WO2022257749A1 - 一种用于热成形的预涂覆钢板及其制备方法以及热成形钢构件及其应用 - Google Patents

一种用于热成形的预涂覆钢板及其制备方法以及热成形钢构件及其应用 Download PDF

Info

Publication number
WO2022257749A1
WO2022257749A1 PCT/CN2022/094607 CN2022094607W WO2022257749A1 WO 2022257749 A1 WO2022257749 A1 WO 2022257749A1 CN 2022094607 W CN2022094607 W CN 2022094607W WO 2022257749 A1 WO2022257749 A1 WO 2022257749A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
coating
content
weight
intermetallic compound
Prior art date
Application number
PCT/CN2022/094607
Other languages
English (en)
French (fr)
Inventor
周世龙
崔磊
李子涛
晋家春
王蕾
邓宗吉
刘永刚
詹华
陈直朋
Original Assignee
马鞍山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 马鞍山钢铁股份有限公司 filed Critical 马鞍山钢铁股份有限公司
Priority to BR112023025498A priority Critical patent/BR112023025498A2/pt
Priority to EP22819347.0A priority patent/EP4353860A1/en
Publication of WO2022257749A1 publication Critical patent/WO2022257749A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces

Definitions

  • the present invention relates to a pre-coated steel plate for hot forming and a preparation method thereof, as well as a hot formed steel component and its application.
  • high-strength steel can be used to reduce weight and improve safety performance, but the traditional cold stamping method of high-strength steel has problems such as large springback and difficult forming.
  • hot stamping technology came into being. This technology divides forming and strengthening into two steps to produce ultra-high-strength auto parts, which has the advantages of ultra-high strength, easy forming, and high forming accuracy.
  • thermoformed steel In the process of hot stamping, if bare hot-formed steel is used, oxidation and decarburization will inevitably occur on the surface of the steel plate, which affects the strength of the steel plate, and hot-formed parts need to be shot blasted or pickled, which affects the size of the product precision.
  • coated thermoformed steel has become the mainstream product in the market.
  • the thermoformed steel coating products developed at home and abroad mainly include aluminum-silicon series (Al-Si), zinc series (such as GI, GA), etc.
  • Al-Si aluminum-silicon series
  • zinc series such as GI, GA
  • zinc-based coatings are prone to brittleness caused by liquid zinc during high-temperature stamping, resulting in stamping cracks.
  • the mature coating products are mainly Al-Si. This product was first proposed by Arcelor Mittal and successfully applied to industrial trial production. Typical coating composition (mass percentage) is 87%Al-10%Si-3%Fe.
  • the surface of the material In general, in order to ensure a certain formability of the metal sheet, the surface of the material must have a certain surface roughness.
  • the principle is that a reasonable microstructure on the surface of the material can better store lubricating oil, thereby improving the formability of the material.
  • Surface roughness refers to the small spacing and small peak-to-valley unevenness of the processed surface.
  • the average surface roughness Ra is used to characterize the surface roughness profile. The higher the surface roughness, the larger the Ra value.
  • Al-Si coating products have good coating properties such as phosphating and electrophoresis before heating.
  • Al-Si coating products are used for hot stamping, due to the interdiffusion between the coating and the substrate during the heating process, Fe-Al , Fe-Al-Si alloy coating changes the properties of the coating, and the phosphating performance of the coating is not good at this time.
  • the surface roughness Ra of the coating after hot forming must be at a higher value. Studies have shown that when the Al-Si coated hot forming steel is coated after hot forming Good paint adhesion and corrosion resistance can only be ensured when the surface roughness is large.
  • Arcelor Mittal patent CN101583486B (hereinafter referred to as patent 1) provides a coated steel strip and a hot stamped product prepared therefrom.
  • the typical composition of the pre-coating of the coated steel strip provided by Patent 1 is 8-11% Si, 2-4% Fe, and the balance is aluminum and inherent impurities.
  • the thermoforming process window and the coating structure after thermoforming are described in detail.
  • the patent proposes that when a certain pre-coating thickness (not less than 20 ⁇ m) is ensured, the surface roughness of the coating after thermoforming of Al-Si products is relatively high.
  • the thickness of the pre-coating layer is small, when the thickness of the pre-coating layer is less than 20 ⁇ m, the amount of liquefaction of the coating after heating is small.
  • the liquefied coating is mainly manifested as filling pits, and a large surface roughness cannot be guaranteed after heating. Ra, so that the adhesion of subsequent paint on this surface is reduced, and the corrosion resistance performance is reduced.
  • Patent CN108588612B (hereinafter referred to as patent 2) provides a hot stamping forming component, a pre-coated steel plate for hot stamping forming and a hot stamping forming process.
  • Patent 2 provides a pre-coated steel plate pre-coated aluminum or aluminum alloy coating, the coating thickness is 3-19 ⁇ m, and the thermoforming process and the coating structure after thermoforming are also limited.
  • Patent 2 proposes that the surface roughness of the alloyed layer is not determined by the thickness and structure of the alloyed layer, as long as the pre-coating layer liquefies during the heating process, it will lead to a larger surface roughness.
  • Patent 2 proposes that the anti-corrosion performance of the coating after hot stamping is only related to the a-layer (interdiffusion layer), but research has found that even if the formation of the a-layer is controlled, good paint adhesion and corrosion resistance cannot be guaranteed. It is related to the inability to guarantee a high coating surface roughness after heating.
  • the thinner coating thickness of aluminum or aluminum alloy pre-coating meets the current lightweight requirements of automobiles and is more economical and environmentally friendly. Paint adhesion and corrosion resistance are particularly important for aluminum alloy coatings after thermoforming.
  • the present invention is made in view of the existing pre-coated aluminum or aluminum alloy coated steel plate, when the thickness of the pre-coating is small, the surface roughness of the coating after heating cannot be guaranteed, and the purpose is to provide a steel sheet for hot forming Pre-coated steel plate, controlling the preparation method of the pre-coated steel plate, so that the coated steel member obtained after the pre-coated steel plate is hot-formed, the coating on it has a relatively high surface roughness Ra ⁇ 1.80 ⁇ m, and at the same time
  • the obtained steel member has light weight, high surface roughness and good paint adhesion and paint corrosion resistance.
  • the steel parts made of the steel member of the present invention are applied to vehicles to make automobiles lightweight. 2.
  • the present invention adopts the following technical solutions.
  • the thickness of the pre-coating layer of the present invention is greater than or equal to 5 ⁇ m and less than or equal to 19 ⁇ m. At this time, when the thickness of the pre-coating layer is small, in order to ensure a larger surface roughness requirement, the surface roughness of the pre-coating layer can be increased to improve the coating after thermoforming. layer surface roughness.
  • the precoat thickness of the present invention is greater than or equal to 5 ⁇ m, because when the precoat thickness is too thin (less than 5 ⁇ m), the coating thickness is difficult to control and the coating surface quality is poor during actual production.
  • the surface roughness of the pre-coating layer is Ra ⁇ 3.50.
  • the present invention provides a pre-coated steel sheet, in which a pre-coat is provided on at least one surface of the base steel, and the thickness of the pre-coat is 5-19 ⁇ m, wherein, when the thickness of the pre-coat is greater than or equal to When 5 ⁇ m is less than or equal to 10 ⁇ m, then the surface roughness of described precoat thickness and precoat is limited in figure ABCD, and this figure ABCD has by A (5 ⁇ m, 3.5 ⁇ m), B (10 ⁇ m, 3.5 ⁇ m), C (10 ⁇ m, 2.0 ⁇ m), D (5 ⁇ m, 1.85 ⁇ m) defined precoat thickness and precoat surface roughness coordinates; when the precoat thickness is greater than 10 ⁇ m less than or equal to 15 ⁇ m, then the precoat
  • the layer thickness and the surface roughness of the pre-coating are defined within the figure BEFC, which has a formula consisting of B (10 ⁇ m, 3.5 ⁇ m), E (15 ⁇ m, 3.5 ⁇ m), F (15 ⁇ m,
  • the surface roughness of the pre-coating is formed by imprinting the micro-geometric structure of the work roll surface of the production line rolling mill.
  • the adjustment of the surface roughness of the pre-coating can be adjusted by adjusting the rolling process parameters such as the surface roughness of the roll , rolling force, roll surface properties, etc.
  • At least one surface on the substrate has a pre-coating structure (aluminum or aluminum alloy coating), and the pre-coating structure is an intermetallic compound layer (Fe 2 Al 5 , Fe 2 SiAl 7 ), aluminum or aluminum alloy coating (unalloyed), the hardness of the intermetallic compound layer is significantly higher than that of the aluminum coating, while the thickness of the pre-coating layer of the present invention is smaller, less than or equal to 19 ⁇ m, with As the thickness of the pre-coating layer decreases, the smaller the thickness of the aluminum coating, the smaller the surface roughness of the pre-coating layer under the same conditions. Realization of restraint and so on.
  • a kind of preparation method of above-mentioned pre-coated steel plate, preparation process is steelmaking ⁇ continuous casting ⁇ hot rolling ⁇ pickling and cold rolling ⁇ coating process, comprises skin-passing process in the coating process, in the skin-passing process, roll Ra: 3.0 ⁇ m to 6.0 ⁇ m, and the rolling force is 4000kN to 9000kN.
  • the pre-coating method in the coating process is hot-dip plating, vacuum evaporation or electroplating or other coating methods, as long as the adhesion of the coating can be achieved.
  • composition of the coating liquid in the coating process is 8-11% Si, 2-4% Fe, and the balance is aluminum or aluminum alloy and unavoidable impurities in terms of mass percentage.
  • the coating process includes a continuous annealing process.
  • the parameters of the continuous annealing process the annealing temperature is controlled at 720-850°C, the annealing holding time is controlled at 60-120s, and the atmosphere in the reducing section is 5-10% H 2 by volume +N 2 (that is, the atmosphere in the reducing section is calculated by volume percentage, H 2 accounts for 5-10%, and the rest is N 2 ), the oxygen content is controlled below 20ppm, and the dew point is controlled at -60-0°C.
  • a coated hot-formed steel component is obtained by using the above-mentioned pre-coated steel plate through a hot-forming process, wherein the surface roughness of the component satisfies Ra ⁇ 1.80 ⁇ m.
  • the hot-formed coated steel member is made of pre-coated aluminum or aluminum alloy coated steel plate through heating, hot stamping or other heat treatment operations.
  • the heating method can be resistance heating, radiation heating or induction heating, and is not limited to the above way.
  • the coating structure after hot forming is only composed of the first layer from the base steel to the surface, the first layer is located on one side of the base steel, that is, the outermost side, and the first layer is Al, Si-containing Interdiffusion layer ( ⁇ -Fe and Fe 3 Al), the composition of the interdiffusion layer is: the content of Fe is greater than or equal to 80% by weight, the content of Si is less than or equal to 5% by weight, and the rest is Al.
  • the coating structure after hot forming is composed of the first layer and the second layer in sequence from the base steel to the surface:
  • the first layer is located on one side of the base steel, that is, the innermost side, the first layer is an interdiffusion layer containing Al and Si, and the composition of the interdiffusion layer is: Fe content is greater than or equal to 80% by weight , the Si content is less than or equal to 5% by weight, and the rest is Al,
  • the second layer is located on the outside of the first layer, the second layer is a first intermetallic compound layer containing Al and Si, the composition of the first intermetallic compound layer is: Fe content by weight 55% to 79%, the Si content is greater than or equal to 2% by weight, and the rest is Al.
  • the coating structure after hot forming is composed of the first layer, the second layer and the discontinuous surface layer in sequence from the base steel to the surface:
  • the first layer is located on one side of the base steel, that is, the innermost side, the first layer is an interdiffusion layer containing Al and Si, and the composition of the interdiffusion layer is: Fe content is greater than or equal to 80% by weight , the Si content is less than or equal to 5% by weight, and the rest is Al,
  • the second layer is located on the outside of the first layer, the second layer is a first intermetallic compound layer containing Al and Si, the composition of the first intermetallic compound layer is: Fe content by weight 55% to 79%, Si content is greater than or equal to 2% by weight, and the rest is Al,
  • the surface layer is located outside the second layer, the surface layer is discontinuous, and the surface layer includes a first intermetallic compound containing Al and Si and a second intermetallic compound containing Al and Si.
  • the composition of an intermetallic compound layer is: the Fe content is 55% to 79% by weight, the Si content is greater than or equal to 2% by weight, and the rest is Al.
  • the composition of the second intermetallic compound is: Fe content by weight Calculated as 30% to 50%, the Si content is less than or equal to 2% by weight, and the rest is Al.
  • the coating structure after hot forming is composed of the first layer, the second layer and the third layer in sequence from the base steel to the surface:
  • the first layer is located on one side of the base steel, that is, the innermost side, the first layer is an interdiffusion layer containing Al and Si, and the composition of the interdiffusion layer is: Fe content is greater than or equal to 80% by weight , the Si content is less than or equal to 5% by weight, and the rest is Al,
  • the second layer is located outside the first layer, the second layer is a second intermetallic compound layer containing Al and Si, the composition of the second intermetallic compound is: Fe content is 30% by weight % to 50%, the Si content is less than or equal to 2% by weight, and the rest is Al,
  • the third layer is located outside the second layer, the third layer is a first intermetallic compound layer containing Al and Si, the composition of the first intermetallic compound layer is: Fe content by weight 55% to 79%, the Si content is greater than or equal to 2% by weight, and the rest is Al.
  • the coating structure after hot forming is composed of the first layer, the second layer, the third layer and the discontinuous surface layer in sequence from the base steel to the surface:
  • the first layer is located on one side of the base steel, that is, the innermost side, the first layer is an interdiffusion layer containing Al and Si, and the composition of the interdiffusion layer is: Fe content is greater than or equal to 80% by weight , the Si content is less than or equal to 5% by weight, and the rest is Al,
  • the second layer is located outside the first layer, the second layer is a second intermetallic compound layer containing Al and Si, the composition of the second intermetallic compound is: Fe content is 30% by weight % to 50%, the Si content is less than or equal to 2% by weight, and the rest is Al,
  • the third layer is located outside the second layer, the third layer is a first intermetallic compound layer containing Al and Si, the composition of the first intermetallic compound layer is: Fe content by weight 55% to 79%, Si content is greater than or equal to 2% by weight, and the rest is Al,
  • the surface layer is located outside the third layer, the surface layer is discontinuous, and the surface layer includes a first intermetallic compound containing Al and Si and a second intermetallic compound containing Al and Si.
  • the composition of an intermetallic compound layer is: the Fe content is 55% to 79% by weight, the Si content is greater than or equal to 2% by weight, and the rest is Al.
  • the composition of the second intermetallic compound is: Fe content by weight Calculated as 30% to 50%, the Si content is less than or equal to 2% by weight, and the rest is Al.
  • the coating structure after hot forming is composed of the first layer, the second layer, the third layer and the fourth layer in sequence from the base steel to the surface:
  • the first layer is located on one side of the base steel, that is, the innermost side, the first layer is an interdiffusion layer containing Al and Si, and the composition of the interdiffusion layer is: Fe content is greater than or equal to 80% by weight , the Si content is less than or equal to 5% by weight, and the rest is Al,
  • the second layer is located outside the first layer, the second layer is a second intermetallic compound layer containing Al and Si, the composition of the second intermetallic compound is: Fe content is 30% by weight % to 50%, the Si content is less than or equal to 2% by weight, and the rest is Al,
  • the third layer is located outside the second layer, the third layer is a first intermetallic compound layer containing Al and Si, the composition of the first intermetallic compound layer is: Fe content by weight 55% to 79%, Si content is greater than or equal to 2% by weight, and the rest is Al,
  • the fourth layer is located outside the third layer, and the fourth layer is a second intermetallic compound layer containing Al and Si.
  • the composition of the second intermetallic compound is: Fe content is 30% by weight. % to 50%, the Si content is less than or equal to 2% by weight, and the rest is Al.
  • thermoformed coated steel member is 0.4mm-3.0mm.
  • the chemical composition of the base steel is not limited, including low-carbon steel, medium-carbon steel, high-carbon steel, etc., but it should be noted that when the content of carbon or alloy elements in the base steel is too high, it will cause welding difficulties during production, Problems such as poor quality of applied coatings.
  • a steel article comprising the coated hot-formed steel component described above.
  • a land motor vehicle comprising the coated hot-formed steel member described above.
  • the invention provides a pre-coated steel plate and its The preparation method, using this method to control the obtained pre-coated steel plate, can obtain a hot-formed coated steel component after thermoforming, and the coating on it has a relatively high surface roughness Ra ⁇ 1.80 ⁇ m, and the obtained steel component has Light weight, high surface roughness and good paint adhesion and paint corrosion resistance, the steel parts made of the steel member of the present invention are applied to vehicles to reduce the weight of the car.
  • the inventor found that the change of the surface roughness of the coating after heating the aluminum or aluminum alloy coating mainly occurs during the liquefaction and solidification process of the coating.
  • the second is the roughening of the liquefied coating.
  • the thickness of the pre-coating is large, if it is not less than 20 ⁇ m, the liquefied amount of the coating after heating is large.
  • the liquefied coating fills the concave
  • the surface roughness Ra is larger at this time, when the thickness of the pre-coating is small, the liquefaction amount of the coating after heating is less, at this time, the liquefied coating mainly shows as filling the pit, and it cannot guarantee a larger thickness after heating The surface roughness Ra.
  • the surface roughness Ra of the Al-Si coating after heating is not only related to the thickness of the pre-coating layer, but also related to the surface roughness Ra of the pre-coating layer.
  • the pre-coating thickness is relatively large, such as not less than 20 ⁇ m, the surface roughness Ra of the pre-coating layer has relatively little influence on the surface roughness Ra of the coating after heating.
  • the surface roughness Ra of the pre-coating layer is in the normal range Between 1.00 and 2.00, the liquefied coating continues to roughen after filling the pits, and the surface roughness Ra is larger at this time.
  • the surface roughness Ra of the pre-coating has a greater influence on the surface roughness Ra of the coating after heating, and the liquefied coating is mainly manifested as filling pits.
  • the surface roughness Ra makes the liquefied coating not completely fill the pits or minimizes the surface roughness Ra of the pre-coating so that the liquefied coating can continue to be roughened after filling the pits to increase the surface roughness Ra of the coating after heating.
  • One is to increase the thickness of the pre-coating layer, such as not less than 20 ⁇ m, and the other is when the thickness of the pre-coating layer is small.
  • the inventors have found that the specific heating process has little effect on the surface roughness Ra of the coating after heating, and the commonly used heating temperature and heating time have a great influence on the thickness of the pre-coating layer of 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 19 ⁇ m, and 25 ⁇ m.
  • the effect of roughness is shown in Figure 1 and Figure 2, in which the average roughness Ra of the pre-coating thickness of 5 ⁇ m is 1.69, the average roughness Ra of the pre-coating thickness of 10 ⁇ m is 1.67, and the average roughness Ra of the pre-coating thickness of 15 ⁇ m is 1.69.
  • the average roughness Ra of the thickness of 19 ⁇ m is 1.72, and the average roughness Ra of the pre-coating layer of 25 ⁇ m is 1.70.
  • the coating structure transformation has regularity:
  • the coating structure is from the base steel to the surface as a four-layer structure, which are the interdiffusion layer ( ⁇ -Fe and Fe 3 Al), the second intermetallic compound layer (Fe-Al intermetallic compound layer), the first intermetallic compound layer (Fe-Al-Si intermetallic compound layer), the second intermetallic compound layer (or surface layer, Fe-Al intermetallic compound); wherein:
  • the interdiffusion layer is ⁇ -Fe and Fe 3 Al containing Al and Si, wherein Fe content is greater than or equal to 80% by weight, Si content is less than or equal to 5% by weight, and the balance is Al;
  • the Fe content in the second intermetallic compound layer is 30% to 50% by weight, the Si content is less than or equal to 2% by weight, and the balance is Al;
  • the Fe content in the first intermetallic compound layer is 55% to 79% by weight, the Si content is greater than or equal to 2% by weight, and the balance is Al;
  • the interdiffusion layer and the first intermetallic compound layer gradually thicken.
  • the coated The surface layer of the layer is discontinuous, and the coating structure is a three-layer structure plus a discontinuous surface layer from the base steel to the surface, namely the diffusion layer ( ⁇ -Fe and Fe 3 Al), the second intermetallic compound layer, and the first intermetallic compound Add a discontinuous surface layer.
  • the discontinuous surface layer is a mixed structure containing the first intermetallic compound and the second intermetallic compound.
  • the coating structure is changed from the base Steel to the surface has a three-layer structure, namely the diffusion layer ( ⁇ -Fe and Fe 3 Al), the second intermetallic compound layer, and the first intermetallic compound layer;
  • the coating structure is from the base steel to the surface with a two-layer structure or a discontinuous surface layer, that is, the interdiffusion layer and the first intermetallic compound layer or plus A discontinuous surface layer, when there is a discontinuous surface layer, the discontinuous surface layer is a mixed structure comprising the first intermetallic compound and the second intermetallic compound;
  • the coating continues to be alloyed, the Fe content in the coating further increases, and the first intermetallic compound layer (Fe-Al-Si intermetallic compound layer) gradually transforms into Fe 3 Al. At this time, the coating is only composed of interdiffusion layer composition.
  • the thickness of the pre-coating layer is 10 ⁇ m
  • the total thickness of the steel plate is 1.4 mm
  • the average roughness Ra of the pre-coating layer is 1.67
  • the heating temperature is 930 °C
  • the heating time is 1 min, 3 min, 5 min, 7 min, 10 min, 16 min.
  • the roughness after heating was measured and the structure and composition of the coating after heating were analyzed.
  • the roughness after heating is shown in Table 2, the composition of each layer of the coating after heating is shown in Table 3, and the coating structure is shown in Figure 3.
  • the structure is a four-layer structure from the base steel to the surface, which are the interdiffusion layer ( ⁇ -Fe and Fe 3 Al), the second intermetallic compound layer (Fe-Al intermetallic compound layer), the first intermetallic compound layer (Fe -Al-Si intermetallic compound layer), surface layer (Fe-Al intermetallic compound), when the heating time is 5min, the coating transforms into three layers + discontinuous surface layer, and the coating structure is from the base steel to the surface respectively Interdiffusion layer ( ⁇ -Fe and Fe 3 Al), second intermetallic compound layer (Fe-Al intermetallic compound layer), first intermetallic compound layer (Fe-Al-Si intermetallic compound layer) + discontinuous When the heating time is 7min, the coating structure transforms
  • the surface roughness Ra of the coating after heating is 1.62, which is slightly lower than that of Ra 1.67 before heating, because there are still unalloyed Aluminum coating, the liquefaction amount of the coating is less, and the amount of filling pits is less.
  • the heating time is greater than or equal to 3 minutes, the coating has been completely alloyed.
  • the coating structure changes from four layers to three layers. layer or add a discontinuous surface layer, two layers and one layer transformation, the surface roughness Ra of the coating after heating changes little at this time, generally speaking, the coating structure after heating has an effect on the surface roughness Ra of the coating after heating smaller.
  • Heating time (min) 1 3 5 7 10 16 Ra( ⁇ m) after heating 1.62 1.53 1.52 1.54 1.52 1.55
  • the heating process or the coating structure after heating has little effect on the surface roughness Ra of the coating after heating, and the surface roughness Ra of the coating after heating is mainly related to the thickness of the pre-coating layer and the thickness of the pre-coating layer. related to the surface roughness of the coating.
  • the pre-coating thickness is large, the surface roughness Ra of the pre-coating layer has relatively little influence on the surface roughness Ra of the coating after heating, and the surface roughness Ra of the coating after heating is relatively large.
  • the thickness of the pre-coating layer When the surface roughness Ra of the pre-coating is small, the surface roughness Ra of the pre-coating layer has a greater influence on the surface roughness Ra of the coating after heating.
  • the surface roughness Ra of the pre-coating layer is large, the surface roughness Ra of the coating after heating can be guaranteed to be Ra ⁇ 1.8 , so as to ensure good paint adhesion and corrosion resistance.
  • Figure 1 is a graph showing the variation of the surface roughness Ra of the coating with the heating temperature after the precoat thickness is 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 19 ⁇ m, and 25 ⁇ m;
  • Figure 2 is a graph showing the variation of the surface roughness Ra of the coating with the heating time after the precoat thickness is 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 19 ⁇ m, and 25 ⁇ m;
  • Figure 3 is a diagram showing the change of the coating structure with the heating time after the pre-coating thickness is 10 ⁇ m and the total thickness of the steel plate is 1.4 mm heated at 930 ° C;
  • Figure 4 is a diagram of the coating structure before heating with a precoat thickness of 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 19 ⁇ m, and 25 ⁇ m;
  • Fig. 5 is a typical surface topography figure of precoat
  • Figure 6 is the topography of the coating surface after the pre-coating thickness is 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 19 ⁇ m, and 25 ⁇ m;
  • Fig. 7 is a graph showing the limited range of the precoat thickness and the surface roughness of the precoat in the present invention with a precoat thickness greater than or equal to 5 ⁇ m and less than or equal to 19 ⁇ m.
  • the thickness of the pre-coated aluminum or aluminum alloy coated steel sheet of the present invention is 0.4-3.0 mm, wherein the thickness of the pre-coated coating is 5-19 ⁇ m.
  • the pre-coating coating thicknesses were 5 ⁇ m (invention), 10 ⁇ m (invention), 15 ⁇ m (invention), 19 ⁇ m (invention), and 25 ⁇ m (comparison), wherein the pre-coating was applied on the upper and lower surfaces of the steel plate.
  • the base steel of the steel plate of the present invention adopts 22MnB5 commonly used in the market, and the pre-coating coating can be realized by hot-dip plating.
  • the balance of 4% Fe is aluminum or aluminum alloy and unavoidable impurities.
  • the present invention is not limited to this coating method and plating solution composition, and other coating methods or other aluminum or aluminum alloy compositions can be used.
  • the main function of Si in the plating solution is to form a Fe-Al-Si inhibition layer on the surface of the steel plate, which can effectively prevent the formation of brittle phase Fe 2 Al 5 and improve the coating formability. When the Si content exceeds 10%, this effect It is obviously weakened.
  • the base steel and the precoat of the present invention have the compositions shown in Table 4.
  • Bal. represents a balance in addition to other elements.
  • the pre-coated aluminum or aluminum alloy coated steel plate of the present invention can be manufactured through the following process: steel making ⁇ continuous casting ⁇ hot rolling ⁇ pickling and cold rolling ⁇ coating process.
  • Hot rolling hot rolling the above-mentioned slab at 1000-1300°C, controlling the exit temperature of the hot rolling to be above 1100°C, and controlling the finish rolling temperature above 600°C to obtain a hot-rolled steel plate.
  • the above-mentioned hot-rolled steel sheet is coiled, and the coiling temperature is controlled below 800°C.
  • Coating process The production process of the coating process is: substrate cleaning ⁇ continuous annealing ⁇ hot-dip plating ⁇ coating thickness control ⁇ post-plating cooling ⁇ finishing ⁇ stretching and straightening ⁇ oiling ⁇ coiling and off-line.
  • the annealing temperature and atmosphere are crucial to the quality of the hot-dip coating and the structure and performance of the product.
  • the annealing temperature is controlled at 720-850°C, and the annealing holding time is controlled at 60-120s. ⁇ 10%H 2 +N 2 (by volume percentage), the oxygen content is controlled below 20ppm, and the dew point is controlled at -60 ⁇ 0°C;
  • Hot-dip plating the dipping temperature is controlled at 640-680°C, and the dipping time is 2-8s;
  • Coating thickness control the coating thickness is controlled by spraying nitrogen or compressed air with an air knife, and the coating thickness of the present invention is controlled at 5-19 ⁇ m on one side;
  • Post-plating cooling air cooling is used for post-plating cooling, the steel plate is cooled to below 300°C, and then water-cooled to below 100°C;
  • the precoat structure produced by the above process is shown in Figure 4.
  • the thickness of the pre-coat layer provided by the present invention is 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 19 ⁇ m, and 25 ⁇ m respectively from left to right (comparison).
  • the matrix structure of each steel plate is ferrite and pearlite
  • the pre-coating layer from the matrix side to the surface is intermetallic compound layer (Fe 2 Al 5 , Fe 2 SiAl 7 ) and aluminum coating.
  • the thickness of the intermetallic compound layer of each pre-coating thickness is equivalent, about 4.5 ⁇ m (the thickness of the Fe 2 Al 5 layer is less than 0.5 ⁇ m), the difference lies in the thickness of the aluminum coating, and the thickness of the aluminum coating of each pre-coating thickness is 0.5 ⁇ m, 5.5 ⁇ m, 10.5 ⁇ m, 14.5 ⁇ m, 20.5 ⁇ m.
  • pre-coated steel sheets with different surface roughness Ra values can be produced by adjusting the process parameters of skin-pass rolls . It is worth noting that, since the surface hardness of aluminum or aluminum alloy pre-coating is relatively soft, and the Vickers hardness is less than 100, when aluminum or aluminum alloy pre-coating steel plate is in skin-pass production, the roughness of the skin-pass roll can be partially transmitted to the aluminum or aluminum alloy pre-coating.
  • the general transfer rate (roughness of aluminum or aluminum alloy pre-coating/pass roll roughness) does not exceed 80%, and the transfer rate increases with the increase of skin pass rolling force, but with the With the wear of the lightening roller, the transmission rate gradually decreases.
  • the invention produces the precoated steel plate with high surface roughness Ra value, which can be realized by increasing the roughness of the skin-pass roll or increasing the skin-pass rolling force.
  • the thickness of the pre-coating layer of the present invention is small, less than or equal to 19 ⁇ m. As the thickness of the pre-coating layer decreases, the smaller the thickness of the aluminum coating layer, the more difficult it is to improve the surface roughness. The higher the requirements for roughness and rolling force.
  • the measurement standard adopts GB/T2523 -2008 Measurement method for surface roughness and peak number of cold-rolled metal sheet (strip), cut-off wavelength 0.8mm, test distance 4.8mm.
  • the surface morphology of the pre-coating with different surface roughness Ra values is similar, and there are a certain number of pits on the surface. The difference is that the larger the surface roughness Ra value of the pre-coating layer, the larger the pit depth. The morphology is shown in Figure 5 (Example 24).
  • the heating temperature is not lower than 860 ° C, and the heating time is not lower than 3 minutes.
  • the embodiment of the present invention adopts a resistance heating furnace. Firstly, the width direction of the steel plate (that is, the width direction of the steel strip) is selected to be processed into a sample plate with a size of 150*300mm along the edge, middle, and edge, and it is placed in the heating furnace for a certain period of time. Press and hold the pressure on the flat quenching mold for a certain period of time, then measure the surface roughness of the heated steel plate in the same way, and finally take the average value.
  • the surface roughness Ra of the pre-coating layer was selected to be similar (about 1.70) and the thickness of the pre-coating layer was 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 19 ⁇ m, and 25 ⁇ m. .
  • Ra obviously increased after heating; from the surface morphology of the coating after heating, it can be seen that when the pre-coating is less than 20 ⁇ m, the coating is not sufficiently roughened after heating, and the coating has a small surface roughness at this time, and the pre-coating After heating with a layer thickness of 5 ⁇ m and 10 ⁇ m, the coating still has pits similar to the pre-coating, but the pre-coating layer does not have pits after heating with a thickness of 15 ⁇ m. At this time, the coating is slightly roughened, that is, when the pre-coating When it is less than or equal to 15 ⁇ m, the coating after heating is mainly filled with pits. As the thickness of the coating increases, the Ra decrease trend is more obvious after heating than before heating.
  • the coating becomes rough after heating. The degree further increases, showing that the roughness of the coating begins to increase after heating.
  • the thickness of the pre-coating layer is 25 ⁇ m, the coating has been sufficiently roughened, and the coating has a large surface roughness at this time.
  • the inventors found that the change of the surface roughness of the coating after heating the aluminum or aluminum alloy coating mainly occurs during the liquefaction and solidification process of the coating, and the surface roughness of the coating after heating Liquefaction is mainly divided into two processes: one is to fill the pits (small spacing "valleys") with the liquefaction coating, and the other is to roughen the liquefaction coating. The amount of liquefaction is relatively large. At this time, the liquefaction coating continues to roughen after filling the pits. At this time, the surface roughness Ra is relatively large.
  • the liquefaction amount of the coating after heating is small. It is manifested as filling pits, and a large surface roughness Ra cannot be guaranteed after heating. At this time, the surface roughness Ra of the coating after heating can be increased by increasing the surface roughness Ra of the pre-coating layer.
  • the phosphating agents and test parameters in Table 6 were used to phosphate the samples after thermoforming, and then use the obtained phosphating plate for electrophoresis (electrophoretic paint model: Kansai HT-8000C), and the thickness of the electrophoresis dry film was about 18 ⁇ m.
  • a single cycle includes 8h normal temperature maintenance (25 ⁇ 3 °C, 4 sprays of salt solution for 3 minutes each during the period, the composition of the salt solution is: 0.9wt% NaCl, 0.1wt% CaCl 2 , 0.0750.9wt% NaHCO 3 ), followed by 8 hours of damp heat (49 ⁇ 2°C, 100%RH), and finally 8h of drying (60 ⁇ 2°C, ⁇ 30%RH), a total of 26 cycles to evaluate the corrosion resistance.
  • Table 7 shows the key production process corresponding to the embodiment, the surface roughness of the precoat, the surface roughness of the coating after heating, and the scratch corrosion test results.
  • Table 7 The key production process corresponding to the embodiment, the surface roughness of the precoat, the surface roughness of the coating after heating, and the scratch corrosion test results
  • the precoat thicknesses of 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, and 19 ⁇ m are within the thickness range of the precoat of the present invention, and the precoat prepared by the method of the present invention is compared with the precoat not prepared by the method of the present invention.
  • the thickness of the pre-coat layer is 5 ⁇ m
  • the pre-coat layers prepared by the method of the present invention include Examples 1, 10, and 19, and the comparative examples include 2, 11, and 20. It can be seen that when the thickness of the precoat is 5 ⁇ m (satisfying greater than or equal to 5 ⁇ m and less than or equal to 10 ⁇ m), the surface roughness of the precoat is Ra ⁇ 1.85 using Examples 1, 10, and 19 of the present invention, and the precoat The thickness of the layer and the surface roughness of the pre-coating are limited within the figure ABCD, and the surface roughness of the coating after heating is Ra ⁇ 1.80.
  • the paint has good adhesion and corrosion resistance, which meets the standard requirements, while the comparative example
  • the surface roughness of the middle pre-coating layer is Ra ⁇ 1.85, the thickness of the pre-coating layer and the surface roughness of the pre-coating layer are not within the figure ABCD, the surface roughness of the coating layer after heating is Ra ⁇ 1.80, and the stickiness of the paint at this time Adhesion and corrosion resistance are poor and cannot meet the standard requirements.
  • the precoat prepared by the method of the present invention includes Examples 3, 12, and 21, and the comparative examples include 4, 13, and 22. It can be seen that when the thickness of the precoat is 10 ⁇ m (satisfying greater than or equal to 5 ⁇ m and less than or equal to 10 ⁇ m), the surface roughness of the precoat is Ra ⁇ 2.00 using Examples 3, 12, and 21 of the present invention, and the precoat The thickness of the layer and the surface roughness of the pre-coating are limited within the figure ABCD, and the surface roughness of the coating after heating is Ra ⁇ 1.80.
  • the paint has good adhesion and corrosion resistance, which meets the standard requirements, while the comparative example
  • the surface roughness of the middle pre-coating layer is Ra ⁇ 2.00
  • the thickness of the pre-coating layer and the surface roughness of the pre-coating layer are not within the graph ABCD
  • the surface roughness of the coating layer after heating is Ra ⁇ 1.80
  • the stickiness of the paint at this time Adhesion and corrosion resistance are poor and cannot meet the standard requirements.
  • the precoat prepared by the method of the present invention includes Examples 5, 14, and 23, and the comparative examples include 6, 15, and 24. It can be seen that when the precoat thickness is 15 ⁇ m (satisfying greater than 10 ⁇ m and less than or equal to 15 ⁇ m), the surface roughness of the precoat is Ra ⁇ 2.40 using Examples 5, 14, and 23 of the present invention, and the thickness of the precoat The surface roughness of the pre-coating and the pre-coating is limited within the graphic BEFC, and the surface roughness of the coating after heating is Ra ⁇ 1.80.
  • the coating has good adhesion and corrosion resistance, which meets the standard requirements, while the pre-coating in the comparative example
  • the surface roughness of the coating is Ra ⁇ 2.40, the thickness of the pre-coating and the surface roughness of the pre-coating are not within the graphic BEFC, the surface roughness of the coating after heating is Ra ⁇ 1.80, the adhesion of the paint at this time And corrosion resistance is poor, can not meet the standard requirements.
  • the precoat prepared by the method of the present invention includes Examples 7, 16, and 25, and the comparative examples include 8, 17, and 26. It can be seen that when the precoat thickness is 19 ⁇ m (satisfying greater than 15 ⁇ m and less than 20 ⁇ m), the surface roughness of the precoat is Ra ⁇ 2.80 by using Examples 7, 16, and 25 of the present invention, and the thickness of the precoat and the precoat The surface roughness of the coating is limited within the graphic EGHF, and the surface roughness of the coating after heating is Ra ⁇ 1.80.
  • the coating has good adhesion and corrosion resistance, which meets the standard requirements, while the pre-coating in the comparative example
  • the surface roughness of the coating is Ra ⁇ 2.80
  • the thickness of the pre-coating layer and the surface roughness of the pre-coating layer are not within the figure EGHF
  • the surface roughness of the coating after heating is Ra ⁇ 1.80
  • the adhesion and resistance of the paint Poor corrosion can not meet the standard requirements.
  • Arcelor Mittal's commonly used precoat thickness of 25 ⁇ m was selected as a comparison, specifically Examples 9, 18, and 27. It can be seen that when the surface roughness of the precoat is not greater than 2.00 (Example 9, 18), the surface roughness of the coating after heating Ra ⁇ 1.80, and the paint has good adhesion and corrosion resistance at this time , the maximum corrosion extension width is 2.9mm, which meets the standard requirements, but when the surface roughness of the pre-coat is too large (Example 27, Ra is 3.50), the surface roughness of the coating after heating Ra ⁇ 1.80, the coating The adhesion and corrosion resistance are poor and cannot meet the standard requirements, which means that even if the thickness of the pre-coating is large, if the surface roughness of the pre-coating is large enough, the high surface roughness cannot be guaranteed after heating. .
  • the precoats prepared by the method of the present invention in the precoat thickness ranges of the present invention are 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, and 19 ⁇ m, specifically Examples 1, 3, 5, 7, 10, 12, 14, 16, 19, 21, 23, 25, the maximum corrosion extension width of the paint is 2.8 ⁇ 3.2mm, and the precoat prepared by the present invention is not used, specifically Examples 2, 4, 6, 8, 11, 13, 15, 17, 20, 22, 24, 26, the maximum corrosion expansion width of the paint is all greater than 4.0mm, which cannot meet the requirements, and the maximum corrosion expansion width of the pre-coating layer is 25 ⁇ m 2.9mm (embodiment 9, 18 ), that is, the paint adhesion and corrosion resistance of the precoat made by the present invention are equivalent to the thickness of the commonly used precoat of Arcelor Mittal, but the paint adhesion and corrosion resistance of the precoat made by the present invention are not Performance is poor.
  • pre-coat aluminum or aluminum alloy coating when pre-coat thickness is less (less than 20 ⁇ m), the coating after adopting the pre-coat thermoforming that the present invention makes has higher roughness, can guarantee Good paint adhesion and corrosion resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明公开了一种用于热成形的预涂覆钢板及其制备方法以及热成形钢构件及其应用。预涂覆钢板及其制备方法中,针对预涂层厚度为5~19μm时,设置相应的预涂层的表面粗糙度,经热成形后可以得到热成形涂覆钢构件,其上的涂层具有较高的表面粗糙度Ra≥1.80μm;得到的钢构件同时具备质量轻且较高的表面粗糙度及其良好的涂漆粘附性和涂漆耐腐蚀性,使用本发明的钢构件制成的钢制件,应用于车辆,以使汽车轻量化。

Description

一种用于热成形的预涂覆钢板及其制备方法以及热成形钢构件及其应用 技术领域
本发明涉及一种用于热成形的预涂覆钢板及其制备方法以及热成形钢构件及其应用。
背景技术
近年来,随着汽车行业对安全、节能和排放的要求日益严格,汽车轻量化和提高安全性能成为汽车行业关注的焦点问题。一般采用高强钢可以实现轻量化和提高安全性能,但是高强钢采用传统冷冲压方式存在回弹大、成形困难等问题。在此情况下,热冲压技术便应运而生。该技术将成形与强化分为两个步骤生产超高强度汽车零部件,具有超高强度、易于成形、成形精度高等优点。
在热冲压成形过程中,若采用裸板热成形钢,钢板表面不可避免地会产生氧化和脱碳,影响了钢板的强度,且热成形部件需要经过喷丸或酸洗处理,影响产品的尺寸精度。针对以上问题,涂覆涂层的热成形钢成为目前市场主流产品,目前国内外开发的热成形钢涂层产品主要包括铝硅系(Al-Si)、锌系(如GI、GA)等,而锌系涂层在高温冲压时易产生液态锌致脆性,造成冲压开裂,目前已成熟应用的涂层产品主要为Al-Si,该产品最先由Arcelor Mittal提出并成功应用于工业试制,其典型涂层成分(质量百分比)为87%Al-10%Si-3%Fe。
一般情况下,金属薄板为保证一定的成形性能,材料表面需具有一定的表面粗糙度,其原理是材料表面合理的微观结构能较好的存储润滑油,从而改善材料成形性能。表面粗糙度是指加工表面具有的较小间距和微小峰谷不平度,一般常用表面平均粗糙度Ra来表征表面粗糙度轮廓,表面粗糙度越高,Ra值越大。
Al-Si涂层产品加热前具有良好的磷化、电泳等涂装性能,但是,当Al-Si涂层产品作热冲压成形用时,由于加热过程中涂层与基体发生相互扩散形成Fe-Al、Fe-Al-Si合金化涂层,改变了涂层性质,此时涂层磷化性能不佳。为保证电泳等涂漆粘附性及后续耐腐蚀性,热成形后涂层的表面粗糙度Ra需处于较高值,研究表明,当Al-Si涂层热成形钢在热成形后涂层的表面粗糙度较大时,才能保证良好的涂漆粘附性及耐腐蚀性。
Arcelor Mittal专利CN101583486B(以下称作专利1)提供了一种涂覆的钢带材及其由其制备的热冲压产品。专利1提供的涂覆钢带材预涂层典型组成为8~11%Si、2~4%Fe、余量为铝和固有杂质,预涂层厚度为20~33μm,工业上一般采用25μm,并对热成形工艺窗口、热成形后涂层结构进行了详细描述。专利提出,当保证一定的预涂层厚度(不小于20μm),Al-Si产品热成形后涂层的表面粗糙度较高。但是,当预涂层厚度较小时,当预涂层厚度小于20μm时,加热后涂层液化量较少,此时液化涂层主要表现为填充凹坑,加热后不能保证较大的表面粗糙度Ra,从而随后的涂料在该表面上的粘附性降低,且耐腐蚀性能降低。
专利CN108588612B(以下称作专利2)提供了一中热冲压成形构件、热冲压成形用预涂镀钢板及热冲压成形工艺。专利2提供的预涂镀钢板预涂层铝或铝合金涂层,涂层厚度为3~19μm,也对热成形工艺、热成形后涂层结构进行了限定。专利2提出,合金化层的表面粗糙度并不由合金化层的厚度和结构决定,只要预涂层在加热过程中发生了液化现象即会导致较大的表面粗糙度。但是,本申请发明人发现,当预涂层厚度较小时,如专利2预涂层厚度范围,此时即使涂层发生液化,由于加热后涂层液化量较少,液化涂层主要表现为填充凹坑,加热后不能保证较大的表面粗糙度Ra。另外,专利2提出,热冲压后涂层防腐蚀性能只与a层(相互扩散层)有关,但研究发现,即使控制a层形成,不能保证良好的涂漆粘附性和耐腐蚀性,这与加热后不能保证较高的涂层表面粗糙度有关。
铝或铝合金预涂层的涂层厚度较小符合目前汽车轻量化的要求且更加经济环保,但是当预涂层厚度较小时,如何保证较高的加热后涂层表面粗糙度对于提高铝或铝合金涂层热成形 后涂漆粘附性和耐腐蚀性尤为重要。
发明内容
1、要解决的问题
本发明是鉴于现有预涂覆铝或铝合金涂层钢板,当预涂层厚度较小时,不能保证较高的加热后涂层表面粗糙度作出的,目的是提供一种用于热成形的预涂覆钢板,控制预涂覆钢板的制备方法工艺,使得该预涂覆钢板经热成形后得到的涂覆钢构件,其上的涂层具有较高的表面粗糙度Ra≥1.80μm,同时得到的钢构件具备质量轻且较高的表面粗糙度及其良好的涂漆粘附性和涂漆耐腐蚀性,使用本发明的钢构件制成的钢制件,应用于车辆,以使汽车轻量化。2、技术方案
为解决上述问题,本发明采用如下的技术方案。
发明人研究发现,为保证良好的预涂覆涂层(铝或铝合金涂层)热成形后的涂漆粘附性和耐腐蚀性,热成形后涂层的表面粗糙度需较大。本发明预涂层厚度大于或等于5μm小于或等于19μm,此时预涂层厚度较小时,为保证较大的表面粗糙度要求,可通过提高预涂层的表面粗糙度来提高热成形后涂层的表面粗糙度。本发明预涂层厚度大于或等于5μm,因为当预涂层厚度过薄(小于5μm),实际生产时涂层厚度较难控制且涂层表面质量较差。
为保证热成形后涂层Ra≥1.80,需保证较大的预涂层表面粗糙度,如当预涂层厚度分别为5μm、10μm、15μm、19μm时,预涂层Ra分别大于或等于1.85、2.00、2.40、2.80。另外,当预涂层的表面粗糙度Ra过大,如大于3.50,热成形后涂层的表面粗糙度也过大,表面微观结构过于粗大,会导致涂漆后漆面效果较差,本发明预涂层的表面粗糙度Ra≤3.50。
具体来说,本发明提供一种预涂覆钢板,在基础钢的至少一个表面上设置预涂层,所述预涂层的厚度为5~19μm,其中,当预涂层厚度为大于或等于5μm小于或等于10μm时,则所述预涂层厚度和预涂层的表面粗糙度限定在图形ABCD内,该图形ABCD具有由A(5μm,3.5μm)、B(10μm,3.5μm)、C(10μm,2.0μm)、D(5μm,1.85μm)所限定的预涂层厚度和预涂层的表面粗糙度坐标;当预涂层厚度为大于10μm小于或等于15μm时,则所述预涂层厚度和预涂层的表面粗糙度限定在图形BEFC内,该图形BEFC具有由B(10μm,3.5μm)、E(15μm,3.5μm)、F(15μm,2.4μm)、C(10μm,2.0μm)所限定的预涂层厚度和预涂层的表面粗糙度坐标;当预涂层厚度为大于15μm小于或等于19μm时,则所述预涂层厚度和预涂层的表面粗糙度限定在图形EGHF内,该图形EGHF具有由E(15μm,3.5μm)、G(19μm,3.5μm)、H(19μm,2.8μm)、F(15μm,2.4μm)所限定的预涂层厚度和预涂层的表面粗糙度坐标。
其中,预涂层表面粗糙度是由生产线轧机工作辊表面显微几何结构的压印形成的,一般情况下,预涂层的表面粗糙度的调节可通过调整轧制工艺参数如轧辊表面粗糙度、轧制力、辊面属性等实现。值得说明的是,热浸镀工艺后,基板上至少一个表面具有预涂层结构(铝或铝合金涂层),所述预涂层结构为从基体侧至表面分别为金属间化合物层(Fe 2Al 5、Fe 2SiAl 7)、铝或铝合金涂层(未合金化),金属间化合物层硬度显著高于铝涂层,而本发明预涂层厚度较小,小于或等于19μm,随着预涂层厚度减小,铝涂层厚度越小,同样条件下,预涂层表面粗糙度越小,此时为保证较高的表面粗糙度,可通过提高轧辊表面粗糙度、增大轧制力等实现。因此,一种上述的预涂覆钢板的制备方法,制备过程为炼钢→连铸→热轧→酸洗冷轧→涂覆工艺,涂覆工艺中包括光整工序,光整工序中,轧辊Ra:3.0μm~6.0μm,轧制力为4000kN~9000kN。
进一步地,所述涂覆工艺中预涂层涂覆方式为热浸镀、真空蒸镀或电镀或其他涂覆方式,只要能实现涂层的附着均可。
进一步地,涂覆工艺中的涂覆液组成以质量百分计为8~11%Si、2~4%Fe、余量为铝或铝合金以及不可避免的杂质。
进一步地,涂覆工艺中包括连续退火工序,连续退火工序参数:退火温度控制在720~850℃,退火保温时间控制在60~120s,采用还原段气氛:按体积百分比为5~10%H 2+N 2 (即还原段气氛按体积百分比算,H 2占5~10%,其余为N 2),氧含量控制在20ppm以下,露点控制在-60~0℃。
一种涂覆的热成形钢构件,采用上述的预涂覆钢板经热成形工艺后得到的,其中,构件表面粗糙度满足Ra≥1.80μm。
进一步地,热成形涂覆钢构件由预涂覆铝或铝合金涂层钢板经加热、热冲压成形或其他热处理操作制得,加热方式可选择电阻加热、辐射加热或感应加热,并不局限于以上方式。
进一步地,热成形后的涂层结构由基础钢至表面仅由第一层构成,所述第一层位于所述基础钢的一侧即最外侧,所述第一层为含Al、Si的相互扩散层(α-Fe和Fe 3Al),所述相互扩散层的成分为:Fe含量以重量计大于等于80%,Si含量以重量计小于等于5%,其余为Al。
进一步地,热成形后的涂层结构由基础钢至表面依次由第一层、第二层构成:
所述第一层位于所述基础钢的一侧即最内侧,所述第一层为含Al、Si的相互扩散层,所述相互扩散层的成分为:Fe含量以重量计大于等于80%,Si含量以重量计小于等于5%,其余为Al,
所述第二层位于所述第一层的外侧,所述第二层为含Al、Si的第一金属间化合物层,所述第一金属间化合物层的成分为:Fe含量以重量计为55%~79%,Si含量以重量计大于等于2%,其余为Al。
进一步地,热成形后的涂层结构由基础钢至表面依次由第一层、第二层和不连续的表面层构成:
所述第一层位于所述基础钢的一侧即最内侧,所述第一层为含Al、Si的相互扩散层,所述相互扩散层的成分为:Fe含量以重量计大于等于80%,Si含量以重量计小于等于5%,其余为Al,
所述第二层位于所述第一层的外侧,所述第二层为含Al、Si的第一金属间化合物层,所述第一金属间化合物层的成分为:Fe含量以重量计为55%~79%,Si含量以重量计大于等于2%,其余为Al,
所述表面层位于所述第二层的外侧,所述表面层不连续,所述表面层包括含Al、Si的第一金属间化合物和含Al、Si的第二金属间化合物,所述第一金属间化合物层的成分为:Fe含量以重量计为55%~79%,Si含量以重量计大于等于2%,其余为Al,所述第二金属间化合物的成分为:Fe含量以重量计为30%~50%,Si含量以重量计小于等于2%,其余为Al。
进一步地,热成形后的涂层结构由基础钢至表面依次由第一层、第二层和第三层构成:
所述第一层位于所述基础钢的一侧即最内侧,所述第一层为含Al、Si的相互扩散层,所述相互扩散层的成分为:Fe含量以重量计大于等于80%,Si含量以重量计小于等于5%,其余为Al,
所述第二层位于所述第一层的外侧,所述第二层为含Al、Si的第二金属间化合物层,所述第二金属间化合物的成分为:Fe含量以重量计为30%~50%,Si含量以重量计小于等于2%,其余为Al,
所述第三层位于所述第二层的外侧,所述第三层为含Al、Si的第一金属间化合物层,所述第一金属间化合物层的成分为:Fe含量以重量计为55%~79%,Si含量以重量计大于等于2%,其余为Al。
进一步地,热成形后的涂层结构由基础钢至表面依次由第一层、第二层、第三层和不连续的表面层构成:
所述第一层位于所述基础钢的一侧即最内侧,所述第一层为含Al、Si的相互扩散层,所述相互扩散层的成分为:Fe含量以重量计大于等于80%,Si含量以重量计小于等于5%,其余为Al,
所述第二层位于所述第一层的外侧,所述第二层为含Al、Si的第二金属间化合物层,所述第二金属间化合物的成分为:Fe含量以重量计为30%~50%,Si含量以重量计小于等于2%,其余为Al,
所述第三层位于所述第二层的外侧,所述第三层为含Al、Si的第一金属间化合物层,所述第一金属间化合物层的成分为:Fe含量以重量计为55%~79%,Si含量以重量计大于等于2%,其余为Al,
所述表面层位于所述第三层的外侧,所述表面层不连续,所述表面层包括含Al、Si的第一金属间化合物和含Al、Si的第二金属间化合物,所述第一金属间化合物层的成分为:Fe含量以重量计为55%~79%,Si含量以重量计大于等于2%,其余为Al,所述第二金属间化合物的成分为:Fe含量以重量计为30%~50%,Si含量以重量计小于等于2%,其余为Al。
进一步地,热成形后的涂层结构由基础钢至表面依次由第一层、第二层、第三层和第四层构成:
所述第一层位于所述基础钢的一侧即最内侧,所述第一层为含Al、Si的相互扩散层,所述相互扩散层的成分为:Fe含量以重量计大于等于80%,Si含量以重量计小于等于5%,其余为Al,
所述第二层位于所述第一层的外侧,所述第二层为含Al、Si的第二金属间化合物层,所述第二金属间化合物的成分为:Fe含量以重量计为30%~50%,Si含量以重量计小于等于2%,其余为Al,
所述第三层位于所述第二层的外侧,所述第三层为含Al、Si的第一金属间化合物层,所述第一金属间化合物层的成分为:Fe含量以重量计为55%~79%,Si含量以重量计大于等于2%,其余为Al,
所述第四层位于所述第三层的外侧,所述第四层为含Al、Si的第二金属间化合物层,所述第二金属间化合物的成分为:Fe含量以重量计为30%~50%,Si含量以重量计小于等于2%,其余为Al。
进一步地,所述热成形涂覆钢构件的总厚度为0.4mm~3.0mm。
进一步地,所述基础钢化学成分不作限定,包括低碳钢、中碳钢、高碳钢等,但需要注意的是,当基础钢中碳或合金元素含量过高,造成生产时焊接困难、涂覆涂层质量不佳等问题。
一种钢制品,包括上述的涂覆的热成形钢构件。
一种陆用机动车辆,其包括上述的涂覆的热成形钢构件。
3、有益效果
相比于现有预涂覆铝或铝合金涂层钢板,当预涂层厚度较小时,不能保证较高的热成形后涂层的表面粗糙度,本发明提供一种预涂覆钢板及其制备方法,使用该方法控制得到的预涂覆钢板,经热成形后可以得到热成形涂覆钢构件,其上的涂层具有较高的表面粗糙度Ra≥1.80μm,同时得到的钢构件具备质量轻且较高的表面粗糙度及其良好的涂漆粘附性和涂漆耐腐蚀性,使用本发明的钢构件制成的钢制件,应用于车辆,以使汽车轻量化。
发明人经过潜心研究发现,铝或铝合金涂层加热后涂层表面粗糙度的变化主要发生在涂层液化凝固过程中,涂层加热后表面粗糙化主要分为两个过程:一是液化涂层填充凹坑(微小间距“谷”),二是液化涂层粗糙化,当预涂层厚度较大时,如不小于20μm,加热后涂层液化量较大,此时液化涂层填充凹坑后继续粗糙化,此时表面粗糙度Ra较大,当预涂层厚度较小时,加热后涂层液化量较少,此时液化涂层主要表现为填充凹坑,加热后不能保证较大的表面粗糙度Ra。
因此,Al-Si涂层加热后表面粗糙度Ra不仅与预涂层厚度有关,还与预涂层的表面粗糙度Ra有关。当预涂层厚度较大时,如不小于20μm,此时预涂层的表面粗糙度Ra对于加热后涂层表面粗糙度Ra影响相对较小,当预涂层的表面粗糙度Ra处于常规范围1.00~2.00之间,液化涂层填充凹坑后继续粗糙化,此时表面粗糙度Ra较大。当预涂层厚度较小时,此时预涂层的表面粗糙度Ra对于加热后涂层表面粗糙度Ra影响较大,液化涂层主要表现为填充凹坑,此时可通过提高预涂层的表面粗糙度Ra使得液化涂层不完全填充凹坑或者尽量降低预涂层的表面粗糙度Ra使得液化涂层填充凹坑后可继续粗糙化来提高加热后涂层的表面粗糙 度Ra。总的说来,保证Al-Si涂层较大的加热后表面粗糙度Ra有两种方式可以实现,一是提高预涂层厚度,如不小于20μm,二是当预涂层厚度较小时,提高预涂层的表面粗糙度Ra或者降低预涂层的表面粗糙度Ra。但是,研究发现,当预涂层的表面粗糙度Ra较小时,小于1.00时,且预涂层厚度小于20μm时,仍不能保证加热后表面粗糙度Ra≥1.80,结果见表1。
表1 不同预涂层厚度加热前后表面粗糙度(预涂层低表面粗糙度)
预涂层厚度(μm) 7 10 15 17 20
加热前Ra(μm) 0.94 0.99 0.44 0.69 0.99
加热后Ra(μm) 0.88 1.08 1.33 1.48 1.86
另外,发明人研究发现,具体的加热工艺对加热后涂层的表面粗糙度Ra影响较小,常用加热温度、加热时间对预涂层厚度5μm、10μm、15μm、19μm、25μm加热后涂层的粗糙度影响见图1和图2,其中预涂层厚度5μm平均粗糙度Ra为1.69,预涂层厚度10μm平均粗糙度Ra为1.67,预涂层厚度15μm平均粗糙度Ra为1.69,预涂层厚度19μm平均粗糙度Ra为1.72,预涂层厚度25μm平均粗糙度Ra为1.70。
发明人研究发现,当预涂层厚度大于等于5μm小于等于19μm时,随着加热温度的升高或加热时间的延长,即随着涂层合金化程度的提高,涂层结构转变具有规律性:
(1)当加热温度过低或加热时间过短,此时涂层未完全合金化,此时表面一般存在铝或Fe 2SiAl 7
(2)当涂层开始完全合金化时,涂层结构由基础钢至表面为四层结构,分别为相互扩散层(α-Fe和Fe 3Al)、第二金属间化合物层(Fe-Al金属间化合物层)、第一金属间化合物层(Fe-Al-Si金属间化合物层)、第二金属间化合物层(或称为表面层,Fe-Al金属间化合物);其中:
相互扩散层是含Al、Si的α-Fe和Fe 3Al,其中Fe含量以重量计大于等于80%,Si含量以重量计小于等于5%,余量为Al;
第二金属间化合物层(即Fe-Al金属间化合物层和表面层)中Fe含量以重量计为30%~50%,Si含量以重量计小于等于2%,余量为Al;
第一金属间化合物层(Fe-Al-Si金属间化合物层)中Fe含量以重量计为55%~79%,Si含量以重量计大于等于2%,,余量为Al;
(3)进一步提高合金化程度,相互扩散层与第一金属间化合物层(Fe-Al-Si金属间化合物层)逐渐增厚,当部分第一金属间化合物层扩展至表面时,此时涂层表面层不连续,涂层结构由基础钢至表面为三层结构加不连续的表面层,即扩散层(α-Fe和Fe 3Al)、第二金属间化合物层、第一金属间化合物层加不连续的表面层,此时不连续的表面层为包含第一金属间化合物和第二金属间化合物的混合组织,当第一金属间化合物层完全占据表面,此时涂层结构由基础钢至表面为三层结构,即扩散层(α-Fe和Fe 3Al)、第二金属间化合物层、第一金属间化合物层;
(4)当相互扩散层与第一金属间化合物层(Fe-Al-Si金属间化合物层)进一步增厚,相互扩散层与第一金属间化合物层之间的第二金属间化合物层完全转变为相互扩散层或Fe-Al-Si金属间化合物层,此时涂层结构由基础钢至表面为两层结构或加不连续的表面层,即相互扩散层和第一金属间化合物层或加不连续的表面层,当存在不连续的表面层时,此时不连续的表面层为包含第一金属间化合物和第二金属间化合物的混合组织;
(5)涂层继续合金化,涂层中Fe含量进一步升高,第一金属间化合物层(Fe-Al-Si金属间化合物层)逐渐转变为Fe 3Al,此时涂层仅由相互扩散层构成。
此外,发明人研究发现,加热后的涂层结构对涂层表面粗糙度Ra影响较小。研究选取预涂层厚度为10μm,钢板总厚度为1.4mm,经测量预涂层平均粗糙度Ra为1.67,加热温度为930℃,选取加热时间1min、3min、5min、7min、10min、16min,对加热后粗糙度进行测量并对加热后涂层结构、涂层成分进行分析,加热后粗糙度见表2,加热后涂层各层成分见表3,涂层结构见图3。
从加热后涂层结构来看,当加热时间为1min时,涂层未完全合金化,表面仍存在未合金化的铝涂层,当加热时间为3min时,涂层已完全合金化,涂层结构由基础钢至表面为四层结构,分别为相互扩散层(α-Fe和Fe 3Al)、第二金属间化合物层(Fe-Al金属间化合物层)、第一金属间化合物层(Fe-Al-Si金属间化合物层)、表面层(Fe-Al金属间化合物),当加热时间为5min时,涂层转变为三层+不连续的表面层,涂层结构由基础钢至表面分别为相互扩散层(α-Fe和Fe 3Al)、第二金属间化合物层(Fe-Al金属间化合物层)、第一金属间化合物层(Fe-Al-Si金属间化合物层)+不连续的表面层,当加热时间为7min时,涂层结构转变为两层,涂层结构由基础钢至表面分别为相互扩散层(α-Fe和Fe 3Al)、第一金属间化合物层(Fe-Al-Si金属间化合物层),当加热时间为10min时,涂层仍为两层,涂层结构由基础钢至表面分别为相互扩散层(α-Fe和Fe 3Al)、第一金属间化合物层(Fe-Al-Si金属间化合物层),当加热时间为16min时,涂层转变为一层,涂层仅由相互扩散层(α-Fe和Fe 3Al)构成。
从加热后涂层表面粗糙度Ra来看,当加热为1min时,加热后涂层表面粗糙度Ra为1.62,较加热前Ra为1.67稍微降低,这是因为涂层中仍存在未合金化的铝涂层,涂层液化量较少,填充凹坑量较少,当加热时间大于等于3min时,涂层已完全合金化,此时随着加热时间的增加,涂层结构由四层向三层或加不连续的表面层、两层和一层转变,此时加热后涂层表面粗糙度Ra变化较小,总的说来,加热后涂层结构对加热后涂层表面粗糙度Ra影响较小。
表2 不同加热时间下涂层表面粗糙度Ra
加热时间(min) 1 3 5 7 10 16
加热后Ra(μm) 1.62 1.53 1.52 1.54 1.52 1.55
表3 不同加热时间下涂层各层组成
Figure PCTCN2022094607-appb-000001
Figure PCTCN2022094607-appb-000002
总的说来,对于铝或铝合金涂层,加热工艺或加热后涂层结构对加热后涂层表面粗糙度Ra影响较小,加热后涂层表面粗糙度Ra主要与预涂层厚度和预涂层的表面粗糙度有关。当预涂层厚度较大时,预涂层的表面粗糙度Ra对于加热后涂层表面粗糙度Ra影响相对较小,加热后涂层的表面粗糙度Ra较大,但是,当预涂层厚度较小时,预涂层的表面粗糙度Ra对于加热后涂层表面粗糙度Ra影响较大,当预涂层的表面粗糙度Ra较大时,可保证加热后涂层的表面粗糙度Ra≥1.80,从而可保证良好的涂漆粘附性和耐腐蚀性。
附图说明
图1为预涂层厚度为5μm、10μm、15μm、19μm、25μm加热后涂层的表面粗糙度Ra随加热温度的变化关系图;
图2为预涂层厚度为5μm、10μm、15μm、19μm、25μm加热后涂层的表面粗糙度Ra随加热时间的变化关系图;
图3为预涂层厚度为10μm且钢板总厚度1.4mm在930℃下加热后涂层结构随加热时间的变化图;
图4为预涂层厚度为5μm、10μm、15μm、19μm、25μm加热前的涂层结构图;
图5为预涂层典型表面形貌图;
图6为预涂层厚度为5μm、10μm、15μm、19μm、25μm加热后的涂层表面形貌图;
图7为本发明预涂层厚度大于或等于5μm小于或等于19μm的预涂层厚度和预涂层的表面粗糙度限定范围图。
具体实施方式
下面结合具体实施例和附图对本发明进一步进行描述。以下实施例或实验数据旨在示例性地说明本发明,本领域的技术人员应该清楚的是本发明不限于这些实施例或实验数据。
首先,本发明预涂覆铝或铝合金涂层钢板厚度为0.4~3.0mm,其中预涂覆涂层厚度为5~19μm,本实施例提供钢板厚度分别为0.8mm、1.4mm、2.0mm,预涂覆涂层厚度分别为5μm(本发明)、10μm(本发明)、15μm(本发明)、19μm(本发明)、25μm(对比),其中预涂层涂覆在钢板上下两个表面。
其中,本发明钢板的基础钢采用市场上常用的22MnB5,预涂覆涂层可通过热浸镀实现,典型热浸镀镀液组成(以质量百分计)为8~11%Si、2~4%Fe余量为铝或铝合金以及不可避免的杂质,然而本发明并不局限于该种涂覆方式及镀液组成,可以采用其他涂覆方式或其他铝或铝合金组成。其中,镀液中Si元素主要作用是在钢板表面形成Fe-Al-Si抑制层,可以有效阻碍脆性相Fe 2Al 5形成,提高涂层成形能力,当Si含量超过10%以后,这种作用明显减弱,实验研究表明,铝液中的Si含量一般控制在8~11%较为合适。Fe在不同镀液温度时溶解度不同,常规铝硅镀液温度为640~680℃,此时Fe在镀液中的溶解度为2~4%。
作为一种示例,本发明基础钢及预涂层具有表4所示的组成。
表4 本发明基础钢及预涂层组成
Figure PCTCN2022094607-appb-000003
其中,Bal.表示除其他元素之外的余量。
本发明预涂覆铝或铝合金涂层钢板,可通过以下工艺过程进行制造:炼钢→连铸→热轧 →酸洗冷轧→涂覆工艺。
(1)炼钢:包括铁水预处理、转炉冶炼、合金微调、精炼,最终得到较纯净的钢质。
(2)连铸:将精炼后的钢水注入中间包,中间包再将钢水分配到各个结晶器中,铸件成形并结晶后将铸件拉出、切割成一定长度的板坯。
(3)热轧:将上述板坯在1000~1300℃进行热轧,热轧出炉温度控制在1100℃以上,终轧温度控制在600℃以上,制得热轧钢板。将上述热轧钢板进行卷取,卷取温度控制在800℃以下。
(4)酸洗冷轧:热轧钢板进一步经酸洗冷轧得到酸洗冷轧钢板。
(5)涂覆工艺:涂覆工艺生产流程为:基板清洗→连续退火→热浸镀→涂层厚度控制→镀后冷却→光整→拉矫→涂油→卷取下线。
(a)基板清洗:为保证良好的涂层质量,清洗后钢板单面残油量控制在20mg/m 2以下、单面残铁控制在10mg/m 2以下;
(b)连续退火:退火温度、气氛对热浸镀涂层质量及产品组织、性能至关重要,退火温度控制在720~850℃,退火保温时间控制在60~120s,采用还原段气氛,5~10%H 2+N 2(按体积百分比),氧含量控制在20ppm以下,露点控制在-60~0℃;
(c)热浸镀:浸镀温度控制在640~680℃,浸镀时间2~8s;
(d)涂层厚度控制:涂层厚度通过气刀喷吹氮气或压缩空气控制,本发明涂层厚度控制在单面5~19μm;
(e)镀后冷却:镀后冷却采用风冷,钢板冷却至300℃以下,然后水冷至100℃以下;
(f)光整:根据预涂层粗糙度要求,调整光整轧辊工艺参数进行生产,该工序同时具有改善机械性能、带钢平直度的作用;
(g)拉矫:带钢经拉矫后进一步改善带钢平直度;
(h)涂油:带钢经静电涂油机给带钢表面涂防锈油;
(i)卷取下线:带钢卷取带钢并形成张力,最终成卷料下线。
采用上述工序生产的预涂层结构如图4所示。其中,本发明提供示例的预涂层厚度从左往右分别为5μm、10μm、15μm、19μm、25μm(对比)。
经分析,各钢板的基体组织皆为铁素体和珠光体组织,预涂层从基体侧至表面分别为金属间化合物层(Fe 2Al 5、Fe 2SiAl 7)和铝涂层。其中,各预涂层厚度的金属间化合物层厚度相当,约4.5μm(Fe 2Al 5层厚度0.5μm以下),区别在于铝涂层厚度,各预涂层厚度的铝涂层厚度分别为0.5μm、5.5μm、10.5μm、14.5μm、20.5μm。
对上述基板厚度0.8mm、1.4mm、2.0mm,预涂层厚度分别为5μm、10μm、15μm、19μm、25μm的钢板通过调整光整轧辊工艺参数,生产不同表面粗糙度Ra值的预涂层钢板。值得说明的是,由于铝或铝合金预涂层表面硬度较软,维氏硬度小于100,在铝或铝合金预涂层钢板在光整生产时,光整辊粗糙度可部分传递至铝或铝合金预涂层钢板,一般传递率(铝或铝合金预涂层粗糙度/光整辊粗糙度)不超过80%,且随着光整轧制力的提高,传递率升高,但随着光整辊的磨损,传递率逐渐下降。本发明生产高表面粗糙度Ra值的预涂层钢板,可通过提高光整辊粗糙度或增大光整轧制力等实现。另外,需要注意的是,本发明预涂层厚度较小,小于或等于19μm,随着预涂层厚度减小,铝涂层厚度越小,表面粗糙度的提高越难实现,此时光整辊粗糙度和轧制力的要求越高。
对预涂层钢板表面粗糙度进行测量,一般选取钢板宽度方向(即钢带宽度方向)沿边部、中部、边部分别测量3次共测量9次,最后取平均值,测量标准采用GB/T2523-2008冷轧金属薄板(带)表面粗糙度和峰值数的测量方法,截止波长0.8mm,测试距离4.8mm。不同表面粗糙度Ra值的预涂层表面形貌相似,表面皆存在一定数量的凹坑,区别在于预涂层的表面粗糙度Ra值越大,其凹坑深度越大,预涂层典型表面形貌见图5(实施例24)。
对上述预涂层钢板选取适当的加热工艺进行加热,确保预涂层完全合金化(不存在未合金化的铝涂层),一般加热温度不低于860℃,加热时间不低于3min,钢板厚度越大或预涂层 厚度越大,加热温度或加热时间适当提高。本发明实施例采用电阻加热炉,首先选取钢板宽度方向(即钢带宽度方向)沿边部、中部、边部分别加工成尺寸150*300mm的样板,放入加热炉中一定时间后,取出放置在平板淬火模具上压制并保压一定时间,然后按照同样的测量方式对加热后钢板表面粗糙度进行测量,最后取平均值。
选取预涂层表面粗糙度Ra相近(约1.70)预涂层厚度分别为5μm、10μm、15μm、19μm、25μm,加热前后涂层表面粗糙度见表5,加热后涂层表面形貌见图6。
表5 预涂层厚度5μm、10μm、15μm、25μm加热前后涂层表面粗糙度Ra
预涂层厚度(μm) 5 10 15 19 25
加热前Ra(μm) 1.69 1.67 1.69 1.72 1.70
加热后Ra(μm) 1.68 1.52 1.20 1.65 2.02
从加热前后涂层表面粗糙度可以看出,当预涂层小于20μm时,加热后不能保证较大的表面粗糙度Ra,预涂层厚度5μm、10μm、15μm加热后Ra较加热前分别下降0.01、0.15、0.49,即随着涂层厚度的增加,加热后Ra较加热前下降趋势愈明显,当预涂层厚度19μm时,加热后Ra与加热前相当,当预涂层厚度25μm时,加热后Ra明显升高;从加热后涂层表面形貌可以看出,当预涂层小于20μm时,加热后涂层未充分粗糙化,此时涂层具有较小的表面粗糙度,其中预涂层厚度5μm和10μm加热后涂层仍存在类似预涂层的凹坑形貌,预涂层厚度15μm加热后涂层不存在凹坑形貌,此时涂层少量粗糙化,即当预涂层小于或等于15μm时,加热后涂层主要表现为填充凹坑,随着涂层厚度的增加,加热后Ra较加热前下降趋势愈明显,当预涂层厚度19μm时,加热后涂层粗糙化程度进一步增加,表现为加热后涂层粗糙开始增大,当预涂层厚度25μm时,涂层已充分粗糙化,此时涂层具有较大的表面粗糙度。
结合加热前后涂层表面粗糙度和表面形貌的变化,发明人发现,铝或铝合金涂层加热后涂层表面粗糙度的变化主要发生在涂层液化凝固过程中,涂层加热后表面粗糙化主要分为两个过程:一是液化涂层填充凹坑(微小间距“谷”),二是液化涂层粗糙化,当预涂层厚度较大时,如不小于20μm,加热后涂层液化量较大,此时液化涂层填充凹坑后继续粗糙化,此时表面粗糙度Ra较大,当预涂层厚度较小时,加热后涂层液化量较少,此时液化涂层主要表现为填充凹坑,加热后不能保证较大的表面粗糙度Ra,此时可通过提高预涂层的表面粗糙度Ra来提高加热后涂层的表面粗糙度Ra。
接下来对上述加热后钢板选择适当工艺进行涂装(磷化、电泳),并对涂装后的涂层进行划痕腐蚀测试,评估涂漆粘附性和耐腐蚀性(最大腐蚀扩展宽度不大于4mm时,满足要求)。
如表6的磷化药剂及试验参数对热成形后试样进行磷化处理,随后使用得到的磷化板进行电泳(电泳漆型号:关西HT-8000C),电泳干膜厚度约为18μm。随后使用循环腐蚀方法,单个循环包括8h常温保持(25±3℃,期间4次喷淋盐溶液各3min,盐溶液组成为:0.9wt%的NaCl,0.1wt%的CaCl 2,0.0750.9wt%的NaHCO 3),然后经过8小时湿热(49±2℃,100%RH),最后结果8h干燥(60±2℃,<30%RH),共计26循环评估耐蚀性。
表6 磷化过程参数
Figure PCTCN2022094607-appb-000004
Figure PCTCN2022094607-appb-000005
表7为实施例对应的关键生产工艺、预涂层的表面粗糙度、加热后涂层的表面粗糙度、划痕腐蚀测试结果。
表7 实施例对应的关键生产工艺、预涂层的表面粗糙度、加热后涂层的表面粗糙度、划痕腐蚀测试结果
Figure PCTCN2022094607-appb-000006
Figure PCTCN2022094607-appb-000007
Figure PCTCN2022094607-appb-000008
Figure PCTCN2022094607-appb-000009
上述实施例中预涂层厚度5μm、10μm、15μm、19μm为本发明预涂层厚度范围,采用本发明方法制得的预涂层与未采用本发明方法制得的预涂层形成对比。
具体地,结合图7,预涂层厚度为5μm,采用本发明方法制得的预涂层包括实施例1、10、19,对比例包括2、11、20。可以看出,当预涂层厚度为5μm时(满足大于或等于5μm小于或等于10μm),采用本发明实施例1、10、19,预涂层的表面粗糙度Ra≥1.85,所述预涂层厚度和预涂层的表面粗糙度限定在图形ABCD内,加热后涂层的表面粗糙度Ra≥1.80,此时涂漆具有良好的粘附性与耐腐蚀性,满足标准要求,而对比例中预涂层的表面粗糙度Ra<1.85,所述预涂层厚度和预涂层的表面粗糙度未在图形ABCD内,加热后涂层的表面粗糙度Ra<1.80,此时涂漆的粘附性与耐腐蚀性较差,不能满足标准要求。
当预涂层厚度为10μm,采用本发明方法制得的预涂层包括实施例3、12、21,对比例包括4、13、22。可以看出,当预涂层厚度为10μm时(满足大于或等于5μm小于或等于10μm),采用本发明实施例3、12、21,预涂层的表面粗糙度Ra≥2.00,所述预涂层厚度和预涂层的表面粗糙度限定在图形ABCD内,加热后涂层的表面粗糙度Ra≥1.80,此时涂漆具有良好的粘附性与耐腐蚀性,满足标准要求,而对比例中预涂层的表面粗糙度Ra<2.00,所述预涂层厚度和预涂层的表面粗糙度未在图形ABCD内,加热后涂层的表面粗糙度Ra<1.80,此时涂漆的粘附性与耐腐蚀性较差,不能满足标准要求。
当预涂层厚度为15μm,采用本发明方法制得的预涂层包括实施例5、14、23,对比例包括6、15、24。可以看出,当预涂层厚度为15μm时(满足大于10μm小于或等于15μm),采用本发明实施例5、14、23,预涂层的表面粗糙度Ra≥2.40,所述预涂层厚度和预涂层的表面粗糙度限定在图形BEFC内,加热后涂层的表面粗糙度Ra≥1.80,此时涂漆具有良好的粘附性与耐腐蚀性,满足标准要求,而对比例中预涂层的表面粗糙度Ra<2.40,所述预涂层厚度和预涂层的表面粗糙度未在图形BEFC内,加热后涂层的表面粗糙度Ra<1.80,此时涂漆的粘附性与耐腐蚀性较差,不能满足标准要求。
当预涂层厚度为19μm,采用本发明方法制得的预涂层包括实施例7、16、25,对比例包括8、17、26。可以看出,当预涂层厚度为19μm时(满足大于15μm小于20μm),采用本发明实施例7、16、25,预涂层的表面粗糙度Ra≥2.80,所述预涂层厚度和预涂层的表面粗糙度限定在图形EGHF内,加热后涂层的表面粗糙度Ra≥1.80,此时涂漆具有良好的粘附性与耐 腐蚀性,满足标准要求,而对比例中预涂层的表面粗糙度Ra<2.80,所述预涂层厚度和预涂层的表面粗糙度未在图形EGHF内,加热后涂层的表面粗糙度Ra<1.80,此时涂漆的粘附性与耐腐蚀性较差,不能满足标准要求。
另外,选择Arcelor Mittal常用预涂层厚度25μm作为对比,具体的为实施例9、18、27。可以看出,当预涂层的表面粗糙度不大于2.00时(实施例9、18),加热后涂层的表面粗糙度Ra≥1.80,此时涂漆具有良好的粘附性与耐腐蚀性,最大腐蚀扩展宽度2.9mm,满足标准要求,但当预涂层的表面粗糙度过大(实施例27,Ra为3.50),加热后涂层的表面粗糙度Ra<1.80,此时涂漆的粘附性与耐腐蚀性较差,不能满足标准要求,即说明即使预涂层厚度较大,此时若预涂层的表面粗糙度足够大时,加热后仍不能保证较高的表面粗糙度。
总的说来,本发明预涂层厚度范围5μm、10μm、15μm、19μm中采用本发明方法制得的预涂层,具体的为实施例1、3、5、7、10、12、14、16、19、21、23、25,其涂漆最大腐蚀扩展宽度为2.8~3.2mm,而未采用本发明制得的预涂层,具体的为实施例2、4、6、8、11、13、15、17、20、22、24、26,其涂漆最大腐蚀扩展宽度皆大于4.0mm,不能满足要求,而预涂层厚度25μm涂漆最大腐蚀扩展宽度2.9mm(实施例9、18),即采用本发明制得的预涂层涂漆粘附性、耐腐蚀性能与Arcelor Mittal常用预涂层厚度相当,而未采用本发明制得的预涂层涂漆粘附性、耐腐蚀性能较差。
当预涂层厚度较小时,如何保证较高的热成形后涂层的表面粗糙度对于提高铝合金涂层热成形后涂漆粘附性和耐腐蚀性尤为重要。
通过以上实施例,预涂覆铝或铝合金涂层,当预涂层厚度较小时(小于20μm),采用本发明制得的预涂层热成形后涂层具有较高的粗糙度,可以保证良好的涂漆粘附性与耐腐蚀性。
上述实施方式对本发明的目的、实施效果进行了详细阐述,所应理解的是,上述实施方式仅仅是对本发明的优选实施方式进行描述,并非对本发明构思和范围进行限定,凡在本发明的精神和原则之内,在不脱离本发明设计思想的前提下,本领域工程技术人员或采用了本发明的技术构思和技术方案进行的各种修改、等同替换、改进等,均在本发明的保护范围之内。

Claims (13)

  1. 一种用于热成形的预涂覆钢板,其特征在于:在基础钢的至少一个表面上设置预涂层,所述预涂层的厚度为5~19μm,其中,当预涂层厚度为大于或等于5μm小于或等于10μm时,则所述预涂层厚度和预涂层的表面粗糙度限定在图形ABCD内,该图形ABCD具有由A(5μm,3.5μm)、B(10μm,3.5μm)、C(10μm,2.0μm)、D(5μm,1.85μm)所限定的预涂层厚度和预涂层的表面粗糙度坐标;当预涂层厚度为大于10μm小于或等于15μm时,则所述预涂层厚度和预涂层的表面粗糙度限定在图形BEFC内,该图形BEFC具有由B(10μm,3.5μm)、E(15μm,3.5μm)、F(15μm,2.4μm)、C(10μm,2.0μm)所限定的预涂层厚度和预涂层的表面粗糙度坐标;当预涂层厚度为大于15μm小于或等于19μm时,则所述预涂层厚度和预涂层的表面粗糙度限定在图形EGHF内,该图形EGHF具有由E(15μm,3.5μm)、G(19μm,3.5μm)、H(19μm,2.8μm)、F(15μm,2.4μm)所限定的预涂层厚度和预涂层的表面粗糙度坐标。
  2. 一种权利要求1所述的预涂覆钢板的制备方法,制备过程为炼钢→连铸→热轧→酸洗冷轧→涂覆工艺,其特征在于:涂覆工艺中包括光整工序,光整工序中,轧辊Ra:3.0μm~6.0μm,轧制力为4000kN~9000kN。
  3. 根据权利要求2所述的预涂覆钢板的制备方法,其特征在于:涂覆工艺中的涂覆液组成以质量百分计为8~11%Si、2~4%Fe、余量为铝或铝合金以及不可避免的杂质。
  4. 根据权利要求2所述的预涂覆钢板的制备方法,其特征在于:涂覆工艺中包括连续退火工序,连续退火工序参数:退火温度控制在720~850℃,退火保温时间控制在60~120s,采用还原段气氛:按体积百分比为5~10%H 2+N 2,氧含量控制在20ppm以下,露点控制在-60~0℃。
  5. 一种涂覆的热成形钢构件,其特征在于:采用权利要求1所述的预涂覆钢板经热成形工艺后得到的,其中,构件的涂层表面粗糙度满足Ra≥1.80μm。
  6. 根据权利要求5所述的一种涂覆的热成形钢构件,其特征在于:所述涂层由基础钢至表面仅由第一层构成,所述第一层为含Al、Si的相互扩散层,所述相互扩散层的成分为:Fe含量以重量计大于等于80%,Si含量以重量计小于等于5%,其余为Al。
  7. 根据权利要求5所述的一种涂覆的热成形钢构件,其特征在于:所述涂层由基础钢至表面依次由第一层、第二层构成,
    所述第一层为含Al、Si的相互扩散层,所述相互扩散层的成分为:Fe含量以重量计大于等于80%,Si含量以重量计小于等于5%,其余为Al,
    所述第二层为含Al、Si的第一金属间化合物层,所述第一金属间化合物层的成分为:Fe含量以重量计为55%~79%,Si含量以重量计大于等于2%,其余为Al。
  8. 根据权利要求5所述的一种涂覆的热成形钢构件,其特征在于:所述涂层由基础钢至 表面依次由第一层、第二层和不连续的表面层构成,
    所述第一层为含Al、Si的相互扩散层,所述相互扩散层的成分为:Fe含量以重量计大于等于80%,Si含量以重量计小于等于5%,其余为Al,
    所述第二层为含Al、Si的第一金属间化合物层,所述第一金属间化合物层的成分为:Fe含量以重量计为55%~79%,Si含量以重量计大于等于2%,其余为Al,
    所述表面层不连续,所述表面层包括含Al、Si的第一金属间化合物和含Al、Si的第二金属间化合物,所述第一金属间化合物层的成分为:Fe含量以重量计为55%~79%,Si含量以重量计大于等于2%,其余为Al,所述第二金属间化合物的成分为:Fe含量以重量计为30%~50%,Si含量以重量计小于等于2%,其余为Al。
  9. 根据权利要求5所述的一种涂覆的热成形钢构件,其特征在于:所述涂层由基础钢至表面依次由第一层、第二层和第三层构成,
    所述第一层为含Al、Si的相互扩散层,所述相互扩散层的成分为:Fe含量以重量计大于等于80%,Si含量以重量计小于等于5%,其余为Al,
    所述第二层为含Al、Si的第二金属间化合物层,所述第二金属间化合物的成分为:Fe含量以重量计为30%~50%,Si含量以重量计小于等于2%,其余为Al,
    所述第三层为含Al、Si的第一金属间化合物层,所述第一金属间化合物层的成分为:Fe含量以重量计为55%~79%,Si含量以重量计大于等于2%,其余为Al。
  10. 根据权利要求5所述的一种涂覆的热成形钢构件,其特征在于:所述涂层由基础钢至表面依次由第一层、第二层、第三层和不连续的表面层构成,
    所述第一层为含Al、Si的相互扩散层,所述相互扩散层的成分为:Fe含量以重量计大于等于80%,Si含量以重量计小于等于5%,其余为Al,
    所述第二层为含Al、Si的第二金属间化合物层,所述第二金属间化合物的成分为:Fe含量以重量计为30%~50%,Si含量以重量计小于等于2%,其余为Al,
    所述第三层为含Al、Si的第一金属间化合物层,所述第一金属间化合物层的成分为:Fe含量以重量计为55%~79%,Si含量以重量计大于等于2%,其余为Al,
    所述表面层不连续,所述表面层包括含Al、Si的第一金属间化合物和含Al、Si的第二金属间化合物,所述第一金属间化合物层的成分为:Fe含量以重量计为55%~79%,Si含量以重量计大于等于2%,其余为Al,所述第二金属间化合物的成分为:Fe含量以重量计为30%~50%,Si含量以重量计小于等于2%,其余为Al。
  11. 根据权利要求5所述的一种涂覆的热成形钢构件,其特征在于:所述涂层由基础钢至表面依次由第一层、第二层、第三层和第四层构成,
    所述第一层为含Al、Si的相互扩散层,所述相互扩散层的成分为:Fe含量以重量计大于等于80%,Si含量以重量计小于等于5%,其余为Al,
    所述第二层为含Al、Si的第二金属间化合物层,所述第二金属间化合物的成分为:Fe含量以重量计为30%~50%,Si含量以重量计小于等于2%,其余为Al,
    所述第三层为含Al、Si的第一金属间化合物层,所述第一金属间化合物层的成分为:Fe含量以重量计为55%~79%,Si含量以重量计大于等于2%,其余为Al,
    所述第四层为含Al、Si的第二金属间化合物层,所述第二金属间化合物的成分为:Fe含量以重量计为30%~50%,Si含量以重量计小于等于2%,其余为Al。
  12. 根据权利要求5所述的一种涂覆的热成形钢构件,其特征在于:所述钢构件的总厚度为0.4mm~3.0mm。
  13. 一种陆用机动车辆,其包括根据权利要求5-12中任一项涂覆的热成形钢构件。
PCT/CN2022/094607 2021-06-07 2022-05-24 一种用于热成形的预涂覆钢板及其制备方法以及热成形钢构件及其应用 WO2022257749A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112023025498A BR112023025498A2 (pt) 2021-06-07 2022-05-24 Placa de aço pré-revestida para conformação a quente e método de preparação para a mesma, e membro de aço formado a quente e aplicação do mesmo
EP22819347.0A EP4353860A1 (en) 2021-06-07 2022-05-24 Pre-coated steel plate for hot forming and preparation method therefor, and hot-formed steel member and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110630714.0A CN113481451B (zh) 2021-06-07 2021-06-07 一种用于热成形的预涂覆钢板及其制备方法以及热成形钢构件及其应用
CN202110630714.0 2021-06-07

Publications (1)

Publication Number Publication Date
WO2022257749A1 true WO2022257749A1 (zh) 2022-12-15

Family

ID=77934728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094607 WO2022257749A1 (zh) 2021-06-07 2022-05-24 一种用于热成形的预涂覆钢板及其制备方法以及热成形钢构件及其应用

Country Status (4)

Country Link
EP (1) EP4353860A1 (zh)
CN (1) CN113481451B (zh)
BR (1) BR112023025498A2 (zh)
WO (1) WO2022257749A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113481451B (zh) * 2021-06-07 2022-12-27 马鞍山钢铁股份有限公司 一种用于热成形的预涂覆钢板及其制备方法以及热成形钢构件及其应用
CN114769323B (zh) * 2022-04-29 2023-10-27 马鞍山钢铁股份有限公司 一种热轧带钢宽度精度的控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101376956A (zh) * 2007-08-31 2009-03-04 宝山钢铁股份有限公司 控制合金化热镀锌钢板镀层相结构的方法及合金化热镀锌钢板
CN101583486B (zh) 2006-10-30 2014-08-27 安赛乐米塔尔法国公司 涂覆的钢带材、其制备方法、其使用方法、由其制备的冲压坯料、由其制备的冲压产品和含有这样的冲压产品的制品
CN105829578A (zh) * 2013-12-25 2016-08-03 新日铁住金株式会社 汽车部件以及汽车部件的制造方法
CN108588612A (zh) * 2018-04-28 2018-09-28 育材堂(苏州)材料科技有限公司 热冲压成形构件、热冲压成形用预涂镀钢板及热冲压成形工艺
WO2021084378A1 (en) * 2019-10-30 2021-05-06 Arcelormittal A press hardening method
WO2021103805A1 (zh) * 2019-11-29 2021-06-03 宝山钢铁股份有限公司 具有优异漆膜附着力的热成形部件及其制造方法
CN113481451A (zh) * 2021-06-07 2021-10-08 马鞍山钢铁股份有限公司 一种用于热成形的预涂覆钢板及其制备方法以及热成形钢构件及其应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3219357B2 (ja) * 1994-10-18 2001-10-15 株式会社神戸製鋼所 高鮮映性プレコート鋼板の製造方法
CN1260768C (zh) * 2000-12-28 2006-06-21 住友金属建材株式会社 内磁屏蔽罩材料及其生产方法
WO2009090443A1 (en) * 2008-01-15 2009-07-23 Arcelormittal France Process for manufacturing stamped products, and stamped products prepared from the same
CN101746092B (zh) * 2008-12-03 2014-08-06 古河Sky株式会社 电子电气设备用预涂层金属板
WO2010085983A1 (en) * 2009-02-02 2010-08-05 Arcelormittal Investigacion Y Desarrollo S.L. Fabrication process of coated stamped parts and parts prepared from the same
CN110129727B (zh) * 2019-05-22 2021-08-03 上海佑戈金属科技有限公司 用于燃料电池金属双极板的预涂镀金属卷带的制备方法
WO2021084303A1 (en) * 2019-10-30 2021-05-06 Arcelormittal A press hardening method
CN110777319B (zh) * 2019-11-22 2021-12-14 马鞍山钢铁股份有限公司 高耐蚀高成形性热成形钢用镀液、热成形钢板、热浸镀生产工艺、热冲压部件及应用
CN111041370B (zh) * 2019-12-31 2021-06-22 马鞍山钢铁股份有限公司 宽热成形加热工艺窗口的Cr-Al-Si合金体系涂覆钢板及其制备和热冲压成形工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101583486B (zh) 2006-10-30 2014-08-27 安赛乐米塔尔法国公司 涂覆的钢带材、其制备方法、其使用方法、由其制备的冲压坯料、由其制备的冲压产品和含有这样的冲压产品的制品
CN101376956A (zh) * 2007-08-31 2009-03-04 宝山钢铁股份有限公司 控制合金化热镀锌钢板镀层相结构的方法及合金化热镀锌钢板
CN105829578A (zh) * 2013-12-25 2016-08-03 新日铁住金株式会社 汽车部件以及汽车部件的制造方法
CN108588612A (zh) * 2018-04-28 2018-09-28 育材堂(苏州)材料科技有限公司 热冲压成形构件、热冲压成形用预涂镀钢板及热冲压成形工艺
CN108588612B (zh) 2018-04-28 2019-09-20 育材堂(苏州)材料科技有限公司 热冲压成形构件、热冲压成形用预涂镀钢板及热冲压成形工艺
WO2021084378A1 (en) * 2019-10-30 2021-05-06 Arcelormittal A press hardening method
WO2021103805A1 (zh) * 2019-11-29 2021-06-03 宝山钢铁股份有限公司 具有优异漆膜附着力的热成形部件及其制造方法
CN113481451A (zh) * 2021-06-07 2021-10-08 马鞍山钢铁股份有限公司 一种用于热成形的预涂覆钢板及其制备方法以及热成形钢构件及其应用

Also Published As

Publication number Publication date
EP4353860A1 (en) 2024-04-17
BR112023025498A2 (pt) 2024-02-27
CN113481451A (zh) 2021-10-08
CN113481451B (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
US12012655B2 (en) Steel sheet coated with a metallic coating based on aluminum
CN112154224B (zh) 热冲压成形构件、热冲压成形用预涂镀钢板及热冲压成形工艺
WO2022257749A1 (zh) 一种用于热成形的预涂覆钢板及其制备方法以及热成形钢构件及其应用
ES2909307T3 (es) Procedimiento para la fabricación de una parte endurecida que no tenga problemas de LME
CN111394679B (zh) 具有薄的铝合金镀层的镀层钢板及其涂镀方法
WO2013031984A1 (ja) 熱間プレス成形品およびその製造方法
US5629099A (en) Alloying-treated iron-zinc alloy dip-plated steel sheet excellent in press-formability and method for manufacturing same
CN111575622A (zh) 一种具有优异涂装性能的热成形零部件用的镀铝钢板及其制造方法及热成形零部件
US5409553A (en) Process for manufacturing galvannealed steel sheets having high press-formability and anti-powdering property
JP2648679B2 (ja) 耐食性と加工性に優れた塗装アルミメッキ鋼板の製造法
CN105274301B (zh) 一种屈服强度≥220MPa铁锌合金镀层钢板的生产方法
JP2004156111A (ja) 合金化溶融亜鉛めっき鋼板及びその製造方法
JPH04280953A (ja) 合金化溶融亜鉛めっき鋼板及びその製造法
JP2002302749A (ja) 耐かじり性に優れた溶融Zn−Al系合金めっき鋼板とその製造方法
JP3368647B2 (ja) プレス成形性、耐パウダリング性および塗装後鮮映性に優れた合金化溶融亜鉛めっき鋼板の製造方法
JP7498412B2 (ja) ホットスタンプ用めっき鋼板およびホットスタンプ成形体の製造方法、ならびにホットスタンプ成形体
US20230399713A1 (en) A method for manufacturing a steel sheet with a ZnAlMg coating, corresponding coated steel sheet, part and vehicle
JPH01242765A (ja) 合金化溶融亜鉛めっき鋼板およびその製造方法
CN117363977A (zh) 高强高韧1500MPa级铝合金涂层热成形钢板及生产方法、热成形钢构件和应用
JPH02122056A (ja) 合金化溶融亜鉛めっき鋼板
JP3275686B2 (ja) プレス成形性に優れた合金化溶融亜鉛めっき鋼板
JP3273759B2 (ja) 潤滑性に優れた亜鉛系めっき鋼板
CN117107181A (zh) 热冲压成形用预涂层钢板及其制造方法、热冲压成形部件及其制造方法和应用
JP3372851B2 (ja) 耐疵付き性に優れた溶融Zn系めっき鋼板
KR20020047424A (ko) 표면성이 우수한 자동차 외판용 합금화용융아연도금강판및 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819347

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023025498

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2022819347

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2023133610

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2022819347

Country of ref document: EP

Effective date: 20240108

ENP Entry into the national phase

Ref document number: 112023025498

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231205