WO2022262794A1 - 适用于高精密直写3d打印的纳米颗粒铜浆、制备及用途 - Google Patents

适用于高精密直写3d打印的纳米颗粒铜浆、制备及用途 Download PDF

Info

Publication number
WO2022262794A1
WO2022262794A1 PCT/CN2022/099086 CN2022099086W WO2022262794A1 WO 2022262794 A1 WO2022262794 A1 WO 2022262794A1 CN 2022099086 W CN2022099086 W CN 2022099086W WO 2022262794 A1 WO2022262794 A1 WO 2022262794A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
copper paste
nanoparticle
precision direct
printing
Prior art date
Application number
PCT/CN2022/099086
Other languages
English (en)
French (fr)
Inventor
陈小朋
Original Assignee
芯体素(杭州)科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芯体素(杭州)科技发展有限公司 filed Critical 芯体素(杭州)科技发展有限公司
Priority to KR1020227033948A priority Critical patent/KR20220169474A/ko
Priority to EP22765383.9A priority patent/EP4138096A4/en
Priority to JP2022558451A priority patent/JP7424686B2/ja
Publication of WO2022262794A1 publication Critical patent/WO2022262794A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/12Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/50Phosphorus bound to carbon only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Abstract

提供一种适用于高精密直写3D打印的纳米颗粒铜浆、制备及用途,采用三芳基膦或者三烷基膦类化合物作为铜粉保护剂并将铜纳米颗粒配制成含有环氧树脂的油溶性浆料,解决纳米颗粒铜浆在制备和存放过程中容易被氧化的问题,提高纳米颗粒铜浆的导电性能,使其适用于高精密直写3D打印。

Description

适用于高精密直写3D打印的纳米颗粒铜浆、制备及用途 技术领域
本发明涉及导电浆料,特别涉及一种适用于高精密直写3D打印的纳米颗粒铜浆、制备及用途。
背景技术
金属3D打印工艺与传统工艺相比,在缩短新产品研发及实现周期、可高效成形更为复杂的结构、实现一体化、轻量化设计、实现优良的力学性能等方面表现出了无法比拟的优势。目前,在金属3D打印工艺领域中,银纳米颗粒是应用最为广泛的,这是由于银纳米颗粒具有易烧结、导电性能高、耐氧化等特点,进而使其在金属3D打印中表现良好。然而,银材料作为金属3D打印的原材料具有一大致命缺陷:价格高昂,这也极大程度地限制了金属3D打印技术的发展和应用。
相比而言,铜材料的价格相对银材料而言更为低廉,且和银材料具有相似的导线性能。但由于铜的纳米材料在空气氛围中较易被氧化,这会导致在制备铜浆以及铜浆存放的过程中,铜的纳米颗粒的表面容易被氧化成CuO或者Cu2O,进而导致材料的导电性能显著降低,这极大的限制了铜浆在3D打印领域的应用,进而越来越多科研团队致力于研究适用于金属3D打印的铜纳米颗粒以及对应的铜浆。
比如南京工业大学公布的CN104505137A的“一种导电铜浆及其制备方法和用途”中提供了一种导电铜浆的制备方法,其在铜浆的制备中添加草酸、抗坏血酸或葡萄糖的一种作为还原剂;CN106981324B的“一种铜导电浆料及其制备方法和用途”中通过在体系中加入稳定剂,在烧结过程中还原氧化铜,获得低氧化铜含量的导线线路,其中稳定剂包括柠檬酸、抗坏血酸、戊二醛等。然而此类还原剂或稳定剂制备得到的是微米级别的铜颗粒,依旧无法满足高精密直写3D打印的需求;换言之,高精密直写3D打印中,特别是针对10μm以下线宽的打印,需要的材料往往是百nm级别或者更小尺寸的浆料作为材料,而铜颗粒的尺寸越小对应的活性越高,越容易被氧化,对应的现有技术无法达到纳米级别的铜浆的制备和保护。另外,且此类铜浆加入的还原剂或者稳定剂,对于铜纳米颗粒的保护效果有限,在存放一周以上的时间,由于表面依然会被彻底氧化,会出现烧结后电阻明显变大的问题。
具体的,以“抗坏血酸”作为还原剂为例,虽则它有一定的还原性,但实际上它本身就是一类酸,而纳米铜本身表面的铜原子反应活性就会很高,因此在长时间过程中,铜纳米颗粒表面会被抗坏血酸分解(类似于活泼金属如铁与酸发生的化学反应),从而导致铜纳米颗粒自身的稳定性显著下降;另外,其实际起到还原效果的是由于其在高温时会分解出来一氧化碳,而一氧化碳是一类气体,其在实际烧结过程中存在和铜颗粒表面接触不充分的问题,进而带来还原效果差,无法制备和保护纳米级别的铜颗粒的效果。且,其高温分解的气体还会导致铜导线烧结后存在不致密的问题,进而影响导电性能,无法很好地适用于高精密直写3D打印中。
技术问题
换言之,高精密直写3D打印需要百nm级别的铜纳米颗粒作为材料,而铜颗粒的尺寸越小对应的活性越高,导致其在制备和保存过程中极易氧化,而目前的制备导电铜浆的技术并无法解决该核心问题,进而限制了铜材料在高精密直写3D打印中的应用。
技术解决方案
本发明的目的在于提供一种适用于高精密直写3D打印的纳米颗粒铜浆、制备及用途,采用三芳基膦、三烷基膦类化合物作为还原剂并将铜纳米颗粒配制成含有环氧树脂的油溶性浆料,解决纳米颗粒铜浆在制备和存放过程中容易被氧化的问题,提高纳米颗粒铜浆的导电性能,使其适用于高精密直写3D打印。
第一方面,本技术方案提供一种适用于高精密直写3D打印的纳米颗粒铜浆,所述纳米颗粒铜浆包括以下原料组分以及重量份:50-90%铜粉;10-40%有机载体,所述有机载体由占原料组分1-15%环氧树脂、5-25%有机溶剂以及1-5%固化剂组成;0-2%非导电填料,各个原料组分相加的比例为100%。
在本方案中,选用的铜粉的平均粒径控制为100nm~5μm,这样的好处在于:可以更有针对性的根据不同的打印线宽要求,选择合适的铜纳米颗粒进行制备铜浆。
所述铜粉保护剂为三芳基膦、三烷基膦类化合物的任一种或其组合,其在室温和低温时和铜粉配位,在高温时和氧原子结合形成氧膦化合物。
所述环氧树脂的种类不受限制,为热固性环氧树脂,可选择为:双酚A型环氧树脂、E-44环氧树脂、联苯氧型环氧树脂的任一种或其组合,环氧树脂在反应体系中起到的作用是利用其疏水性,有效隔绝环境中水分子对铜纳米颗粒的破坏,且环氧树脂在高温下容易固结,也可有效地提高铜浆在基底的粘附性。
所述有机溶剂选择为二乙二醇单乙醚醋酸酯、二价酸酯、异氟尔酮、松油醇或二乙二醇单丁醚中的任一种或其组合,其在反应体系中的作用是溶解环氧树脂和固化剂。
所述固化剂选择为多元硫醇固化剂、双氰胺固化剂、酸酐类固化剂,其在反应体系中的作用是为了使环氧树脂高温烧结时,能够快速固化,起到与打印介质更好的粘附的目的,从而有效地提升铜线与介质材料的粘附性以及导电的稳定性。
所述有机载体的制备方式如下:将环氧树脂溶解到有机溶剂中,加热至第一温度并保持一段时间后直到环氧树脂完全溶解在有机溶剂中得到初步载体,随后将固化剂添加到初步载体中高速分散均匀,并加热至第二温度并老化一定时间后,得到有机载体。其中第一温度高于第二温度。在本方案的实施例中,第一温度控制在75-85摄氏度之间,可以是80摄氏度,第二温度控制在30-35摄氏度之间。
所述非导电填料为超细碳粉、纳米石墨烯粉末、膨润土或纳米二氧化硅粉末中的任一种或其组合,主要用于调节导电浆料的粘度与触变性,使浆料获得良好的流变性能,提高打印质量。即,可更好地将纳米颗粒铜分散,使其长时间存放时不会重新团聚。
在一些具体实施例中,所述纳米颗粒铜浆包括以下原料组分以及重量份:75%铜粉;14%有机载体,所述有机载体包括5%环氧树脂、8%有机溶剂以及1%固化剂;10%铜粉保护剂;1%非导电填料。
在一些具体实施例中,所述纳米颗粒铜浆包括以下原料组分以及重量份:60%铜粉;23%有机载体,所述有机载体包括10%环氧树脂、11%有机溶剂以及2%固化剂;15%铜粉保护剂;2%非导电填料。
在一些具体实施例中,所述纳米颗粒铜浆包括以下原料组分以及重量份:80%铜粉;15%有机载体,所述有机载体包括4%环氧树脂、10%有机溶剂以及1%固化剂;5%铜粉保护剂。
第二方面,本方案提供一种适用于高精密直写3D打印的纳米颗粒铜浆,包括如下步骤:
有机载体的制备:
将环氧树脂溶解到有机溶剂中,加热至第一温度并保持一段时间后直到环氧树脂完全溶解在有机溶剂中得到初步载体,随后将固化剂添加到初步载体中高速分散均匀,并加热至第二温度并老化一定时间后,得到有机载体,其中第一温度高于第二温度;
铜浆的配制:
将铜粉、铜粉保护剂、非导电填料及所述有机载体混合并进行分散,得到均匀的初浆料;
将初浆料辊轧至一定细度,并经滤网过滤得到铜浆成品。
在本方案提供的制备方法中,将初浆料进行棍轧直到<1μm的细度为止,并经10μm-20μm的滤网进行过滤,得到铜浆成品。在得到初步载体阶段时保持1小时的时间,在得到有机载体的阶段时保持2小时的时间,以提供充足的老化时间。
根据以上方案制备得到的纳米颗粒铜浆满足≥1μm线宽的高精密直写3D打印,铜浆成品在空气氛围下存放10天后,烧结的铜线电阻率在10μΩ·cm以下。
另外本方案制备得到纳米颗粒铜浆可用于高精密直写3D打印,可用于显示面板、电子元器件、光伏面板等电子行业的高精细导线的打印。
本方案提供一种适用于高精密直写3D打印的纳米颗粒铜浆、制备及用途,制备得到的纳米颗粒铜浆适用于高精密直写3D打印,特别是在针对10μm以下线宽打印的情况时,高精密直写3D打印需要的材料往往是百nm级别或者更小尺寸的浆料,然而铜浆的颗粒度越小进而引发的后果就是:铜颗粒表面活性增加,是更容易被氧化的;且纳米颗粒铜浆在打印过程中存在长时间接触空气中的水和氧气的问题,而长时间的环境暴露也会导致铜纳米颗粒的表面被逐渐氧化,进而影响最后的导电性能。
故此,本方案在铜浆的制备过程中,引入三芳基膦、三烷基膦类化合物作为还原剂,并将铜纳米颗粒配置成含有环氧树脂的油溶性浆料,一来可通过油溶性浆料隔绝外界水分子对铜纳米颗粒的破坏,以及提高铜浆在基底的粘附性,二来利用三芳基膦、三烷基膦类化合物配位到纳米颗粒铜表面的原理,相较于传统的一氧化碳气体接触的方式而言,提高了铜表面保护的效率;且三芳基膦、三烷基膦类化合物能够与氧原子结合形成氧膦化合物,不会影响铜纳米颗粒烧结时形成的导电的性能。换言之,本方案提供的还原剂在室温下能够长时间稳定,不易被空气中的氧气所氧化,其可有效地抑制铜纳米颗粒在制备以及打印过程中被氧化的问题,保证还原剂在浆料中的存放稳定性,另一方面,其在烧结过程中,随着烧结温度的升高,还原剂的还原性逐渐升高,可以有效地消耗烧结氛围中残留的氧气以及铜纳米颗粒表面所氧化所形成的氧化物,使得制备得到的纳米颗粒铜浆可长时间存放,且在打印过程中也不受到外界环境的影响。
本方案制备得到的纳米颗粒铜浆满足≥1μm的高精密直写3D打印,且铜浆成品在空气氛围下存放10天后,烧结的铜线电阻率在10μΩ·cm以下,三芳基膦、三烷基膦类化合物在室温或者较低的温度时,可以保护纳米铜表面不易被氧化,在高温烧结时可以将表面被氧化的铜,还原为单质铜,从而使烧结后的铜线有良好的导电性。
有益效果
相较现有技术,本技术方案具有以下特点和有益效果:
1.制备适用于高精密直写3D打印的纳米颗粒铜浆以取代银浆,相较于银浆作为材料的情况而言,纳米颗粒铜浆可极大程度地减少打印材料的成本,且还可保证良好的导电性能。
2.本方案将铜纳米颗粒配置成含有环氧树脂的油溶性浆料,环氧树脂作为一类疏水性材料,能够有效的隔绝水分子对于铜纳米颗粒的破坏,且环氧树脂作为一类高温易固化的材料,能够有效的提升铜浆在基底的粘附性能。
3.本方案采用三芳基膦、三烷基膦类化合物作为还原剂,三芳基膦、三烷基膦类化合物配位到铜纳米颗粒表面起到保护铜的效果,不存在与铜颗粒发生反应的可能性,另外,三芳基膦、三烷基膦类化合物的还原性靠的是其能够与氧原子结合形成氧膦化合物,不会影响铜纳米颗粒烧结时形成的导电的性能,现有技术的铜浆在用直写3D打印出来的铜线导电性明显差于丝网印刷后烧结出来的铜线的问题。
附图说明
图1是本方案实施例1制备得到的铜浆成品A在存放1周后烧结后的铜膜的电阻率在85℃/85RH环境下的老化数据。
图2是本方案实施例1制备得到的100~200nm尺寸的铜浆成品A烧结前的扫描电镜图。
图3是本方案实施例1制备得到的100~200nm尺寸的铜浆成品A烧结后的扫描电镜图。
图4是本方案对照实施例1制备得到的100~200nm尺寸的铜浆成品D烧结前的扫描电镜图。
图5是本方案对照实施例1制备得到的100~200nm尺寸的铜浆成品D烧结后的扫描电镜图。
本发明的最佳实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
可以理解的是,术语“一”应理解为“至少一“或”一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
以下用特定实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。应理解本发明的保护范围不局限于下述特定的具体实施方案;还应当理解,本发明实施例中使用的术语是为了描述特定的具体实施方案,而不是为了限制本发明的保护范围。下列实施例中未注明具体条件的试验方法,通常按照常规方法,或者按照各制造商所建议的条件。
实施例1
称取双酚A型环氧树脂8g,溶到15g的乙酸丁酯溶剂中,加热至80℃保持1小时,至完全溶解得到初步载体;称取酸酐类固化剂1g,加入到初步载体中,用高速分散机进行高速分散,分散均匀后加热至30-35℃老化2小时,得到有机载体;称取100~200nm的铜粉70g,还原剂三苯基膦5g,非导电填料纳米石墨烯粉末0.2g、50nm的二氧化硅粉末0.8g;与所述有机载体在混料机中充分混合,再使用高速分散机进行高速分散,得到均匀的初浆料;将初浆料在三辊机进行6遍棍轧,达到<1μm的细度为止,然后经过10μm的滤网进行过滤,得到的铜浆成品A。
本发明的实施方式
实施例2
称取E-44环氧树脂6g,溶到10g的聚乙二醇溶剂中,加热至80℃保持1小时,至完全溶解得到初步载体;称取多元硫醇固化剂0.5g,加入到初步载体中,用高速分散机进行高速分散,分散均匀后加热至30-35℃老化2小时,得到有机载体;称取500~600nm的铜粉70g,还原剂三辛基膦5g,非导电填料纳米石墨烯粉末0.2g、50nm的二氧化硅粉末0.8g;与所述有机载体在混料机中充分混合,再使用高速分散机进行高速分散,得到均匀的初浆料;将初浆料在三辊机进行6遍棍轧,达到<1μm的细度为止,然后经过10μm的滤网进行过滤,得到的铜浆成品B。
实施例3
称取联苯氧型环氧树脂5g,溶到7g的二乙二醇乙醚醋酸酯溶剂中,加热至80℃保持1小时,至完全溶解得到初步载体;称取双氰胺固化剂0.5g,加入到初步载体中,用高速分散机进行高速分散,分散均匀后加热至30-35℃老化2小时,得到有机载体;称取1~2μm的铜粉70g,还原剂三对甲基苯基膦5g;与所述有机载体在混料机中充分混合,再使用高速分散机进行高速分散,得到均匀的初浆料;将初浆料在三辊机进行6遍棍轧,达到<1μm的细度为止,然后经过10μm的滤网进行过滤,得到的铜浆成品C。
对照实施例1:
称取双酚A型环氧树脂8g,溶到15g的乙酸丁酯溶剂中,加热至80℃保持1小时,至完全溶解得到初步载体;称取酸酐类固化剂1g,加入到初步载体中,用高速分散机进行高速分散,分散均匀后加热至30-35℃老化2小时,得到有机载体;称取100~200nm的铜粉70g,还原剂抗坏血酸5g,非导电填料纳米石墨烯粉末0.2g、50nm的二氧化硅粉末0.8g;与所述有机载体在混料机中充分混合,再使用高速分散机进行高速分散,得到均匀的初浆料;将初浆料在三辊机进行6遍棍轧,达到<1μm的细度为止,然后经过10μm的滤网进行过滤,得到的铜浆成品D。
对照实施例2:
称取24g乙酸丁酯作为有机载体;称取100~200nm的铜粉70g,还原剂三苯基膦5g,非导电填料纳米石墨烯粉末0.2g、50nm的二氧化硅粉末0.8g;与所述有机载体在混料机中充分混合,再使用高速分散机进行高速分散,得到均匀的初浆料;将初浆料在三辊机进行6遍棍轧,达到<1μm的细度为止,然后经过10μm的滤网进行过滤,得到的铜浆成品E。
电阻率测量实验:
把制好的导电铜浆通过3D打印设备打印在相应的基底如硅片上,在100℃下烘干后放入炉子中在氮气氛围烧结,烧结程序为30~300℃升温速率为10℃/min,300℃烧结30min。经烧结后得到导电铜膜,采用四探针电阻测试仪(Advance Riko,型号ZEM-3M10)对固化后铜膜进行电阻率测试。
得到的实验结果如下表一:
表一铜浆成品的电阻率的测量
Figure 822395dest_path_image001
从表一的数据可以看到,铜浆成品A/B/C的电阻率远高于铜浆成品D和铜浆成品E,说明本方案提供的条件制备得到铜浆制备得到的导电性能也更好。
存放时间测量实验:
为了验证本专利所开发的铜浆成品的存放稳定性能够满足实际商业应用的需求,将不同的铜浆成品在室温下放置一定的时间,根据上述相同的工艺,进行烧结后制得相应的铜膜,并进行电阻率测试。
得到的实验结果如下表二,存放10天后的铜浆成品A烧结后铜膜的电阻率在85℃/85RH环境下的老化数据如图1所示。
表二铜浆成品的存放时间和电阻率的关系
Figure 910437dest_path_image002
从表二的数据可以看到,铜浆成品A/B/C在长时间存放时的稳定性能也更好,且铜浆成品在空气氛围下存放10天后,烧结的铜线电阻率在10μΩ·cm以下。
扫描电镜实验:
将实施例1得到的铜浆成品A和对照实施例1得到的铜浆成品D作为测试样品,铜浆成品A铜浆烧结前的扫描电镜图和烧结后的扫描电镜图如图2和图3所示,铜浆成品D铜浆烧结前的扫描电镜图和烧结后的扫描电镜图如图4和图5所示。从图中可明显地看到:铜浆成品A在烧结之后形成的铜膜十分致密,表面更为光滑;相对应的,铜浆成品D铜浆由于表面被氧化而形成了CuO或者Cu 2O,当相同的烧结温度下,无法形成致密的铜膜,因此扫描电镜中依然可以看到明显的C铜纳米颗粒,导致其导电性能明显差于铜浆成品A烧结之后的结果。
本发明不局限于上述最佳实施方式,任何人在本发明的启示下都可得出其他各种形式的产品,但不论在其形状或结构上作任何变化,凡是具有与本申请相同或相近似的技术方案,均落在本发明的保护范围之内。

Claims (10)

  1. 一种适用于高精密直写3D打印的纳米颗粒铜浆,其特征在于,包括以下重量份的原料组分:50‑90%铜粉;7‑40%有机载体,所述有机载体由占原料组分1‑15%环氧树脂、5‑25%有机溶剂以及1‑5%固化剂组成;1‑20%铜粉保护剂;0‑2%非导电填料,各原料组分相加的 比例为100%。
  2. 根据权利要求1所述的适用于高精密直写3D打印的纳米颗粒铜浆,其特征在于,所述铜粉保护剂为三芳基膦、三烷基膦类化合物的任一种或其组合,在<100℃和铜粉配位,在 ≥100℃和氧原子结合形成氧膦化合物。
  3. 根据权利要求1所述的适用于高精密直写3D打印的纳米颗粒铜浆,其特征在于,所述铜粉为50nm~5μm的铜纳米颗粒。
  4. 根据权利要求1所述的适用于高精密直写3D打印的纳米颗粒铜浆,其特征在于,所述铜粉为50nm~500nm的铜纳米颗粒。
  5. 根据权利要求1所述的适用于高精密直写3D打印的纳米颗粒铜浆,其特征在于,所述非导电填料为超细碳粉、纳米石墨烯粉末、膨润土或纳米二氧化硅粉末中的任一种或其组合。
  6.  根据权利要求1所述的适用于高精密直写3D打印的纳米颗粒铜浆,其特征在于,包括如下步骤:
    有机载体的制备:将环氧树脂溶解到有机溶剂中,加热至第一温度并保持一段时间后直到环氧树脂完全溶解在有机溶剂中得到初步载体,随后将固化剂添加到初步载体中高速分散均匀,并加热至第二温度并老化一定时间后,得到有机载体,其中第一温度高于第二温度;
    铜浆的配制:将铜粉、铜粉保护剂、非导电填料及所述有机载体混合并进行分散,得到均匀的初浆料;将初浆料辊轧至一定细度,并经滤网过滤得到铜浆成品。
  7. 根据权利要求1所述的适用于高精密直写3D打印的纳米颗粒铜浆,其特征在于,所述环氧树脂为热固性环氧树脂,选择为双酚A型环氧树脂、E‑44环氧树脂、联苯氧型环氧树脂的一种或其组合。
  8. 根据权利要求1所述的适用于高精密直写3D打印的纳米颗粒铜浆,其特征在于,所述固化剂选择为多元硫醇固化剂、双氰胺固化剂、酸酐类固化剂的任一种或其组合。
  9. 一种根据权利要求1到8任一所述的适用于高精密直写3D打印的纳米颗粒铜浆,满足 ≥1μm线宽的高精密直写3D打印的用途。
  10. 根据权利要求9所述的适用于高精密直写3D打印的纳米颗粒铜浆,其特征在于,铜浆成品在空气氛围下存放10天后,烧结的铜线电阻率在10μΩ·cm以下。
PCT/CN2022/099086 2021-06-18 2022-06-16 适用于高精密直写3d打印的纳米颗粒铜浆、制备及用途 WO2022262794A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227033948A KR20220169474A (ko) 2021-06-18 2022-06-16 고정밀 직접 기록형 3d 인쇄에 적합한 나노 입자 구리 페이스트, 제조 및 용도
EP22765383.9A EP4138096A4 (en) 2021-06-18 2022-06-16 NANOPARTICLE COPPER PASTE FOR HIGH PRECISION 3D DIRECT WRITE PRINTING AND PRODUCTION AND USE THEREOF
JP2022558451A JP7424686B2 (ja) 2021-06-18 2022-06-16 高精密ライトスルー3d印刷に適したナノ粒子銅ペースト、製造及び用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110681236.6 2021-06-18
CN202110681236.6A CN113362984B (zh) 2021-06-18 2021-06-18 适用于高精密直写3d打印的纳米颗粒铜浆、制备及用途

Publications (1)

Publication Number Publication Date
WO2022262794A1 true WO2022262794A1 (zh) 2022-12-22

Family

ID=77535296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099086 WO2022262794A1 (zh) 2021-06-18 2022-06-16 适用于高精密直写3d打印的纳米颗粒铜浆、制备及用途

Country Status (6)

Country Link
EP (1) EP4138096A4 (zh)
JP (1) JP7424686B2 (zh)
KR (1) KR20220169474A (zh)
CN (1) CN113362984B (zh)
TW (1) TW202300598A (zh)
WO (1) WO2022262794A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113362984B (zh) * 2021-06-18 2021-11-23 西湖未来智造(杭州)科技发展有限公司 适用于高精密直写3d打印的纳米颗粒铜浆、制备及用途
CN114980579B (zh) * 2022-06-08 2024-02-06 芯体素(杭州)科技发展有限公司 一种高精密多层线路板制备过程中的固化方法
CN116259435A (zh) * 2023-01-05 2023-06-13 嘉庚创新实验室 导电铜浆及其制备方法、应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104505137A (zh) 2014-12-10 2015-04-08 南京工业大学 一种导电铜浆及其制备方法和用途
CN105328206A (zh) * 2015-11-19 2016-02-17 北京化工大学 一种油相化学还原制备铜纳米线的方法
CN105632587A (zh) * 2016-02-22 2016-06-01 昆山海斯电子有限公司 环氧树脂导电银浆及其制备方法
CN105802344A (zh) * 2014-12-30 2016-07-27 中国科学院化学研究所 一种抗氧化纳米铜导电油墨
CN106981324A (zh) 2017-04-26 2017-07-25 上海安缔诺科技有限公司 一种铜导电浆料及其制备方法和用途
WO2018140226A1 (en) * 2017-01-24 2018-08-02 The Regents Of The University Of California Conductive core-shell metal nanowires for transparent conductors
CN113362984A (zh) * 2021-06-18 2021-09-07 西湖未来智造(杭州)科技发展有限公司 适用于高精密直写3d打印的纳米颗粒铜浆、制备及用途

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4486466A (en) * 1979-01-12 1984-12-04 Kollmorgen Technologies Corporation High resolution screen printable resists
JP4098970B2 (ja) * 2001-06-19 2008-06-11 富士フイルム株式会社 インクジェット記録用シート
KR20080088712A (ko) 2007-03-30 2008-10-06 삼성전자주식회사 전도성 잉크 조성물 및 이를 이용한 전도성 패턴의 형성방법
KR101651915B1 (ko) 2009-09-14 2016-08-29 한화케미칼 주식회사 금속 나노입자 수계 분산액의 제조방법
JP2011142052A (ja) 2010-01-08 2011-07-21 Hitachi Chem Co Ltd 銅導体インク及び導電性基板及びその製造方法
KR101573372B1 (ko) * 2013-12-17 2015-12-02 전자부품연구원 저온 경화형 도전성 페이스트 조성물 및 그 제조방법
US9505058B2 (en) * 2014-05-16 2016-11-29 Xerox Corporation Stabilized metallic nanoparticles for 3D printing
JP2017157531A (ja) * 2016-03-04 2017-09-07 京セラ株式会社 印刷用導電ペースト及びパターンの印刷方法
CN107337965B (zh) * 2017-08-28 2020-03-10 厦门大学 一种抗氧化铜系导电油墨的制备方法
EP3712904A4 (en) * 2017-11-13 2021-08-25 Kyocera Corporation PASTE COMPOSITION, SEMICONDUCTOR DEVICE AND ELECTRONIC / ELECTRIC COMPONENT
CN108133768A (zh) * 2017-12-25 2018-06-08 深圳市百柔新材料技术有限公司 一种高电导率低温固化型导电浆料及其制备方法
KR102118724B1 (ko) * 2018-04-05 2020-06-04 주식회사 나노브릭 자기 색 가변 마이크로 캡슐을 포함하는 조성물 및 이를 이용한 인쇄 장치.
KR20190022302A (ko) * 2018-06-14 2019-03-06 주식회사 나노브릭 컬러 입자를 포함하는 마이크로 캡슐 및 이를 포함하는 인쇄 매체.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104505137A (zh) 2014-12-10 2015-04-08 南京工业大学 一种导电铜浆及其制备方法和用途
CN105802344A (zh) * 2014-12-30 2016-07-27 中国科学院化学研究所 一种抗氧化纳米铜导电油墨
CN105328206A (zh) * 2015-11-19 2016-02-17 北京化工大学 一种油相化学还原制备铜纳米线的方法
CN105632587A (zh) * 2016-02-22 2016-06-01 昆山海斯电子有限公司 环氧树脂导电银浆及其制备方法
WO2018140226A1 (en) * 2017-01-24 2018-08-02 The Regents Of The University Of California Conductive core-shell metal nanowires for transparent conductors
CN106981324A (zh) 2017-04-26 2017-07-25 上海安缔诺科技有限公司 一种铜导电浆料及其制备方法和用途
CN113362984A (zh) * 2021-06-18 2021-09-07 西湖未来智造(杭州)科技发展有限公司 适用于高精密直写3d打印的纳米颗粒铜浆、制备及用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4138096A4

Also Published As

Publication number Publication date
EP4138096A4 (en) 2023-10-18
CN113362984A (zh) 2021-09-07
JP7424686B2 (ja) 2024-01-30
JP2023534343A (ja) 2023-08-09
CN113362984B (zh) 2021-11-23
TW202300598A (zh) 2023-01-01
KR20220169474A (ko) 2022-12-27
EP4138096A1 (en) 2023-02-22

Similar Documents

Publication Publication Date Title
WO2022262794A1 (zh) 适用于高精密直写3d打印的纳米颗粒铜浆、制备及用途
JP4363340B2 (ja) 導電性銀ペースト及びそれを用いた電磁波シールド部材
JP5631910B2 (ja) 銀被覆銅粉
Tsai et al. A study of the preparation and properties of antioxidative copper inks with high electrical conductivity
JP5402350B2 (ja) 導電性ペーストの製造方法および導電性ペースト
KR20100066780A (ko) 전도성 페이스트와 이를 이용한 전도성 기판
WO2012133627A1 (ja) 銀コート銅粉及びその製造法、該銀コート銅粉を含有する導電性ペースト、導電性接着剤、導電性膜、及び電気回路
CN106205776A (zh) 低温固化型石墨烯/银导电浆料及其制备方法和应用
JP5631841B2 (ja) 銀被覆銅粉
JPWO2005015573A1 (ja) 導電性ペースト
CN110170650B (zh) 一种制备高致密性且包覆完全的银包铜粉的方法
WO2014054618A1 (ja) 銀ハイブリッド銅粉とその製造法、該銀ハイブリッド銅粉を含有する導電性ペースト、導電性接着剤、導電性膜、及び電気回路
JP2017527943A (ja) 導電性組成物
JP2013001917A (ja) 銀被覆銅粉及びその製造方法
KR102061720B1 (ko) 표면 처리된 은 분말 및 이의 제조방법
JP4078410B2 (ja) 銀拡散銅粉の製法
JP2011065783A (ja) 導電性ペーストおよびそれを用いた配線基板
CN104078097B (zh) 一种灌孔用印刷电路板银浆及其制备方法
CN110942842A (zh) 一种导体浆料及导体材料
JP2014159646A (ja) 銀被覆銅粉
KR101454454B1 (ko) 다중수소결합에 의해 고차구조를 지니는 탄소나노소재를 이용한 인쇄용 전도성 페이스트 조성물 및 그 제조방법
CN114231092A (zh) 一种铜导电油墨、柔性基底及柔性基底的制备方法
JP6175304B2 (ja) 銅複合粒子、これを含む銅ペースト及びこれを用いた回路基板の製造方法
JP4644765B2 (ja) 銀拡散銅粉およびその製法並びにそれを用いた導電ペースト
Han et al. Preparation of highly conductive adhesives by insitu incorporation of silver nanoparticles

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022765383

Country of ref document: EP

Effective date: 20220915

ENP Entry into the national phase

Ref document number: 2022558451

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE