WO2022257240A1 - 一种铌掺杂AlPO-31分子筛晶体及其制备方法 - Google Patents
一种铌掺杂AlPO-31分子筛晶体及其制备方法 Download PDFInfo
- Publication number
- WO2022257240A1 WO2022257240A1 PCT/CN2021/107958 CN2021107958W WO2022257240A1 WO 2022257240 A1 WO2022257240 A1 WO 2022257240A1 CN 2021107958 W CN2021107958 W CN 2021107958W WO 2022257240 A1 WO2022257240 A1 WO 2022257240A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- niobium
- molecular sieve
- alpo
- doped
- solution
- Prior art date
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 67
- 239000002808 molecular sieve Substances 0.000 title claims abstract description 60
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 title claims abstract description 60
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims abstract description 36
- WEHWNAOGRSTTBQ-UHFFFAOYSA-N dipropylamine Chemical compound CCCNCCC WEHWNAOGRSTTBQ-UHFFFAOYSA-N 0.000 claims abstract description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000008367 deionised water Substances 0.000 claims abstract description 20
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 20
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims abstract description 18
- XZLABTOOVBNJCD-UHFFFAOYSA-D O.[Nb+5].[Nb+5].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O Chemical compound O.[Nb+5].[Nb+5].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O XZLABTOOVBNJCD-UHFFFAOYSA-D 0.000 claims abstract description 16
- 239000010955 niobium Substances 0.000 claims abstract description 14
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 13
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 11
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 11
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 6
- 239000011574 phosphorus Substances 0.000 claims abstract description 6
- 239000002904 solvent Substances 0.000 claims abstract description 4
- 238000003756 stirring Methods 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 12
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 8
- 238000003786 synthesis reaction Methods 0.000 abstract description 7
- 239000003795 chemical substances by application Substances 0.000 abstract description 3
- 238000006243 chemical reaction Methods 0.000 description 13
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 8
- 239000000463 material Substances 0.000 description 5
- 229910052723 transition metal Inorganic materials 0.000 description 4
- 150000003624 transition metals Chemical class 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- XNHGKSMNCCTMFO-UHFFFAOYSA-D niobium(5+);oxalate Chemical compound [Nb+5].[Nb+5].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O XNHGKSMNCCTMFO-UHFFFAOYSA-D 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 102000011759 adducin Human genes 0.000 description 1
- 108010076723 adducin Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 235000015110 jellies Nutrition 0.000 description 1
- 239000008274 jelly Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/54—Phosphates, e.g. APO or SAPO compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B37/00—Compounds having molecular sieve properties but not having base-exchange properties
- C01B37/06—Aluminophosphates containing other elements, e.g. metals, boron
- C01B37/065—Aluminophosphates containing other elements, e.g. metals, boron the other elements being metals only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
Definitions
- the invention relates to the field of molecular sieves, in particular to a niobium-doped AlPO-31 molecular sieve crystal and a preparation method thereof.
- Aluminum phosphate molecular sieve (AlPO-n, n refers to different types) crystals have been widely used in the fields of adsorption, separation and catalysis because of their special pore structures and catalytic sites. Among them, the special pore structures of different types of aluminum phosphate molecular sieves can be For adsorption and separation of specific substances. Therefore, the synthesis of single-phase aluminum phosphate molecular sieve crystals is one of the focuses of current research.
- AlPO-31 As a special aluminum phosphate molecular sieve crystal, AlPO-31 is currently synthesized mainly by hydrothermal method in the laboratory. However, in the existing synthetic methods, the crystal can only be obtained under specific reaction conditions (such as reaction temperature, reaction time and material ratio, etc.), and the change of reaction conditions has a greater impact on the type of the final product, often leading to the formation of Dense phase aluminum phosphate crystals or other types of aluminum phosphate molecular sieve crystals. The doping of transition metals will make the structure of aluminum phosphate molecular sieve more stable, and the physical and chemical properties will change accordingly.
- reaction conditions such as reaction temperature, reaction time and material ratio, etc.
- the reaction conditions need to be changed so that the transition metal atoms can be successfully doped into the framework;
- the pore structure inside the molecular sieve crystal changes, which makes it difficult to synthesize a single pure phase molecular sieve.
- the object of the present invention is to provide a niobium-doped AlPO-31 molecular sieve crystal and a preparation method thereof, aiming at solving the difficulty of synthesizing a pure transition metal-doped AlPO-31 by existing synthesis methods Problems with molecular sieve crystals.
- a method for preparing niobium-doped AlPO-31 molecular sieve crystals wherein, dipropylamine is used as a template, aluminum isopropoxide is used as an aluminum source, niobium oxalate hydrate is used as a niobium source, phosphoric acid is used as a phosphorus source, and deionized water is used as a solvent.
- the dipropylamine, aluminum isopropoxide, niobium oxalate hydrate, phosphoric acid and deionized water are uniformly mixed, and hydrothermal reaction is carried out to obtain the niobium-doped AlPO-31 molecular sieve crystal.
- the dipropylamine, aluminum isopropoxide, niobium oxalate hydrate, phosphoric acid, and deionized water are respectively calculated as DPA, Al 2 O 3 , Nb 2 O 5 , P 2 O 5 , and H 2 O;
- the method for preparing the niobium-doped AlPO-31 molecular sieve crystal specifically includes the steps of:
- the colloidal solution D is subjected to a hydrothermal reaction to obtain the niobium-doped AlPO-31 molecular sieve crystal.
- the first stirring time is 10h-15h.
- the time for the second stirring is 3min-5min.
- the third stirring time is 3-4h.
- the fourth stirring time is 1.5-2h.
- the temperature of the hydrothermal reaction is 160-170°C, and the time is 50-70h.
- a niobium-doped AlPO-31 molecular sieve crystal prepared by the above-mentioned preparation method.
- the niobium-doped AlPO-31 molecular sieve crystal is a pure phase.
- the invention provides a niobium-doped AlPO-31 molecular sieve crystal and a preparation method thereof. Using dipropylamine as a template, aluminum isopropoxide as an aluminum source, phosphoric acid as a phosphorus source, and hydrated niobium oxalate as a niobium source, pure-phase niobium-doped AlPO-31 crystals were prepared.
- Fig. 1 is the XRD spectrum of the niobium-doped AlPO-31 molecular sieve crystal prepared by the embodiment and the comparison chart of the standard XRD card.
- the present invention provides a niobium-doped AlPO-31 molecular sieve crystal and a preparation method thereof.
- a niobium-doped AlPO-31 molecular sieve crystal and a preparation method thereof.
- the present invention will be further described in detail below. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
- an embodiment of the present invention provides a method for preparing niobium-doped AlPO-31 molecular sieve crystals, wherein dipropylamine is used as a template, aluminum isopropoxide is used as an aluminum source, niobium oxalate hydrate is used as a niobium source, and phosphoric acid is used as a phosphorus source.
- Source and deionized water are used as a solvent, and the dipropylamine, aluminum isopropoxide, niobium oxalate hydrate, phosphoric acid and deionized water are uniformly mixed, and a hydrothermal reaction is carried out to obtain the niobium-doped AlPO-31 molecular sieve crystal.
- the dipropylamine, aluminum isopropoxide, niobium oxalate hydrate, phosphoric acid, and deionized water are respectively calculated as DPA, Al 2 O 3 , Nb 2 O 5 , P 2 O 5 , and H 2 O;
- niobium-doped AlPO-31 molecular sieve crystals can also be synthesized with a slight change in ratio.
- the preparation method of the niobium-doped AlPO-31 molecular sieve crystal specifically includes the steps of:
- step S1 in one embodiment, the time for the first stirring is 10 h.
- step S2 in one embodiment, the time for the second stirring is 3 minutes to 5 minutes.
- step S3 in one embodiment, the time for the third stirring is 3-4 hours.
- step S3 is specifically: adding the solution B to the solution A dropwise, and stirring for 3-4 hours to obtain the solution C.
- step S4 in one embodiment, the time for the fourth stirring is 1.5-2 hours.
- step S4 is specifically: adding the dipropylamine dropwise into the solution C, and stirring for 1.5-2 hours to obtain the colloidal solution D.
- step S5 in one embodiment, the temperature of the hydrothermal reaction is 160-170° C., and the time is 50-70 h.
- the above-mentioned raw materials and dipropylamine are used as templates, and niobium-doped AlPO-31 molecular sieve crystals can also be synthesized within a certain range of temperature and time.
- step S5 is specifically: subjecting the colloidal solution D to a hydrothermal reaction at a reaction temperature of 160-170°C (such as 165°C) and a time of 50-70h (such as 60h); after the reaction, The hydrothermal product is filtered, washed and dried under ultrasonic conditions to obtain the niobium-doped AlPO-31 molecular sieve crystal.
- dipropylamine is used as a template to guide the synthesis of niobium-doped AlPO-31 molecular sieve crystals.
- the ratio of each reaction material is properly adjusted to obtain pure-phase niobium-doped AlPO-31 molecular sieve crystals.
- the ratio of reaction materials there are the following characteristics:
- the crystal is more sensitive to the doping of Nb element.
- Nb element changes from less to more, the sample will change from a jelly with low crystallinity to a pure NbAlPO-31 crystal; because when the proportion of Nb element increases, the solution will The degree of supersaturation decreases, and the appropriate degree of supersaturation in the solution is conducive to the nucleation and growth of AlPO-31 crystals.
- the embodiment of the present invention also provides a niobium-doped AlPO-31 molecular sieve crystal prepared by the above-mentioned preparation method.
- AlPO-31 As a special aluminum phosphate molecular sieve crystal, AlPO-31 has a size of circular channel structure.
- the niobium-doped AlPO-31 molecular sieve crystal is a pure phase.
- Aluminum isopropoxide ( ⁇ 98%, Shanghai Aladdin Biochemical Technology Co., Ltd.), phosphoric acid ( ⁇ 85%, Shanghai Aladdin Biochemical Technology Co., Ltd.), dipropylamine (98%, Shanghai Aladdin Biochemical Technology Co., Ltd.) , hydrated niobium oxalate (98%, Shanghai Aladdin Biochemical Technology Co., Ltd.), deionized water (prepared by Hetai Master-S15UV low-organic ultrapure water machine).
- the present invention provides a niobium-doped AlPO-31 molecular sieve crystal and a preparation method thereof.
- a niobium-doped AlPO-31 molecular sieve crystal and a preparation method thereof.
- aluminum isopropoxide as an aluminum source
- phosphoric acid as a phosphorus source
- niobium oxalate hydrate as a niobium source
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Materials Engineering (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Catalysts (AREA)
Abstract
本发明公开一种铌掺杂AlPO-31分子筛晶体及其制备方法,以二丙胺作为模板剂,以异丙醇铝作为铝源、水合草酸铌作为铌源、磷酸作为磷源、去离子水作为溶剂,将所述二丙胺、异丙醇铝、水合草酸铌、磷酸和去离子水混合均匀,进行水热反应,得到所述铌掺杂AlPO-31分子筛晶体。本发明以二丙胺作为模板剂来指导晶体的合成,制备得到纯相的铌掺杂AlPO-31分子筛晶体。
Description
本发明涉及分子筛领域,尤其涉及一种铌掺杂AlPO-31分子筛晶体及其制备方法。
磷酸铝分子筛(AlPO-n,n指代不同种类)晶体因为具有特殊的孔道结构和催化位点,在吸附、分离和催化领域得到了广泛应用,其中,不同种类磷酸铝分子筛的特殊孔道结构可以用于吸附和分离特定的物质。因此,合成单一纯相的磷酸铝分子筛晶体是目前研究的重点之一。
AlPO-31作为一种特殊的磷酸铝分子筛晶体,目前实验室内主要通过水热法进行合成。但是在现有的合成方法中,只有在特定的反应条件下(如反应温度,反应时间和物料比例等)才能得到该晶体,反应条件的变化对最终产物的种类影响较大,往往会导致生成致密相磷酸铝晶体或其他种类的磷酸铝分子筛晶体。过渡金属的掺杂会使得磷酸铝分子筛结构更加稳定,物理化学性质发生相应改变。但是,在反应物料中引入过渡金属元素后,需要对反应条件进行改变以使得过渡金属原子能够成功掺杂进入骨架中;此外,在骨架中掺入原子半径较大的过渡金属原子后往往会令分子筛晶体内部的孔道结构发生变化,进而导致很难合成出单一纯相的分子筛。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种铌掺杂AlPO-31分子筛晶体及其制备方法,旨在解决现有合成方法难以合成出纯相的过渡金属掺杂的AlPO-31分子筛晶体的问题。
本发明的技术方案如下:
一种铌掺杂AlPO-31分子筛晶体的制备方法,其中,以二丙胺作为模板剂,以异丙 醇铝作为铝源、水合草酸铌作为铌源、磷酸作为磷源、去离子水作为溶剂,将所述二丙胺、异丙醇铝、水合草酸铌、磷酸和去离子水混合均匀,进行水热反应,得到所述铌掺杂AlPO-31分子筛晶体。
可选地,所述二丙胺、异丙醇铝、水合草酸铌、磷酸、去离子水分别以DPA、Al
2O
3、Nb
2O
5、P
2O
5、H
2O计;
按摩尔比计,DPA:Al
2O
3:Nb
2O
5:P
2O
5:H
2O=(0.95~1.13):(0.98~1.1):(0.07~0.11):1:(550~680)。
可选地,所述铌掺杂AlPO-31分子筛晶体的制备方法,具体包括步骤:
将异丙醇铝、水合草酸铌、去离子水混合,进行第一次搅拌,得到溶液A;
将磷酸与去离子水混合,进行第二次搅拌,得到溶液B;
将所述溶液B加入到所述溶液A中,进行第三次搅拌,得到溶液C;
将二丙胺加入到所述溶液C中,进行第四次搅拌,得到胶体溶液D;
将所述胶体溶液D进行水热反应,得到所述铌掺杂AlPO-31分子筛晶体。
可选地,所述第一次搅拌的时间为10h-15h。
可选地,所述第二次搅拌的时间为3min-5min。
可选地,所述第三次搅拌的时间为3-4h。
可选地,所述第四次搅拌的时间为1.5-2h。
可选地,所述水热反应的温度为160-170℃,时间为50-70h。
一种利用如上所述的制备方法制备得到的铌掺杂AlPO-31分子筛晶体。
可选地,所述铌掺杂AlPO-31分子筛晶体为纯相。
有益效果:本发明提供了一种铌掺杂AlPO-31分子筛晶体及其制备方法。以二丙胺作为模板剂,异丙醇铝作为铝源,磷酸作为磷源,水合草酸铌作为铌源,制备得到纯相的铌掺杂AlPO-31晶体。
图1为实施例制备得到的铌掺杂AlPO-31分子筛晶体的XRD图谱与标准XRD卡 片比对图。
本发明提供一种铌掺杂AlPO-31分子筛晶体及其制备方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
发明人发现,在现有的AlPO-31分子筛晶体制备方法中,用于指导合成AlPO-31分子筛晶体的模板剂种类虽然很多,但是很难制备得到纯相的AlPO-31分子筛晶体,而且没有报道过用过渡金属铌进行掺杂的合成方案。
本实施例针对现有用于指导合成AlPO-31分子筛晶体的模板剂种类虽然很多,但是很难制备得到纯相的AlPO-31分子筛晶体且没有报道过用过渡金属铌进行掺杂的合成方案这一问题,通过寻找一种合适的模板剂,在反应参数在一定范围内变化的情况下,制备得到了纯相铌掺杂AlPO-31分子筛晶体。
基于此,本发明实施例提供一种铌掺杂AlPO-31分子筛晶体的制备方法,其中,以二丙胺作为模板剂,以异丙醇铝作为铝源、水合草酸铌作为铌源、磷酸作为磷源、去离子水作为溶剂,将所述二丙胺、异丙醇铝、水合草酸铌、磷酸和去离子水混合均匀,进行水热反应,得到所述铌掺杂AlPO-31分子筛晶体。
在一种实施方式中,所述二丙胺、异丙醇铝、水合草酸铌、磷酸、去离子水分别以DPA、Al
2O
3、Nb
2O
5、P
2O
5、H
2O计;
按摩尔比计,DPA:Al
2O
3:Nb
2O
5:P
2O
5:H
2O=(0.95~1.13):(0.98~1.1):(0.07~0.11):1:(550~680)。
本实施例中,采用上述原材料以及以二丙胺作为模板剂,在改变些许比例的情况下,也可以合成铌掺杂AlPO-31分子筛晶体。
在一种实施方式中,所述铌掺杂AlPO-31分子筛晶体的制备方法,具体包括步骤:
S1、将异丙醇铝、水合草酸铌、去离子水混合,进行第一次搅拌,得到溶液A;
S2、将磷酸与去离子水混合,进行第二次搅拌,得到溶液B;
S3、将所述溶液B加入到所述溶液A中,进行第三次搅拌,得到溶液C;
S4、将二丙胺加入到所述溶液C中,进行第四次搅拌,得到胶体溶液D;
S5、将所述胶体溶液D进行水热反应,得到所述铌掺杂AlPO-31分子筛晶体。
步骤S1中,在一种实施方式中,所述第一次搅拌的时间为10h。
步骤S2中,在一种实施方式中,所述第二次搅拌的时间为3min~5min。
步骤S3中,在一种实施方式中,所述第三次搅拌的时间为3-4h。
在一种实施方式中,步骤S3具体为:将所述溶液B逐滴加入到所述溶液A中,搅拌3-4h,得到所述溶液C。
步骤S4中,在一种实施方式中,所述第四次搅拌的时间为1.5-2h。
在一种实施方式中,步骤S4具体为:将所述二丙胺逐滴加入到所述溶液C中,搅拌1.5-2h,得到所述胶体溶液D。
步骤S5中,在一种实施方式中,所述水热反应的温度为160-170℃,时间为50-70h。本实施例中,采用上述原材料以及以二丙胺作为模板剂,在一定温度和时间变化范围内,也可以合成铌掺杂AlPO-31分子筛晶体。
在一种实施方式中,步骤S5具体为:将所述胶体溶液D进行水热反应,反应温度为160-170℃(如165℃),时间为50-70h(如60h);反应结束后,将所述水热产物在超声条件下进行过滤、洗涤、干燥,得到所述铌掺杂AlPO-31分子筛晶体。
本发明实施例以二丙胺作为模板剂指导铌掺杂AlPO-31分子筛晶体的合成,在合成过程中,适当地调整各反应物料比例,可以得到纯相的铌掺杂AlPO-31分子筛晶体。在调整反应物料比例的过程中,有如下特征:
1、晶体对于Nb元素掺杂较为敏感,当Nb元素由少变多时,样品会由结晶度低的胶状物转变为纯相的NbAlPO-31晶体;因为当Nb元素比例增加时会使得溶液中的过饱和程度下降,溶液中适当的过饱和程度有利于AlPO-31晶体成核以及生长。
2、当二丙胺比例增加时,会出现铌掺杂AlPO-31分子筛晶体的杂晶相。因为二丙胺的碱性较强,当二丙胺的比例增加时会引起溶液中pH值发生改变。不同的pH值适应不同的晶核生长,因此当pH改变时,最后得到的样品中会出现其他的杂晶相。
3、当水比例增多时,纯相NbAlPO-31晶体消失。因为过多的水含量使得溶液的过饱和度过低,不利于晶体成核以及生长。
本发明实施例还提供一种利用如上所述的制备方法制备得到的铌掺杂AlPO-31分子筛晶体。
在一种实施方式中,所述铌掺杂AlPO-31分子筛晶体为纯相。
下面对本发明实施例反应物料的来源作举例说明:
异丙醇铝(≥98%,上海阿拉丁生化科技股份有限公司),磷酸(≥85%,上海阿拉丁生化科技股份有限公司),二丙胺(98%,上海阿拉丁生化科技股份有限公司),水合草酸铌(98%,上海阿拉丁生化科技股份有限公司),去离子水(由和泰Master-S15UV低有机物型超纯水机制备)。
下面通过具体的实施例对本发明作进一步地说明。
实施例
1将1.02mol异丙醇铝即4.2g以及0.1mol水合草酸铌即1.1g置于聚四氟乙烯烧杯中,加入95ml去离子水,常温下搅拌10h,得到溶液A。
2将1mol磷酸即2.32g与10ml去离子水混合,搅拌3-5min,得到溶液B。
3将溶液B逐滴加入到溶液A中,得到溶液C。
4溶液C在常温下搅拌3h后,加入1.02mol二丙胺即1.4ml,得到溶液D。
5溶液D搅拌2h后,将溶液置于水热反应釜中反应,温度为165℃,时间为60h;反应结束后,将所述水热产物在超声条件下进行过滤、洗涤、干燥,得到所述铌掺杂AlPO-31分子筛晶体。所述铌掺杂AlPO-31分子筛晶体的XRD测试数据见图1所示。
综上所述,本发明提供了一种铌掺杂AlPO-31分子筛晶体及其制备方法。以二丙胺作为模板剂,异丙醇铝作为铝源,磷酸作为磷源,水合草酸铌作为铌源,通过调控各个组分之间比例以及反应的温度和时间,制备得到纯相的铌掺杂AlPO-31晶体。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可 以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。
Claims (10)
- 一种铌掺杂AlPO-31分子筛晶体的制备方法,其特征在于,以二丙胺作为模板剂,以异丙醇铝作为铝源、水合草酸铌作为铌源、磷酸作为磷源、去离子水作为溶剂,将所述二丙胺、异丙醇铝、水合草酸铌、磷酸和去离子水混合均匀,进行水热反应,得到所述铌掺杂AlPO-31分子筛晶体。
- 根据权利要求1所述的铌掺杂AlPO-31分子筛晶体的制备方法,其特征在于,所述二丙胺、异丙醇铝、水合草酸铌、磷酸、去离子水分别以DPA、Al 2O 3、Nb 2O 5、P 2O 5、H 2O计;按摩尔比计,DPA:Al 2O 3:Nb 2O 5:P 2O 5:H 2O=(0.95~1.13):(0.98~1.1):(0.07~0.11):1:(550~680)。
- 根据权利要求1所述的铌掺杂AlPO-31分子筛晶体的制备方法,其特征在于,所述制备方法具体包括步骤:将异丙醇铝、水合草酸铌、去离子水混合,进行第一次搅拌,得到溶液A;将磷酸与去离子水混合,进行第二次搅拌,得到溶液B;将所述溶液B加入到所述溶液A中,进行第三次搅拌,得到溶液C;将二丙胺加入到所述溶液C中,进行第四次搅拌,得到胶体溶液D;将所述胶体溶液D进行水热反应,得到所述铌掺杂AlPO-31分子筛晶体。
- 根据权利要求3所述的铌掺杂AlPO-31分子筛晶体的制备方法,其特征在于,所述第一次搅拌的时间为10h~15h。
- 根据权利要求3所述的铌掺杂AlPO-31分子筛晶体的制备方法,其特征在于,所述第二次搅拌的时间为3min~5min。
- 根据权利要求3所述的铌掺杂AlPO-31分子筛晶体的制备方法,其特征在于,所述第三次搅拌的时间为3-4h。
- 根据权利要求3所述的铌掺杂AlPO-31分子筛晶体的制备方法,其特征在于,所述第四次搅拌的时间为1.5-2h。
- 根据权利要求3所述的铌掺杂AlPO-31分子筛晶体的制备方法,其特征在于,所述水热反应的温度为160℃-170℃,时间为50-70h。
- 一种利用权利要求1-8任一项所述的制备方法制备得到的铌掺杂AlPO-31分子筛晶体。
- 根据权利要求9所述的铌掺杂AlPO-31分子筛晶体,其特征在于,所述铌掺杂AlPO-31分子筛晶体为纯相。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110639622.9A CN113277530B (zh) | 2021-06-08 | 2021-06-08 | 一种铌掺杂AlPO-31分子筛晶体及其制备方法 |
CN202110639622.9 | 2021-06-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022257240A1 true WO2022257240A1 (zh) | 2022-12-15 |
Family
ID=77283780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/107958 WO2022257240A1 (zh) | 2021-06-08 | 2021-07-22 | 一种铌掺杂AlPO-31分子筛晶体及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113277530B (zh) |
WO (1) | WO2022257240A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5888921A (en) * | 1995-10-25 | 1999-03-30 | Abb Lummus Global Inc. | Binary molecular sieves having a core and shell of different structures and compositions |
US20050245780A1 (en) * | 2004-04-28 | 2005-11-03 | Yun-Feng Chang | Attrition resistant molecular sieve catalyst, method of making and process for using |
CN1847148A (zh) * | 2005-04-15 | 2006-10-18 | 浙江工业大学 | 一种含铌的磷铝分子筛组合物及其制备与应用 |
CN101269822A (zh) * | 2008-05-09 | 2008-09-24 | 中国石油天然气股份有限公司 | 一种用杂原子取代ael骨架结构磷铝酸盐分子筛的合成方法 |
CN103013556A (zh) * | 2012-11-28 | 2013-04-03 | 浙江工业大学 | 利用AlPO4-5型磷铝分子筛脱除芳烃中微量烯烃的方法 |
CN104944434A (zh) * | 2015-05-19 | 2015-09-30 | 郑州大学 | 一种空心afi型分子筛及其制备方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6498120B1 (en) * | 2000-04-26 | 2002-12-24 | Exxonmobil Chemical Patents Inc. | Rejuvenating SAPO molecular sieve with anhydrous liquid or vapor |
US6440894B1 (en) * | 2001-06-25 | 2002-08-27 | Exxonmobil Chemical Patents, Inc. | Methods of removing halogen from non-zeolitic molecular sieve catalysts |
CN102001682B (zh) * | 2010-12-10 | 2012-09-05 | 黑龙江大学 | 一种微波加热合成杂原子取代MeAPO-31分子筛的方法 |
DE102014008081A1 (de) * | 2014-05-30 | 2015-11-19 | Basf Se | Verfahren zur Herstellung von Acrylsäure unter Verwendung eines alkali- und erdalkalifreien zeolithischen Materials |
CN108014843B (zh) * | 2016-11-04 | 2021-03-30 | 中国石油化工股份有限公司 | Cu-SSZ-13/M-AlPO复合型分子筛催化剂、制备方法及其应用 |
-
2021
- 2021-06-08 CN CN202110639622.9A patent/CN113277530B/zh active Active
- 2021-07-22 WO PCT/CN2021/107958 patent/WO2022257240A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5888921A (en) * | 1995-10-25 | 1999-03-30 | Abb Lummus Global Inc. | Binary molecular sieves having a core and shell of different structures and compositions |
US20050245780A1 (en) * | 2004-04-28 | 2005-11-03 | Yun-Feng Chang | Attrition resistant molecular sieve catalyst, method of making and process for using |
CN1847148A (zh) * | 2005-04-15 | 2006-10-18 | 浙江工业大学 | 一种含铌的磷铝分子筛组合物及其制备与应用 |
CN101269822A (zh) * | 2008-05-09 | 2008-09-24 | 中国石油天然气股份有限公司 | 一种用杂原子取代ael骨架结构磷铝酸盐分子筛的合成方法 |
CN103013556A (zh) * | 2012-11-28 | 2013-04-03 | 浙江工业大学 | 利用AlPO4-5型磷铝分子筛脱除芳烃中微量烯烃的方法 |
CN104944434A (zh) * | 2015-05-19 | 2015-09-30 | 郑州大学 | 一种空心afi型分子筛及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113277530B (zh) | 2022-10-21 |
CN113277530A (zh) | 2021-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108408735B (zh) | 一种利用硅灰制备suz-4分子筛的方法 | |
CN111592011A (zh) | 以teaoh为有机模板剂直接合成ssz-13沸石分子筛的方法 | |
CN106219569B (zh) | 一种无二次模板一步制备多级孔沸石的方法 | |
CN113149026A (zh) | 一种具有梯级孔结构的分子筛的制备方法 | |
WO2022257240A1 (zh) | 一种铌掺杂AlPO-31分子筛晶体及其制备方法 | |
CN103771451A (zh) | 一种以超细二氧化硅诱导制备纯相dd3r沸石分子筛的合成方法 | |
CN110026151B (zh) | 一种提高无粘结剂nalsx分子筛吸附量与强度的方法 | |
CN112028087A (zh) | 过渡金属元素掺杂的AlPO-15分子筛及其制备方法 | |
CN110734075A (zh) | 一种利用拟薄水铝石为铝源合成sapo-20分子筛的制备方法 | |
CN108862313B (zh) | 一种hmi/pi复合模板剂合成mcm-56分子筛的方法 | |
KR20080112620A (ko) | Y형 석탄회 제올라이트 시드분말을 이용한 초고순도 y형석탄회 제올라이트의 합성방법 | |
EP0509473B1 (en) | Fibrous anhydrous magnesium oxysulfate and process for the preparation thereof | |
CN110759352A (zh) | 一种晶种加模板剂合成Beta分子筛的方法 | |
CN109264738A (zh) | 无模板剂合成含有金属的介孔ets-10沸石的合成方法 | |
CN110844919A (zh) | NaY分子筛的制备方法及其制备的NaY分子筛 | |
CN111793827B (zh) | 一种常压下制备153型碱式硫酸镁晶须的方法 | |
KR102271298B1 (ko) | 리튬 부산물을 이용한 제올라이트 제조 방법 | |
CN113929120A (zh) | 一种氢氧化镁材料的制备方法 | |
WO2022257241A1 (zh) | 一种锌掺杂AlPO-36分子筛单晶及其制备方法 | |
CN106635007A (zh) | 一种超小尺度稀土掺杂氧化钇基纳米荧光粉的制备方法 | |
CN105271283B (zh) | 柱硼镁石的制备方法 | |
CN112456510A (zh) | Hzsm-5分子筛及其制备方法和应用 | |
CN112850739B (zh) | 一种大晶粒ltj沸石及其制备方法 | |
CN114751440B (zh) | 一种简便绿色无模板法制备无水CaSO4微/纳米晶的方法及产品 | |
JP2011184228A (ja) | 沈降性硫酸バリウムの製造法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21944743 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21944743 Country of ref document: EP Kind code of ref document: A1 |