WO2022262376A1 - 一种陶瓷复合材料及其制备方法、壳体及电子设备 - Google Patents

一种陶瓷复合材料及其制备方法、壳体及电子设备 Download PDF

Info

Publication number
WO2022262376A1
WO2022262376A1 PCT/CN2022/085403 CN2022085403W WO2022262376A1 WO 2022262376 A1 WO2022262376 A1 WO 2022262376A1 CN 2022085403 W CN2022085403 W CN 2022085403W WO 2022262376 A1 WO2022262376 A1 WO 2022262376A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
ceramic
ceramic composite
metal oxide
ceramic particles
Prior art date
Application number
PCT/CN2022/085403
Other languages
English (en)
French (fr)
Inventor
陈奕君
胡梦
李聪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022262376A1 publication Critical patent/WO2022262376A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/20Polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • H05K5/0243Mechanical details of casings for decorative purposes

Definitions

  • the present application relates to the technical field of ceramic materials, in particular to a ceramic composite material, a preparation method thereof, a casing and electronic equipment.
  • casings such as frames or back covers are commonly made of plastic, glass and ceramics.
  • ceramics are considered as a material choice for high-end appearance structural parts due to their warm feel and high-gloss texture.
  • Ceramics are dense, extremely hard and fragile, and the cost of machining such as CNC is high, which makes pure ceramic materials unfavorable for application in electronic equipment.
  • there are some solutions to improve the above-mentioned defects when ceramic materials are applied to electronic equipment but there are few solutions for improving the appearance and color of ceramic materials when applied to electronic equipment.
  • Embodiments of the present application provide a ceramic composite material, a preparation method thereof, a casing, and an electronic device.
  • An embodiment of the present application provides a ceramic composite material, including ceramic particles and colored metal oxides, the metal oxide and the ceramic particles form a core with the ceramic particles as the core and the metal oxide as the shell shell structure.
  • An embodiment of the present application provides a casing, including the above-mentioned ceramic composite material.
  • An embodiment of the present application provides an electronic device, including the casing as described above.
  • the embodiment of the present application provides a preparation method of a ceramic composite material, comprising the following steps: mixing ceramic particles and a hydrolyzable metal compound solution corresponding to a metal element in a metal oxide, and stirring to obtain a suspension; the ceramic particles and the The mass ratio of the metal compound solution is such that: the mass ratio of the ceramic particles to the metal oxide is 1:(0.01-0.2); a hydrolysis catalyst is added to the suspension for hydrolysis and polycondensation reaction to form a coagulated gel; dry the gel at 80-200°C to obtain a precursor; heat-treat the precursor at a temperature not higher than 200°C to the temperature at which the ceramic particles are agglomerated, so that the ceramic A metal oxide is formed on the particle surface to form a core-shell structure with the ceramic particle as the core and the metal oxide as the shell to obtain a ceramic composite material.
  • An embodiment of the present application provides a method for preparing a shell, which includes the following steps: preparing the ceramic composite material according to the above-mentioned preparation method; blending the ceramic composite material with a polymer, wherein the ceramic The mass ratio of the ceramic particles in the composite material to the polymer is 1:(0.1-1); the shell is prepared from the blended powder.
  • Fig. 1 is a schematic diagram of the microstructure of a ceramic composite material provided in the specific embodiment of the present application;
  • Figure 2a is a microscopic schematic diagram of a material obtained by random blending of ceramic particles and metal oxides related to a specific embodiment of the present application;
  • Fig. 2b is a schematic diagram of the microstructure of the ceramic granular material related to the specific embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a housing provided in a specific embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another housing provided in a specific embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an electronic device provided in a specific embodiment of the present application.
  • Fig. 6 is a flow chart of a preparation method of a ceramic composite material provided in the specific embodiment of the present application.
  • FIG. 7 is a flow chart of a method for preparing a housing provided in a specific embodiment of the present application.
  • Fig. 8 is a flow chart of another shell manufacturing method provided in the specific embodiment of the present application.
  • Fig. 9 is a flow chart of another shell manufacturing method provided in the specific embodiment of the present application.
  • Fig. 10 is a microstructure diagram of the ceramic composite material in Example 1 in the specific embodiment of the present application under electron microscope scanning.
  • the electronic device described in the embodiment of the present application may be a mobile phone, a wearable device, a vehicle-mounted device, an augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) device, an e-reader, a tablet computer, a notebook computer, Ultra-mobile personal computer (ultra-mobile personal computer, UMPC), netbook, personal digital assistant (personal digital assistant, PDA) and other mobile terminals, can also be equipment such as camera, TV, IOT, the embodiment of the present application is specific to the electronic equipment Type does not impose any restrictions.
  • ceramic materials can be considered.
  • ceramic powder can be mixed with organic polymers.
  • the density and hardness of polymers are low, and when combined with ceramics, the density and processing difficulty of the entire system can be reduced, thereby improving the problems of long machining time, high cost, and low yield of pure ceramic materials.
  • the polymer has a low melting point and good fluidity, so that the material system composed of ceramics and polymers can be used to prepare complex and diverse three-dimensional structures by injection molding.
  • most of the available ceramic powder materials are white ceramic powder particles, resulting in a monotonous color of the shell after use.
  • the inventors of the present application tried to introduce other colored substances into the ceramic particles as pigments, thereby achieving the effect of colored ceramics without affecting the mechanical properties of the ceramic particles themselves, so as to ensure that the ceramic particles can still be colored. applied to electronic equipment.
  • the inventors of the present application found that if the pigment material is directly mixed into the ceramic powder at random, since the inorganic ceramic powder usually has a high refractive index, it will strongly scatter light, which will make the The color saturation of the mixed material is reduced (whitish). That is to say, the color effect of the obtained material and the imitation ceramic shell obtained after application is still not very satisfactory through random mixing.
  • the inventors of the present application further found that by selecting colored metal oxides as suitable pigments for introduction, and adjusting the combination of pigments and ceramic particles, the metal oxide pigments are preformed on the surface of ceramic particles to form a core-shell structure, which can achieve composite Good color effect of the material.
  • the metal oxide particles selectively absorb visible light, so that the overall composite material displays a certain color, presenting the texture of colored ceramics. That is to say, through the above improvements, the color of the pigment can be better introduced into the ceramic particles to achieve the effect of colored ceramics, and the fluctuation of the mechanical properties of the ceramic particles itself is less affected.
  • the application provides a ceramic composite material, including ceramic particles and metal oxides, the metal oxide is a metal oxide with a certain color; the metal oxide and the ceramic particles form a ceramic particle as the core, the The metal oxide is a core-shell structure of the shell.
  • the ceramic particles may be known and maturely used ceramic particles in the market, for example, may be one or more of ZrO2, Al2O3, SiO2.
  • the respective characteristics and advantages of various ceramic materials can be brought into play.
  • the metal oxide with a certain color can be one or more of CoAl2O4, BiVO4, CoZr4(PO4)6, Fe2O3.
  • CoAl2O4 is a blue metal oxide
  • BiVO4 is a yellow metal oxide
  • CoZr4(PO4)6 is a purple metal oxide
  • Fe2O3 is a red metal oxide.
  • the ceramic composite material has a core-shell structure with the ceramic particle as the core and the metal oxide as the shell.
  • metal oxides can be directly attached to the surface of ceramic particles to form a core-shell structure, for example, attached to the surface of ceramic particles in the form of scattered attachment, partial coating, half coating, full coating, etc., and the corresponding shell structure is It is a shell structure such as scattered shell, partial shell, half shell, and full shell.
  • Metal oxides can also be attached to the surface of ceramic particles indirectly through other components or structures.
  • the corresponding shell structure formed is a multilayer shell structure.
  • This application does not limit the specific structural form of the core-shell structure, as long as the metal oxide is the shell structure of the ceramic particles, the color of the metal oxide can be effectively introduced into the ceramic particles, so that the ceramic composite material has the effect of color and color .
  • Metal oxide pigments form a core-shell structure with ceramic particles in advance, which can avoid the aggregation of pigments during random mixing, and the color effect distribution of the ceramic composite material is relatively uniform.
  • the ceramic composite material of the present application is composed of two materials.
  • Metal oxide particles as pigments are introduced into the ceramic particle system to form a core-shell heterogeneous hybrid structure with the ceramic powder particles, in which the ceramic filler
  • the surface hardness and gloss of the composite material can be improved, and the pigment particles can selectively absorb visible light to make the overall composite material present a certain color (the presented color is strongly related to the color of the metal oxide). That is to say, the whole composite material not only has the hardness and gloss of the ceramic particle reinforcement material, but also has pigments that selectively absorb visible light to make the material present a specific color, so that it has the texture of colored ceramics, and the color distribution is relatively uniform.
  • the metal oxide is coated on the surface of the ceramic particles to form the above-mentioned core-shell structure.
  • the metal oxide is coated on the surface of the ceramic particles to form a continuous and complete shell layer, which can reduce the strong scattering of light by the ceramic particle body, thereby avoiding the impact on the color effect introduced by the oxide, and can reduce the color saturation and whitening phenomenon , the color effects (such as saturation, brightness) of ceramic composite materials are better.
  • FIG. 1 it is a schematic diagram of the microstructure of a ceramic composite material of the present application.
  • the metal oxide 100 with a certain color is coated on the surface of the ceramic particle 200 to form a core-shell structure with the ceramic particle as the core and the metal oxide as the shell.
  • Figure 2a shows a schematic diagram of the microstructure of the material obtained after random mixing of ceramic particles and metal oxide pigments. Metal oxides (indicated by smaller circles) are randomly dispersed in a system of ceramic particles (indicated by larger circles).
  • Figure 2b shows a schematic diagram of the microstructure of a single ceramic material. The circles in the figure show the microstructure of ceramic particles.
  • the mass ratio of the ceramic particles to the metal oxide is 1:(0.01-0.2).
  • the above-mentioned core-shell structure can be obtained by combining the sol-gel process, and the surface of the main ceramic particles can be more uniformly coated with a layer of metal oxide pigment with an appropriate ratio, and the color effect of the ceramic composite material is better.
  • Ceramic composite materials with this quality ratio have strong application possibilities. Specifically, by mixing the ceramic particles and the corresponding hydrolyzable metal compound solution in the metal oxide, a ceramic composite material with a core-shell structure is obtained after hydrolysis polycondensation and heat treatment, and the mass of the ceramic particles and the metal oxide The ratio is 1:(0.01 ⁇ 0.2).
  • the positively charged metal ions and the electronegative groups (generally hydroxyl groups) on the surface of the ceramic particles are attracted to each other to form a pre-coating structure.
  • the groups formed by metal ions and oxygen ions are oxidized to form metal oxide particles and deposit on the surface of ceramic particles.
  • the core-shell structure obtained through this process directly forms metal oxides during the sol-gel reaction process and then directly coats the surface of ceramic particles to form a core-shell structure, so that the metal oxide molecules and ceramic particles are more fully and closely contacted.
  • the mass ratio of the ceramic particles to the metal oxide is 1:(0.09-0.2), that is, the mass ratio (5-11):1, the color of the ceramic composite material, and the mechanical properties after application are both good. The follow-up will be compared and verified by experimental data.
  • the above-mentioned ceramic composite material also includes a polymer, wherein the mass ratio of the ceramic particles to the polymer in the ceramic composite material is 1:(0.1 ⁇ 1).
  • the hardness and density of the ceramic composite material can be improved, so that the mechanical properties of the ceramic composite material are more suitable for preparing electronic equipment casings.
  • the mass proportion of ceramic particles is low, the overall hardness of the component system will be low, which is not suitable for practical applications; if the mass proportion of ceramic particles is too high, the overall toughness of the component system will be reduced. Not conducive to the processing process.
  • the mechanical properties of the formed ceramic composite material are better.
  • the polymer can be one or more of PPS, PC, and PA.
  • Different polymers can make ceramic composites have different properties.
  • PPS polymer has a higher refractive index, which can make ceramic composites have high gloss
  • PA has better toughness, which can make ceramic composites have good resistance. impact performance.
  • the present application does not limit the specific type of polymer.
  • the ceramic composite material of the present application also includes a surface modifier grafted on the surface of the core-shell structure, the surface modifier is a surface with an organic segment that can interact with the polymer in the ceramic composite material Modifier, the mass of the surface modifier is 0.5-3% of the sum of the mass of ceramic particles and metal oxide.
  • the surface modifier can be selected from silane coupling agent, titanate coupling agent and the like.
  • the amount of surface modifier added is 0.5-3% of the sum of the mass of ceramic particles and metal oxides. If the amount of surface modifier added is too low, the surface modification will be incomplete, and if it is too high, it will cause multi-layer modifier molecules to deposit. And it is easy to form agglomeration and precipitation, so the addition of the surface modifier is 0.5-3% of the sum of the mass of ceramic particles and metal oxides, which can achieve a good modification effect.
  • the interfacial adhesion between the system composed of ceramic particles and metal oxides and the polymer can be strengthened, so that the components can be combined more tightly, and the subsequent application of the prepared shell can Excellent mechanical properties.
  • the surface modifier is a silane coupling agent with -NH2, and the corresponding polymer is PPS, so that the -NH2 in the coupling agent can form a hydrogen bond with the -SH in the PPS, and the two are closely combined.
  • the surface modifier is a silane coupling agent with amino groups, and the polymer is PC; or, the surface modifier is a silane coupling agent with epoxy groups, and the polymer is PA.
  • the coupling agent with a certain group forms a chemical bond with the group in the corresponding polymer to ensure that the surface-modified ceramic composite material is closely combined with the polymer interface.
  • the mass ratio of the ceramic particles, the metal oxide and the polymer in the ceramic composite material is (5-11):1:(2-8).
  • the mass ratio of the three components is within the above ratio range, so that the color effect of the ceramic composite material is better, and the mechanical properties of the shell after application, such as hardness and drop resistance, can better meet the application requirements.
  • the follow-up will be compared and verified by experimental data.
  • the present application also provides a casing, including the above-mentioned ceramic composite material.
  • the shell of the present application is made of the above-mentioned ceramic composite material, which has higher gloss, hardness and wear resistance.
  • the shell of the present application has a colorful color effect.
  • the pigments have been pre-dispersed on the surface of ceramic particles to form a core-shell structure, so the aggregation of pigments can be avoided, and the formed shell
  • the color distribution of the body is more uniform.
  • the shell of the present application has a color effect, and the color color is closely related to the color of the metal oxide pigment in the composite material, and the shell has the advantages of light weight, low cost, and good dielectric properties.
  • a housing of the present application includes a first housing part 101 and a second housing part 102 .
  • the first housing part 101 or the second housing part 102 comprises a ceramic composite material.
  • the first housing part 101 is made of a ceramic composite material
  • the second housing part 102 does not include a ceramic composite material (for example, is made of a common white ceramic material)
  • the first housing part 101 has a colored color, thereby It can be realized that the shell is composed of two different colors to achieve color splicing.
  • the second casing part 102 may also be made of ceramic composite material, which will not be repeated here.
  • both the first housing part 101 and the second housing part 102 include the above-mentioned ceramic composite material, and the color of the metal oxide of the ceramic composite material in the first housing part 101 is the same as that of the second housing part.
  • the metal oxides of the ceramic composite material in 102 have different colors, for example, one is red and the other is blue, so that a shell with a splicing effect of red and blue can be realized.
  • a housing of the present application includes an identification part 103 and a non-identification part 104.
  • the identification part 103 can be a part where logos such as Logos, letters, numbers, etc. are located. is the non-marking portion 104 .
  • One of the marking part 103 and the non-marking part 104 is made of a ceramic composite material, or both are made of a ceramic composite material, and the color of the metal oxide in the marking part 103 is the same as that of the metal oxide in the non-marking part 104.
  • the colors are different, so that the marking part 103 has a different color from the non-marking part 104, and the marking part of the housing can be highlighted from the color, which is convenient for constructing the marking of the housing.
  • the present application also provides an electronic device, which includes the casing as described above, so that the casing of the electronic device can present various color effects (such as blue, yellow, purple, red, etc.) while having a ceramic texture.
  • FIG. 5 it is a schematic structural diagram of the electronic equipment of the present application.
  • the electronic equipment includes: a housing 100, a main board (not shown in the figure) and a display screen 300.
  • the housing 100 is a shell with a color ceramic texture as described above. body.
  • the display screen 300 is connected to the housing 100 , an installation space is defined between the display screen 300 and the housing 100 , and the main board is arranged in the installation space and is electrically connected to the display screen 300 .
  • the present application also provides a preparation method of a ceramic composite material, through an improved sol - gel step, coating a layer of oxide pigment (such as CoAl 2 O 4 blue pigments, BiVO 4 yellow pigments, CoZr 4 (PO 4 ) 6 purple pigments, Fe 2 O 3 red pigments, etc.) to prepare ceramic composites with a core-shell structure.
  • oxide pigment such as CoAl 2 O 4 blue pigments, BiVO 4 yellow pigments, CoZr 4 (PO 4 ) 6 purple pigments, Fe 2 O 3 red pigments, etc.
  • the preparation method of ceramic composite material comprises the following steps:
  • the ceramic particles and the readily hydrolyzable metal compound solution of the corresponding pigment are mixed.
  • the positively charged metal ions in the system and the electronegative groups (such as hydroxyl groups) on the surface of the ceramic particles attract each other to form a pre-coated structure, which provides a framework for the subsequent polycondensation and heat treatment to form a core-shell structure.
  • the ceramic particles and the metal compound solution are mixed together, then in the subsequent process, sol and gel are directly formed on the surface of the ceramic particles, so that a core-shell structure with the ceramic particles as the core can be subsequently formed. Controlling the mass of ceramic particles and metal oxides within the range of 1:(0.01-0.2) can achieve uniform coating and better color effect after coating.
  • the hydrolyzable metal compound corresponding to the pigment is an inorganic salt and/or alkoxide of a corresponding metal element.
  • the corresponding salt and/or alkoxide solution of the metal element cobalt and aluminum can be selected in this step, such as aluminum sec-butoxide and nitric acid A mixed solution of cobalt.
  • the goal is to prepare a metal oxide BiVO corresponding to a yellow pigment as a shell structure, and in this step, a corresponding salt solution of metal elements Bi and V, such as a mixed solution of BiCl and VCl, can be selected.
  • the goal is to obtain the corresponding metal oxide CoZr 4 (PO 4 ) 6 as the shell structure of the purple pigment.
  • the corresponding salt solution of the metal elements cobalt Co and zirconium Zr can be selected, such as a mixture of CoCl 2 and ZrOCl 2 solution.
  • a salt solution corresponding to the metal element Fe such as FeCl 3 solution, can be selected in this step.
  • a hydrolysis catalyst is added to the suspension obtained in step S1, such as water, organic acids such as sulfuric acid and hydrochloric acid, or other hydrolysis catalysts that can promote the hydrolysis reaction of the above-mentioned metal compounds.
  • M represents the metal element (such as Co, Al, Bi, V, Zr, Fe) in the metal compound in step S1
  • R represents the hydrocarbon group
  • Y represents the anion of the salt solution
  • x and n represent positive integers respectively.
  • the active monomers generated by the hydrolysis reaction polymerize to form a sol, and then generate a gel with a certain spatial structure. Its polycondensation reaction is as follows, divided into two types: water loss and alcohol loss:
  • the gel formed after the hydrolysis and polycondensation reaction includes groups formed by metal elements and oxygen elements in the form of M-O-M, and the groups are formed on the surface of ceramic particles.
  • the gel is dried at a lower temperature (80-200° C.) to remove excess water and organic matter to obtain a precursor.
  • the surface of ceramic particles in the precursor is coated with a compound composed of metal elements and oxygen elements.
  • the compound is converted into an oxide pigment after a relatively high temperature heat treatment in a subsequent step.
  • S7 heat-treating the precursor at 200°C to no higher than the temperature at which the ceramic particles agglomerate to form metal oxides on the surface of the ceramic particles, forming the metal oxide with the ceramic particles as the core.
  • the core-shell structure of the oxide is the shell, and the ceramic composite material is made.
  • step S5 the precursor obtained in step S5 is further heat-treated, and the group network of MOM in the precursor is converted into metal oxide MO x under heat treatment, thereby forming metal oxide particles directly deposited on the core-shell coated on the surface of ceramic particles structure.
  • the function of heat treatment is to sinter and transform the groups in the precursor to form metal oxides.
  • the final metal oxide needs to be formed on the surface of the ceramic particles.
  • the temperature at which ceramic particles agglomerate is positively correlated with the particle size of ceramic particles. For example, when the particle size of ceramic particles is about 50nm, the temperature at which agglomeration occurs is about 400°C; when the particle size is 500nm, the temperature at which agglomeration occurs is at high At around 600°C.
  • the specific value of the temperature is not limited, and the basis is that the temperature is not higher than the agglomeration temperature of the ceramic particles.
  • a ceramic composite material with a core-shell structure is obtained.
  • the metal oxide can be generated by the step-by-step conversion process of the metal compound solution, and it is directly coated to form a core-shell structure on the surface of the ceramic particle.
  • the metal oxide presents a certain color, so that the pigment is introduced into the ceramic particles, so that the obtained product presents the color effect of colored ceramics.
  • synthesis methods can also be used to synthesize the above-mentioned core-shell hybrid structure, such as vapor deposition, electrospinning, solid-phase mixing and sintering, etc., which will not be detailed here.
  • the sol-gel step described above to obtain a core-shell structure is a preferred method compared to other methods in terms of product structure performance (coating uniformity), process cost, and suitability for mass production.
  • product structure performance coating uniformity
  • process cost for mass production.
  • physical/chemical vapor deposition is more expensive and more suitable for growing target materials on planar substrates.
  • electrospinning method oxide precursors and ceramic particles can be blended and then electrospun, but it is mainly used to synthesize fibrous materials, and the mass production capacity is limited.
  • the above-mentioned sol-gel procedure is a preferred preparation method for obtaining the ceramic composite material with the core-shell hybrid structure in this application in terms of product performance, cost, and actual mass production.
  • the casing can be continuously produced from the ceramic composite material.
  • a method for preparing a shell comprises the following steps:
  • P3 blending the ceramic composite material with a polymer, wherein the mass ratio of the ceramic particles in the ceramic composite material to the polymer is 1:(0.1 ⁇ 1).
  • the polymer and the ceramic composite material are mixed, and the two are blended.
  • the polymer can be selected from one or more of PPS, PC, PA, etc.
  • the blending method can choose dry or wet mechanical intermixing (such as ball milling, sand milling, etc.).
  • the proportion of ceramic and polymer added in the blending step is determined according to the filling amount of ceramic particles in the ceramic composite material, that is, the mass ratio of ceramic particles to polymer is 1-10. If the content of ceramic particles is low, the hardness of the mixed material system will be low; if the content of ceramic particles is high, the overall toughness of the mixed material system will be low, which is not conducive to the subsequent CNC processing process.
  • the ceramic composite material is also subjected to surface modification treatment.
  • the surface of the ceramic composite material is modified by a surface modifier, wherein the surface modifier is a surface modifier having an organic segment that can interact with the polymer.
  • the ceramic composite material (inorganic powder) is surface modified by a surface modifier to optimize the compatibility between the ceramic composite material and the polymer.
  • the ceramic composite material has a certain difference in molecular structure from the organic polymer.
  • the surface of the core-shell structure of the ceramic composite material is grafted with a surface modifier, which can strengthen the relationship between the inorganic powder and the polymer. interfacial adhesion between objects.
  • the surface modifier can be a coupling agent, such as a silane coupling agent, a titanate coupling agent, and the like.
  • a coupling agent such as a silane coupling agent, a titanate coupling agent, and the like.
  • dissolve the coupling agent in alcohol, or water, or alcohol-water mixed solvent then add the inorganic powder—the above-mentioned ceramic composite material, mix thoroughly and dry to obtain the modified inorganic powder body.
  • the amount of the surface modifier is 0.5-3% of the ceramic composite material. If the amount of the surface modifier is too low, the surface modification of the ceramic composite material will be incomplete. The deposition on the surface of the composite material is not easy to form agglomerated precipitates, so the amount of the surface modifier used is 0.5-3% of the mass of the ceramic composite material to achieve a better modification effect.
  • the modified surface of the ceramic composite material is grafted with a surface modifier, which can be connected with groups in the polymer.
  • step P3' the modified ceramic composite material is blended with the polymer to form a powder during blending in step P3. If there is no surface modification treatment, the prepared ceramic composite material is directly blended with the polymer to form a powder during blending in step P3.
  • P5 Prepare a shell from the blended powder.
  • step P5 may include the following steps:
  • P51 banburying and granulation: carry out banburying and granulation on the blended powder to obtain feed.
  • the blended polymer/ceramic composite material powder is loaded into an internal mixer, and mixed under negative pressure to obtain feed.
  • the mixing temperature is 200-350°C, which is higher than the melting point of the polymer and lower than its thermal decomposition temperature. Negative pressure is maintained during the banburying process, and the air pressure is less than 0.01MPa to prevent the polymer from being oxidized and to promote the discharge of gas generated by side reactions.
  • Injection molding Injection molding the feed obtained from banburying to obtain a polymer/ceramic composite body.
  • the feed obtained by banburying and granulation is put into the hopper of the injection molding machine, the injection molding temperature is 200-350°C, and the molding injection back pressure is 2-10MPa.
  • the specific value can be determined according to the injection molding conditions of the polymer. For example, when the polymer is PPS, it is preferably 4 to 5 MPa. It should be noted that the higher the injection pressure, the more it helps to form a dense green body, but the higher the pressure, the higher the requirements on the injection molding equipment and the higher the risk factor of operation, which in turn increases the cost of the preparation process.
  • warm isostatic pressing the body is subjected to warm isostatic pressing.
  • the green body is put into a sheath, the gas adsorbed on the surface of the green body and the internal space in the sheath is sucked out, vacuum-sealed and placed in a pressure vessel with a heating furnace for warm isostatic pressing.
  • the working temperature is 80-300°C, which needs to be higher than the glass transition temperature of the polymer, so that the polymer in the green body can soften at this temperature and densify under pressure, which helps to eliminate the pores in the system, and Enhance the interaction between inorganic powder and polymer.
  • the working pressure is 50-500MPa. When the pressure is low, it is difficult to fully compact the green body. When the pressure is too high, the requirements for equipment become higher and the risk factor of operation increases, thereby increasing the cost of the preparation process.
  • CNC machining performing CNC machining on the green body after the warm isostatic pressing treatment, to obtain the shell.
  • the surface of the green body is flattened by CNC machining or the required structure in the shell is machined by CNC, which is convenient for subsequent assembly to other components.
  • step P5 may also include the following steps:
  • polishing and polishing Grinding and polishing the surface after CNC processing, the roughness after mirror polishing can reach Ra 0.02-0.08, achieving a high-gloss ceramic texture.
  • Ra represents the arithmetic mean deviation of the contour, which is an index to characterize the roughness.
  • P56 Evaporated anti-fingerprint (Anti-fingerprint, AF) film: form a layer of anti-fingerprint layer on the polished surface, such as evaporation of a layer of perfluoropolyether anti-fingerprint coating, AF coating thickness of 5 ⁇ 20nm, water contact angle>105°, which makes the shell surface have excellent anti-fingerprint performance.
  • Anti-fingerprint, AF Evaporated anti-fingerprint
  • the casing of the present application is manufactured through the above-mentioned process, and the process is simple and controllable.
  • the prepared casing not only has a ceramic texture, but also has a color effect, and the color is relatively uniform and the color saturation is also good.
  • Example 1 The ceramic composite material is Al 2 O 3 -CoAl 2 O 4 , the shell is Al 2 O 3 -CoAl 2 O 4 -PA, and the mass ratio of the three components is 5:1:4. Concrete preparation process is as follows:
  • the silane coupling agent KH-550 Dissolving the silane coupling agent KH-550 in ethanol, then adding the Al 2 O 3 -CoAl 2 O 4 inorganic powder obtained above, mixing thoroughly and drying to obtain the surface-modified Al 2 O 3 - CoAl 2 O 4 inorganic powder.
  • the addition amount of the silane coupling agent is 1% of the mass of Al 2 O 3 —CoAl 2 O 4 .
  • the injection molding temperature is 320°C
  • the back pressure is 3MPa
  • Comparative example 1a a shell made of single Al 2 O 3 ceramic particles and polymer PA, wherein the mass ratio of Al 2 O 3 to PA is 6:4. Concrete preparation process is as follows:
  • the injection molding temperature is 320°C
  • the back pressure is 3MPa
  • Comparative example 1b After randomly blending Al 2 O 3 ceramic particles and metal oxide CoAl 2 O 4 , and then making a shell with polymer PA, the mass ratio of Al 2 O 3 , CoAl 2 O 4 to PA It is 5:1:4. Concrete preparation process is as follows:
  • the blended powder into the internal mixer, and carry out negative pressure internal mixing to obtain the feed.
  • the banburying temperature is 300°C, and the air pressure is less than 0.01MPa.
  • the injection molding temperature is 320°C
  • the back pressure is 3MPa
  • Example 1 The ceramic composite material obtained in Example 1 was observed with an electron microscope, and a microstructure diagram as shown in FIG. 10 was obtained. It can be seen from Figure 10 that in the microstructure of the composite material, the surface of the ceramic particles is evenly coated with metal oxide particles like bread crumbs, and the microstructure includes a core-shell structure, in which the metal oxide is the shell and the ceramic particles are the core.
  • the electron microscope microstructure diagrams of the composite materials in other examples 2-4 are similar to those shown in FIG. 10 , and will not be listed here.
  • Comparative Example 1a White 99.2, -0.8, -1.5 1H 80
  • Embodiment 5 Corresponding to Embodiment 1, the difference lies in the component materials.
  • the ceramic composite material is SiO 2 -BiVO 4
  • the shell is SiO 2 -BiVO 4 -PC
  • the mass ratio of the three components is 5:1:4.
  • the silane coupling agent KH-570 Dissolving the silane coupling agent KH-570 in ethanol, then adding the SiO 2 -BiVO 4 inorganic powder obtained above, mixing thoroughly and drying to obtain the surface-modified SiO 2 -BiVO 4 inorganic powder.
  • the added amount of the silane coupling agent is 0.8% of the mass of SiO 2 -BiVO 4 .
  • the injection molding temperature is 320°C
  • the back pressure is 3MPa
  • Embodiment 6 It is the same as most of the steps in Embodiment 5, the difference is: the proportioning of components.
  • the mass ratio of the three components in the SiO 2 -BiVO 4 -PC shell is 6:1:3. Since most of the steps are similar to those in Embodiment 5 above, they will not be repeated here.
  • Embodiment 7 Same as most of the steps in Embodiment 5, the difference lies in: the proportioning of components.
  • the mass ratio of the three components in the SiO 2 -BiVO 4 -PC shell is 7:1:2. Since most of the steps are similar to those in Embodiment 5 above, they will not be repeated here.
  • Embodiment 8 The same as most of the steps in Embodiment 5, the difference lies in: the proportioning of components.
  • the mass ratio of the three components in the SiO 2 -BiVO 4 -PC shell is 5.5:0.5:4. Since most of the steps are similar to those in Embodiment 5 above, they will not be repeated here.
  • Comparative Example 2a Corresponding to Comparative Example 1a, the shell is made of single SiO 2 ceramic particles and polymer PC, wherein the mass ratio of SiO 2 to PC is 6:4. Since the preparation process is similar to Comparative Example 1a, it will not be repeated here.
  • Comparative Example 2b Corresponding to Comparative Example 1b, the shell is made of SiO 2 ceramic particles and metal oxide BiVO 4 randomly blended with polymer PC, wherein the mass ratio of SiO 2 , BiVO 4 to PC is 5 :1:4. Since the preparation process is similar to Comparative Example 1b, it will not be repeated here.
  • Example 5 yellow 90.8, -4.4, 46.3 1H 70
  • Example 6 yellow 92.6, -4.2, 36.1 2H 60
  • Example 7 yellow 94.3, -3.5, 26.8 3H 55
  • Example 8 yellow 95.4, -3.0, 22.1 1H 70 Comparative Example 2a
  • White 99.1, -1.2, 1.1 1H 70 Comparative example 2b yellow (light) 97.1, -2.3, 13.2 1H 70
  • Embodiment 9 Corresponding to Embodiment 1, the difference lies in the component materials.
  • the ceramic composite material is ZrO 2 -CoZr 4 (PO 4 ) 6
  • the shell is ZrO 2 -CoZr 4 (PO 4 ) 6 -PA
  • the mass ratio of the three components is 5:1:4.
  • silane coupling agent KH-550 Dissolving silane coupling agent KH-550 in n-propanol, then adding ZrO 2 -CoZr 4 (PO 4 ) 6 inorganic powder obtained above, mixing thoroughly and drying to obtain surface-modified ZrO 2 - CoZr 4 (PO 4 ) 6 inorganic powder.
  • the added amount of the silane coupling agent is 2% of the mass of ZrO 2 —CoZr 4 (PO 4 ) 6 .
  • the injection molding temperature is 320°C
  • the back pressure is 3MPa
  • Embodiment 10 Most steps are the same as in Embodiment 9, the difference lies in: the proportioning of components.
  • the mass ratio of the three components in the ZrO 2 -CoZr 4 (PO 4 ) 6 -PA shell is 6:1:3. Since most of the steps are similar to those in Embodiment 9 above, they will not be repeated here.
  • Embodiment 11 Most of the steps are the same as in Embodiment 5, the difference lies in the proportioning of components.
  • the mass ratio of the three components in the ZrO 2 -CoZr 4 (PO 4 ) 6 -PA shell is 7:1:2. Since most of the steps are similar to those in Embodiment 9 above, they will not be repeated here.
  • Embodiment 12 Most of the steps are the same as in Embodiment 5, the difference lies in the proportioning of components.
  • the mass ratio of the three components in the ZrO 2 -CoZr 4 (PO 4 ) 6 -PA shell is 5.5:0.5:4. Since most of the steps are similar to those in Embodiment 9 above, they will not be repeated here.
  • Comparative Example 3a Corresponding to Comparative Example 1a, the shell is made of single ZrO 2 ceramic particles and polymer PA, wherein the mass ratio of ZrO 2 to PA is 6:4. Since the preparation process is similar to Comparative Example 1a, it will not be repeated here.
  • Comparative Example 3b Corresponding to Comparative Example 1b, after random blending of ZrO 2 ceramic particles and metal oxide CoZr 4 (PO 4 ) 6 , the shell is made of polymer PA, wherein ZrO 2 , CoZr 4 (PO 4 ) The mass ratio of 6 to PA is 5:1:4. Since the preparation process is similar to Comparative Example 1b, it will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

本申请提供了一种陶瓷复合材料及其制备方法,壳体及电子设备。陶瓷复合材料包括陶瓷颗粒和具有颜色的金属氧化物,两者形成以所述陶瓷颗粒为核、所述金属氧化物为壳的核壳结构。本申请的陶瓷复合材料具有彩色的颜色效果,且颜色分布较均匀。由该陶瓷复合材料构成的壳体可实现多种彩色颜色,色彩分布较均匀。

Description

一种陶瓷复合材料及其制备方法、壳体及电子设备 技术领域
本申请涉及陶瓷材料技术领域,尤其涉及一种陶瓷复合材料及其制备方法、壳体及电子设备。
背景技术
一般的电子设备中,例如手机中,边框或者后盖等壳体常见的有塑胶、玻璃和陶瓷等材质。其中,陶瓷由于其温润的手感和高光泽的质感,被认为是一种高端的外观结构件的材质选择。然而,由于纯陶瓷材料自身的特性,其缺点也较明显。陶瓷密度大、硬度极高且易碎、CNC等机械加工成本高,导致纯陶瓷材料不利于应用在电子设备中。目前已有一些方案来改善陶瓷材料应用于电子设备时存在的上述缺陷,但对于陶瓷材料应用于电子设备时的外观颜色方面的改善方案却较少。
发明内容
本申请实施例提供了一种陶瓷复合材料及其制备方法、壳体及电子设备。
本申请实施例提供一种陶瓷复合材料,包括陶瓷颗粒和具有颜色的金属氧化物,所述金属氧化物和所述陶瓷颗粒形成以所述陶瓷颗粒为核、所述金属氧化物为壳的核壳结构。
本申请实施例提供一种壳体,包括如上所述的陶瓷复合材料。
本申请实施例提供一种电子设备,包括如上所述的壳体。
本申请实施例提供一种陶瓷复合材料的制备方法,包括以下步骤:将陶瓷颗粒和金属氧化物中的金属元素对应的可水解的金属化合物溶液混合,搅拌得到悬浮液;所述陶瓷颗粒和所述金属化合物溶液的质量之比使得:所述陶瓷颗粒与所述金属氧化物的质量之比为1:(0.01~0.2);在所述悬浮液中加入水解催化剂,进行水解缩聚反应,形成凝胶;将所述凝胶在80~200℃下进行干燥处理,得到前驱体;将所述前驱体在200℃至不高于所述陶瓷颗粒发生团聚的温度下进行热处理,以在所述陶瓷颗粒表面形成金属氧化物,形成以所述陶瓷颗粒为核、所述金属氧化物为壳的核壳结构,制得陶瓷复合材料。
本申请实施例提供一种壳体的制备方法,包括以下步骤:根据如上所述的制备方法制得所述陶瓷复合材料;将所述陶瓷复合材料与聚合物进行共混,其中,所述陶瓷复合材料中的所述陶瓷颗粒与所述聚合物的质量之比为1:(0.1~1);由所述共混后的粉体制备壳体。
附图说明
图1为本申请具体实施方式提供的一种陶瓷复合材料的微观结构示意图;
图2a为本申请具体实施方式相关的陶瓷颗粒与金属氧化物随机共混得到的材料的微观示意图;
图2b为本申请具体实施方式相关的陶瓷颗粒材料的微观结构示意图;
图3为本申请具体实施方式提供的一种壳体的结构示意图;
图4为本申请具体实施方式提供的另一种壳体的结构示意图;
图5为本申请具体实施方式提供的一种电子设备的结构示意图;
图6为本申请具体实施方式提供的一种陶瓷复合材料的制备方法流程图;
图7为本申请具体实施方式提供的一种壳体的制备方法流程图;
图8为本申请具体实施方式提供的另一种壳体的制备方法流程图;
图9是本申请具体实施方式提供的再一种壳体的制备方法流程图;
图10是本申请具体实施方式中实施例1中的陶瓷复合材料在电镜扫描下的微观结构图。
具体实施方式
为了能够更加详尽地了解本申请实施例的特点与技术内容,下面结合附图对本申请实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
需要说明的是,下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂未注明生产厂商者,均为可以通过市场购买获得的常规产品。
本申请实施例所述的电子设备,可以是手机、可穿戴设备、车载设备、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、电子阅读器、平板电脑、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、个人数字助理(personal digital assistant,PDA)等移动终端,也可以是相机、电视、IOT等设备,本申请实施例对电子设备的具体类型不作任何限制。
对于电子设备的壳体,为实现陶瓷的质感,可考虑使用陶瓷材料。为克服纯陶瓷材料由于密度和硬度带来的加工不便的问题,可将陶瓷粉体与有机高分子聚合物进行混合。聚合物的密度和硬度较低,和陶瓷复合时可降低整个体系的密度和加工难度,从而改善纯陶瓷材料机械加工的时间长、成本高、良率低的问题。另外,聚合物的熔点低、流动性好,使得陶瓷和聚合物构成的材料体系可通过注塑成型制备复杂多样的三维结构。然而,在相关方案中,可使用的陶瓷粉体材料多为白色的陶瓷粉体颗粒,导致使用后制得的壳体的颜色较为单一。
本申请发明人在研究壳体如何实现彩色的过程中,尝试将其他有彩色颜色的物质作为颜料引入到陶瓷颗粒中,进而实现彩色陶瓷效果,同时不影响陶瓷颗粒本身的力学性能,确保仍然可应用到电子设备中。在尝试引入的研发过程中,本申请发明人发现,如果是将颜料物质直接随机混合到陶瓷粉体中,则由于无机陶瓷粉体通常具有较高的折射率,对光有强散射,会使得混合后的材料颜色饱和度降低(发白)。也即,通过随机混合的方式,得到的材料以及应用后得到的仿陶瓷壳体的颜色效果仍不十分理想。本申请发明人进一步发现,通过选择有颜色的金属氧化物作为合适引入的颜料,以及调节颜料与陶瓷颗粒的结合方式,将金属氧化物颜料预先形成在陶瓷颗粒表面形成核壳结构,可实现复合材料较好的颜色效果。该结构形式中,金属氧化物颗粒通过选择性吸收可见光,使复合材料整体显示一定的颜色,呈现彩色陶瓷的质感。也即通过上述改进,可较好地将颜料的颜色引入到陶瓷颗粒中,实现彩色陶瓷的效果,且对陶瓷颗粒本身的力学性能的波动影响较小。
本申请提供一种陶瓷复合材料,包括陶瓷颗粒和金属氧化物,金属氧化物为具有一定颜色的金属氧化物;所述金属氧化物和所述陶瓷颗粒形成以所述陶瓷颗粒为核、所述金属氧化物为壳的核壳结构。
其中,陶瓷颗粒可为已知市面上成熟使用的陶瓷颗粒,例如,可为ZrO2、Al2O3、SiO2中的一种或者多种。当为多种混合时,可发挥多种陶瓷材料各自的特性和优势。
具有一定颜色的金属氧化物可为CoAl2O4、BiVO4、CoZr4(PO4)6、Fe2O3中的一种或者多种。其中,CoAl2O4为呈蓝色的金属氧化物、BiVO4为呈黄色的金属氧化物、CoZr4(PO4)6为呈紫色的金属氧化物、Fe2O3为呈红色的金属氧化物。当为多种金属氧化物颜料同时存在时,可实现多种颜色混合后在陶瓷复合材料体系中形成新的颜色的效果。
陶瓷复合材料中具有以所述陶瓷颗粒为核、所述金属氧化物为壳的核壳结构。具体地,金属氧化物可直接附着在陶瓷颗粒的表面形成核壳结构,例如以零散附着、以局部包覆、半包覆、全包覆等形式附着在陶瓷颗粒表面,对应形成的壳结构则为零散壳、局部壳、半壳、全壳等壳结构形式。金属氧化物也可间接通过其它组分或者结构附着在陶瓷颗粒的表面,例如通过多层结构层叠的形式附着在陶瓷颗粒表面,层叠结构的最内层直接附着在陶瓷颗粒表面,最外层为金属氧化物,对应形成的壳结构则为多层壳结构。本申请对核壳结构的具体结构形式不做限定,只要金属氧化物为陶瓷颗粒的壳结构即可将金属氧化物的颜色有效地引入到陶瓷颗粒中,从而使陶瓷复合材料具有彩色颜色的效果。金属氧化物颜料预先与陶瓷颗粒形成核壳结构,可避免随机混合时颜料的聚集,则该陶瓷复合材料的颜色效果分布较为均匀。
综上,本申请的陶瓷复合材料,由两种材料复合而成,作为颜料的金属氧化物颗粒引入陶瓷颗粒体系中,与陶瓷粉体颗粒形成核壳这一异质杂化结构,其中陶瓷填料可以使复合材料表面硬度和光泽度较好,颜料颗粒通过选择性吸收可见光,使复合材料整体呈现一定的颜色(呈现的颜色与金属氧化物的颜色强相关)。也即,整个复合材料中既有陶瓷颗粒增强材料的硬度和光泽度,又有颜料选择性吸收可见 光使材料呈现特定彩色颜色,从而具有彩色陶瓷的质感,且颜色分布较均匀。
进一步地,金属氧化物包覆在陶瓷颗粒表面形成上述核壳结构。金属氧化物包覆在陶瓷颗粒表面形成连续完整的壳层,这样可以降低陶瓷颗粒本体对光的强散射,从而避免对氧化物引入的颜色效果造成影响,可减少颜色饱和度下降和发白现象,陶瓷复合材料的彩色效果(例如饱和度、亮度)均较优。
如图1所示,为本申请一种陶瓷复合材料的微观结构示意图。具有一定颜色的金属氧化物100包覆在陶瓷颗粒200的表面,形成以陶瓷颗粒为核、金属氧化物为壳的核壳结构。图2a所示为陶瓷颗粒与金属氧化物颜料随机混合后得到的材料的微观结构示意图。金属氧化物(由较小的圆形示意)随机分散在陶瓷颗粒(由较大的圆形示意)体系中。图2b所示为单一的陶瓷材料的微观结构示意图。图中圆形所示为陶瓷颗粒微观结构。通过对比图1和图2a~2b可知,本申请中通过核壳结构的形式融合两种组分,可使颜料预先较为紧密地包覆在陶瓷颗粒核结构的表面,进而避免陶瓷颗粒本体的光散射,充分发挥引入的金属氧化物颜料的彩色效果,使复合材料可实现较高的色彩饱和度,同时陶瓷颗粒的力学性能不受到较大影响。
进一步地,陶瓷颗粒与所述金属氧化物的质量之比为1:(0.01~0.2)。该质量之比下可通过结合溶胶凝胶工艺以得到上述核壳结构,且主体陶瓷颗粒表面可较为均匀地包覆一层比例合适的金属氧化物颜料,陶瓷复合材料的颜色效果较好。该质量之比下的陶瓷复合材料具有较强的应用可能性。具体地,通过将陶瓷颗粒和金属氧化物中的金属对应的可水解的金属化合物溶液混合,经水解缩聚和热处理后得到具有核壳结构的陶瓷复合材料,且其中陶瓷颗粒与金属氧化物的质量之比为1:(0.01~0.2)。通过将陶瓷颗粒与可水解的金属化合物搅拌混合,促使带正电的金属离子和陶瓷颗粒表面的电负性基团(一般为羟基)之间相互吸引,形成预包覆结构。通过水解缩聚和热处理后,金属离子与氧离子构成的基团氧化形成金属氧化物颗粒沉积在陶瓷颗粒表面。通过该过程制得的核壳结构,在溶胶凝胶反应过程中直接形成金属氧化物后直接包覆在陶瓷颗粒表面形成核壳结构,从而金属氧化物分子与陶瓷颗粒接触更充分紧密。通过溶胶凝胶制备时,如金属氧化物颜料含量偏高,则易出现金属氧化物彼此团聚,包覆均匀性性变差的问题;如含量偏低,包覆后形成的复合材料的颜色效果,例如饱和度、亮度等会不十分理想。因此,控制陶瓷颗粒与金属氧化物的质量在上述1:(0.01~0.2)范围内,可实现均匀包覆且包覆后颜色效果较好。优选地,陶瓷颗粒与金属氧化物的质量之比为1:(0.09~0.2),也即质量之比(5~11):1,陶瓷复合材料的颜色,应用后的力学性能均较好。后续将通过实验数据进行对比验证。
进一步地,上述的陶瓷复合材料中还包括聚合物,其中,陶瓷复合材料中陶瓷颗粒与聚合物的质量之比为1:(0.1~1)。通过添加合适比例的聚合物,可改善陶瓷复合材料的硬度和密度,使陶瓷复合材料的力学性能较适于制备电子设备壳体。添加聚合物时,如陶瓷颗粒的质量占比偏低,会使得组分体系整体的硬度较低,不适于实际应用;如陶瓷颗粒的质量占比过高,会降低组分体系整体的韧性,不利于加工过程。通过控制上述组分的配比,从而使得构成的陶瓷复合材料的力学性能较好。
其中,聚合物可为PPS、PC、PA中的一种或多种。不同的聚合物可使陶瓷复合材料具备不同的性能,例如PPS聚合物的折射率较高,可使陶瓷复合材料具有高光泽度;PA具有较好的韧性,可使陶瓷复合材料具有好的抗冲击性能。本申请对聚合物的具体种类不做限制。
进一步地,本申请的陶瓷复合材料中还包括接枝在所述核壳结构表面的表面改性剂,表面改性剂为具有可与陶瓷复合材料中聚合物产生相互作用的有机链段的表面改性剂,表面改性剂的质量为陶瓷颗粒与金属氧化物质量之和的0.5~3%。
其中,表面改性剂可以选择硅烷偶联剂、钛酸酯偶联剂等。表面改性剂加入量为陶瓷颗粒与金属氧化物质量之和的0.5~3%,如表面改性剂加入量偏低会使得表面改性不完全,偏高会造成多层改性剂分子沉积并易形成团聚沉淀,因此表面改性剂加入量在陶瓷颗粒与金属氧化物质量之和的0.5~3%,可达到较好的改性效果。通过表面改性剂改性,可使陶瓷颗粒与金属氧化物构成的体系与聚合物之间的界面粘附力较强,使各组分之间结合更紧密,后续应用制得的壳体的力学性能较优。
进一步地,表面改性剂为带有-NH2的硅烷偶联剂,相应地聚合物为PPS,这样偶联剂中的-NH2可与PPS中的-SH形成氢键,两者结合紧密。类似地,表面改性剂为带有氨基的硅烷偶联剂,聚合物为PC;或者,表面改性剂为带有环氧基的硅烷偶联剂,聚合物为PA。通过带有一定基团的偶联剂与相应的聚合物中的基团形成化学键连接,确保表面改性后的陶瓷复合材料与聚合物界面结合紧密。
进一步地,陶瓷复合材料中陶瓷颗粒、金属氧化物与聚合物的质量之比(5~11):1:(2~8)。三种组分的质量之比在上述比值范围内,使得陶瓷复合材料的颜色效果较好,且应用后制得的壳体的力学性能,例如硬度和抗摔性能较好地满足应用需求。后续将通过实验数据进行对比验证。
本申请还提供一种壳体,包括如上所述的陶瓷复合材料。对比纯塑料构成的壳体方案,本申请的壳体由上述陶瓷复合材料构成,具备更高的光泽度、硬度和耐磨性能。对比由整块陶瓷通过CNC加工成壳体方案,本申请的壳体具有彩色的颜色效果。对比陶瓷和颜料颗粒随机共混后再与聚合物共同构成的组分体系,本申请的壳体中,颜料已预先分散于陶瓷颗粒表面形成核壳结构,因此可避免颜料的聚集,构成的壳体的颜色分布更均匀。综上,本申请的壳体具有彩色颜色效果,彩色颜色与复合材料中的金属氧化物颜料的颜色紧密相关,且壳体具有轻质、低成本、介电性能好等优点。
进一步地,如图3所示,本申请的一种壳体包括第一壳体部101和第二壳体部102。一种情形下,第一壳体部101或者第二壳体部102包括陶瓷复合材料。具体地,当第一壳体部101由陶瓷复合材料构成,第二壳体部102不包括陶瓷复合材料(例如由普通的白色陶瓷材料构成)时,第一壳体部101具有彩色颜色,从而可实现壳体由两种不同的颜色构成,实现色彩的拼接。类似地,也可为第二壳体部102由陶瓷复合材料构成,在此不再赘述。另一种情形下,第一壳体部101和第二壳体部102均包括上述陶瓷复合材料,且第一壳体部101中的陶瓷复合材料的金属氧化物的颜色与第二壳体部102中的陶瓷复合材料的金属氧化物的颜色不同,例如一者为红色,一者为蓝色,从而可实现红蓝色拼接效果的壳体。
进一步地,如图4所示,本申请的一种壳体包括标识部103和非标识部104,标识部103可为Logo、字母、数字等标识所在的部分,相对地,无标识的部分即为非标识部104。标识部103和非标识部104中的一者由陶瓷复合材料构成,或者两者均由陶瓷复合材料构成,且标识部103中的金属氧化物的颜色与非标识部104中的金属氧化物的颜色不同,从而标识部103具有与非标识部104不同的颜色,进而可从颜色上突出显示壳体的标识部,方便构造壳体的标识。
本申请还提供一种电子设备,包括如上所述的壳体,从而电子设备壳体在具有陶瓷质感的同时可呈现多种彩色(例如蓝色、黄色、紫色、红色等)的颜色效果。如图5所示,为本申请电子设备的结构示意图,电子设备包括:壳体100、主板(图中未示出)和显示屏300,壳体100为如上所述的具有彩色陶瓷质感的壳体。显示屏300与壳体100相连,显示屏300与壳体100之间限定出安装空间,主板设在安装空间内且与显示屏300电连接。
本申请中还提供一种陶瓷复合材料的制备方法,通过改进的溶胶-凝胶步骤在主体陶瓷颗粒(例如ZrO 2、Al 2O 3、SiO 2等)表面包覆一层氧化物颜料(例如CoAl 2O 4蓝色颜料、BiVO 4黄色颜料、CoZr 4(PO 4) 6紫色颜料、Fe 2O 3红色颜料等),以制备出具有核壳结构的陶瓷复合材料。
具体地,如图6所示,陶瓷复合材料的制备方法包括以下步骤:
S1:将陶瓷颗粒和金属氧化物中金属元素对应的可水解的金属化合物溶液混合,搅拌得到悬浮液;其中,金属氧化物为具有颜色的金属氧化物,陶瓷颗粒和金属化合物溶液的质量之比使得:所述陶瓷颗粒与所述金属氧化物的质量之比为1:(0.01~0.2)。
该步骤中,将陶瓷颗粒和相应颜料的易于水解的金属化合物溶液混合。混合后,体系中带正电金属离子和陶瓷颗粒表面的电负性基团(例如羟基)之间相互吸引,形成预包覆结构,为后续缩聚、热处理后形成核-壳结构提供架构基础。本步骤中,陶瓷颗粒与金属化合物溶液一起共同混合,则后续处理过程中,溶胶、凝胶直接形成在陶瓷颗粒的表面,从而后续可形成陶瓷颗粒为核的核壳结构。控制陶瓷颗粒与金属氧化物的质量在1:(0.01~0.2)范围内,可实现均匀包覆且包覆后颜色效果较好。
进一步地,颜料对应的可水解的金属化合物为相应的金属元素的无机盐和/或醇盐。例如,目标是制得蓝色颜料相应的一金属氧化物CoAl 2O 4作为壳结构,该步骤中可选择金属元素钴、铝相应的盐和/或醇盐溶液,例如仲丁醇铝和硝酸钴的混合溶液。再例如,目标是制得黄色颜料相应的一金属氧化物BiVO 4作为壳结构,该步骤中可选择金属元素Bi、V相应的盐溶液,例如BiCl 3和VCl 3的混合溶液。再例如,目标是制得紫色颜料相应的金属氧化物CoZr 4(PO 4) 6作为壳结构,该步骤中可选择金属元素钴Co、锆Zr相应的盐溶液,例如CoCl 2和ZrOCl 2的混合溶液。再例如,目标是制得红色颜料相应金属氧化物Fe 2O 3作为壳结构,则该步骤中可选择金属元素Fe相应的盐溶液,例如FeCl 3溶液。
S3:在所述悬浮液中加入水解催化剂,进行水解缩聚反应,形成凝胶。
该步骤中,在步骤S1得到的悬浮液中加入水解催化剂,例如水,硫酸、盐酸等有机酸,或者其它可促使上述金属化合物发生水解反应的水解催化剂均可。
在所述悬浮液中加入水解催化剂后,进行水解反应生成活性单体。对于悬浮液中的金属化合物溶液为醇盐溶液时,其反应过程如下式(1)所示;对于悬浮液中的金属化合物溶液为盐溶液时,其反应过程如下式(2)所示:
M(OR) n+xH 2O→M(OH) x(OR) n-x+xROH        (1)
MY n+xH 2O→M(OH) x(Y) n-x+xHY      (2)
其中,M表示步骤S1中的金属化合物中的金属元素(例如Co、Al、Bi、V、Zr、Fe),R表示烃基,Y表示盐溶液的阴离子,x和n分别表示正整数。
水解反应生成的活性单体发生聚合,形成溶胶,进而生成具有一定空间结构的凝胶。其缩聚反应如下所示,分为失水和失醇两种:
-M-OH+HO-M-→-M-O-M-+H 2O【失水】
-M-OR+HO-M-→-M-O-M-+ROH【失醇】
经水解缩聚反应后形成的凝胶中包括金属元素与氧元素连接成的基团,以M-O-M的形式存在,且基团是形成在陶瓷颗粒表面。
S5:将所述凝胶在80~200℃下进行干燥处理,得到前驱体。
该步骤中,将凝胶在较低温度(80~200℃)下干燥以去除多余的水和有机物,得到前驱体。该前驱体中陶瓷颗粒表面包覆有由金属元素与氧元素构成的化合物。该化合物经后续步骤的相对高温的热处理后即转变成氧化物颜料。
S7:将所述前驱体在200℃至不高于所述陶瓷颗粒发生团聚的温度下进行热处理,以在所述陶瓷颗粒表面形成金属氧化物,形成以所述陶瓷颗粒为核、所述金属氧化物为壳的核壳结构,制得陶瓷复合材料。
该步骤中,将步骤S5得到的前驱体进一步热处理,前驱体中M-O-M的基团网络在热处理下转化为金属氧化物MO x,从而形成金属氧化物颗粒直接沉积包覆在陶瓷颗粒表面的核壳结构。
该步骤中,热处理的作用是使前驱体中的基团发生烧结转化形成金属氧化物,但由于体系中存在陶瓷颗粒,需要在陶瓷颗粒的表面形成最终的金属氧化物,因此热处理时需要在不高于所述陶瓷颗粒发生团聚的温度下进行。陶瓷颗粒发生团聚的温度与陶瓷颗粒的粒径大小成正相关关系,例如,陶瓷颗粒的粒径为50nm左右时,发生团聚的温度在400℃左右;粒径为500nm时,发生团聚的温度在高于600℃左右。本申请中不对温度的具体数值进行限制,以不高于陶瓷颗粒发生团聚的温度为依据即可。
综上,通过改进的溶胶凝胶步骤以在陶瓷颗粒表面直接沉积形成金属氧化物,得到具有核壳结构的陶瓷复合材料。通过溶剂-凝胶步骤,可由金属化合物溶液的逐步转化过程生成金属氧化物,且是直接包覆形成在陶瓷颗粒表面形成核壳结构。金属氧化物呈现一定彩色颜色,从而将颜料引入到陶瓷颗粒中,使得制得的产物呈现彩色陶瓷的颜色效果。
需说明的是,其他合成方式也可用于合成上述核壳杂化结构,如气相沉积、电纺丝、固相混合烧结等,在此不一一详述。上述描述的溶胶凝胶步骤得到核壳结构,从产物结构的性能(包覆均匀性)以及工艺成本、适于量产化方面来看是相对于其它方式的优选方式。例如,物理/化学气相沉积的成本较高,而且较适于是在平面基底上成长目标材料。电纺丝法中,可将氧化物前驱体和陶瓷颗粒共混后电纺出来,但主要用于合成纤维状材料,且量产能力有限。固相混合后直接原位烧结的方式中,由于是固相反应,其产物较难以做到成分和结构均匀化。综上,通过上述溶胶凝胶的步骤是一种从产物性能、成本、实际量产方面较为优选地获得本申请中具有核壳杂化结构的陶瓷复合材料的制备方式。
通过上述制备过程制得陶瓷复合材料后,可由陶瓷复合材料继续制得壳体。
如图7所示,一种壳体的制备方法包括以下步骤:
P1:根据如前所述的步骤制得陶瓷复合材料。
P3:将所述陶瓷复合材料与聚合物进行共混,其中,所述陶瓷复合材料中的所述陶瓷颗粒与所述聚合物的质量之比为1:(0.1~1)。
该步骤中,由聚合物和陶瓷复合材料进行混合,将二者进行共混。聚合物可以选PPS、PC、PA等中的一种或多种。共混方式可以选择干法或湿法机械互混(如球磨、砂磨等)。混合时,根据陶瓷复合材料中陶瓷颗粒的填充量来确定共混步骤中陶瓷和聚合物的加入量比例,即陶瓷颗粒与聚合物的质量之比为1~10。如陶瓷颗粒含量偏低,则混合后的材料体系的硬度较低;如陶瓷颗粒含量偏高,则混合后的材料体系的整体韧性会较低,不利于后续CNC加工过程。
优选地,在进行共混前,陶瓷复合材料还经过表面改性处理。如步骤P3’所示,通过表面改性剂对所述陶瓷复合材料进行表面改性,其中,表面改性剂为具有可与所述聚合物产生相互作用的有机链段的表面改性剂。
该步骤P3’中,通过表面改性剂对陶瓷复合材料(无机粉体)进行表面改性,以优化陶瓷复合材料与所述聚合物的相容性。陶瓷复合材料作为无机粉体,其与有机聚合物的分子结构有一定差别,通过表面改性后,陶瓷复合材料的核壳结构表面接枝有表面改性剂,从而可增强无机粉体与聚合物之间的界面粘附力。
具体地,表面改性剂可以选择偶联剂,例如硅烷偶联剂、钛酸酯偶联剂等。进行表面改性处理时:将偶联剂溶于醇、或水、或醇-水混合溶剂,随后加入无机粉体——上述陶瓷复合材料,充分混合后干燥,即得到改性后的无机粉体。其中,表面改性剂的量为陶瓷复合材料的0.5~3%,如表面改性剂加入量偏低会使得陶瓷复合材料表面改性不完全,偏高会造成多层改性剂分子在陶瓷复合材料表面的沉积并易形成团聚沉淀,因此表面改性剂的使用量在陶瓷复合材料质量的0.5~3%可达到较好的改性效果。改性处理后的陶瓷复合材料表面即接枝有表面改性剂,可与聚合物中的基团相互连接。
综上,如经过步骤P3’的表面改性处理,则步骤P3共混时将改性后的陶瓷复合材料与聚合物共混形成粉体。如不经表面改性处理,则步骤P3共混时直接将制得的陶瓷复合材料与聚合物共混后形成粉体。
P5:由所述共混后的粉体制备壳体。
具体地,如图8所示,步骤P5可包括以下步骤:
P51,密炼造粒:将所述共混后的粉体进行密炼造粒,得到喂料。
该步骤中,将共混后的聚合物/陶瓷复合材料粉体装入密炼机中,负压密炼得到喂料。密炼温度为200~350℃,该温度范围高于聚合物的熔点,低于其热分解温度。密炼过程保持负压状态,气压小于0.01MPa,以防止聚合物被氧化,并促进副反应生成的气体的排出。
P52,注塑成型:将密炼得到的喂料进行注塑成型,得到聚合物/陶瓷复合材料坯体。
该步骤中,将密炼造粒得到的喂料装入注塑机料斗内,注塑温度为200-350℃,成型的注塑背压为2~10MPa,具体数值可根据聚合物的注塑成型条件确定,例如当聚合物为PPS时,优选为4~5MPa。需说明的是,注塑压力越大越有助于形成致密性良好的坯体,但压力大对注塑成型设备的要求也高且会增加操作危险系数,进而增加制备工艺成本。
P53,温等静压:将所述坯体进行温等静压处理。
该步骤中,将坯体装入包套中,抽去吸附在坯体表面及内部空隙和包套内的气体,真空密封后置于有加热炉的压力容器中进行温等静压。工作温度为80~300℃,需高于聚合物的玻璃化转变温度,以使得坯体内的聚合物可以在该温度下发生软化并在压力下致密化,有助于消除体系内的气孔,并增强无机粉体和聚合物之间的作用力。工作压力为50~500MPa,压力偏低时难以充分压实坯体,压力过高时对设备要求变高且操作危险系数增大,进而增加制备工艺成本。
P54,CNC加工:对温等静压处理后坯体进行CNC加工,得到所述壳体。
该步骤中,对坯体表面进行CNC加工平整化或CNC加工出壳体中所需的结构,便于后续组装到其他组件上。
进一步地,如图9所示,在图8所示步骤基础上,步骤P5还可以包括以下步骤:
P55,抛光打磨:对CNC加工后的表面进行研磨抛光,镜面抛光后粗糙度可做到Ra为0.02~0.08,实现高光泽度的陶瓷质感。其中,Ra表示轮廓算术平均偏差,为一种表征粗糙度的指标。
P56,蒸镀抗指纹(Anti-fingerprint,AF)膜:在抛光打磨后的表面形成一层防指纹层,例如蒸镀一层全氟聚醚类的防指纹涂层,AF涂层厚度为5~20nm,水接触角>105°,使壳体表面具备优异的耐 指纹性能。
综上,本申请的壳体通过上述过程制得,工艺简单可控,制得的壳体在具有陶瓷质感的同时还具有彩色效果,且颜色较均匀,色彩饱和度也较好。
如下通过具体的实施例及数据进行描述说明。
实施例1:陶瓷复合材料为Al 2O 3-CoAl 2O 4,壳体为Al 2O 3-CoAl 2O 4-PA,三组分的质量之比为5:1:4。具体地制备过程如下:
1)、将Al 2O 3陶瓷颗粒与仲丁醇铝溶液、硝酸钴溶液混合,搅拌得到悬浮液。两者质量之比使得稍后得到的Al 2O 3与CoAl 2O 4的质量之比为5:1。在悬浮液中加入水(即水解催化剂),进行水解缩聚反应,形成凝胶。将凝胶在80℃下进行干燥处理,得到前驱体。将前驱体在500℃下进行热处理,得到具有由CoAl 2O 4包覆在Al 2O 3陶瓷颗粒表面的核壳结构的陶瓷复合材料。如下为描述方便,简写为Al 2O 3-CoAl 2O 4
2)、将硅烷偶联剂KH-550溶于乙醇中,随后加入上述得到的Al 2O 3-CoAl 2O 4无机粉体,充分混合后干燥,得到表面改性后的Al 2O 3-CoAl 2O 4无机粉体。其中,硅烷偶联剂的添加量为Al 2O 3-CoAl 2O 4质量的1%。
3)、将Al 2O 3-CoAl 2O 4与聚合物PA通过干法球磨进行共混,两者质量之比使得Al 2O 3与PA的质量之比为5:4。
4)、将共混后的聚合物/Al 2O 3-CoAl 2O 4共混粉体装入密炼机中,负压密炼得到喂料。密炼温度为300℃,气压小于0.01MPa。
5)、将密炼得到的喂料装入注塑机料斗内,注塑温度为320℃,背压为3MPa,注塑成聚合物/陶瓷复合材料坯体。
6)、将坯体装入包套中,抽去吸附在坯体表面及内部空隙和包套内的气体,真空密封后置于有加热炉的压力容器中进行温等静压。工作温度为120℃,工作压力为100MPa。
7)对坯体进行CNC加工,制得壳体。如下为描述方便,简写为Al 2O 3-CoAl 2O 4-PA壳体。
实施例2:
实施例2与实施例1中大部分步骤相同,不同之处在于:组分的配比。实施例2中,Al 2O 3-CoAl 2O 4-PA壳体中的三组分的质量之比为6:1:3。因大部分步骤内容与上述实施例1相似,在此不再重复赘述。
实施例3:
实施例3与实施例1中大部分步骤相同,不同之处在于:组分的配比。实施例3中,Al 2O 3-CoAl 2O 4-PA壳体中的三组分的质量之比为7:1:2。因大部分步骤内容与上述实施例1相似,在此不再重复赘述。
实施例4:
实施例4与实施例1中大部分步骤相同,不同之处在于:组分的配比。实施例4中,Al 2O 3-CoAl 2O 4-PA壳体中的三组分的质量之比为5.5:0.5:4。因大部分步骤内容与上述实施例1相似,在此不再重复赘述。
对比例1a:由单一Al 2O 3陶瓷颗粒与聚合物PA制成壳体,其中Al 2O 3与PA的质量之比为6:4。具体的制备过程如下:
1)、将Al 2O 3陶瓷颗粒与聚合物PA按质量比6:4,通过干法球磨进行共混。
2)、将共混后的聚合物/Al 2O 3粉体装入密炼机中,负压密炼得到喂料。密炼温度为300℃,气压小于0.01MPa。
3)、将密炼得到的喂料装入注塑机料斗内,注塑温度为320℃,背压为3MPa,注塑成聚合物/陶瓷材料坯体。
4)、将坯体装入包套中,抽去吸附在坯体表面及内部空隙和包套内的气体,真空密封后置于有加热炉的压力容器中进行温等静压。工作温度为120℃,工作压力为100MPa。
5)对坯体进行CNC加工,制得壳体。如下为描述方便,简写为Al 2O 3-PA壳体。
对比例1b:由Al 2O 3陶瓷颗粒与金属氧化物CoAl 2O 4随机共混后,再与聚合物PA制成壳体,其中Al 2O 3、CoAl 2O 4与PA的质量之比为5:1:4。具体的制备过程如下:
1)、将Al 2O 3陶瓷颗粒与金属氧化物CoAl 2O 4按质量比5:1随机共混。
2)、将随机共混合的粉体与聚合物PA按三种组分质量比为5:1:4,通过干法球磨进行共混。
3)、将共混后的粉体装入密炼机中,负压密炼得到喂料。密炼温度为300℃,气压小于0.01MPa。
4)、将密炼得到的喂料装入注塑机料斗内,注塑温度为320℃,背压为3MPa,注塑成聚合物/陶瓷材料坯体。
5)、将坯体装入包套中,抽去吸附在坯体表面及内部空隙和包套内的气体,真空密封后置于有加热炉的压力容器中进行温等静压。工作温度为120℃,工作压力为100MPa。
6)对坯体进行CNC加工,制得壳体。如下为描述方便,简写为Al 2O 3-CoAl 2O 4(随机共混)-PA壳体。
对实施例1得到的陶瓷复合材料进行电镜观察,得到如图10所示的微观结构图。从图10可得到,复合材料的微观结构中,陶瓷颗粒表面均匀包覆有如面包碎般的金属氧化物颗粒,微观结构中包括核壳结构,其中,金属氧化物为壳,陶瓷颗粒为核。其余实施例2~4中的复合材料的电镜微观结构图与图10近似,在此不再一一列举。
对实施例1~4以及对比例1a、1b中的壳体进行颜色、力学性能方面的测试。颜色测试时,通过测试样品的可见光反射光谱测得L、a、b颜色值。铅笔硬度测试标准:GB/T 6739-1996。落球冲击试验测试标准:样品为150*73*0.8mm的平片;平片样品支撑于治具上(四边各有3mm支撑,中部悬空),使用32g的不锈钢球从一定高度自由落下至待测样品表面,样品四角和中心共五个点,每个点测5次,直至破碎。测试后,得到如下表1所示的数据。
表1
  肉眼观察颜色 L、a、b颜色通道数值 铅笔硬度 落球高度(cm)
实施例1 蓝色 75.2,-8.2,-14.8 1H 80
实施例2 蓝色 80.0,-6.4,-12.4 2H 70
实施例3 蓝色 84.7,-4.8,-9.5 3H 60
实施例4 蓝色 87.7,-4.3,-7.0 1H 80
对比例1a 白色 99.2,-0.8,-1.5 1H 80
对比例1b 蓝色(偏淡) 92.7,-2.8,-4.3 1H 80
比较实施例1~4与对比例1a、1b的颜色表现,可得到实施例1~4中Al 2O 3-CoAl 2O 4-PA壳体可呈现蓝色的颜色效果。而对比例1a中单一Al 2O 3陶瓷颗粒作为填料的壳体呈白色,无法呈现彩色效果;对比例1b中Al 2O 3与CoAl 2O 4随机共混作为填料的壳体呈蓝色(偏淡)。从Lab颜色数值可得到:实施例的壳体中L较小、ab值更接近蓝色(对蓝色而言,b值的变化影响更大),颜色饱和度较高。而对比例中1b中,L较大、ab值更接近白色,颜色饱和度较低,有发白现象。
比较实施例1~4和对比例1a、1b的力学性能,可得到实施例1~4中的壳体引入金属氧(CoAl 2O 4) 颜料后,对硬度和落球高度(抗冲击性能)的波动影响较小。硬度在1~3H,落球高度在60~80的范围,力学性能相似。虽然部分实施例中落球高度的数值相比对比例有所下降(抗冲击性能有些微下降),但仍然可满足使用需求。常规的电子设备壳体对应的落球高度在50~70范围。
实施例5:与实施例1对应,不同之处在于组分材料。本实施例中陶瓷复合材料为SiO 2-BiVO 4,壳体为SiO 2-BiVO 4-PC,三组分的质量之比为5:1:4。
1)、将SiO 2陶瓷颗粒与BiCl 3溶液、VCl 3溶液混合,搅拌得到悬浮液。两者质量之比使得稍后得到的SiO 2与BiVO 4的质量之比为5:1。在悬浮液中加入水(即水解催化剂),进行水解缩聚反应,形成凝胶。将凝胶在180℃下进行干燥处理,得到前驱体。将前驱体在400℃下进行热处理,得到具有由BiVO 4包覆在SiO 2陶瓷颗粒表面的核壳结构的陶瓷复合材料。如下为描述方便,简写为SiO 2-BiVO 4
2)、将硅烷偶联剂KH-570溶于乙醇中,随后加入上述得到的SiO 2-BiVO 4无机粉体,充分混合后干燥,得到表面改性后的SiO 2-BiVO 4无机粉体。其中,硅烷偶联剂的添加量为SiO 2-BiVO 4质量的0.8%。
3)、将SiO 2-BiVO 4与聚合物PC通过干法球磨进行共混,两者质量之比使得SiO 2与PC的质量之比为5:4。
4)、将共混后的聚合物/SiO 2-BiVO 4共混粉体装入密炼机中,负压密炼得到喂料。密炼温度为300℃,气压小于0.01MPa。
5)、将密炼得到的喂料装入注塑机料斗内,注塑温度为320℃,背压为3MPa,注塑成聚合物/陶瓷复合材料坯体。
6)、将坯体装入包套中,抽去吸附在坯体表面及内部空隙和包套内的气体,真空密封后置于有加热炉的压力容器中进行温等静压。工作温度为120℃,工作压力为100MPa。
7)、对坯体进行CNC加工,制得壳体。如下为描述方便,简写为SiO 2-BiVO 4-PC壳体。
实施例6:与实施例5中大部分步骤相同,不同之处在于:组分的配比。本实施例中,SiO 2-BiVO 4-PC壳体中的三组分的质量之比为6:1:3。因大部分步骤内容与上述实施例5相似,在此不再重复赘述。
实施例7:与实施例5中大部分步骤相同,不同之处在于:组分的配比。本实施例中,SiO 2-BiVO 4-PC壳体中的三组分的质量之比为7:1:2。因大部分步骤内容与上述实施例5相似,在此不再重复赘述。
实施例8:与实施例5中大部分步骤相同,不同之处在于:组分的配比。本实施例中,SiO 2-BiVO 4-PC壳体中的三组分的质量之比为5.5:0.5:4。因大部分步骤内容与上述实施例5相似,在此不再重复赘述。
对比例2a:与对比例1a对应,由单一SiO 2陶瓷颗粒与聚合物PC制成壳体,其中SiO 2与PC的质量之比为6:4。因制备过程与对比例1a相似,在此不再重复赘述。
对比例2b:与对比例1b对应,由SiO 2陶瓷颗粒与金属氧化物BiVO 4随机共混后,再与聚合物PC制成壳体,其中SiO 2、BiVO 4与PC的质量之比为5:1:4。因制备过程与对比例1b相似,在此不再重复赘述。
对实施例5~8得到的陶瓷复合材料进行电镜观察,其微观结构图与实施例1所示的微观结构图10近似,在此不再一一列举。
对实施例5~8以及对比例2a、2b中的壳体进行颜色、力学性能方面的测试。测试标准与前述实施例1~4中类似,得到如下表2所示的数据。
表2
  肉眼观察颜色 L、a、b颜色通道数值 铅笔硬度 落球高度(cm)
实施例5 黄色 90.8,-4.4,46.3 1H 70
实施例6 黄色 92.6,-4.2,36.1 2H 60
实施例7 黄色 94.3,-3.5,26.8 3H 55
实施例8 黄色 95.4,-3.0,22.1 1H 70
对比例2a 白色 99.1,-1.2,1.1 1H 70
对比例2b 黄色(偏淡) 97.1,-2.3,13.2 1H 70
比较实施例5~8与对比例2a、2b的颜色表现,可得到实施例5~8中SiO 2-BiVO 4-PC壳体可呈现黄色的颜色效果,且色彩饱和度较高(L较小、ab值更接近黄色)。比较实施例5~8与对比例2a、2b的力学性能数据,可得到实施例5~8中SiO 2-BiVO 4-PC壳体中引入金属氧化物颜料后对力学性能的波动影响较小,力学性能相似,仍可满足使用需求。
实施例9:与实施例1对应,不同之处在于组分材料。本实施例中陶瓷复合材料为ZrO 2-CoZr 4(PO 4) 6,壳体为ZrO 2-CoZr 4(PO 4) 6-PA,三组分的质量之比为5:1:4。
1)、将ZrO 2陶瓷颗粒与CoCl 2溶液、ZrOCl 2溶液混合,搅拌得到悬浮液。两者质量之比使得稍后得到的ZrO 2与CoZr 4(PO 4) 6的质量之比为5:1。在悬浮液中加入磷酸溶液(即水解催化剂),进行水解缩聚反应,形成凝胶。将凝胶在60℃下进行干燥处理,得到前驱体。将前驱体在800℃下进行热处理,得到具有由CoZr 4(PO 4) 6包覆在ZrO 2陶瓷颗粒表面的核壳结构的陶瓷复合材料。如下为描述方便,简写为ZrO 2-CoZr 4(PO 4) 6
2)、将硅烷偶联剂KH-550溶于正丙醇中,随后加入上述得到的ZrO 2-CoZr 4(PO 4) 6无机粉体,充分混合后干燥,得到表面改性后的ZrO 2-CoZr 4(PO 4) 6无机粉体。其中,硅烷偶联剂的添加量为ZrO 2-CoZr 4(PO 4) 6质量的2%。
3)、将ZrO 2-CoZr 4(PO 4) 6与聚合物PA通过干法球磨进行共混,两者质量之比使得ZrO 2与PA的质量之比为5:4。
4)、将共混后的聚合物/ZrO 2-CoZr 4(PO 4) 6共混粉体装入密炼机中,负压密炼得到喂料。密炼温度为300℃,气压小于0.01MPa。
5)、将密炼得到的喂料装入注塑机料斗内,注塑温度为320℃,背压为3MPa,注塑成聚合物/陶瓷复合材料坯体。
6)、将坯体装入包套中,抽去吸附在坯体表面及内部空隙和包套内的气体,真空密封后置于有加热炉的压力容器中进行温等静压。工作温度为120℃,工作压力为100MPa。
7)对坯体进行CNC加工,制得壳体。如下为描述方便,简写为ZrO 2-CoZr 4(PO 4) 6-PA壳体。
实施例10:与实施例9中大部分步骤相同,不同之处在于:组分的配比。本实施例中,ZrO 2-CoZr 4(PO 4) 6-PA壳体中的三组分的质量之比为6:1:3。因大部分步骤内容与上述实施例9相似,在此不再重复赘述。
实施例11:与实施例5中大部分步骤相同,不同之处在于:组分的配比。本实施例中,ZrO 2-CoZr 4(PO 4) 6-PA壳体中的三组分的质量之比为7:1:2。因大部分步骤内容与上述实施例9相似,在此不再重复赘述。
实施例12:与实施例5中大部分步骤相同,不同之处在于:组分的配比。本实施例中,ZrO 2-CoZr 4(PO 4) 6-PA壳体中的三组分的质量之比为5.5:0.5:4。因大部分步骤内容与上述实施例9相似,在此不再重复赘述。
对比例3a:与对比例1a对应,由单一ZrO 2陶瓷颗粒与聚合物PA制成壳体,其中ZrO 2与PA的质量之比为6:4。因制备过程与对比例1a相似,在此不再重复赘述。
对比例3b:与对比例1b对应,由ZrO 2陶瓷颗粒与金属氧化物CoZr 4(PO 4) 6随机共混后,再与聚合物PA制成壳体,其中ZrO 2、CoZr 4(PO 4) 6与PA的质量之比为5:1:4。因制备过程与对比例1b相似,在此不再重复赘述。
对实施例9~12得到的陶瓷复合材料进行电镜观察,其微观结构图与实施例1所示的微观结构图10近似,在此不再一一列举。
对实施例9~12以及对比例3a、3b中的壳体进行颜色、力学性能方面的测试。测试标准与前述实施例1~4中类似,得到如下表3所示的数据。
表3
  肉眼观察颜色 L、a、b颜色通道数值 铅笔硬度 落球高度(cm)
实施例9 紫色 56.8,7.9,-31.1 1H 80
实施例10 紫色 66.2,5.1,-24.1 2H 70
实施例11 紫色 75.0,3.5,-17.7 3H 60
实施例12 紫色 79.3,2.4,-14.5 1H 80
对比例3a 白色 99.2,0.1,0.8 1H 80
对比例3b 紫色(偏淡) 87.4,1.0,-8.5 1H 80
比较实施例9~12与对比例3a、3b的颜色表现,可得到实施例9~12中ZrO 2-CoZr 4(PO 4) 6-PA壳体可呈现紫色的颜色效果,且色彩饱和度较高(L值较小,ab值更接近紫色)。比较实施例9~12与对比例3a、3b的力学性能数据,可得到实施例9~12中ZrO 2-CoZr 4(PO 4) 6-PA壳体中引入金属氧化物颜料后对力学性能的波动影响较小,力学性能相似,仍可满足使用需求。
需要说明的是:在本申请的描述中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本申请中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。在不冲突的情况下,本领域的技术人员可以将本申请中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上内容是结合具体实施方式对本申请所作的进一步详细说明,并不用以限制本发明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下做出若干替代或明显变型,而且性能或用途相同,都应当视为属于本申请的保护范围。

Claims (20)

  1. 一种陶瓷复合材料,所述陶瓷复合材料包括陶瓷颗粒和具有颜色的金属氧化物,所述金属氧化物和所述陶瓷颗粒形成以所述陶瓷颗粒为核、所述金属氧化物为壳的核壳结构。
  2. 根据权利要求1所述的陶瓷复合材料,其中,所述金属氧化物包覆在所述陶瓷颗粒表面形成所述核壳结构。
  3. 根据权利要求1所述的陶瓷复合材料,其中,所述陶瓷颗粒与所述金属氧化物的质量之比为1:(0.01~0.2)。
  4. 根据权利要求3所述的陶瓷复合材料,其中,所述陶瓷颗粒与所述金属氧化物的质量之比为1:(0.09~0.2)。
  5. 根据权利要求1所述的陶瓷复合材料,其中,所述陶瓷颗粒为ZrO 2、Al 2O 3、SiO 2中的一种或者多种;所述金属氧化物为CoAl 2O 4、BiVO 4、CoZr 4(PO 4) 6、Fe 2O 3中的一种或者多种;或者,所述陶瓷颗粒为Al 2O 3,所述金属氧化物为CoAl 2O 4;或者,所述陶瓷颗粒为SiO 2、所述金属氧化物为BiVO 4;或者,所述陶瓷颗粒为ZrO 2、所述金属氧化物为CoZr 4(PO 4) 6
  6. 根据权利要求1所述的陶瓷复合材料,其中,所述陶瓷复合材料还包括聚合物,所述陶瓷颗粒与所述聚合物的质量之比为1:(0.1~1)。
  7. 根据权利要求6所述的陶瓷复合材料,其中,所述陶瓷复合材料还包括接枝在所述核壳结构表面的表面改性剂,所述表面改性剂为具有可与所述聚合物产生相互作用的有机链段的表面改性剂,所述表面改性剂的质量为所述陶瓷颗粒与所述金属氧化物质量之和的0.5~3%。
  8. 根据权利要求7所述的陶瓷复合材料,其中,所述表面改性剂为带有-NH2的硅烷偶联剂,所述聚合物为PPS;或者,所述表面改性剂为带有氨基的硅烷偶联剂,所述聚合物为PC;或者,所述表面改性剂为带有环氧基的硅烷偶联剂,所述聚合物为PA。
  9. 根据权利要求6所述的陶瓷复合材料,其中,所述陶瓷颗粒、所述金属氧化物与所述聚合物的质量之比(5~11):1:(2~8)。
  10. 根据权利要求6所述的陶瓷复合材料,其中,所述陶瓷复合材料包括Al 2O 3、CoAl 2O 4和PA,三者质量之比为(5~11):1:(2~8);或者,所述陶瓷复合材料包括SiO 2、BiVO 4和PC,三者质量之比为(5~11):1:(2~8);或者,所述陶瓷复合材料包括ZrO 2、CoZr 4(PO 4) 6和PA,三者质量之比为(5~11):1:(2~8)。
  11. 一种壳体,包括如权利要求1~10任一项所述的陶瓷复合材料。
  12. 根据权利要求11所述的壳体,其中,包括第一壳体部和第二壳体部,所述第一壳体部和所述第二壳体部中的一者包括所述陶瓷复合材料;或者,所述第一壳体部和所述第二壳体部均包括所述陶瓷复合材料,所述第一壳体部中的金属氧化物的颜色与所述第二壳体部中的金属氧化物的颜色不同。
  13. 根据权利要求12所述的壳体,其中,所述第一壳体部为所述壳体的标识部,所述第二壳体部为所述壳体的非标识部。
  14. 一种电子设备,包括如权利要求11~13任一项所述的壳体。
  15. 一种陶瓷复合材料的制备方法,包括以下步骤:
    将陶瓷颗粒和具有颜色的金属氧化物中的金属元素对应的可水解的金属化合物溶液混合,搅拌得到悬浮液;所述陶瓷颗粒和所述金属化合物溶液的质量之比使得:所述陶瓷颗粒与所述金属氧化物的质量之比为1:(0.01~0.2);
    在所述悬浮液中加入水解催化剂,进行水解缩聚反应,形成凝胶;
    将所述凝胶在80~200℃下进行干燥处理,得到前驱体;
    将所述前驱体在200℃至不高于所述陶瓷颗粒发生团聚的温度下进行热处理,以在所述陶瓷颗粒表面形成金属氧化物,形成以所述陶瓷颗粒为核、所述金属氧化物为壳的核壳结构,制得陶瓷复合材料。
  16. 根据权利要求15所述的制备方法,其中,所述金属化合物为金属元素的无机盐和/或醇盐。
  17. 一种壳体的制备方法,包括以下步骤:
    根据如权利要求15~16任一项所述的制备方法制得所述陶瓷复合材料;
    将所述陶瓷复合材料与聚合物进行共混,其中,所述陶瓷复合材料中所述陶瓷颗粒与所述聚合物的质量之比为1:(0.1~1);
    由所述共混后的粉体制备壳体。
  18. 根据权利要求17所述的制备方法,其中,在共混前,还包括通过表面改性剂对所述陶瓷复合材料进行表面改性的步骤,所述表面改性剂为具有可与所述聚合物产生相互作用的有机链段的表面改性剂;其中,所述表面改性剂的添加量为所述陶瓷颗粒与所述金属氧化物质量之和的0.5~3%。
  19. 根据权利要求17所述的制备方法,其中,所述由所述共混后的粉体制备壳体的步骤,包括:
    将所述共混后的粉体进行密炼造粒,得到喂料;
    将密炼得到的喂料进行注塑成型,得到坯体;
    将所述坯体进行温等静压处理;
    对温等静压处理后的坯体进行CNC加工,得到所述壳体。
  20. 根据权利要求19所述的制备方法,其中,在CNC加工后,还包括对CNC加工后的表面进行抛光打磨;所述制备方法还包括:在抛光打磨后的表面形成一层防指纹层。
PCT/CN2022/085403 2021-06-18 2022-04-06 一种陶瓷复合材料及其制备方法、壳体及电子设备 WO2022262376A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110682970.4 2021-06-18
CN202110682970.4A CN113402203B (zh) 2021-06-18 2021-06-18 一种陶瓷复合材料及其制备方法、壳体及电子设备

Publications (1)

Publication Number Publication Date
WO2022262376A1 true WO2022262376A1 (zh) 2022-12-22

Family

ID=77681775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085403 WO2022262376A1 (zh) 2021-06-18 2022-04-06 一种陶瓷复合材料及其制备方法、壳体及电子设备

Country Status (2)

Country Link
CN (1) CN113402203B (zh)
WO (1) WO2022262376A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113402203B (zh) * 2021-06-18 2022-11-11 Oppo广东移动通信有限公司 一种陶瓷复合材料及其制备方法、壳体及电子设备
CN115466124B (zh) * 2022-09-26 2023-06-06 中国科学院上海硅酸盐研究所 一种橙色系/黄色系氮化硅陶瓷及其制备方法和应用
CN116835973B (zh) * 2023-06-16 2024-06-04 华中科技大学 一种氧化铋包覆氧化锌粉体及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558605A (ja) * 1991-08-29 1993-03-09 Mitsubishi Materials Corp セラミツク複合粉体の製造方法
CN101712784A (zh) * 2009-10-29 2010-05-26 西安交通大学 一种核壳结构填料/聚合物基复合材料及其制备方法
CN109206841A (zh) * 2018-02-26 2019-01-15 大连疆宇新材料科技有限公司 一种高强度耐磨芳香族复合材料及其制备方法和应用
CN112500159A (zh) * 2020-12-28 2021-03-16 长裕控股集团有限公司 高韧性高强度黑色氧化锆陶瓷材料的制备方法
CN113402203A (zh) * 2021-06-18 2021-09-17 Oppo广东移动通信有限公司 一种陶瓷复合材料及其制备方法、壳体及电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120611A (en) * 1985-10-29 1992-06-09 Atsushi Ogura Metal oxide ceramic composite powder and method of manufacturing the same
JPS649839A (en) * 1987-07-01 1989-01-13 Nisshin Steel Co Ltd Production of colored translucent ceramic
WO2014096318A1 (en) * 2012-12-21 2014-06-26 Rolex S.A. Coloured technical ceramic bodies and method for obtaining the same
TWI548611B (zh) * 2014-11-14 2016-09-11 優克材料科技股份有限公司 用於三維列印之選擇性雷射燒結的陶瓷複合材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558605A (ja) * 1991-08-29 1993-03-09 Mitsubishi Materials Corp セラミツク複合粉体の製造方法
CN101712784A (zh) * 2009-10-29 2010-05-26 西安交通大学 一种核壳结构填料/聚合物基复合材料及其制备方法
CN109206841A (zh) * 2018-02-26 2019-01-15 大连疆宇新材料科技有限公司 一种高强度耐磨芳香族复合材料及其制备方法和应用
CN112500159A (zh) * 2020-12-28 2021-03-16 长裕控股集团有限公司 高韧性高强度黑色氧化锆陶瓷材料的制备方法
CN113402203A (zh) * 2021-06-18 2021-09-17 Oppo广东移动通信有限公司 一种陶瓷复合材料及其制备方法、壳体及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG WEI, LIU WEI, YANG XIANFENG, XIE ZHIPENG: "Fabrication of Colored Zirconia Ceramics Doped with the Spinelvia Heterogeneous Nucleation Method", TAO CI XUE BAO : JI KAN = JOURNAL OF CERAMICS, TAO CI XUE BAO ZA ZHI SHE, CN, vol. 33, no. 4, 31 December 2012 (2012-12-31), CN , pages 411 - 415, XP093015715, ISSN: 1000-2278, DOI: 10.13957/j.cnki.tcxb.2012.04.016 *

Also Published As

Publication number Publication date
CN113402203A (zh) 2021-09-17
CN113402203B (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
WO2022262376A1 (zh) 一种陶瓷复合材料及其制备方法、壳体及电子设备
CN105669191B (zh) 一种黑色氧化锆陶瓷及其制备方法
CN105948742B (zh) 一种白色氧化锆陶瓷及其制备方法
WO2023273504A1 (zh) 壳体及其制备方法和电子设备
CN103797076A (zh) 具有高颜色强度的干涉颜料及其制备方法
CN102660161B (zh) 水性铝浆及其制备方法
CN103044981A (zh) 一种具有吸波和辐射功能的纳米涂层的制造方法
CN107500761A (zh) 一种深蓝色氧化锆陶瓷的制备方法
CN108558395A (zh) 一种氧化锆陶瓷材料组合物及其应用
JP2005306635A (ja) 被覆アルミナ粒子、アルミナ成形体、アルミナ焼結体及びこれらの製造方法
CN1621182A (zh) 含碳的镍粒子粉末及其制造方法
WO2022252726A1 (zh) 壳体及其制备方法和电子设备
CN111718198A (zh) 一种用于陶瓷材料制备的多元烧结助剂添加方法
CN112225557B (zh) 一种具有珠光效果的氧化锆陶瓷的制备方法及其制得的产品
CN103013196A (zh) 用于无机非金属材料表面改性的超薄纳米涂层的制造方法
CN105980333A (zh) 镁橄榄石微粒的制造方法
CN115554939A (zh) 一种氮化铝微胶囊及其制备方法
KR101059937B1 (ko) 세라믹 나노 안료의 제조방법 및 플라즈마 디스플레이 패널용 블랙 매트릭스 제조방법
Han et al. Synthesis of monodispersed and spherical SiO~ 2-coated Fe~ 2O~ 3 nanoparticle
CN110461505A (zh) 金属粉末的制造方法
CN111518418A (zh) 哑光珠光颜料及其制备方法与应用
CN113831120A (zh) 一种ato靶材前驱体及其制备方法与应用
TW202132222A (zh) 被覆氧化鋯微粒子及其製造方法
JPS63176308A (ja) 表面処理されたジルコニア系粒子およびその製造方法
CN109721894A (zh) 应用于电容器的陶瓷复合介电膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22823866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22823866

Country of ref document: EP

Kind code of ref document: A1