WO2022264479A1 - 純水製造装置及び純水製造方法 - Google Patents

純水製造装置及び純水製造方法 Download PDF

Info

Publication number
WO2022264479A1
WO2022264479A1 PCT/JP2022/003477 JP2022003477W WO2022264479A1 WO 2022264479 A1 WO2022264479 A1 WO 2022264479A1 JP 2022003477 W JP2022003477 W JP 2022003477W WO 2022264479 A1 WO2022264479 A1 WO 2022264479A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
treated
reverse osmosis
osmosis membrane
sulfur compound
Prior art date
Application number
PCT/JP2022/003477
Other languages
English (en)
French (fr)
Inventor
悠介 高橋
一重 高橋
勇規 中村
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to CN202280037984.3A priority Critical patent/CN117425623A/zh
Publication of WO2022264479A1 publication Critical patent/WO2022264479A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage

Definitions

  • the present invention relates to a pure water production device and a pure water production method.
  • Japanese Unexamined Patent Publication No. 2008-229417 discloses a technique for decomposing and removing organic substances contained in the water to be treated by adding a sulfur compound containing a peroxide group to the water to be treated and then irradiating the water to be treated with ultraviolet rays. It is Further, Japanese Patent Application Laid-Open No.
  • 2008-229417 discloses that a sulfur compound containing a peroxide group remaining in treated water irradiated with ultraviolet rays is removed, and then deionized by an ion-exchange resin filling device. there is By removing sulfur compounds in advance, it is possible to prevent oxidative deterioration of the resin in the ion-exchange resin filling device.
  • a method for removing sulfur compounds addition of a reducing agent, installation of an activated carbon tower, installation of a catalyst tower carrying palladium, platinum or the like is disclosed.
  • the activated carbon or catalyst When using activated carbon or a catalyst as a means of removing sulfur compounds, the activated carbon or catalyst itself may be degraded by the oxidizing agent, degrading the quality of the treated water. Moreover, when a reducing agent is used, a large amount of the reducing agent must be used to reduce sulfur compounds containing peroxide groups remaining in the UV-irradiated water, resulting in high chemical costs.
  • An object of the present invention is to provide an economical pure water production apparatus capable of ensuring good quality of treated water.
  • the pure water production apparatus of the present invention includes a sulfur compound adding means for adding a sulfur compound containing a peroxide group to the water to be treated containing organic substances, and an ultraviolet irradiation device for irradiating the water to be treated to which the sulfur compound has been added with ultraviolet rays.
  • a reverse osmosis membrane device through which water to be treated irradiated with ultraviolet rays is passed; and an ion-exchange resin filling device through which water to be treated that has been treated by the reverse osmosis membrane device is passed.
  • FIG. 1 is a schematic configuration diagram of a pure water production apparatus according to a first embodiment of the present invention
  • FIG. 2 is a schematic configuration diagram of a pure water production apparatus according to a second embodiment of the present invention
  • FIG. 1A shows a schematic configuration of a pure water production apparatus 1 according to a first embodiment of the present invention.
  • the pure water production apparatus 1 (primary system) constitutes an ultrapure water production apparatus together with downstream subsystems (secondary system).
  • Raw water supplied to the pure water production apparatus 1 (hereinafter referred to as water to be treated) contains organic matter.
  • the pure water production device 1 includes a raw water tank 11, a filter 12, an activated carbon tower 13, an ion exchange device 14, an ultraviolet irradiation device (ultraviolet oxidation device) 15, a reverse osmosis membrane device 16, an ion exchange resin filling device 17, and a degassing device. 18, which are arranged in series in this order along the main pipe L1 from upstream to downstream with respect to the flow direction D of the water to be treated. After the water to be treated stored in the raw water tank 11 is pressurized by a raw water pump (not shown), dust with a relatively large particle size is removed by the filter 12, and impurities such as macromolecular organic substances are removed by the activated carbon tower 13. is removed.
  • the ion exchange device 14 has a cation tower (not shown) filled with a cation exchange resin, a decarboxylation tower (not shown), and an anion tower (not shown) filled with an anion exchange resin. and they are arranged in series in this order from upstream to downstream.
  • the cation tower removes cationic components from the water to be treated
  • the decarboxylation tower removes carbonic acid from the water to be treated
  • the anion tower removes anionic components from the water to be treated.
  • a sulfur compound addition means 19 is provided between the ion exchange device 14 and the ultraviolet irradiation device 15 for adding a sulfur compound containing a peroxide group (hereinafter sometimes simply referred to as a sulfur compound) to the water to be treated.
  • the sulfur compound addition means 19 has a sulfur compound addition line 19a, a sulfur compound storage tank 19b connected to one end of the addition line 19a, and a sulfur compound transfer pump 19c. It is connected to the mother pipe L1 between the ion exchange device 14 and the ultraviolet irradiation device 15 .
  • Sulfur compounds containing peroxide groups include sodium peroxodisulfate (Na 2 S 2 O 8 ), ammonium peroxodisulfate ((NH 4 ) 2 S 4 O 8 ), potassium peroxodisulfate (K 2 S 2 O 8 ), etc. are used alone or in combination.
  • the ratio of the sulfur compound concentration is preferably about 50 to 5000 times. If the concentration ratio is less than 50, the generation of sulfuric acid radicals is insufficient, and the decomposition efficiency of organic substances in the water to be treated is lowered. If the concentration ratio is more than 5000, the concentration of residual sulfur compounds that are not used for decomposition of organic matter increases, resulting in wasted use of sulfur compounds. In addition, the concentration of sulfur compounds in the treated water of the reverse osmosis membrane device 16 increases, which may increase the damage to the ion exchange resin filling device 17 .
  • the ultraviolet irradiation device 15 irradiates the water to be treated with ultraviolet rays.
  • an ultraviolet lamp containing at least one wavelength of 365 nm, 254 nm, 185 nm, and 172 nm can be used.
  • a sulfur compound containing a peroxide group generates a sulfuric acid radical in the water to be treated by ultraviolet irradiation.
  • Sulfuric acid radicals have a higher decomposition rate of organic substances than, for example, hydroxyl radicals generated by irradiating water with ultraviolet rays, and efficiently decompose organic substances contained in the water to be treated.
  • the reverse osmosis membrane device 16 removes sulfur compounds containing peroxide groups remaining in the treated water from the ultraviolet irradiation device 15 .
  • Sulfur compounds containing peroxide groups have strong oxidizing power.
  • the treated water from the ultraviolet irradiation device 15 containing a high concentration of sulfur compounds is supplied to the ion-exchange resin filling device 17, the ion-exchange resin is oxidized and deteriorated, which causes the elution of organic matter. 17 increases the TOC of the treated water.
  • the water to be treated in which the concentration of sulfur compounds has been reduced is supplied to the ion-exchange resin filling device 17, an increase in the TOC of the water treated by the ion-exchange resin filling device 17 is prevented.
  • the ion-exchange resin filling device 17 is a regenerative ion-exchange resin tower filled with anion-exchange resin and cation-exchange resin. Decomposition products of organic substances generated in the water to be treated by the ultraviolet irradiation are removed by the ion-exchange resin filling device 17 . After that, dissolved oxygen, carbonic acid, etc. in the water to be treated are removed by the deaerator 18 . Although illustration is omitted, instead of the ion-exchange resin filling device 17, an electrodeionization water production device (EDI) can be provided instead of the ion-exchange resin filling device 17, an electrodeionization water production device (EDI) can be provided. Since EDI is a continuous regeneration type, the regeneration process of the ion exchanger is unnecessary.
  • EDI electrodeionization water production device
  • the sulfur compound containing a peroxide group is an oxidizing agent, it oxidizes and degrades the resin of the ion exchange resin filling device 17 . Therefore, sulfur compounds are removed from the water to be treated before the water to be treated is passed through the ion exchange resin filling device 17 .
  • Sulfur compounds can be removed not only by the reverse osmosis membrane device 16, but also by activated carbon, platinum group metal-supported catalysts, and the like. However, in the case of activated carbon and catalysts, they themselves may be oxidized and deteriorated, leading to deterioration of water quality.
  • the inventors of the present application have found that the oxidative deterioration behavior of the sulfur compound removing means differs for each means, and that the reverse osmosis membrane device 16 is less susceptible to oxidative deterioration.
  • the inventor of the present application believes that the ion exchange resin filling device 17 is more susceptible to oxidative deterioration due to sulfur compounds than the reverse osmosis membrane device 16, but if the sulfur compound concentration is sufficiently low, it is less susceptible to oxidative deterioration. I found out.
  • the concentration of sulfur compounds in the treated water of the reverse osmosis membrane device 16, that is, the inlet water of the ion exchange resin filling device 17, is preferably 0.5 mg/L or less. This makes it possible to efficiently remove ionized organic substances while preventing oxidative deterioration of the ion exchange resin.
  • the sulfur compound concentration exceeds 0.5 mg/L, the TOC increases due to oxidative deterioration of the ion exchange resin, increasing the possibility of deteriorating the water quality of the treated water.
  • the concentration of sulfur compounds in the water to be treated that is passed through the ion-exchange resin filling device 17 can be reduced to 0.5 mg/L or less, for example, as follows.
  • the method for obtaining the concentration of sulfur compounds is not limited, for example, the conductivity measured by a conductivity meter can be converted into the concentration of sulfur compounds.
  • the conductivity measured by the conductivity meter can be converted to the sulfur compound concentration from the previously obtained relational expression between the conductivity and the sulfur compound concentration.
  • the above control can be performed by a predetermined control device (not shown).
  • Sulfur compounds can also be removed by adding a reducing agent such as sodium bisulfite.
  • a reducing agent such as sodium bisulfite.
  • the reverse osmosis membrane device 16 is used to remove sulfur compounds containing peroxide groups suppresses oxidation deterioration of the resin in the ion exchange resin filling device 17 and reduces operating costs (chemical costs).
  • a pure water production apparatus 1 capable of suppressing is realized.
  • the sulfur compound concentration of the water to be treated that is passed through the reverse osmosis membrane device 16 is not particularly limited, but is preferably 400 mg/L or less, and more preferably 100 mg/L or less from the viewpoint of suppressing the load on the ion exchange resin filling device 17. Preferably, 20 mg/L or less is more preferable. If the sulfur compound concentration exceeds 400 mg/L, oxidative deterioration of the reverse osmosis membrane device 16 may occur, and the load on the ion exchange resin filling device 17 may also increase.
  • the concentration of sulfur compounds in the water to be treated that is passed through the reverse osmosis membrane device 16 can be reduced to 400 mg/L or less, for example, as follows.
  • the method for obtaining the concentration of sulfur compounds is not limited, for example, the conductivity measured by a conductivity meter can be converted into the concentration of sulfur compounds.
  • the conductivity measured by the conductivity meter can be converted to the sulfur compound concentration from the previously obtained relational expression between the conductivity and the sulfur compound concentration.
  • the above control can be performed by a predetermined control device (not shown).
  • FIG. 1B shows a schematic configuration of a pure water production apparatus 1 according to a second embodiment of the present invention.
  • the pure water production apparatus 1 according to the present embodiment is the same as the first embodiment, except that a sulfur compound removing means 20 including a peroxide group is provided between the reverse osmosis membrane device 16 and the ion exchange resin filling device 17. is the same as the pure water production apparatus 1 according to .
  • a sulfur compound removing means 20 including a peroxide group is provided between the reverse osmosis membrane device 16 and the ion exchange resin filling device 17.
  • the type of sulfur compound removal means 20 is not particularly limited, and various means commonly used for removing oxidants, such as reducing agents, activated carbon, platinum group metal-supported catalysts, etc., can be used. can be done.
  • the sulfur compound removing means 20 is preferably provided between the reverse osmosis membrane device 16 and the ion exchange resin filling device 17 . Although it is possible to provide the sulfur compound removing means 20 between the ultraviolet irradiation device 15 and the reverse osmosis membrane device 16, in this case, the load on the sulfur compound removing means 20 increases. If the removal means 20 is activated carbon or a catalyst, these may be oxidized and deteriorated by sulfur compounds, and TOC and the like may leak into the treated water, degrading the quality of the treated water. If the removing means 20 is a reducing agent, the amount of the reducing agent to be added increases, possibly increasing the chemical cost. In this embodiment, after most of the sulfur compounds are removed by the reverse osmosis membrane device 16, the remaining sulfur compounds are removed by the removing means 20, which leads to improved performance of the pure water production device 1 and reduced operating costs.
  • a means for adding metal ions can be provided upstream of the ultraviolet irradiation device 15 .
  • Metal ions are not limited as long as they are other than alkali metals, and examples thereof include ions of iron, copper, silver, gold, manganese, and the like. The presence of metal ions in the water to be treated promotes the activation of sulfur compounds and improves the organic matter treatment performance.
  • the concentration of sulfur compounds in the treated water of the ultraviolet irradiation device 15 may fluctuate according to the TOC of the inlet water of the ultraviolet irradiation device 15. That is, when the TOC of the inlet water of the ultraviolet irradiation device 15 is low, more sulfur compounds may flow out of the ultraviolet irradiation device 15 without being consumed. Even when the concentration of sulfur compounds is increased in order to improve the decomposition efficiency of organic matter, the concentration of sulfur compounds in the water treated by the ultraviolet irradiation device 15 may increase. Even in such a case, two or more reverse osmosis membrane devices 16 can be arranged in series in order to suppress oxidation deterioration of the resin of the ion exchange resin filling device 17 .
  • a second reverse osmosis membrane device (not shown) may be provided between the reverse osmosis membrane device 16 and the ion exchange resin filling device 17 .
  • the sulfur compound removing means 20 can also be arranged between the reverse osmosis membrane devices 16 arranged in series.
  • Example 1 10 mg/L of potassium peroxodisulfate (K 2 S 2 O 8 ) was added to the water to be treated containing 80 ⁇ g/L of urea, and the ultraviolet irradiation device was used to irradiate ultraviolet rays at an output of 0.73 kWh/m 3 .
  • the water was treated by passing it through an osmotic membrane device (Nitto Denko ESPA2-4040).
  • the water flow rate to the reverse osmosis membrane device was 1.0 m 3 /h
  • the treated water flow rate to the reverse osmosis membrane device was 200 L/h
  • the concentrated water flow rate was 800 L/h.
  • the treated water of the reverse osmosis membrane device was passed through an ion exchange resin (ESP-2 manufactured by Organo Co., Ltd.) filling device at SV120 (/h), and the K 2 S 2 O 8 concentration of the inlet water of the ion exchange resin filling device and TOC, the urea concentration and TOC of the treated water of the ion exchange resin filling device were measured.
  • ESP-2 manufactured by Organo Co., Ltd.
  • Example 2 40 mg/L of K 2 S 2 O 2 was added as in Example 1, and the measurement was performed under the same conditions.
  • Example 3 In Example 1, a reducing agent was added to the treated water of the reverse osmosis membrane device, and the water was passed through the ion exchange resin filling device. Sodium sulfite (Na 2 SO 3 ) was used as a reducing agent, and was added in an amount twice the concentration of peroxodisulfuric acid in the treated water of the reverse osmosis membrane apparatus.
  • Example 4 In Example 1, a reducing agent was added to the treated water from the ultraviolet irradiation device, and the treated water was passed through the reverse osmosis membrane device and the ion exchange resin filling device in that order. Na 2 SO 3 was used as a reducing agent, and was added in an amount twice the concentration of peroxodisulfuric acid in the treated water of the ultraviolet irradiation device.
  • Example 1 the treated water from the ultraviolet irradiation device was not passed through the reverse osmosis membrane device, but was passed through the ion exchange resin filling device.
  • Table 1 shows the measurement results.
  • Comparative Example 1 the TOC of the treated water is high. This is probably because the peroxodisulfuric acid remaining in the ultraviolet irradiation device oxidized and deteriorated the ion exchange resin.
  • Example 1 in which the reverse osmosis membrane device was installed in Comparative Example 1, the TOC of the treated water was less than 1 ⁇ g/L. It is considered that this is because the concentration of peroxodisulfuric acid was reduced to 0.1 mg/L by the reverse osmosis membrane device, thereby suppressing oxidative deterioration of the ion exchange resin.
  • Example 2 the concentration of peroxodisulfuric acid in the inlet water of the ion-exchange resin packing device was 0.5 mg/L, but the TOC of the treated water of the ion-exchange resin packing device was 1 ⁇ g/L, It was less. This is probably because the amount of elution of the ion exchange resin was small and the influence of oxidation deterioration was suppressed. Therefore, when the concentration of sulfur compounds in the water to be treated that is passed through the ion-exchange resin filling apparatus is 0.5 mg/L or less, it is considered that there is no significant effect on the quality of the treated water.
  • the same treatment performance was obtained in Examples 3 and 4 in which a reducing agent was added. is added (Example 3), more reducing agent must be used. From this, it can be seen that it is preferable to add the reducing agent to the downstream side of the reverse osmosis membrane device.

Abstract

処理水の良好な水質を確保することが可能で、且つ経済的な純水製造装置を提供する。純水製造装置1は、有機物を含む被処理水に、ペルオキシド基を含む硫黄化合物を添加する硫黄化合物添加手段19と、硫黄化合物が添加された被処理水に紫外線を照射する紫外線照射装置15と、紫外線が照射された被処理水が通水される逆浸透膜装置16と、逆浸透膜装置16で処理された被処理水が通水されるイオン交換樹脂充填装置17と、を有する。

Description

純水製造装置及び純水製造方法
 本出願は、2021年6月17日出願の日本出願である特願2021-101147に基づき、かつ同出願に基づく優先権を主張する。この出願は、その全体が参照によって本出願に取り込まれる。
 本発明は純水製造装置と純水製造方法に関する。
 純水水質への高度な要求が顕在化するに伴って、近年、純水に含まれる微量の有機物を分解し除去する様々な方法が検討されている。そのような方法の代表的なものとして、紫外線酸化処理による有機物の分解除去工程が知られている。特開2008-229417号公報には、ペルオキシド基を含む硫黄化合物を被処理水に添加し、その後被処理水に紫外線を照射することで、被処理水に含まれる有機物を分解除去する技術が開示されている。また、特開2008-229417号公報には、紫外線の照射された処理水に残存するペルオキシド基を含む硫黄化合物を除去し、その後、イオン交換樹脂充填装置によって脱イオン処理を行うことが開示されている。予め硫黄化合物を除去することで、イオン交換樹脂充填装置の樹脂の酸化劣化を防止することができる。硫黄化合物を除去する方法として、還元剤の添加、活性炭塔の設置、パラジウム、白金等を担持させた触媒塔の設置などが開示されている。
 硫黄化合物の除去手段として活性炭や触媒を使用する場合、活性炭や触媒自体が酸化剤により劣化し、処理水の水質を悪化させる可能性がある。また、還元剤を使用する場合、紫外線照射処理水に残存するペルオキシド基を含む硫黄化合物を還元するのに多量の還元剤を使う必要があり、薬品コストが高くなる。
 本発明は処理水の良好な水質を確保することが可能で、且つ経済的な純水製造装置を提供することを目的とする。
 本発明の純水製造装置は、有機物を含む被処理水に、ペルオキシド基を含む硫黄化合物を添加する硫黄化合物添加手段と、硫黄化合物が添加された被処理水に紫外線を照射する紫外線照射装置と、紫外線が照射された被処理水が通水される逆浸透膜装置と、逆浸透膜装置で処理された被処理水が通水されるイオン交換樹脂充填装置と、を有する。
 本発明によれば、処理水の良好な水質を確保することが可能で、且つ経済的な純水製造装置を提供することが可能となる。
 上述した、およびその他の、本出願の目的、特徴、および利点は、本出願を例示した添付の図面を参照する以下に述べる詳細な説明によって明らかとなろう。
本発明の第1の実施形態に係る純水製造装置の概略構成図である。 本発明の第2の実施形態に係る純水製造装置の概略構成図である。
 以下、図面を参照して本発明の純水製造装置と純水製造方法の実施形態について説明する。図1Aは本発明の第1の実施形態に係る純水製造装置1の概略構成を示している。純水製造装置1(1次システム)は下流側のサブシステム(2次システム)とともに超純水製造装置を構成する。純水製造装置1に供給される原水(以下、被処理水という)は有機物を含有している。
 純水製造装置1は、原水タンク11、ろ過器12、活性炭塔13、イオン交換装置14、紫外線照射装置(紫外線酸化装置)15、逆浸透膜装置16、イオン交換樹脂充填装置17、脱気装置18を有し、これらは被処理水の流通方向Dに関し上流から下流に向かって、母管L1に沿ってこの順序で直列に配置されている。原水タンク11に貯蔵された被処理水は原水ポンプ(図示せず)で昇圧された後、ろ過器12で比較的粒径の大きな塵埃等が除去され、活性炭塔13で高分子有機物などの不純物が除去される。ろ過器12の構成は限定されないが、本実施形態では砂ろ過器を用いている。イオン交換装置14は、カチオン交換樹脂が充填されたカチオン塔(図示せず)と、脱炭酸塔(図示せず)と、アニオン交換樹脂が充填されたアニオン塔(図示せず)と、を有し、これらは上流から下流に向けてこの順で直列に配置されている。カチオン塔は被処理水からカチオン成分を、脱炭酸塔は被処理水から炭酸を、アニオン塔は被処理水からアニオン成分をそれぞれ除去する。
 イオン交換装置14と紫外線照射装置15との間には、ペルオキシド基を含む硫黄化合物(以下、単に硫黄化合物という場合がある)を被処理水に添加する硫黄化合物添加手段19が設けられている。硫黄化合物添加手段19は硫黄化合物の添加ライン19aと、添加ライン19aの一端に接続された硫黄化合物の貯蔵タンク19bと、硫黄化合物の移送ポンプ19cと、を有し、添加ライン19aの他端はイオン交換装置14と紫外線照射装置15との間で母管L1に接続されている。ペルオキシド基を含む硫黄化合物としては、ペルオキソ二硫酸ナトリウム(Na2S2O8)、ペルオキソ二硫酸アンモニウム((NH4)2S4O8)、ペルオキソ二硫酸カリウム(K2S2O8)などが挙げられ、これらは単独でまたは組み合わせて使用される。
 被処理水のTOC(より正確には、添加ライン19aの母管L1との接続部とイオン交換装置14との間の区間における被処理水のTOC)に対する硫黄化合物の濃度の比(以下、濃度比という)は、50~5000倍程度が好ましい。濃度比が50より少ないと硫酸ラジカルの生成が不十分で、被処理水の有機物の分解効率が低下する。濃度比が5000より多いと、有機物の分解に使用されない、残存する硫黄化合物の濃度が増え、硫黄化合物を無駄に使用することになる。また、逆浸透膜装置16の処理水における硫黄化合物の濃度が増加し、イオン交換樹脂充填装置17へのダメージが増加する可能性がある。
 紫外線照射装置15は被処理水に紫外線を照射する。紫外線照射装置15としては、例えば365nm、254nm、185nm、172nmの少なくともいずれかの波長を含む紫外線ランプを用いることができる。ペルオキシド基を含む硫黄化合物は紫外線照射によって、被処理水に硫酸ラジカルを発生させる。硫酸ラジカルは、例えば水に紫外線を照射することで生成されるヒドロキシラジカルと比べて有機物の分解速度が速く、被処理水に含まれる有機物を効率的に分解する。
 逆浸透膜装置16は紫外線照射装置15の処理水に残存した、ペルオキシド基を含む硫黄化合物を除去する。ペルオキシド基を含む硫黄化合物は酸化力が強い。このため、高濃度の硫黄化合物を含む紫外線照射装置15の処理水がイオン交換樹脂充填装置17に供給されると、イオン交換樹脂の酸化劣化とそれによる有機物の溶出を招き、イオン交換樹脂充填装置17の処理水のTOCが増加する。本実施形態では、硫黄化合物が低濃度化された被処理水がイオン交換樹脂充填装置17に供給されるため、イオン交換樹脂充填装置17の処理水のTOCの増加が防止される。
 イオン交換樹脂充填装置17は、アニオン交換樹脂とカチオン交換樹脂とが充填された再生式イオン交換樹脂塔である。紫外線照射によって被処理水に発生する有機物の分解生成物は、イオン交換樹脂充填装置17によって除去される。その後、被処理水の溶存酸素、炭酸等が脱気装置18によって除去される。図示は省略するが、イオン交換樹脂充填装置17の代わりに電気式脱イオン水製造装置(EDI)を設けることもできる。EDIは連続再生式であるため、イオン交換体の再生工程が不要となる。
 ペルオキシド基を含む硫黄化合物は酸化剤であるため、イオン交換樹脂充填装置17の樹脂を酸化劣化させる。このため、被処理水をイオン交換樹脂充填装置17に通水する前に、硫黄化合物は被処理水から除去される。硫黄化合物の除去は逆浸透膜装置16だけでなく、活性炭、白金族金属担持触媒などでも可能である。しかし、活性炭や触媒の場合、これら自体が酸化劣化し水質の低下につながる可能性がある。これに対し、本願発明者は、硫黄化合物の除去手段の酸化劣化挙動は手段毎に異なること、及び逆浸透膜装置16は酸化劣化の影響を受けにくいことを見出した。
 また、本願発明者は、イオン交換樹脂充填装置17は逆浸透膜装置16に比べ、硫黄化合物による酸化劣化の影響を受けやすいものの、硫黄化合物の濃度が十分に低ければ酸化劣化の影響を受けにくいことを見出した。実施例でも述べるが、逆浸透膜装置16の処理水、すなわちイオン交換樹脂充填装置17の入口水の硫黄化合物濃度は0.5mg/L以下にすることが好ましい。これによって、イオン交換樹脂の酸化劣化を防ぎつつ、イオン化された有機物を効率よく除去することが可能となる。硫黄化合物濃度が0.5mg/Lを上回ると、イオン交換樹脂の酸化劣化によりTOCが増加し、処理水の水質が低下する可能性が高まる。逆浸透膜装置16で硫黄化合物の濃度を0.5mg/L以下まで下げることで、イオン交換樹脂充填装置17の樹脂の酸化劣化に伴う処理水のTOC増加を抑制することができる。イオン交換樹脂充填装置17に通水される被処理水の硫黄化合物の濃度は、例えば以下のようにして0.5mg/L以下にすることができる。紫外線照射装置15の供給水のTOCと、紫外線照射装置15の処理水のTOCと、逆浸透膜装置16の供給水の硫黄化合物の濃度と、イオン交換樹脂充填装置17の供給水の硫黄化合物の濃度との少なくとも一つに基づき、硫黄化合物添加手段19での硫黄化合物の添加量、逆浸透膜装置16の運転条件(回収率等)、紫外線照射装置15の運転条件(照射量等)の少なくとも一つを制御する。制御は上記のTOCと硫黄化合物の濃度のいずれか一つだけを用いて行ってもよいし、複数個を用いて行ってもよい。また、硫黄化合物の濃度の取得方法は制限されないが、例えば導電率計で測定された導電率を硫黄化合物濃度に換算することができる。一例として、導電率計で測定された導電率を、あらかじめ取得した導電率と硫黄化合物濃度との関係式より、硫黄化合物濃度に換算することができる。以上の制御は所定の制御装置(図示せず)で行うことができる。
 硫黄化合物の除去は重亜硫酸ナトリウム等の還元剤の添加によっても可能である。しかし、還元剤をイオン交換樹脂充填装置17の入口水に常時供給する必要があるため、薬品コストが増加するとともに、イオン負荷が増大し、イオン交換樹脂充填装置17のイオン交換樹脂の再生頻度が上がる。本実施形態では、ペルオキシド基を含む硫黄化合物の除去に逆浸透膜装置16を利用するという新規な構成により、イオン交換樹脂充填装置17の樹脂の酸化劣化を抑えるとともに、運転コスト(薬品コスト)の抑制が可能な純水製造装置1が実現される。
 逆浸透膜装置16に通水される被処理水の硫黄化合物濃度は特に限定されないが、400mg/L以下が好ましく、イオン交換樹脂充填装置17の負荷を抑制する観点からは100mg/L以下がより好ましく、20mg/L以下がさらに好ましい。硫黄化合物濃度が400mg/Lを超えると、逆浸透膜装置16の酸化劣化が生じる可能性があり、イオン交換樹脂充填装置17の負荷も増加する可能性がある。逆浸透膜装置16に通水される被処理水の硫黄化合物の濃度は、例えば以下のようにして400mg/L以下にすることができる。紫外線照射装置15の供給水のTOCと、紫外線照射装置15の処理水のTOCと、逆浸透膜装置16の供給水の硫黄化合物の濃度と、イオン交換樹脂充填装置17の供給水の硫黄化合物の濃度との少なくとも一つに基づき、硫黄化合物添加手段19での硫黄化合物の添加量、逆浸透膜装置16の運転条件(回収率等)、紫外線照射装置15の運転条件(照射量等)の少なくとも一つを制御する。制御は上記のTOCと硫黄化合物の濃度のいずれか一つだけを用いて行ってもよいし、複数個を用いて行ってもよい。また、硫黄化合物の濃度の取得方法は制限されないが、例えば導電率計で測定された導電率を硫黄化合物濃度に換算することができる。一例として、導電率計で測定された導電率を、あらかじめ取得した導電率と硫黄化合物濃度との関係式より、硫黄化合物濃度に換算することができる。以上の制御は所定の制御装置(図示せず)で行うことができる。
 図1Bは本発明の第2の実施形態に係る純水製造装置1の概略構成を示している。本実施形態に係る純水製造装置1は、逆浸透膜装置16とイオン交換樹脂充填装置17との間に、ペルオキシド基を含む硫黄化合物の除去手段20を有する点を除き、第1の実施形態に係る純水製造装置1と同じである。説明を省略した構成や効果については第1の実施形態の説明を参照されたい。硫黄化合物の除去手段20の種類は特に限定されるものではなく、酸化剤除去のために一般的に使用される様々な手段、例えば、還元剤、活性炭、白金族金属担持触媒などを使用することができる。
 硫黄化合物の除去手段20は、逆浸透膜装置16とイオン交換樹脂充填装置17との間に設けることが好ましい。硫黄化合物の除去手段20を紫外線照射装置15と逆浸透膜装置16との間に設けることも可能であるが、その場合硫黄化合物の除去手段20の負荷が増加する。除去手段20が活性炭や触媒である場合、これらが硫黄化合物で酸化劣化し、TOCなどが処理水にリークし、処理水質を低下させる可能性がある。除去手段20が還元剤である場合、還元剤の添加量が多くなり、薬品コストが増える可能性がある。本実施形態では、逆浸透膜装置16でほとんどの硫黄化合物を除去した後に、残った硫黄化合物を除去手段20で除去するため、純水製造装置1の性能向上や運転コストの抑制につながる。
 以上、本発明のいくつかの実施形態について説明したが、本発明はこれらの実施形態に限定されない。例えば、紫外線照射装置15の上流側に金属イオン添加手段を設けることができる。金属イオンはアルカリ金属以外であれば限定されず、例えば、鉄、銅、銀、金、マンガンなどのイオンが挙げられる。金属イオンが被処理水に存在することで、硫黄化合物の活性化が促進され、有機物処理性能が向上する。
 また、紫外線照射装置15の処理水の硫黄化合物濃度は、紫外線照射装置15の入口水のTOCに応じて変動する可能性がある。すなわち、紫外線照射装置15の入口水のTOCが低い場合、より多くの硫黄化合物が消費されることなく、紫外線照射装置15から流出する可能性がある。有機物の分解効率の向上のために硫黄化合物濃度を高くした場合も、紫外線照射装置15の処理水の硫黄化合物濃度が高くなることがある。この様な場合でもイオン交換樹脂充填装置17の樹脂の酸化劣化を抑制するため、逆浸透膜装置16を2段以上直列に配置することもできる。すなわち、逆浸透膜装置16とイオン交換樹脂充填装置17との間に第2の逆浸透膜装置(図示せず)を有していてもよい。逆浸透膜装置16を直列に設けることで、硫黄化合物の除去性能が向上し、イオン交換樹脂充填装置17の負荷を低減することができる。なお、第2の実施形態の場合、硫黄化合物の除去手段20は、直列配置される逆浸透膜装置16の間に配置することもできる。
 (実施例)
 <実施例1>
 尿素が80μg/L含まれる被処理水にペルオキソ二硫酸カリウム(K2S2O8)を10mg/L添加し、紫外線照射装置により出力0.73kWh/m3で紫外線を照射し、その後、逆浸透膜装置(日東電工ESPA2-4040)に通水して処理した。逆浸透膜装置への通水流量は1.0m3/h、逆浸透膜装置の処理水流量は200L/h、濃縮水流量は800L/hであった。逆浸透膜装置の処理水をイオン交換樹脂(オルガノ株式会社製ESP-2)充填装置にSV120(/h)で通水し、イオン交換樹脂充填装置の入口水のK2S2O8濃度とTOC、イオン交換樹脂充填装置の処理水の尿素濃度とTOCを測定した。
 <実施例2>
 実施例1において、K2S2O2を40mg/L添加し、同条件で測定を行った。
 <実施例3>
 実施例1において、逆浸透膜装置の処理水に還元剤を添加し、イオン交換樹脂充填装置に通水した。還元剤は亜硫酸ナトリウム(Na2SO3)を用い、逆浸透膜装置の処理水のペルオキソ二硫酸濃度に対し、2倍の物質量を添加した。
 <実施例4>
 実施例1において、紫外線照射装置の処理水に還元剤を添加し、逆浸透膜装置、イオン交換樹脂充填装置の順に通水処理した。還元剤はNa2SO3を用い、紫外線照射装置の処理水のペルオキソ二硫酸濃度に対し、2倍の物質量を添加した。
 <比較例1>
 実施例1において、紫外線照射装置の処理水を逆浸透膜装置に通水せず、イオン交換樹脂充填装置に通水した。
 表1に測定結果を示す。比較例1では処理水のTOCが高い。これは、紫外線照射装置で残留したペルオキソ二硫酸がイオン交換樹脂を酸化劣化させたためと考えられる。比較例1に逆浸透膜装置を設置した構成の実施例1では、処理水のTOCが1μg/L未満であった。これは、逆浸透膜装置によりペルオキソ二硫酸の濃度が0.1mg/Lまで低減したことにより、イオン交換樹脂の酸化劣化が抑制されたためと考えられる。実施例2では、イオン交換樹脂充填装置の入口水のペルオキソ二硫酸の濃度は0.5mg/Lであったが、イオン交換樹脂充填装置の処理水のTOCは1μg/Lと、比較例1より少なかった。これは、イオン交換樹脂の溶出量が少なく、酸化劣化の影響が抑えられたためと考えられる。従って、イオン交換樹脂充填装置に通水される被処理水の硫黄化合物の濃度が0.5mg/L以下である場合、処理水質への大きな影響はないと考えられる。還元剤を添加した実施例3と4は同じ処理性能が得られたが、逆浸透膜装置の上流側に還元剤を添加した場合(実施例4)、逆浸透膜装置の下流側に還元剤を添加した場合(実施例3)と比べてより多くの還元剤を使用する必要がある。これより、還元剤は逆浸透膜装置の下流側に添加するほうが好ましいことがわかる。
Figure JPOXMLDOC01-appb-T000001
 <実施例5>
 純水にNaClを5mg/L、IPAを100μg/L、KSOを400mg/L添加した被処理水を、逆浸透膜装置(日東電工ESPA2-4040)に800時間通水し、800時間後の逆浸透膜装置の透過係数、膜間差圧((原水圧力+濃縮水圧力)/2-透過水圧力)、Na、Cl、IPAの阻止率を求めた。阻止率は{(原水濃度+濃縮水濃度)/2-透過水濃度}/{(原水濃度+濃縮水濃度)/2}×100として求められる。KSOの濃度を実施例1の4000倍、実施例2の800倍として加速試験を行ったため、逆浸透膜装置の取り換え頻度と同レベルの時間スパンでの評価が可能となっている。逆浸透膜装置への通水流量は1m3/h、逆浸透膜装置の処理水流量は200L/h、濃縮流量は800L/hであった。結果を表2に示す。800時間経過後も、それぞれの値が悪化する傾向は確認されなかった。よって、KSOの濃度が400mg/L以下の場合、逆浸透膜装置の性能は低下しないことが分かった。
Figure JPOXMLDOC01-appb-T000002
 上述した、およびその他の、本出願の目的、特徴、および利点は、本出願を例示した添付の図面を参照する以下に述べる詳細な説明によって明らかとなろう。
 1 純水製造装置
 11 原水タンク
 12 ろ過器
 13 活性炭塔
 14 イオン交換装置
 15 紫外線照射装置(紫外線酸化装置)
 16 逆浸透膜装置
 17 イオン交換樹脂充填装置
 18 脱気装置
 19 硫黄化合物添加手段
 20 硫黄化合物の除去手段
 

Claims (8)

  1.  有機物を含む被処理水に、ペルオキシド基を含む硫黄化合物を添加する硫黄化合物添加手段と、
     硫黄化合物が添加された前記被処理水に紫外線を照射する紫外線照射装置と、
     紫外線が照射された前記被処理水が通水される逆浸透膜装置と、
     前記逆浸透膜装置で処理された前記被処理水が通水されるイオン交換樹脂充填装置と、
     を有する純水製造装置。
  2.  前記イオン交換樹脂充填装置に通水される前記被処理水の前記硫黄化合物の濃度が0.5mg/L以下である、請求項1に記載の純水製造装置。
  3.  前記被処理水の前記硫黄化合物の濃度が0.5mg/L以下となるように、前記紫外線照射装置の供給水のTOCと、前記紫外線照射装置の処理水のTOCと、前記逆浸透膜装置の供給水の硫黄化合物の濃度と、前記イオン交換樹脂充填装置の供給水の硫黄化合物の濃度との少なくとも一つに基づき、前記硫黄化合物添加手段での硫黄化合物の添加量、前記逆浸透膜装置の運転条件、前記紫外線照射装置の運転条件の少なくとも一つを制御する制御装置を有する、請求項2に記載の純水製造装置。
  4.  前記逆浸透膜装置と前記イオン交換樹脂充填装置との間に、前記硫黄化合物の除去手段を有する、請求項1から3のいずれか1項に記載の純水製造装置。
  5.  前記逆浸透膜装置で処理される前記被処理水の前記硫黄化合物の濃度が400mg/L以下である、請求項1から3のいずれか1項に記載の純水製造装置。
  6.  前記逆浸透膜装置で処理される前記被処理水の前記硫黄化合物の濃度が400mg/L以下となるように、前記紫外線照射装置の供給水のTOCと、前記紫外線照射装置の処理水のTOCと、前記逆浸透膜装置の供給水の硫黄化合物の濃度と、前記イオン交換樹脂充填装置の供給水の硫黄化合物の濃度との少なくとも一つに基づき、前記硫黄化合物添加手段での硫黄化合物の添加量、前記逆浸透膜装置の運転条件、前記紫外線照射装置の運転条件の少なくとも一つを制御する制御装置を有する、請求項5に記載の純水製造装置。
  7.  前記逆浸透膜装置と前記イオン交換樹脂充填装置との間に設けられた第2の逆浸透膜装置を有する、請求項1から6のいずれか1項に記載の純水製造装置。
  8.  有機物を含む被処理水に、ペルオキシド基を含む硫黄化合物を添加することと、
     硫黄化合物が添加された前記被処理水に紫外線を照射することと、
     紫外線が照射された前記被処理水を逆浸透膜装置に通水することと、
     前記逆浸透膜装置で処理された前記被処理水をイオン交換樹脂充填装置に通水すること
    と、
     を有する純水製造方法。
     
PCT/JP2022/003477 2021-06-17 2022-01-31 純水製造装置及び純水製造方法 WO2022264479A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280037984.3A CN117425623A (zh) 2021-06-17 2022-01-31 纯水制造装置和纯水制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021101147A JP2023000376A (ja) 2021-06-17 2021-06-17 純水製造装置及び純水製造方法
JP2021-101147 2021-06-17

Publications (1)

Publication Number Publication Date
WO2022264479A1 true WO2022264479A1 (ja) 2022-12-22

Family

ID=84526962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003477 WO2022264479A1 (ja) 2021-06-17 2022-01-31 純水製造装置及び純水製造方法

Country Status (4)

Country Link
JP (1) JP2023000376A (ja)
CN (1) CN117425623A (ja)
TW (1) TW202313491A (ja)
WO (1) WO2022264479A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08173978A (ja) * 1994-12-28 1996-07-09 Kurita Water Ind Ltd 有機物の除去方法
JPH1119663A (ja) * 1997-07-04 1999-01-26 Nec Kagoshima Ltd 有機物の除去方法
JPH1199395A (ja) * 1997-07-29 1999-04-13 Japan Organo Co Ltd 有機物含有水の処理方法
JP2007244930A (ja) * 2006-03-13 2007-09-27 Kurita Water Ind Ltd 有機物含有排水の処理方法及び処理装置
JP2008246387A (ja) * 2007-03-30 2008-10-16 Kurita Water Ind Ltd 一次純水製造プロセス水の処理方法及び装置
JP2012057172A (ja) * 1998-03-25 2012-03-22 Daikin Industries Ltd 成形品
JP2020081996A (ja) * 2018-11-28 2020-06-04 株式会社日本フォトサイエンス 紫外線処理方法及びシステム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08173978A (ja) * 1994-12-28 1996-07-09 Kurita Water Ind Ltd 有機物の除去方法
JPH1119663A (ja) * 1997-07-04 1999-01-26 Nec Kagoshima Ltd 有機物の除去方法
JPH1199395A (ja) * 1997-07-29 1999-04-13 Japan Organo Co Ltd 有機物含有水の処理方法
JP2012057172A (ja) * 1998-03-25 2012-03-22 Daikin Industries Ltd 成形品
JP2007244930A (ja) * 2006-03-13 2007-09-27 Kurita Water Ind Ltd 有機物含有排水の処理方法及び処理装置
JP2008246387A (ja) * 2007-03-30 2008-10-16 Kurita Water Ind Ltd 一次純水製造プロセス水の処理方法及び装置
JP2020081996A (ja) * 2018-11-28 2020-06-04 株式会社日本フォトサイエンス 紫外線処理方法及びシステム

Also Published As

Publication number Publication date
CN117425623A (zh) 2024-01-19
JP2023000376A (ja) 2023-01-04
TW202313491A (zh) 2023-04-01

Similar Documents

Publication Publication Date Title
KR101978080B1 (ko) 순수의 제조 방법 및 장치
JP5412834B2 (ja) 超純水製造方法及び装置
JP4917581B2 (ja) 純水製造方法
WO2019244443A1 (ja) 被処理水中のホウ素除去方法、ホウ素除去システム、超純水製造システム及びホウ素濃度の測定方法
JP2011110515A (ja) イオン交換樹脂の精製方法及び精製装置
JP5211518B2 (ja) 有機物除去方法及び装置
KR20190066055A (ko) 수처리 방법 및 장치
JP4635827B2 (ja) 超純水製造方法および装置
JP4978275B2 (ja) 一次純水製造プロセス水の処理方法及び装置
JP2022046426A (ja) 水処理システム、純水製造方法及び水処理方法
WO2022264479A1 (ja) 純水製造装置及び純水製造方法
JP2002210494A (ja) 超純水製造装置
JP5678436B2 (ja) 超純水製造方法及び装置
JP4519930B2 (ja) 超純水製造方法及び超純水製造装置
JP2021102200A (ja) 純水製造方法、純水製造システム、超純水製造方法及び超純水製造システム
JP2009112944A (ja) 超純水製造方法及び装置並びに電子部品部材類の洗浄方法及び装置
WO2022024815A1 (ja) 純水製造装置及び超純水製造装置並びに純水製造方法及び超純水製造方法
JP6924300B1 (ja) 排水処理方法、超純水製造方法及び排水処理装置
JP3259557B2 (ja) 有機物の除去方法
JPH1128482A (ja) 純水製造方法
WO2022190608A1 (ja) 水処理方法及び装置
WO2021261144A1 (ja) 水処理装置、超純水製造装置及び水処理方法
JP3528287B2 (ja) 純水の製造方法
WO2024014218A1 (ja) 超純水製造装置及び超純水製造装置の運転方法
JPH1094785A (ja) 超純水製造方法および製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE