piece
  • the second pole piece 103 includes a second current collector.
  • the extension length (width) of the first current collector 1011 is the same as that of the second current collector.
  • the degree of difference in the extended length (width) of the current collectors is not more than 5%. Due to measurement errors, when the difference between the width of the first current collector 1011 and the width of the second current collector is not more than 5%, it can be considered that the width of the first current collector 1011 and the second current collector are equal or substantially equal, and the difference is The calculation method of is: (width of the second current collector-width of the first current collector 1011)/width of the first current collector 1011.
  • the difference between the width of the first current collector 1011 and the width of the second current collector is not more than 5%. It can be considered that the extension length of the first current collector 1011 along the width direction Y of the pole piece is the same as the extension length of the second current collector 1011 along the width direction Y of the pole piece. The extension lengths are equal. In this way, the edges of the first current collector 1011 and the second current collector can clamp the diaphragm 105 , the diaphragm 105 is less likely to slide, and the risk of voltage drop failure can be better prevented.
  • first pole piece 101 and the second pole piece 103 can be prepared by conventional methods in the art, for example, the first active material layer 1013 and the second active material layer 1017 can be made of lithium cobaltate (LiCoO 2 ), conductive carbon black (Super P), polyvinylidene fluoride (PVDF) and N-methylpyrrolidone (NMP), etc., which are not limited in this application.
  • the diaphragm 105 may be a diaphragm commonly used in the field, such as a polyethylene (PE) diaphragm or a polypropylene (PE) diaphragm, which is not limited in this application.
  • the electrode assembly 10 can also be formed by stacking the first pole piece 101, the second pole piece 103 and the separator 105 along the first direction Z'.
  • the first direction Z' is defined as the thickness direction of the electrode assembly 10
  • the second direction X' is perpendicular to the first direction Z'
  • the third direction Y' is perpendicular to the second direction X'.
  • the second direction X' can be the length direction of the pole pieces in the stacked electrode assembly 10, or the width direction of the pole pieces.
  • the third direction Y' is the width direction of the pole pieces in the electrode assembly 10. vice versa.
  • the content of the first pole piece 101 , the second pole piece 103 , the diaphragm 105 , the first insulating layer 1015 and the second insulating layer 1019 please refer to the foregoing description. I won't repeat them here.
  • the first current collector 1011 includes a first end 1016 and a second end 1018 arranged along the second direction X', a third end 1020 and a fourth end 1022 arranged along the third direction Y' .
  • the first insulating layer 1015 is disposed on at least one of the first end portion 1016 , the second end portion 1018 , the third end portion 1020 or the fourth end portion 1022 .
  • the electrochemical device 100 further includes a second insulating layer 1019 disposed on the second surface 1014 .
  • the second insulating layer 1019 is disposed on at least one of the first end portion 1016 , the second end portion 1018 , the third end portion 1020 or the fourth end portion 1022 .
  • the first insulating layer 1015 is disposed on the first end 1016, the second end 1018, the third end 1020 and the fourth end 1022, and the second insulating layer 1019 is disposed on the first end 1016 , second end 1018 , third end 1020 and fourth end 1022 .
  • An active material layer is then coated on the first pole piece shown in FIG. 11 a to obtain the first pole piece shown in FIG. 11 b .
  • the first active material layer 1013 is disposed on the first surface 1012
  • the second active material layer 1017 is disposed on the second surface 1014 .
  • FIG. 12 is an enlarged view of position A in FIG. 9 , where the position A is the fourth end 1022 of the first pole piece 101 .
  • the first pole piece 101 includes a first current collector 1011, a first insulating layer 1015 and a second insulating layer 1019 respectively disposed on both surfaces of the first current collector 1011, disposed on The first active material layer 1013 on the first insulating layer 1015 and the second active material layer 1017 on the second insulating layer 1019 .
  • the extension length of the first insulating layer 1015 is not greater than 10mm.
  • the extension length of the first insulating layer 1015 ranges from 2 mm to 10 mm.
  • the extension length of the second insulating layer 1019 is not greater than 10 mm.
  • the extension length of the second insulating layer 1019 ranges from 2 mm to 10 mm.
  • a layer of strip-shaped alumina ceramics (the first insulating layer) with a width of 4mm is coated, On the end of the first region of the second surface, a layer of strip-shaped alumina ceramics (second insulating layer) with a width of 4 mm is coated to obtain a positive electrode sheet as shown in FIG. 4a.
  • NMP N-methylpyrrolidone
  • Polyethylene (PE) with a thickness of 15 ⁇ m was selected as the separator, and the prepared positive electrode sheet, separator, and negative electrode sheet were stacked in order and wound to obtain the winding structure shown in Figure 1.
  • the positive electrode sheet The side coated with the first insulating layer faces the center of the winding, and the other side faces away from the center of the winding.
  • the electrode assembly is placed in the housing device (aluminum-plastic film), wherein the first insulating layer is located in both the first housing part (shallow pit surface) and the second housing part (deep pit surface).
  • Example 1 The difference from Example 1 is that the structure of the electrochemical device is a stacked sheet structure, and the first end, the second end, the third end and the fourth end of the positive pole piece are all provided with strips with a width of 4 mm.
  • Alumina ceramic first insulating layer. The rest are the same as in Embodiment 1, and will not be repeated here.
  • Example 1 The difference from Example 1 is that the steps of coating the first insulating layer and the second insulating layer are not included in the preparation process of the positive pole piece. The rest are the same as in Embodiment 1, and will not be repeated here.
  • Example 1 Drop test the electrochemical devices prepared in the above-mentioned Example 1, Example 2 and Comparative Example 1: drop the fully charged electrochemical device from a height of 1.2m onto a hard rubber plate, and observe whether the electrochemical device is damaged or leaks , deform and explode. If none of the above conditions occurs, pass the drop test.
  • the test results are: all the 10 electrochemical devices in Example 1 passed the drop test, all the 10 electrochemical devices in Example 2 passed the drop test, and only 4 of the 10 electrochemical devices in Comparative Example 1 passed the drop test test.
  • an insulating layer is set between the current collector and the active material layer to block the electron channel in this area. There will be no short circuit in the chip contact, thereby improving the problem of voltage drop failure. Moreover, the electrolyte content of the electrochemical device provided by the present application is not reduced, and the electrical performance of the electrochemical device and the electronic device will not be affected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请提供一种电化学装置及电子装置,所述电化学装置包括电极组件,电极组件包括第一极片,所述第一极片包括第一集流体、第一活性物质层和第一绝缘层。第一集流体包括相对设置的第一表面和第二表面,第一活性物质层设置在第一表面,第一绝缘层位于第一集流体和第一活性物质层之间。本申请提供的电化学装置和电子装置,通过在集流体和活性物质层之间设置绝缘层,隔断该区域的电子通道,即使发生隔膜收缩,绝缘层区域的极片由于不带电,正负极片接触也不会发生短路,进而改善了电压降失效的问题。并且,本申请提供的电化学装置的电解液含量并没有减少,电化学装置和电子装置的电性能不会受到影响。

Description

电化学装置及电子装置 技术领域
本申请涉及电化学技术领域,尤其涉及一种电化学装置及电子装置。
背景技术
目前,用户越来越青睐于大容量(例如,不小于6Ah)且兼备快充性能的电池,这就要求电池含有更多的电解液含量。电池中电解液含量的增加导致电池发生跌落失效的风险增加。其中,电压降失效就是跌落失效中最主要的一种失效模式,也是最棘手的失效模式。电压降失效是由于电池跌落时,电极组件在收容装置(如铝塑膜)中窜动,电解液冲击电极组件头尾处隔膜导致隔膜收缩,隔膜收缩处的正负极片发生接触短路而导致的。
为解决上述问题,一种方法是通过提高隔膜的粘结力来抑制隔膜收缩,从而改善电压降失效。然而,提高隔膜的粘结力会导致电池电性能恶化,尤其在大倍率快速充电体系(例如,充电倍率不小于3C的充电体系)中,这种恶化更为明显。另一种方法是通过降低电池内电解液含量来降低游离电解液对隔膜的冲击,但电解液若含量过低,会影响电池后期循环,加速电池老化,减少使用寿命。因此,需要提供一种设计,以解决前述问题。
发明内容
有鉴于此,本申请提供一种电化学装置,其可以改善电压降失效问题,同时电性能又不受到影响。
另,还有必要提供一种电子装置。
本申请第一方面,提供一种电化学装置,其包括电极组件,所述电极组件包括第一极片、第二极片和位于所述第一极片与所述第二极片之间的隔膜。所述第一极片包括第一集流体、第一活性物质层和第一绝缘层,所述第一集流体包括相对设置的第一表面和第二表面,所述第一活性物质层设置在所述第一表面,所述第一绝缘层位于所述第一集流体和所述第一活性物质层之间。
在集流体上先设置绝缘层再涂覆活性物质层,该绝缘层能够阻止该区域的电子从集流体流向活性物质层,从而使该区域的极片不带电。跌落过程中,可以阻止电池最外圈头尾由于隔膜收缩后发生正负极片接触短路,从而改善跌落电压降失效风险。若在集流体上先涂覆活性物质层,再在活性物质层上设置绝缘层,则活性物质层与集流体接触,活性物质层还是能正常得失电子并发生嵌脱锂。此时,该区域的极片是带电状态,当设置在活性物质层上的绝缘层太薄或者漏涂时,还是存在正负极片接触短路的风险。另外,活性物质层与集流体的界面粘结力要弱于绝缘层与集流体的界面粘结力,跌落中,先设置活性物质层再涂绝缘层的电化学装置容易发生活性物质层脱落的现象,露出集流体,进而发生正负极片短路并迅速产热且电压下降,安全性能下降。因此,在集流体上先设置绝缘层再涂覆活性物质层才能改善电压降失效的问题。并且,此技术方案并没有减少电解液含量,电化学装置的电性能并不会受到影响。
一些实施方式中,电极组件由第一极片、第二极片和隔膜卷绕而成,第一表面面向卷绕中心设置,第二表面背离所述卷绕中心设置。
一些实施方式中,电化学装置还包括设置在第二表面的第二活性物质层,第一集流体包括沿极片长度方向设置的第一区域和第二区域,第一活性物质层设置在所述第一区域的第一表面上和所述第二区域的第一表面上;所述第二活性物质层设置在所述第一区域的第二表面上。
一些实施方式中,电化学装置还包括与第一集流体电连接的极耳,第一集流体包括沿极片宽度方向设置的第一端部和第二端部,所述极耳设置在所述第一端部。所述第一绝缘层设置在以下区域中的至少一个上:所述第一区域的第一端部、所述第二区域的第一端部和所述第三区域的第一端部;或所述第一区域的第二端部、所述第二区域的第二端部和所 述第三区域的第二端部。一般来说,隔膜收缩主要是沿极片宽度方向朝着隔膜中部收缩,即位于第一端部或第二端部的隔膜容易收缩,因此,所述第一区域的第一端部、所述第二区域的第一端部、所述第三区域的第一端部、所述第一区域的第二端部、所述第二区域的第二端部和所述第三区域的第二端部这些位置发生电压降失效的风险相对较高,将第一绝缘层设置在这些位置上,能够起到更好防止电压降失效风险的作用,提升电化学装置的安全性能。
一些实施方式中,沿极片宽度方向,第一绝缘层的延伸长度不大于10mm。沿极片宽度方向,第一绝缘层的延伸长度越长,能更好地防止电压降失效,但同时,第一绝缘层占据电极组件的内部空间,会减小电极组件的能量密度。申请人通过实验发现,第一绝缘层的延伸长度不大于10mm时,可以较好防范电压降失效风险,同时,对电极组件的能量密度的影响在可接受范围内。
一些实施方式中,第一绝缘层包括第一绝缘材料,所述第一绝缘材料包括氧化铝、氧化锆或氧化铬中的至少一种。在一些实施例中,所述第一绝缘材料包括氧化铝陶瓷、氧化锆陶瓷或氧化铬陶瓷中的至少一种。
一些实施方式中,所述电化学装置还包括设置在所述第二表面的第二绝缘层,所述第二绝缘层至少设置在所述第一区域的第一端部或第二端部中的至少一个,且所述第二绝缘层位于所述第一集流体和所述第二活性物质层之间。在第二表面的第一区域设置第二绝缘层,当靠近第二表面的隔膜发生收缩时,第二绝缘层可阻止其所在位置的集流体的电子传向第二活性物质层,使该区域的极片不带电,即使第一极片和第二极片接触也不会发生短路,提升了电化学装置的安全性能。由于隔膜收缩主要是沿极片宽度方向朝着隔膜中部收缩,即位于第一端部或第二端部的隔膜容易收缩,因此,所述第一区域的第一端部、所述第一区域的第二端部这些位置容易发生电压降失效,将第二绝缘层设置在这些位置上,能够起到更好防止电压降失效风险的作用,进一步提升电化学装置的安全性能。
一些实施方式中,沿所述极片宽度方向,设置在所述第一区域的第二绝缘层的延伸长度不大于10mm。沿极片宽度方向,第二绝缘层的延伸长度越长,能更好地防止电压降失效,但同时,第二绝缘层占据电极组件的内部空间,会减小电极组件的能量密度。申请人通过实验发现,第二绝缘层的延伸长度范围为2mm至10mm时,可以较好防范电压降失效风险,同时,对电极组件的能量密度的影响在可接受范围内。
一些实施方式中,所述第二绝缘层进一步设置在所述第二区域或所述第三区域中的至少一个上。可以理解,与电极组件尾部空箔区(未涂覆活性物质层的区域)相对应的隔膜容易发生收缩,该区域发生电压降失效的风险相对较高。而在在第二区域和/或第三区域上设置第二绝缘层后,所述第二绝缘层可阻止第一集流体和第二极片之间的电子传递,即使第一极片和第二极片接触也不会发生短路,提升了电化学装置的安全性能。
一些实施方式中,所述第二区域包括沿极片长度方向设置的第一部分和第二部分,所述第二绝缘层进一步设置在所述第二部分上。设置在第二部分上的第二绝缘层可阻止第一集流体和第二极片之间的电子传递,即使第一极片和第二极片接触也不会发生短路,提升了电化学装置的安全性能。
一些实施方式中,设置在所述第二区域或所述第三区域的第二绝缘层,沿极片宽度方向的延伸长度与所述第一集流体沿极片宽度方向的延伸长度的比值不小于50%。
一些实施方式中,所述第二绝缘层包括第二绝缘材料,所述第二绝缘材料包括氧化铝、氧化锆或氧化铬中的至少一种。在一些实施例中,所述第二绝缘材料包括氧化铝陶瓷、氧化锆陶瓷或氧化铬陶瓷中的至少一种。
一些实施方式中,电化学装置还包括收容电极组件的收容装置,所述收容装置包括第一收容部和第二收容部,所述第一收容部的深度小于所述第二收容部的深度。当收容于所述收容装置中时,第一部分与所述第一收容部相接触,第二部分与所述第二收容部相接触。
一些实施方式中,第一极片为正极极片,第二极片包括第二集流体,沿极片宽度方向,第一集流体的延伸长度与所述第二集流体的延伸长度的差异度不大于5%。可以理解,二者的差异度不大于5%,可认为第一集流体沿极片宽度方向的延伸长度与第二集流体沿极片宽度方向的延伸长度相等。如此,第一集流体和第二集流体的边缘可夹住隔膜,隔膜更 不容易滑动,可以更好的防范电压降失效风险。
一些实施方式中,电极组件由第一极片、第二极片和隔膜沿第一方向堆叠形成。第一集流体包括沿第二方向设置的第一端部和第二端部,沿第三方向设置的第三端部和第四端部。第二方向垂直于第一方向,第三方向垂直于第二方向,第一绝缘层设置在所述第一端部、第二端部、第三端部或第四端部中的至少一个上。可以理解,当隔膜发生收缩时,堆叠的电极组件中,所述第一端部、所述第二端部、所述第三端部或所述第四端部这些位置发生电压降失效的风险相对较高,将第一绝缘层设置在这些位置上,能够起到更好防止电压降失效风险的作用,提升电化学装置的安全性能。
一些实施方式中,沿第二方向,第一绝缘层的延伸长度不大于10mm。如此设置,既能较好防范电压降失效风险,同时,对电极组件的能量密度的影响几乎可以忽略不计。
一些实施方式中,电化学装置还包括设置在第二表面的第二绝缘层,所述第二绝缘层设置在第一端部、第二端部、第三端部或第四端部中的至少一个上。进一步设置第二绝缘层,可以更好地防止电压降失效,提升电化学装置的安全性能。
一些实施方式中,沿第二方向,第二绝缘层的延伸长度不大于10mm。如此设置,既能较好防范电压降失效风险,同时,对电极组件的能量密度的影响几乎可以忽略不计。
本申请还提供一种电子装置,其包括如上所述的电化学装置,所述电化学装置为所述电子装置供电。
本申请提供的电化学装置和电子装置,通过在集流体和活性物质层之间设置绝缘层,隔断该区域的电子通道,即使发生隔膜收缩,绝缘层区域的极片由于不带电,正负极片接触也不会发生短路,进而改善了电压降失效的问题。并且,本申请提供的电化学装置的电解液含量并没有减少,电化学装置和电子装置的电性能不会受到影响。
附图说明
下面结合附图和具体实施方式对本申请作进一步详细的说明。
图1为本申请一实施方式提供的电化学装置的结构示意图。
图2为本申请一实施方式提供的第一集流体的结构示意图。
图3为本申请一实施方式提供的收容装置的结构示意图。
图4a为本申请一实施方式提供的第一极片的结构示意图。
图4b为图4a中的第一极片涂覆活性物质层后的结构示意图。
图5a为本申请一实施方式提供的第一极片的结构示意图。
图5b为图5a中的第一极片涂覆活性物质层后的结构示意图。
图6为本申请一实施方式提供的电化学装置的结构示意图。
图7a为本申请一实施方式提供的第一极片的结构示意图。
图7b为图7a中的第一极片涂覆活性物质层后的结构示意图。
图8为本申请一实施方式提供的电化学装置的结构示意图。
图9为本申请一实施方式提供的电化学装置的结构示意图。
图10为本申请一实施方式提供的第一集流体的结构示意图。
图11a为本申请一实施方式提供的第一极片的结构示意图。
图11b为图11a中的第一极片涂覆活性物质层后的结构示意图。
图12为图9中A处的放大图。
主要元件符号说明:
电化学装置                              100
电极组件                                10
极耳                                    30
收容装置                                50
第一收容部                              51
第二收容部                              52
第一极片                                101
第二极片                                103
隔膜                                    105
第一集流体                              1011
第一表面                                1012
第二表面                                1014
第一活性物质层                          1013
第一绝缘层                              1015
第二活性物质层                          1017
第二绝缘层                              1019
第一区域                                102
第二区域                                104
第三区域                                106
第一端部                                1016
第二端部                                1018
第三端部                                1020
第四端部                                1022
第一部分                                1041
第二部分                                1042
极片长度方向                            X
极片宽度方向                            Y
厚度方向                                Z
第一方向                                Z’
第二方向                                X’
第三方向                                Y’
如下具体实施方式将结合上述附图进一步说明本申请实施例。
具体实施方式
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请实施例的技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请实施例。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
将理解,当一层被称为“在”另一层“上”时,它可以直接在该另一层上或者可以在其间存在中间层。相反,当一 层被称为“直接在”另一层“上”时,不存在中间层。
关于本申请中的“大于”,“小于”。将理解,除非特别指明,本申请中的“大于”,“小于”分别指“实质上大于”,“实质上小于”。在比较一个对象(记作第一对象)和另一个对象(记作第二对象)的大小时,存在计算和测量的误差,也存在工艺(例如,涂布工艺引起的涂层的不均一性)引起的误差,例如,误差可以在或2%等。为了消除这部分误差,本申请中第一对象与第二对象的差值与该第二对象的比值限定为大于5%,可以消除由于误差导致的差异,表明第一对象实质上大于或者小于第二对象。应当理解,根基实际情况的不同,该比值也可以调整为10%,15%,20%等。
另外,在本申请中如涉及“第一”“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
本申请的技术方案通过在电池的正极极片和负极极片中的至少一个上设置绝缘层,并将绝缘层设置在集流体和活性物质层之间,可以改善电池的安全性能。
绝缘层设置在极片的某一区域。通过将绝缘层设置在集流体和活性物质层之间,绝缘层可以阻止电子从这一区域的集流体流向这一区域的活性物质层,这一区域的极片整体是绝缘的。这样一来,在跌落过程中,可以阻止由于隔膜收缩后发生正负极片接触短路,从而改善跌落电压降失效风险。若先在集流体上涂覆活性物质层,再在活性物质层上设置绝缘层,则活性物质层与集流体接触,活性物质层还是能正常得失电子并发生嵌脱锂。此时,该区域的极片是带电状态,当设置在活性物质层上的绝缘层太薄或者漏涂时,还是存在正负极片接触短路的风险。另外,活性物质层与集流体的界面粘结力要弱于绝缘层与集流体的界面粘结力,跌落中,先涂覆活性物质层再设置绝缘层的电化学装置容易发生活性物质层脱落的现象,露出集流体,进而发生正负极片短路并迅速产热且电压下降,安全性能下降。因此,在集流体上直接涂覆绝缘层再涂覆活性物质层才能改善电压降失效的问题。并且,此技术方案并没有减少电解液含量,电化学装置的电性能也得到了保证。
请参阅图1,本申请提供一种电化学装置100,其包括电极组件10。图中所示方向Z为电极组件10的厚度方向。电化学装置100可以是电池,例如,二次电池(如锂离子二次电池、钠离子电池、镁离子电池等)、一次电池(如锂一次电池等)等,但并不限于此。电化学装置100可以包括电极组件10和电解质。
电极组件10包括第一极片101、第二极片103和位于所述第一极片101与所述第二极片103之间的隔膜105。第一极片101包括第一集流体1011、第一活性物质层1013和第一绝缘层1015。
第一极片101可以是正极极片或负极极片。第一极片101是正极极片时,第二极片103为负极极片,第一极片101是负极极片时,第二极片103是正极极片。对应的,第一集流体1011可以是正极集流体或负极集流体。第一活性物质层1013可以是正极活性物质层或负极活性物质层。
正极集流体可以采用Al箔,当然,也可以采用本领域常用的其他集流体。在一些实施例中,正极极片的集流体的厚度可以为1μm至50μm。在一些实施例中,负极极片的集流体可以采用铜箔、镍箔或碳基集流体中的至少一种。在一些实施例中,负极极片的集流体的厚度可以为1μm至50μm。
负极集流体可以是本领域常用的负极集流体。负极集流体可以使用金属箔材或多孔金属板等材料,例如使用铜、镍、钛或铁等金属或它们的合金的箔材或多孔板,如铜箔。正极活性物质层设置在正极集流体的至少一个表面上。正极活性物质层包含正极活性物质,正极活性物质包括可逆地嵌入和脱嵌锂离子的化合物(即,锂化插层化合物)。在一些实施例中,正极活性物质可以包括锂过渡金属复合氧化物。该锂过渡金属复合氧化物含有锂以及从钴、锰和镍中选择的至少一种元素。在一些实施例中,所述正极活性物质选自以下中的至少一种:钴酸锂(LiCoO 2)、锂镍锰钴三元材料(NCM)、锰酸锂(LiMn 2O 4)、镍锰酸锂(LiNi 0.5Mn 1.5O 4)或磷酸铁锂(LiFePO 4)。
负极活性物质层设置在负极集流体的至少一个表面上。负极活性物质层包含负极活性物质,采用本领域已知的能够 进行活性离子可逆脱嵌的负极活性物质,本申请不做限制。例如,可以是包括但不限于石墨、软碳、硬碳、碳纤维、中间相碳微球、硅基材料、锡基材料、钛酸锂或其他能与锂形成合金的金属等中的一种或多种的组合。其中,石墨可选自人造石墨、天然石墨以及改性石墨中的一种或多种的组合;硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅合金中的一种或多种的组合;锡基材料可选自单质锡、锡氧化合物、锡合金等中的一种或多种的组合。
隔膜包括聚乙烯、聚丙烯、聚偏氟乙烯、聚对苯二甲酸乙二醇酯、聚酰亚胺或芳纶中的至少一种。例如,聚乙烯包括选自高密度聚乙烯、低密度聚乙烯或超高分子量聚乙烯中的至少一种。尤其是聚乙烯和聚丙烯,它们对防止短路具有良好的作用,并可以通过关断效应改善电池的稳定性。在一些实施例中,隔膜的厚度在约5μm至50μm的范围内。
第一绝缘层1015设置在第一极片101上,可以阻止其所在位置的集流体的电子传向第一活性物质层1013。在一些实施例中,第一绝缘层1015的电导率不大于1010Ω·m。
第一绝缘层1015可以包括第一绝缘材料,所述第一绝缘材料包括氧化铝陶瓷、氧化锆陶瓷或氧化铬陶瓷中的至少一种。作为示例,所述第一绝缘材料包括氧化铝陶瓷。在一些实施例中,第一绝缘层1015还可以包括粘接剂,将第一绝缘材料更好的粘结在第一极片101上。所述粘接剂可包括羧甲基纤维素(CMC)、聚丙烯酸、聚乙烯基吡咯烷酮、聚苯胺、聚酰亚胺、聚酰胺酰亚胺、聚硅氧烷、丁苯橡胶、环氧树脂、聚酯树脂、聚氨酯树脂或聚芴中的至少一种。
沿极片宽度方向Y,所述第一绝缘层1015的延伸长度不大于10mm。在一些实施例中,所述第一绝缘层1015的延伸长度在2mm至10mm之间,例如,4mm至8mm,4mm至6mm等。在一些实施例中,第一绝缘层1015的延伸长度不小于2mm。一般来说,沿极片宽度方向Y,第一绝缘层1015的延伸长度越长,能更好的防止电压降失效,但同时,第一绝缘层1015占据电极组件10的内部空间,会减小电极组件10的能量密度。申请人通过实验发现,第一绝缘层1015的延伸长度范围为2mm至10mm时,可以较好防范电压降失效风险(例如,90%以上),同时,对电极组件10的能量密度的影响在可接受范围内。进一步的,第一绝缘层1015的延伸长度不大于2mm时,可以较好防范电压降失效风险(例如,70%左右),同时,对电极组件10的能量密度的影响几乎可以忽略。
第一集流体1011包括相对设置的第一表面1012和第二表面1014,第一活性物质层1013设置在第一表面1012,第一绝缘层1015位于第一集流体1011和第一活性物质层1013之间。
在第一集流体1011上先设置第一绝缘层1015再涂覆第一活性物质层1013。第一绝缘层1015设置在第一极片101上,第一极片101的设有第一绝缘层1015的部分称为与第一绝缘层1015对应的区域。对应的,该区域的第一集流体1011称为与第一绝缘层1015对应的集流体,该区域的第一活性物质层1013称为与第一绝缘层1015对应的活性物质层。在与第一绝缘层1015对应的区域,第一绝缘层1015能够阻止电子从与其对应的集流体流向与其对应的活性物质层,从而使该区域的极片不带电,提升电池的安全性能。在一些实施例中,第一绝缘层1015直接设置在第一极片101上。因为活性物质层通常含有导电剂和活性物质等粘结性较差的组分,相较于活性物质层,第一绝缘层1015和第一集流体1011之间具有更好的粘接力,更不容易脱落。
如图1所示,电极组件10由第一极片101、第二极片103和隔膜105卷绕而成。第一表面1012面向电极组件10的卷绕中心(或简称为卷绕中心)设置,第二表面1014背离卷绕中心设置。电化学装置100还包括设置在第二表面1014的第二活性物质层1017。
请参阅图2,电化学装置100还包括与第一集流体1011电连接的极耳30,第一集流体1011包括沿极片宽度方向Y设置的第一端部1016和第二端部1018,极耳30设置在所述第一端部1016。第一集流体1011包括沿极片长度方向X设置的第一区域102、第二区域104和第三区域106。在一些实施例中,所述第二区域104和所述第三区域106位于第一集流体1011的收尾端。在一些实施例中,第一集流体1011的收尾端位于电极组件10的最外圈。在一些实施例中,第一集流体1011的收尾端位于电极组件10的最外圈和次外圈。
第二区域104包括沿极片长度方向X设置的第一部分1041和第二部分1042。当收容于收容装置(例如,收容装置 50)时,第二部分1042收容于收容装置的深坑部。有关深坑部的描述可参见本申请中其他相关部分。
第一活性物质层1013设置在所述第一区域102的第一表面1012上和所述第二区域104的第一表面1012上,第二活性物质层1017设置在所述第一区域102的第二表面1014上。
本申请“端部”指的是从边缘向内延伸30%的区域。例如,第一极片101的第一端部1016具有第一边缘,第一极片101的第一端部1016指的是从第一边缘向第一极片101内部延伸30%的区域。
第一绝缘层1015至少设置在以下区域中的至少一个上:所述第一区域102的第一端部1016、所述第二区域104的第一端部1016和所述第三区域106的第一端部1016;或,所述第一区域102的第二端部1018、所述第二区域104的第二端部1018和所述第三区域106的第二端部1018。一般来说,当隔膜105发生收缩时,所述第一区域102的第一端部1016、所述第二区域104的第一端部1016、所述第三区域106的第一端部1016、所述第一区域102的第二端部1018、所述第二区域104的第二端部1018和所述第三区域106的第二端部1018这些位置发生电压降失效的风险相对较高,将第一绝缘层1015设置在这些位置,能够起到更好防止电压降失效风险的作用,提升电化学装置的安全性能。
在一些实施例中,第一绝缘层1015沿极片长度方向(X方向)贯穿第一极片101。具体的,第一绝缘层1015沿极片长度方向的长度与第一极片101沿极片长度方向的长度大致相等。需要指出的是,沿极片长度方向,第一绝缘层1015在第一极片101的不同区域的宽度可以大致相等。例如,第一极片101的第一区域102,第二区域104,第三区域106中的至少两个上的第一绝缘层1015具有相同的宽度—沿极片宽度方向Y的长度。例如,在第一区域102的第一表面上设置的第一绝缘层1015的宽度、在第二区域104的第一表面上设置的第一绝缘层1015的宽度、在第三区域106的第一表面上设置的第一绝缘层1015的宽度,这三者之中的至少两个大致相等。两个数值大致相同,指的是两个数值的差异度在20%以内。应当理解,根据测试手段的不同,两个数值大致相同,也可指这两个数值的差异度在15%以内,10%以内,5%以内等。两个数值的差异度指两个数值的差的绝对值与这两个数值中较小的那个数值的比值。
请参阅图3,电化学装置100还包括收容电极组件10的收容装置50。收容装置50包括第一收容部51和第二收容部52,第一收容部51的深度小于第二收容部52的深度。收容装置50可以为本领域常用的铝塑膜等,本申请并不作限制。
如图3所示,第一收容部51的深度,第二收容部52的深度为其沿M方向延伸的长度。
一种实施方式中,电化学装置100还包括设置在第二表面1014的第二绝缘层1019,第二绝缘层1019至少设置在第一区域102的第一端部1016或第一区域102的第二端部1018中的至少一个,且所述第二绝缘层1019位于第一集流体1011和第二活性物质层1017之间。在第二表面1014的第一区域102设置第二绝缘层1019,当靠近第二表面1014的隔膜105发生收缩时,第二绝缘层1019可阻止其所在位置的集流体的电子传向第二活性物质层1017,使该区域的极片不带电,即使第一极片101和第二极片103接触也不会发生短路,提升了电化学装置100的安全性能。由于隔膜105收缩主要是沿极片宽度方向Y朝着隔膜105中部收缩,即位于第一端部1016或第二端部1018的隔膜105容易收缩,因此,所述第一区域102的第一端部1016、所述第一区域102的第二端部1018这些位置容易发生电压降失效,将第二绝缘层1019设置在这些位置上,能够起到更好防止电压降失效风险的作用,进一步提升电化学装置100的安全性能。
在一些实施例中,第二绝缘层1019沿极片长度方向(X方向)贯穿第二极片103。具体的,第二绝缘层1019沿极片长度方向的长度与第二极片103沿极片长度方向的长度实质上相等。需要指出的是,沿极片长度方向,第二绝缘层1019在第二极片103的不同区域的设置可以不同。例如,第二极片103的第一区域102,第二区域104,第三区域106中的至少两个上的第二绝缘层1019具有不同的宽度—沿极片宽度方向Y的长度。例如,在第三区域106的第二表面上设置的第二绝缘层1019的宽度大于第一区域102的第二表面上设置的第二绝缘层1019的宽度。再例如,在第三区域106的第二表面上设置的第二绝缘层1019的宽度大于第二区域104的第二表面上设置的第二绝缘层1019的宽度。
请参阅图2和图4a,电化学装置100包括设置在第一表面1012的第一绝缘层和设置在第二表面1014的第二绝缘层 1019。第一绝缘层1015设置在第一区域102的第一端部1016、第二区域104的第一端部1016、第三区域106的第一端部1016、第一区域102的第二端部1018、第二区域104的第二端部1018和第三区域106的第二端部1018上,第二绝缘层1019设置在第一区域102的第一端部1016和第一区域102的第二端部1018上。在图4a所示的第一极片101上再涂覆活性物质层,得到如图4b所示的第一极片101。请参阅图4b,第一活性物质层1013设置在第一区域102的第一表面1012上和第二区域104的第一表面1012上,第二活性物质层1017设置在第一区域102的第二表面1014上。
第一区域102为双面涂覆区,面向卷绕中心的一面和背离卷绕中心的一面都涂覆有活性物质层。第二区域104为单面涂覆区,面向卷绕中心的一面涂覆有活性物质层,背离卷绕中心的一面未涂覆活性物质层。将图4b所示的第一极片101和隔膜105、第二极片103卷绕后,得到如图1所示的卷绕结构。
将图1所示的电极组件10收容于收容装置50中。第一部分1041至少收容于第一收容部51,第二部分1042收容于第二收容部52。第一部分1041的一部分收容于第一收容部51,第一收容部51覆盖所述第一部分1041的一部分,所述第一部分1041的一部分与所述第一收容部51直接接触或者通过其他中间部件与所述第一收容部相接触。第二部分1042收容于第二收容部52,第二收容部52覆盖所述第二部分1042,所述第二部分1042与所述第二收容部52直接接触或者通过其他中间部件与所述第一收容部相接触。
第一部分1041的一部分与第一收容部51相接触,第二部分1042与第二收容部52相接触。对应的,在一些实施例中,第一部分1041与第二部分1042分别被称为浅坑面和深坑面。可以理解,设置于第二区域104的第一端部1016和第二区域104的第二端部1018上的第一绝缘层1015既位于所述第一收容部51,又位于所述第二收容部52。
当跌落过程中,电极组件10在收容装置50中窜动,电解液冲击电极组件10头尾处隔膜105导致隔膜105收缩时,由于第一绝缘层1015可以阻止电子从集流体流向活性物质层,在第一绝缘层1015对应的区域的第一极片101并不带电,在该区域,即使该区域与第二极片103接触,也不会发生短路,进而可改善电压降失效风险。同样的,第二绝缘层1019可以阻止电子从集流体流向活性物质层,在第二绝缘层1019对应的区域的第一极片101并不带电,在该区域,即使该区域与第二极片103接触,也不会发生短路,进一步改善电压降失效风险。
一种实施方式中,第二绝缘层1019进一步设置在所述第二区域104或所述第三区域106中的至少一个上。
请参阅图2和图5a,第一绝缘层1015设置在第一区域102的第一端部1016、第二区域104的第一端部1016、第三区域106的第一端部1016、第一区域102的第二端部1018、第二区域104的第二端部1018和第三区域106的第二端部1018上,第二绝缘层1019设置在第一区域102的第一端部1016、第一区域102的第二端部1018和第二部分1042上。可以理解,第二绝缘层1019还可以设置在第一区域102的第一端部1016、第一区域102的第二端部1018和第一部分1041上。
在图5a所示的第一极片101上再涂覆活性物质层,得到如图5b所示的第一极片101。请参阅图5b,第一活性物质层1013设置在第一区域102的第一表面1012上和第二区域104的第一表面1012上,第二活性物质层1017设置在第一区域102的第二表面1014上。将图5b所示的第一极片101和隔膜105、第二极片103卷绕后,得到如图6所示的卷绕结构。
将图6所示的电极组件10收容于收容装置50中,第一部分1041与第一收容部51相接触,第二部分1042与第二收容部52相接触。可以理解,设置于第二区域104的第一端部1016和第二区域104的第二端部1018上的第一绝缘层1015既位于所述第一收容部51,又位于所述第二收容部52;设置于第二部分1042的第二绝缘层1019位于所述第二收容部52。
请参阅图2和图7a,第一绝缘层1015设置在第一区域102的第一端部1016、第二区域104的第一端部1016、第三区域106的第一端部1016、第一区域102的第二端部1018、第二区域104的第二端部1018和第三区域106的第二端部1018上,第二绝缘层1019设置在第一区域102的第一端部1016、第一区域102的第二端部1018、第二区域104和第三 区域106上。在图7a所示的第一极片101上再涂覆活性物质层,得到如图7b所示的第一极片101。请参阅图7b,第一活性物质层1013设置在第一区域102的第一表面1012上和第二区域104的第一表面1012上,第二活性物质层1017设置在第一区域102的第二表面1014上。将图7b所示的第一极片101和隔膜105、第二极片103卷绕后,得到如图8所示的卷绕结构。
将图8所示的电极组件10收容于收容装置50中,第一部分1041与第一收容部51相接触,第二部分1042与第二收容部52相接触。可以理解,设置于第二区域104的第一端部1016和第二区域104的第二端部1018上的第一绝缘层1015既位于所述第一收容部51,又位于所述第二收容部52;设置于第二区域104的第二绝缘层1019既位于所述第一收容部51,又位于所述第二收容部52。
第二绝缘层1019的材料组成可以参见第一绝缘层1015的材料组成,在此不再重复。在一些实施例中,第二绝缘层1019和第一绝缘层1015包括同种材料,且对应同种材料的组分含量大致相同。本请中,材料在绝缘层中的组分含量指该组分在该绝缘层中的质量百分含量。本申请中,两个数值大致相同,指的是两个数值的差异度在20%以内。应当理解,根据测试手段的不同,两个数值大致相同,也可指这两个数值的差异度在15%以内,10%以内,5%以内等。两个数值的差异度指两个数值的差的绝对值与这两个数值中较小的那个数值的比值。在一些实施例中,第二绝缘层1019和第一绝缘层1015包括不同种材料。
进一步地,位于第一区域102上的第二绝缘层1019沿极片宽度方向的延伸长度不大于10mm。在一些实施例中,所述第一绝缘层1015的延伸长度在2mm至10mm之间,例如,4mm至8mm,4mm至6mm等。在一些实施例中,第一绝缘层1015的延伸长度不小于2mm。一般来说,沿极片宽度方向Y,第二绝缘层1019的延伸长度越长,能更好的防止电压降失效,但同时,第二绝缘层1019占据电极组件10的内部空间,会减小电极组件10的能量密度。申请人通过实验发现,第二绝缘层1019的延伸长度范围为2mm至10mm时,可以较好防范电压降失效风险(例如,90%以上),同时,对电极组件10的能量密度的影响在可接受范围内。进一步的,第二绝缘层1019的延伸长度不大于2mm时,可以较好防范电压降失效风险(例如,70%左右),同时,对电极组件10的能量密度的影响几乎可以忽略。
进一步地,位于第二区域104或第三区域106上的第二绝缘层1019沿极片宽度方向Y的延伸长度与第一集流体1011沿极片宽度方向Y的延伸长度的比值不小于50%。
一种实施方式中,第一极片101为正极极片,第二极片103包括第二集流体,沿极片宽度方向Y,第一集流体1011的延伸长度(宽度)与所述第二集流体的延伸长度(宽度)的差异度不大于5%。由于存在测量误差,当第一集流体1011宽度和第二集流体宽度的差异度不大于5%时,即可认为第一集流体1011与第二集流体的宽度相等或实质上相等,差异度的计算方法为:(第二集流体的宽度-第一集流体1011的宽度)/第一集流体1011的宽度。因此,第一集流体1011宽度和第二集流体宽度的差异度不大于5%,可认为第一集流体1011沿极片宽度方向Y的延伸长度与第二集流体沿极片宽度方向Y的延伸长度相等。如此,第一集流体1011和第二集流体的边缘可夹住隔膜105,隔膜105更不容易滑动,可以更好的防范电压降失效风险。
进一步地,第一极片101和第二极片103可由本领域常规方法制备而成,例如,第一活性物质层1013和第二活性物质层1017可由钴酸锂(LiCoO 2)、导电炭黑(Super P)、聚偏二氟乙烯(PVDF)和N-甲基吡咯烷酮(NMP)等制备,本申请并不作限制。隔膜105可选用本领域常用隔膜,例如聚乙烯(PE)隔膜或聚丙烯(PE)隔膜等,本申请并不作限制。
请参阅图9,电极组件10还可由第一极片101、第二极片103和隔膜105沿第一方向Z’堆叠形成。定义第一方向Z’为电极组件10的厚度方向,第二方向X’垂直于第一方向Z’,第三方向Y’垂直于第二方向X’。第二方向X’可以是堆叠的电极组件10中极片的长度方向,也可以是极片的宽度方向。当第二方向X’是堆叠的电极组件10中极片的长度方向时,第三方向Y’是电极组件10中极片的宽度方向。反之亦然。
第一极片101、第二极片103、隔膜105、第一绝缘层1015和第二绝缘层1019的内容可以参见前文描述。在此不再赘述。
请参阅图10,第一集流体1011包括沿第二方向X’设置的第一端部1016和第二端部1018,沿第三方向Y’设置的第三端部1020和第四端部1022。第一绝缘层1015设置在第一端部1016、第二端部1018、第三端部1020或第四端部1022中的至少一个上。
一种实施方式中,电化学装置100还包括设置在第二表面1014的第二绝缘层1019。第二绝缘层1019设置在第一端部1016、第二端部1018、第三端部1020或第四端部1022中的至少一个上。
请参阅图11a,第一绝缘层1015设置在第一端部1016、第二端部1018、第三端部1020和第四端部1022上,且第二绝缘层1019设置在第一端部1016、第二端部1018、第三端部1020和第四端部1022上。在图11a所示的第一极片上再涂覆活性物质层,得到如图11b所示的第一极片。请参阅图11b,第一活性物质层1013设置在第一表面1012上,第二活性物质层1017设置在第二表面1014上。将图11b所示的第一极片101和隔膜105、第二极片103堆叠,得到如图9所示的电极组件10。
请参阅图12,为图9中A处的放大图,所述A处为第一极片101的第四端部1022。如图12所示,沿第三方向Z’,第一极片101包括第一集流体1011、分别设置在第一集流体1011两表面的第一绝缘层1015和第二绝缘层1019、设置在第一绝缘层1015上的第一活性物质层1013以及设置在第二绝缘层1019上的第二活性物质层1017。
进一步地,沿第二方向X’,第一绝缘层1015的延伸长度不大于10mm。优选的,沿第二方向X’,第一绝缘层1015的延伸长度范围为2mm至10mm。
进一步地,沿第二方向X’,第二绝缘层1019的延伸长度不大于10mm。优选的,沿第二方向X’,第二绝缘层1019的延伸长度范围为2mm至10mm。
以下将结合具体实施例和对比例对本申请作进一步说明。
实施例1
(1)正极极片(第一极片)的制备
在正极集流体(第一集流体)铝箔第一表面的第一区域、第二区域和第三区域的端部,涂覆一层宽度为4mm的条状氧化铝陶瓷(第一绝缘层),在第二表面的第一区域的端部,涂覆一层宽度为4mm的条状氧化铝陶瓷(第二绝缘层),得到如图4a所示的正极极片。
将正极活性物质钴酸锂(LiCoO 2)、导电炭黑(Super P)、聚偏二氟乙烯(PVDF)按照重量比97.5:1.0:1.5进行混合,加入N-甲基吡咯烷酮(NMP)作为溶剂,调配成为固含量为0.75的浆料,并搅拌均匀。将浆料均匀涂覆在已涂覆第一绝缘层的第一表面的第二区域和第三区域上,90℃条件下烘干,然后再将浆料涂覆在第二表面的第二区域上。完成涂布后,将极片的正极有效物质层冷压至4.0g/cm 3的压实密度,随后进行极耳焊接和贴胶纸等辅助工艺,即正极极片的制备流程。
(2)负极极片的制备
将负极活性物质石墨(Graphite)、导电炭黑(Super P)、丁苯橡胶(SBR)按照重量比96:1.5:2.5进行混合,加入去离子水作为溶剂,调配成为固含量为0.7的浆料,并搅拌均匀。将浆料均匀涂覆在第二集流体铜箔上,第二极片上负极有效物质的重量为95g/m 2。110℃条件下烘干,即已完成负极极片的单面涂布,再以同样的方法完成另一面的涂布。完成涂布后,将极片的负极有效物质层冷压至1.7g/cm 3的压实密度。随后进行极耳焊接和贴胶纸等辅助工艺,即完成了双面涂布负极极片的制备流程。
(3)电解液的制备
在干燥氩气气氛中,首先将有机溶剂碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)以质量比 EC:EMC:DEC=30:50:20混合,然后向有机溶剂中加入锂盐六氟磷酸锂(LiPF 6)溶解并混合均匀,得到锂盐的浓度为1.15M的电解液。
(4)电化学装置的制备
选用厚度为15μm的聚乙烯(PE)作为隔膜,将制备好的正极极片、隔膜和负极极片按照顺序叠好并卷绕得到如图1所示的卷绕结构,其中,正极极片中涂覆有第一绝缘层的那一面面向卷绕中心,另一面背离卷绕中心。将电极组件放置于收容装置(铝塑膜)中,其中,第一绝缘层既位于第一收容部(浅坑面)又位于第二收容部(深坑面)。经过顶侧封、注液、化成(0.02C恒流充电到3.3V,再以0.1C恒流充电到3.6V)后,得到长90mm、宽66mm、厚4.8mm的电化学装置。
实施例2
与实施例1的区别在于:电化学装置的结构为叠片结构,正极极片的第一端部、第二端部、第三端部和第四端部都设有宽度为4mm的条状氧化铝陶瓷(第一绝缘层)。其余与实施例1相同,此处不再赘述。
对比例1
与实施例1的区别在于:正极极片的制备过程中并不包括涂覆第一绝缘层和第二绝缘层的步骤。其余与实施例1相同,此处不再赘述。
将上述实施例1、实施例2和对比例1制备的电化学装置进行跌落测试:将充满电的电化学装置从1.2m高处跌落到硬质橡胶板上,观察电化学装置是否破损、泄漏、变形和爆炸。若上述情况都没有发生,则通过跌落测试。测试结果为:实施例1中的10个电化学装置全部通过跌落测试,实施例2中的10个电化学装置全部通过跌落测试,对比例1中的10个电化学装置只有4个通过了跌落测试。
从上述跌落测试结果可知,实施例组的电化学装置的跌落电压降失效得到显著改善,表明在集流体和活性物质层之间设置绝缘层可有效改善跌落电压降失效等性能。
本申请提供的电化学装置和电子装置,通过在集流体和活性物质层之间设置绝缘层,隔断该区域的电子通道,即使发生隔膜收缩,绝缘层区域的极片由于不带电,正负极片接触也不会发生短路,进而改善了电压降失效的问题。并且,本申请提供的电化学装置的电解液含量并没有减少,电化学装置和电子装置的电性能不会受到影响。
以上说明是本申请一些具体实施方式,但在实际的应用过程中不能仅仅局限于这些实施方式。对本领域的普通技术人员来说,根据本申请的技术构思做出的其他变形和改变,都应该属于本申请的保护范围。

Claims (19)

  1. 一种电化学装置,包括电极组件,所述电极组件包括第一极片、第二极片以及位于所述第一极片与所述第二极片之间的隔膜,其特征在于,所述第一极片包括:
    第一集流体,所述第一集流体包括相对设置的第一表面和第二表面,
    设置在所述第一表面的第一活性物质层;和
    第一绝缘层,其中,所述第一绝缘层位于所述第一集流体和所述第一活性物质层之间。
  2. 如权利要求1所述的电化学装置,其特征在于,所述电极组件由所述第一极片、所述第二极片和所述隔膜卷绕而成,所述第一表面面向所述电极组件的卷绕中心设置,所述第二表面背离所述电极组件的卷绕中心设置。
  3. 如权利要求1所述的电化学装置,其特征在于,所述电化学装置还包括设置在所述第二表面的第二活性物质层,
    所述第一集流体包括沿极片长度方向设置的第一区域、第二区域和第三区域,所述第一活性物质层设置在所述第一区域的第一表面上和所述第二区域的第一表面上;
    所述第二活性物质层设置在所述第一区域的第二表面上。
  4. 如权利要求3所述的电化学装置,其特征在于,所述电化学装置还包括与所述第一集流体电连接的极耳,其中,所述第一集流体包括沿极片宽度方向设置的第一端部和第二端部,所述极耳设置在所述第一端部,所述第一绝缘层设置在以下区域中的至少一个上:
    所述第一区域的第一端部、所述第二区域的第一端部和所述第三区域的第一端部;或
    所述第一区域的第二端部、所述第二区域的第二端部和所述第三区域的第二端部。
  5. 如权利要求3所述的电化学装置,其特征在于,所述电化学装置还包括与所述第一集流体电连接的极耳,其中,所述第一集流体包括沿所述极片宽度方向设置的第一端部和第二端部,所述极耳设置在所述第一端部,
    所述电化学装置还包括设置在所述第二表面的第二绝缘层,所述第二绝缘层至少设置在所述第一区域的第一端部或第二端部中的至少一个,且所述第二绝缘层位于所述第一集流体和所述第二活性物质层之间。
  6. 如权利要求5所述的电化学装置,其特征在于,所述第二绝缘层包括第二绝缘材料,所述第二绝缘材料包括氧化铝、氧化锆或氧化铬中的至少一种。
  7. 如权利要求5所述的电化学装置,其特征在于,沿所述极片宽度方向,所述第二绝缘层的延伸长度不大于10mm。
  8. 如权利要求5所述的电化学装置,其特征在于,所述第二绝缘层进一步设置在所述第二区域或所述第三区域中的至少一个上。
  9. 如权利要求8所述的电化学装置,其特征在于,所述第二区域包括沿所述极片长度方向设置的第一部分和第二部分,所述第二绝缘层进一步设置在所述第二部分上。
  10. 如权利要求9所述的电化学装置,其特征在于,所述电化学装置还包括收容所述电极组件的收容装置,所述收容装置包括第一收容部和第二收容部,所述第一收容部的深度小于所述第二收容部的深度,当收容于所述收容装置中时,所述第一部分与所述第一收容部相接触,所述第二部分与所述第二收容部相接触。
  11. 如权利要求8所述的电化学装置,其特征在于,所述第二绝缘层沿所述极片宽度方向的延伸长度与所述第一集流体沿所述极片宽度方向的延伸长度的比值不小于50%。
  12. 如权利要求1所述的电化学装置,其特征在于,沿所述极片宽度方向,所述第一绝缘层的延伸长度不大于10mm。
  13. 如权利要求1所述的电化学装置,其特征在于,所述第一绝缘层包括第一绝缘材料,所述第一绝缘材料包括氧化铝、氧化锆或氧化铬中的至少一种。
  14. 如权利要求1所述的电化学装置,其特征在于,所述第一极片为正极极片,所述第二极片包括第二集流体,沿所述极片宽度方向,所述第一集流体的延伸长度与所述第二集流体的延伸长度的差异度不大于5%。
  15. 如权利要求1所述的电化学装置,其特征在于,所述电极组件由所述第一极片、所述第二极片和所述隔膜沿所述第一方向堆叠形成,所述第一集流体包括沿第二方向设置的第一端部和第二端部,沿第三方向设置的第三端部和第四端部,所述第二方向垂直于所述第一方向,所述第三方向垂直于所述第二方向,所述第一绝缘层设置在所述第一端部、所述第二端部、所述第三端部或所述第四端部中的至少一个上。
  16. 如权利要求15所述的电化学装置,其特征在于,沿所述第二方向,所述第一绝缘层的延伸长度不大于10mm。
  17. 如权利要求15所述的电化学装置,其特征在于,所述电化学装置还包括设置在所述第二表面的第二绝缘层,所述第二绝缘层设置在所述第一端部、索所述第二端部、所述第三端部或所述第四端部中的至少一个上。
  18. 如权利要求17所述的电化学装置,其特征在于,沿所述第二方向,所述第二绝缘层的延伸长度不大于10mm。
  19. 一种电子装置,其特征在于,所述电子装置包括如权利要求1-18任一项所述的电化学装置,所述电化学装置为所述电子装置供电。
PCT/CN2021/101876 2021-06-23 2021-06-23 电化学装置及电子装置 WO2022266894A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180002888.0A CN113692675B (zh) 2021-06-23 2021-06-23 电化学装置及电子装置
EP21946394.0A EP4362214A1 (en) 2021-06-23 2021-06-23 Electrochemical device and electronic device
PCT/CN2021/101876 WO2022266894A1 (zh) 2021-06-23 2021-06-23 电化学装置及电子装置
US17/710,508 US20220416246A1 (en) 2021-06-23 2022-03-31 Electrochemical device and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/101876 WO2022266894A1 (zh) 2021-06-23 2021-06-23 电化学装置及电子装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/710,508 Continuation US20220416246A1 (en) 2021-06-23 2022-03-31 Electrochemical device and electronic device

Publications (1)

Publication Number Publication Date
WO2022266894A1 true WO2022266894A1 (zh) 2022-12-29

Family

ID=78588364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101876 WO2022266894A1 (zh) 2021-06-23 2021-06-23 电化学装置及电子装置

Country Status (4)

Country Link
US (1) US20220416246A1 (zh)
EP (1) EP4362214A1 (zh)
CN (1) CN113692675B (zh)
WO (1) WO2022266894A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114464769A (zh) * 2021-12-17 2022-05-10 宁德新能源科技有限公司 电极组件、电化学装置及用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011081920A (ja) * 2009-10-02 2011-04-21 Toyota Motor Corp リチウムイオン二次電池、車両及び電池搭載機器
JP2016081848A (ja) * 2014-10-21 2016-05-16 トヨタ自動車株式会社 リチウムイオン二次電池
JP2017084533A (ja) * 2015-10-26 2017-05-18 トヨタ自動車株式会社 非水電解液二次電池の製造方法
JP2020087710A (ja) * 2018-11-26 2020-06-04 株式会社Soken 全固体電池
CN111313102A (zh) * 2020-03-03 2020-06-19 宁德新能源科技有限公司 电芯及包含其的电化学装置和电子装置
WO2021131094A1 (ja) * 2019-12-27 2021-07-01 パナソニックIpマネジメント株式会社 電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210549A (ja) * 2010-03-30 2011-10-20 Toyota Motor Corp 非水電解質二次電池、車両及び電池使用機器
CN112563455A (zh) * 2020-12-25 2021-03-26 东莞维科电池有限公司 一种极片的制备方法、极片及锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011081920A (ja) * 2009-10-02 2011-04-21 Toyota Motor Corp リチウムイオン二次電池、車両及び電池搭載機器
JP2016081848A (ja) * 2014-10-21 2016-05-16 トヨタ自動車株式会社 リチウムイオン二次電池
JP2017084533A (ja) * 2015-10-26 2017-05-18 トヨタ自動車株式会社 非水電解液二次電池の製造方法
JP2020087710A (ja) * 2018-11-26 2020-06-04 株式会社Soken 全固体電池
WO2021131094A1 (ja) * 2019-12-27 2021-07-01 パナソニックIpマネジメント株式会社 電池
CN111313102A (zh) * 2020-03-03 2020-06-19 宁德新能源科技有限公司 电芯及包含其的电化学装置和电子装置

Also Published As

Publication number Publication date
CN113692675A (zh) 2021-11-23
US20220416246A1 (en) 2022-12-29
EP4362214A1 (en) 2024-05-01
CN113692675B (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
EP3886218A1 (en) Negative electrode plate, electrochemical device, and electronic device
JP4649993B2 (ja) リチウム二次電池およびその製造方法
WO2010131401A1 (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
WO2013021630A1 (ja) 非水電解質二次電池用負極および非水電解質二次電池
TW201547085A (zh) 片積層型鋰離子二次電池及片積層型鋰離子二次電池之製造方法
KR101664244B1 (ko) 전극의 표면에 패턴을 형성하는 방법, 이 방법을 이용해 제조된 전극 및 이 전극을 포함하는 이차전지
JP2002063938A (ja) 二次電池及びその製造方法
WO2016059464A1 (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP2022002216A (ja) 電気化学装置及び電子装置
JP4031635B2 (ja) 電気化学デバイス
WO2007083405A1 (ja) リチウム二次電池
JP4872950B2 (ja) 非水電解質二次電池
WO2024002355A1 (zh) 电化学装置及其制备方法和电子装置
JP3821434B2 (ja) 電池用電極群およびそれを用いた非水電解液二次電池
WO2023160181A1 (zh) 电化学装置和电子装置
KR102207527B1 (ko) 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지
KR20160036577A (ko) 리튬 2 차 전지 및 리튬 2 차 전지용 전해액
JP2015015156A (ja) 電池の製造方法
US20190214686A1 (en) Nonaqueous electrolyte secondary battery, and method for producing a nonaqueous electrolyte secondary battery
WO2022266894A1 (zh) 电化学装置及电子装置
WO2022266893A1 (zh) 电化学装置及电子装置
JP5296971B2 (ja) 二次電池用負極の製造方法
JP2012252951A (ja) 非水電解質二次電池
KR102531615B1 (ko) 수계 바인더를 이용한 그래핀 분리막 개질 방법 및 그 그래핀 분리막과 이를 포함하는 전기화학소자
US20220223983A1 (en) Electrochemical device and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946394

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021946394

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021946394

Country of ref document: EP

Effective date: 20240123