WO2022249903A1 - 光接続部品及び光接続構造 - Google Patents

光接続部品及び光接続構造 Download PDF

Info

Publication number
WO2022249903A1
WO2022249903A1 PCT/JP2022/020266 JP2022020266W WO2022249903A1 WO 2022249903 A1 WO2022249903 A1 WO 2022249903A1 JP 2022020266 W JP2022020266 W JP 2022020266W WO 2022249903 A1 WO2022249903 A1 WO 2022249903A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
optical connection
optical
core fiber
cores
Prior art date
Application number
PCT/JP2022/020266
Other languages
English (en)
French (fr)
Inventor
肇 荒生
哲也 中西
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN202280031094.1A priority Critical patent/CN117255962A/zh
Priority to JP2023523413A priority patent/JPWO2022249903A1/ja
Priority to US18/287,792 priority patent/US20240201452A1/en
Publication of WO2022249903A1 publication Critical patent/WO2022249903A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3632Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means
    • G02B6/3644Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means the coupling means being through-holes or wall apertures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3834Means for centering or aligning the light guide within the ferrule
    • G02B6/3835Means for centering or aligning the light guide within the ferrule using discs, bushings or the like
    • G02B6/3837Means for centering or aligning the light guide within the ferrule using discs, bushings or the like forwarding or threading methods of light guides into apertures of ferrule centering means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3882Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls using rods, pins or balls to align a pair of ferrule ends
    • G02B6/3883Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls using rods, pins or balls to align a pair of ferrule ends using rods, pins or balls to align a plurality of pairs of ferrule ends

Definitions

  • the present disclosure relates to an optical connection component and an optical connection structure.
  • Patent Document 1 describes an optical connector device.
  • An optical connector device comprises an optical waveguide for transmitting optical signals.
  • the optical waveguide has a first surface to which the multi-core fibers are optically connected, and a second surface to which the plurality of single-core fibers arranged in a row on the V-groove array are optically connected.
  • a core that transmits an optical signal that has entered the optical waveguide through the first surface from the multi-core fiber is branched between the first surface and the second surface.
  • Each of the plurality of branched cores extends toward each of the plurality of single-core fibers.
  • Non-Patent Document 1 describes that glass is irradiated with a femtosecond laser, and the irradiated portion is selectively etched.
  • An optical connection component is an optical connection component that includes at least three cores that transmit optical signals along a first direction.
  • the optical connection component has a first surface extending in a second direction intersecting with the first direction, a third direction intersecting both the first direction and the second direction, and extending in the second direction and the third direction. a second surface present and aligned with the first surface along the first direction.
  • Each core extends from the first surface to the second surface along the first direction.
  • On each of the first surface and the second surface, three or more cores are arranged so as not to line up on one straight line.
  • a core arrangement defined by three or more cores on the first plane is different from a core arrangement defined by three or more cores on the second plane.
  • FIG. 1 is a perspective view showing an optical connection structure provided with an optical connection component according to the first embodiment.
  • FIG. 2 is a perspective view showing a single-core fiber array connected to the optical connection component according to the first embodiment;
  • FIG. 3 is a perspective view showing the optical connecting component according to the first embodiment.
  • 4 is a perspective view showing a state in which a multi-core fiber array is connected to the optical connection component of FIG. 3.
  • FIG. 5 is a perspective view of the optical connecting component in FIG. 4 as seen from a direction different from that in FIG. 4.
  • FIG. FIG. 6 is a perspective view showing an optical connection component when the multi-core fiber has two cores.
  • 7 is a perspective view of the optical connecting component of FIG. 6 as seen from a direction different from that of FIG. 6.
  • FIG. 8 is a diagram showing an example of core arrangement on the first surface and the second surface according to the first embodiment.
  • FIG. 9 is a diagram showing the arrangement of cores on the first surface and the second surface according to the modification.
  • FIG. 10 is a perspective view showing the optical connection structure according to the second embodiment.
  • FIG. 11 is a perspective view showing an optical connection component according to the second embodiment.
  • FIG. 12 is a perspective view showing an optical connecting component according to the third embodiment.
  • An optical waveguide has a core that transmits an optical signal.
  • multiple cores are provided for transmitting optical signals to each of multiple single-core fibers arranged in a row, as in conventional optical waveguides, the area occupied by the cores increases as the number of single-core fibers increases, resulting in space utilization efficiency. may decrease.
  • An object of the present disclosure is to provide an optical connection component and an optical connection structure that can suppress a decrease in space utilization efficiency.
  • An optical connection component is an optical connection component that includes at least three cores that transmit optical signals along a first direction.
  • the optical connection component has a first surface extending in a second direction intersecting with the first direction, a third direction intersecting both the first direction and the second direction, and extending in the second direction and the third direction.
  • a second surface present and aligned with the first surface along the first direction.
  • Each core extends from the first surface to the second surface along the first direction.
  • On each of the first surface and the second surface, three or more cores are arranged so as not to line up on one straight line.
  • a core arrangement defined by three or more cores on the first plane is different from a core arrangement defined by three or more cores on the second plane.
  • three or more cores are arranged on each of the first surface and the second surface so as not to line up on one straight line. That is, the shape formed by three or more cores on each of the first surface and the second surface is a shape other than a straight line. Therefore, since the cores are two-dimensionally arranged on each of the first surface and the second surface, even if the number of single-core fibers to be connected increases, an increase in the area occupied by the cores can be suppressed. Therefore, a decrease in space utilization efficiency can be suppressed.
  • a single-core fiber array holding a plurality of single-core fibers may be connected to the first surface, and multi-core fibers may be connected to the second surface.
  • each single-core fiber of the single-core fiber array can be optically connected to each core on the first surface
  • each core of the multi-core fiber can be optically connected to each core on the second surface.
  • the optical connection component may have a first positioning portion that positions a single-core fiber array that holds a plurality of single-core fibers.
  • the single-core fiber array is positioned with respect to the optical connection component by the first positioning part. Therefore, it is possible to easily position the single-core fiber array with respect to the optical connection component.
  • the first positioning portion may be a V-groove on the third surface connecting the first surface and the second surface.
  • the first positioning portion may be a pin hole penetrating from the first surface to the second surface.
  • the optical connection component may have a second positioning portion that positions the multi-core fiber array that holds the multi-core fiber.
  • the multi-core fiber is positioned with respect to the optical connection component by the second positioning part. Therefore, it is possible to easily position the multi-core fiber with respect to the optical connection component.
  • the second positioning portion may be a V-groove on the third surface connecting the first surface and the second surface.
  • the second positioning portion may be a pin hole penetrating from the first surface to the second surface.
  • a single-core fiber array holding a plurality of single-core fibers is connected to the first surface, and a multi-core fiber array holding multi-core fibers is connected to the second surface.
  • the single-core fiber array and the multi-core fiber array may be made of polyphenylene sulfide.
  • single-core fiber arrays and multi-core fiber arrays can be molded by injection molding. Therefore, single-core fiber arrays and multi-core fiber arrays can be easily produced.
  • the single-core fiber array and the multi-core fiber array may be made of glass.
  • the material of either the optical connection part or the optical fiber to be connected is made of glass, it is possible to eliminate the difference in coefficient of linear expansion from the part made of glass.
  • the optical connection component may include a single-core fiber holder that holds a plurality of single-core fibers optically connected to the cores arranged on the first surface.
  • a plurality of single core fibers can be held in the single core fiber holding portion of the optical connection component. Therefore, it is possible to eliminate the need to separately prepare a part for holding a plurality of single-core fibers.
  • the single-core fiber holding part may have a plurality of holes opened toward the first surface and corresponding to a plurality of single-core fibers.
  • the optical connection component may have a gap between the single-core fiber holding portion and the first surface. In this case, air bubbles or the like from the adhesive that bonds the single-core fiber to the single-core fiber holding portion can escape from the gap.
  • the optical connection structure according to the present disclosure is (14) an optical connection structure that connects a plurality of single-core fibers and one or a plurality of multi-core fibers via optical connection components.
  • the optical connection component has at least three cores that transmit optical signals along a first direction, a second direction that intersects the first direction, and a third direction that intersects both the first direction and the second direction. and a second surface extending in a second direction and a third direction and aligned with the first surface along the first direction.
  • Each core extends from the first surface to the second surface along the first direction.
  • On each of the first surface and the second surface, three or more cores are arranged so as not to line up on one straight line.
  • a core arrangement defined by three or more cores on the first plane is different from a core arrangement defined by three or more cores on the second plane.
  • a plurality of single-core fibers are connected to the first side and one or more multi-core fibers are connected to the second side. From this optical connection structure, the same effects as those of the above-described optical connection component can be obtained.
  • FIG. 1 is a perspective view showing an optical connection structure 1 having an optical connection component 10 according to the first embodiment.
  • the optical connection structure 1 includes, for example, an optical connection component 10, a single core fiber array 20 and guide pins 3.
  • the optical connection component 10 transmits optical signals along the first direction D1.
  • the optical connection component 10 and the single-core fiber array 20 are arranged along the first direction D1.
  • a guide pin 3 is provided for positioning the single-core fiber array 20 with respect to the optical connection component 10 .
  • FIG. 2 is a perspective view showing the single-core fiber array 20.
  • the single-core fiber array 20 has a first surface 21 facing the optical connection component 10, a second surface 22 facing away from the first surface 21, and a third surface. 23.
  • the third surface 23 connects the first surface 21 and the second surface 22 to each other and extends in a first direction D1 and a second direction D2 that intersects (for example, orthogonally) the first direction D1.
  • the third surface 23 is oriented in a third direction D3 that intersects (for example, is perpendicular to) both the first direction D1 and the second direction D2.
  • the single-core fiber array 20 is made of polyphenylene sulfide (PPS).
  • PPS polyphenylene sulfide
  • the single-core fiber array 20 may also be made of glass.
  • the single-core fiber array 20 has optical fiber holding holes 27 into which single-core fibers are inserted. The optical fiber holding hole 27 penetrates the single core fiber array 20 in the first direction D1 between the first surface 21 and the second surface 22 .
  • the single-core fiber array 20 has a plurality of optical fiber holding holes 27.
  • Each optical fiber holding hole 27 opens to the second surface 22 .
  • the optical fiber holding hole 27 is defined by an inner surface 27b extending along the first direction D1 and an inclined surface 27c expanding in diameter from the inner surface 27b toward the second surface 22 .
  • a plurality of optical fiber holding holes 27 are arranged along the second direction D2 and along the third direction D3.
  • four optical fiber holding holes 27 are arranged along the second direction D2, and two optical fiber holding holes 27 are arranged along the third direction D3.
  • the single-core fiber array 20 has a positioning portion 28 on which the guide pin 3 is placed.
  • the positioning portion 28 is, for example, a V-groove extending along the first direction D1.
  • the single-core fiber array 20 has two positioning parts 28 aligned along the second direction D2.
  • a guide pin 3 is placed on each of the two positioning portions 28 .
  • the single-core fiber array 20 is aligned with the optical connection component 10 by the guide pin 3 placed on the positioning portion 28 .
  • FIG. 3 is a perspective view showing the optical connection component 10.
  • the optical connection component 10 has a first surface 11 facing the single-core fiber array 20 along the first direction D ⁇ b>1 and a second surface 12 facing away from the first surface 11 .
  • the first surface 11 and the second surface 12 are arranged along the first direction D1.
  • Each of the first surface 11 and the second surface 12 extends in the second direction D2 and the third direction D3.
  • the optical connection component 10 has a third surface 13 , a fourth surface 14 , a fifth surface 15 and a sixth surface 16 in addition to the first surface 11 and the second surface 12 .
  • the third surface 13 extends in the first direction D ⁇ b>1 and the second direction D ⁇ b>2
  • the fourth surface faces the side opposite to the third surface 13 .
  • the fifth surface 15 extends in the first direction D1 and the third direction D3, and the sixth surface 16 faces the opposite side of the fifth surface 15 .
  • the optical connection component 10 includes a clad 10A and a core 17 arranged inside the clad 10A and transmitting an optical signal along the first direction D1.
  • the core 17 is produced, for example, by femtosecond laser irradiation.
  • at least three (eight in this embodiment) cores 17 are arranged inside the integral clad 10A.
  • Each of the plurality of cores 17 extends along the first direction D1 and is bent in the second direction D2 and the third direction D3.
  • the optical connection component 10 has a three-dimensional optical waveguide that transmits optical signals while bending them in the core 17 in the first direction D1, the second direction D2 and the third direction D3.
  • Each core 17 extends from the first surface 11 to the second surface 12 along the first direction D1. For example, each core 17 is exposed on each of the first surface 11 and the second surface 12 . Each core 17 exposed on the first surface 11 is optically connected to each single core fiber inserted into the optical fiber holding hole 27 of the single core fiber array 20 . For example, the cores 17 exposed on the second surface 12 are optically connected to the multicore fiber.
  • a single-core fiber array 20 holding a plurality of single-core fibers is connected to the first surface 11, as shown in FIGS.
  • one or more multicore fibers are connected to the second face 12 .
  • the second surface 12 may be connected to a multicore fiber array 30 holding one or more multicore fibers.
  • the multi-core fiber array 30 includes a first surface 31, a second surface 32 facing the opposite side of the first surface 31, and a second surface connecting the first surface 31 and the second surface 32 to each other. It has three faces 33 .
  • the multi-core fiber array 30 has an optical fiber holding hole 37 opening on the second surface 32 and a positioning portion 38 on which the guide pin 3 is placed.
  • the positioning portion 38 is a V-groove like the positioning portion 28 described above.
  • a plurality of cores 17 exposed on the second surface 12 are optically connected to the multicore fibers held in the optical fiber holding holes 37 of the multicore fiber array 30 .
  • the optical connection component 10 has a first positioning portion 18 that positions the single-core fiber array 20 .
  • the first positioning portion 18 is, for example, a V-groove extending along the first direction D1.
  • the optical connection component 10 has two first positioning portions 18 arranged along the second direction D2.
  • a guide pin 3 is placed on each of the two first positioning portions 18 .
  • the first positioning portion 18 is provided on the extension of the positioning portion 28 of the single-core fiber array 20 . That is, the first positioning portion 18 and the positioning portion 28 are arranged on a straight line. Therefore, by placing the guide pin 3 on the first positioning portion 18 and the positioning portion 28 , the single-core fiber array 20 can be aligned with the optical connection component 10 .
  • the first positioning portion 18 is formed, for example, by selectively etching with laser irradiation. In this case, the first positioning portion 18 can be formed in the same process as the core 17 is produced.
  • the optical connection component 10 may have a second positioning portion 19 that positions the multicore fiber connected to the second surface 12 .
  • the second positioning portion 19 is provided, for example, as an extension of the first positioning portion 18 . 1 and 3 show an example in which the first positioning portion 18 and the second positioning portion 19 are arranged on a straight line.
  • a multi-core fiber array similar to the single-core fiber array 20 is connected to the second surface 12, and the guide pin 3 is placed on the second positioning portion 19 and the positioning portion of the multi-core fiber array. This enables alignment of the multi-core fiber array with respect to the optical connection component 10 .
  • FIG. 6 is a perspective view showing an optical connection structure 1B as an example having different numbers of optical fiber holding holes 27 and 37 from FIGS. 4 and 5.
  • FIG. FIG. 7 is a perspective view of the optical connection structure 1B of FIG. 6 as seen from a direction different from that of FIG.
  • the optical connection structure 1B has an optical connection component 10B, a single-core fiber array 20B and a multi-core fiber array 30B.
  • the single-core fiber array 20B has 16 (2 ⁇ 8) optical fiber holding holes 27 on the second surface 22
  • the multi-core fiber array 30B has two optical fiber holding holes 37 on the second surface 32 .
  • optical connection component 10B The configurations of the optical connection component 10B, the single-core fiber array 20B and the multi-core fiber array 30B are the same as those of the optical connection component 10, the single-core fiber array 20 and the multi-core fiber array described above, except for the number and arrangement of the optical fiber holding holes 27 and 37. 30 is identical to that of FIG.
  • FIG. 8 shows an example of arrangement of the cores 17 on each of the first surface 11 and the second surface 12 of the optical connection component 10 shown in FIG.
  • three or more cores 17 are arranged so as not to line up on one straight line.
  • the arrangement of the eight cores 17 on the first surface 11 is rectangular (two along the third direction D3 ⁇ four along the second direction D2), and on the second surface 12
  • the arrangement of the eight cores 17 is circular.
  • the number and arrangement of cores 17 are not limited to the example in FIG.
  • the core arrangement P1 defined by the three or more cores 17 on the first surface 11 is different from the core arrangement P2 defined by the three or more cores 17 on the second surface 12.
  • Core arrangement refers to the shape and size of a plurality of cores defined by the plurality of cores. In the example of FIG. 8, the core arrangement P1 is rectangular and the core arrangement P2 is circular. Thus, the shape of core arrangement P1 is different from the shape of core arrangement P2.
  • “Different core arrangement” includes, for example, the case where the shape of the core arrangement is the same but the size of the core arrangement is different.
  • the case where the core arrangement P1 is rectangular and the core arrangement P2 is similar in shape to the core arrangement P1 is also included in the case of "different core arrangement".
  • at least one of the shape and size of the core arrangement P1 is different from at least one of the shape and size of the core arrangement P2.
  • the optical connection component 10 In the optical connection component 10 described above, three or more cores 17 are arranged on each of the first surface 11 and the second surface 12 so as not to line up on one straight line. Therefore, since the cores 17 are two-dimensionally arranged on each of the first surface 11 and the second surface 12, even if the number of single-core fibers of the single-core fiber array 20 to be connected increases, the area occupied by the cores 17 remains unchanged. can suppress the increase in In this embodiment, the area occupied by the core 17 can be prevented from extending too much in the second direction D2. Therefore, a decrease in space utilization efficiency can be suppressed.
  • FIG. 10 is a perspective view showing an optical connection structure 1A including optical connection components 40.
  • FIG. FIG. 11 is a perspective view showing the optical connection component 40.
  • the optical connection structure 1A includes an optical connection component 40, a single core fiber array 50 and guide pins 6.
  • the single core fiber array 50 has a positioning portion 58 through which the guide pin 6 is passed.
  • the positioning portion 58 is, for example, a guide hole penetrating the single-core fiber array 50 along the first direction D1.
  • the single-core fiber array 50 has two positioning portions 58 aligned along the second direction D2, and the guide pins 6 are inserted through each of the two positioning portions 58 .
  • the optical connection component 40 has a first positioning portion 48 that positions the single-core fiber array 50 .
  • the first positioning portion 48 is, for example, a guide hole of the optical connection component 40 extending along the first direction D1.
  • the first positioning portion 48 may be, for example, a pin hole penetrating from the first surface 11 to the second surface 12 .
  • the optical connection component 40 has two first positioning portions 48 arranged along the second direction D2, and the guide pin 6 is passed through each of the two first positioning portions 48 .
  • the first positioning portion 48 is provided as an extension of the positioning portion 58 of the single-core fiber array 50 . Therefore, by passing the guide pin 6 through the first positioning portion 48 and the positioning portion 58 , alignment of the single-core fiber array 50 with respect to the optical connection component 40 becomes possible.
  • the optical connection component 40 may have a second positioning portion 49 that positions the multicore fiber connected to the second surface 12 .
  • the second positioning portion 49 may be, for example, a pin hole penetrating from the first surface 11 to the second surface 12 .
  • the second positioning portion 49 is provided, for example, as an extension of the first positioning portion 48 .
  • a multi-core fiber array similar to the single-core fiber array 50 is connected to the second surface 12, and the guide pin 6 is passed through the second positioning portion 49 and the positioning portion of the multi-core fiber array. This enables alignment of the multi-core fiber array with respect to the optical connection component 40 .
  • FIG. 12 is a perspective view showing an optical connection component 70 according to the third embodiment.
  • An optical connection component 70 shown in FIG. 12 includes a single-core fiber holding portion 71 at a position facing the first surface 11 where the core 17 is exposed.
  • the single-core fiber holding part 71 holds a plurality of single-core fibers optically connected to each core 17 arranged on the first surface 11 .
  • the single-core fiber holding part 71 has an optical fiber holding hole 77 that holds the single-core fiber.
  • the shape and size of the optical fiber holding holes 77 are, for example, the same as the shape and size of the optical fiber holding holes 27 of the single-core fiber array 20 described above.
  • the single-core fiber holding part 71 has a function of holding a plurality of single-core fibers, for example, similarly to the single-core fiber arrays 20 and 50 described above, and is integrated with the clad 10A. Therefore, it is not necessary to prepare the single-core fiber arrays 20 and 50 separately from the optical connection component 70 .
  • a gap 72 is formed between the single-core fiber holding portion 71 and the first surface 11 .
  • the gap 72 is provided to release air bubbles in the adhesive that fixes the single core fiber to the optical fiber holding hole 77 .
  • a gap 72 is formed between the optical fiber holding hole 77 of the single-core fiber holding portion 71 and the core 17 of the first surface 11 .
  • the gap 72 for example, penetrates the optical connection component 70 in the third direction D ⁇ b>3 and opens to the third surface 13 and the fourth surface 14 .
  • the gap 72 includes a first surface 11, a first inner surface 73 facing the first surface 11, a pair of second inner surfaces 74 arranged along the second direction D2, a first inclined surface 75, and a first inner surface 73 facing the first surface 11. 2 inclined planes 76 .
  • An optical fiber holding hole 77 is opened in the first inner surface 73 .
  • the first inclined surface 75 is inclined so as to widen toward the third surface 13 .
  • the second inclined surface 76 is inclined so as to widen toward the fourth surface 14 .
  • the optical connection component 70 air bubbles generated from the adhesive entering between the inner surface of the optical fiber holding hole 77 and the single core fiber escape to the outside of the optical connection component 70 through the gap 72 . Therefore, air bubbles can escape to the outside of the optical connection component 70 .
  • the gap 72 is defined by the first inner surface 73 , the pair of second inner surfaces 74 , the first inclined surface 75 and the second inclined surface 76 has been described.
  • the shape of the gap formed between the single-core fiber holding portion 71 and the first surface 11 is not limited to the above example and can be changed as appropriate.
  • the present disclosure is not limited to the embodiments described above, and various modifications are possible without changing the gist of each claim.
  • the number and arrangement of cores in the optical connection component and optical connection structure can be changed without changing the above gist.
  • the first positioning portion 18 for positioning the single-core fiber array 20 and the second positioning portion 19 for positioning the multi-core fiber array are arranged on a straight line.
  • the first positioning portion and the second positioning portion may not be arranged on a straight line, and may be separately provided at different positions, for example.
  • the optical connection component 70 including the single-core fiber holding portion 71 has been described. Similar to this single-core fiber holding portion 71, the optical connection component may comprise a multi-core fiber holding portion.
  • the multi-core fiber holding part is provided at a position facing, for example, the second surface where the core 17 is exposed (the surface located inside the second surface 12 in the first direction D1, similar to the first surface 11). It holds one or more multicore fibers optically connecting to each core 17 arranged on the second side.
  • This multi-core fiber holding part has an optical fiber holding hole that holds the multi-core fiber.
  • the shape and size of this optical fiber holding hole are, for example, similar to the shape and size of the optical fiber holding hole 37 of the multi-core fiber array 30 or multi-core fiber array 30B described above.
  • the multi-core fiber holding part has a function of holding one or a plurality of multi-core fibers, for example, like the multi-core fiber arrays 30 and 30B described above, and is integrated with the clad 10A. In this case, there is no need to prepare the multi-core fiber arrays 30 and 30B separately from the optical connection component 70.
  • a gap similar to the gap 72 may be formed between the multi-core fiber holding portion and the second surface. In this case, an effect similar to that of the optical connection component 70 described above can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一実施形態に係る光接続部品(10)は、第1方向(D1)に沿って光信号を伝送する少なくとも3個のコア(17)を備えた光接続部品(10)である。光接続部品(10)は、第1方向(D1)に交差する第2方向(D2)、及び、第1方向(D1)及び第2方向(D2)の双方に交差する第3方向(D3)に延在する第1面(11)と、第2方向(D2)及び第3方向(D3)に延在すると共に、第1方向(D1)に沿って第1面(11)に並ぶ第2面(12)と、を有する。各コア(17)は、第1面(11)から、第1方向(D1)に沿って延びて第2面(12)まで延在している。第1面(11)及び第2面(12)のそれぞれにおいて、3個以上のコアが、一本の直線上に並ばないように配置されている。第1面(11)において3個以上のコア(17)で定義されるコア配置(P1)は、第2面(12)において3個以上のコア(17)で定義されるコア配置(P2)と異なっている。

Description

光接続部品及び光接続構造
 本開示は、光接続部品及び光接続構造に関する。
 特許文献1には、光コネクタデバイスが記載されている。光コネクタデバイスは、光信号を伝送する光導波路を備える。光導波路は、マルチコアファイバが光接続される第1面と、V溝アレイに載せられて一列に並ぶ複数のシングルコアファイバのそれぞれが光接続される第2面とを有する。マルチコアファイバから第1面を介して光導波路に入射した光信号を伝送するコアは、第1面と第2面の間において分岐される。分岐された複数のコアのそれぞれは複数のシングルコアファイバのそれぞれに向かって延在している。非特許文献1には、ガラスにフェムト秒レーザが照射され、当該照射される部分が選択的にエッチングされることが記載されている。
米国特許8,270,784号明細書
 本開示に係る光接続部品は、第1方向に沿って光信号を伝送する少なくとも3個のコアを備えた光接続部品である。光接続部品は、第1方向に交差する第2方向、及び、第1方向及び第2方向の双方に交差する第3方向に延在する第1面と、第2方向及び第3方向に延在すると共に、第1方向に沿って第1面に並ぶ第2面と、を有する。各コアは、第1面から、第1方向に沿って延びて第2面まで延在している。第1面及び第2面のそれぞれにおいて、3個以上のコアが、一本の直線上に並ばないように配置されている。第1面において3個以上のコアで定義されるコア配置は、第2面において3個以上のコアで定義されるコア配置と異なっている。
図1は、第1実施形態に係る光接続部品を備えた光接続構造を示す斜視図である。 図2は、第1実施形態に係る光接続部品に接続されるシングルコアファイバアレイを示す斜視図である。 図3は、第1実施形態に係る光接続部品を示す斜視図である。 図4は、図3の光接続部品にマルチコアファイバアレイが接続された状態を示す斜視図である。 図5は、図4の光接続部品を図4とは異なる方向から見た斜視図である。 図6は、マルチコアファイバが2心である場合における光接続部品を示す斜視図である。 図7は、図6の光接続部品を図6とは異なる方向から見た斜視図である。 図8は、第1実施形態に係る第1面及び第2面のコア配置の例を示す図である。 図9は、変形例に係る第1面及び第2面のコア配置を示す図である。 図10は、第2実施形態に係る光接続構造を示す斜視図である。 図11は、第2実施形態に係る光接続部品を示す斜視図である。 図12は、第3実施形態に係る光接続部品を示す斜視図である。
 光導波路は、光信号を伝送するコアを備える。従来の光導波路のように、一列に並ぶ複数のシングルコアファイバのそれぞれに光信号を伝送する複数のコアを備える場合、シングルコアファイバの数が増えるとコアが占める領域が大きくなって空間利用効率が低下する場合がある。
 本開示は、空間利用効率の低下を抑制することができる光接続部品及び光接続構造を提供することを目的とする。
[本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。(1)一実施形態に係る光接続部品は、第1方向に沿って光信号を伝送する少なくとも3個のコアを備えた光接続部品である。光接続部品は、第1方向に交差する第2方向、及び、第1方向及び第2方向の双方に交差する第3方向に延在する第1面と、第2方向及び第3方向に延在すると共に、第1方向に沿って第1面に並ぶ第2面と、を有する。各コアは、第1面から、第1方向に沿って延びて第2面まで延在している。第1面及び第2面のそれぞれにおいて、3個以上のコアが、一本の直線上に並ばないように配置されている。第1面において3個以上のコアで定義されるコア配置は、第2面において3個以上のコアで定義されるコア配置と異なっている。
 一実施形態に係る光接続部品では、第1面及び第2面のそれぞれにおいて、3個以上のコアが、一本の直線上に並ばないように配置されている。すなわち、第1面及び第2面のそれぞれにおいて、3個以上のコアが成す形状は、直線以外の形状である。従って、第1面及び第2面のそれぞれにおいてコアが2次元的に配置されるので、接続されるシングルコアファイバの数が増えても、コアが占める領域の増大を抑制できる。よって、空間利用効率の低下を抑制することができる。
 複数のシングルコアファイバを保持するシングルコアファイバアレイが第1面に接続され、マルチコアファイバが第2面に接続されてもよい。この場合、第1面の各コアにシングルコアファイバアレイの各シングルコアファイバを光接続すると共に、第2面の各コアにマルチコアファイバの各コアを光接続することができる。
 (2)上記(1)において、光接続部品は、複数のシングルコアファイバを保持するシングルコアファイバアレイを位置決めする第1位置決め部を有してもよい。この場合、第1位置決め部によって光接続部品に対するシングルコアファイバアレイの位置決めがなされる。従って、光接続部品に対するシングルコアファイバアレイの位置決めを容易に行うことができる。
 (3)上記(2)において、第1位置決め部は、第1面と第2面を接続する第3面上にあるV溝であってもよい。(4)上記(2)において、第1位置決め部は、第1面から第2面まで貫通するピン孔であってもよい。
 (5)上記(1)または(2)において、光接続部品は、マルチコアファイバを保持するマルチコアファイバアレイを位置決めする第2位置決め部を有してもよい。この場合、第2位置決め部によって光接続部品に対するマルチコアファイバの位置決めがなされる。従って、光接続部品に対するマルチコアファイバの位置決めを容易に行うことができる。
 (6)上記(5)において、第2位置決め部は、第1面と第2面を接続する第3面上にあるV溝であってもよい。(7)上記(5)において、第2位置決め部は、第1面から第2面まで貫通するピン孔であってもよい。(8)上記(1)から(7)のいずれかにおいて、複数のシングルコアファイバを保持するシングルコアファイバアレイが第1面に接続され、マルチコアファイバを保持するマルチコアファイバアレイが第2面に接続されてもよい。
 (9)上記(8)において、シングルコアファイバアレイ及びマルチコアファイバアレイがポリフェニレンサルファイド製であってもよい。この場合、シングルコアファイバアレイ及びマルチコアファイバアレイを射出成形によって成形することができる。従って、シングルコアファイバアレイ及びマルチコアファイバアレイを容易に作製することができる。
 (10)上記(8)において、シングルコアファイバアレイ及びマルチコアファイバアレイがガラス製であってもよい。この場合、光接続部品、及び接続される光ファイバのいずれかの材料がガラス製であるときに、ガラス製の部品との線膨張率差を無くすことができる。
 (11)上記(1)において、光接続部品は、第1面に配置された各コアに光接続する複数のシングルコアファイバを保持するシングルコアファイバ保持部を備えてもよい。この場合、光接続部品のシングルコアファイバ保持部に複数のシングルコアファイバを保持できる。従って、複数のシングルコアファイバを保持する部品を別途用意することを不要にできる。(12)上記(11)において、シングルコアファイバ保持部は、第1面に向かって開孔し、複数のシングルコアファイバに対応する複数の孔を有してもよい。
 (13)上記(11)または(12)において、光接続部品は、シングルコアファイバ保持部と第1面との間に隙間を有してもよい。この場合、シングルコアファイバ保持部にシングルコアファイバを接着する接着剤からの気泡等を当該隙間から逃がすことができる。
 本開示に係る光接続構造は、(14)光接続部品を介して複数のシングルコアファイバと1つまたは複数のマルチコアファイバとを接続する光接続構造である。光接続部品は、第1方向に沿って光信号を伝送する少なくとも3個のコアと、第1方向に交差する第2方向、及び、第1方向及び第2方向の双方に交差する第3方向に延在する第1面と、第2方向及び第3方向に延在すると共に、第1方向に沿って第1面に並ぶ第2面と、を有する。各コアは、第1面から、第1方向に沿って延びて第2面まで延在している。第1面及び第2面のそれぞれにおいて、3個以上のコアが、一本の直線上に並ばないように配置されている。第1面において3個以上のコアで定義されるコア配置は、第2面において3個以上のコアで定義されるコア配置とは異なっている。複数のシングルコアファイバは第1面に接続され、1つまたは複数のマルチコアファイバは第2面に接続される。この光接続構造からは前述した光接続部品と同様の効果が得られる。
[本開示の実施形態の詳細]
 本開示に係る光接続部品及び光接続構造の具体例を、以下で図面を参照しながら説明する。なお、本発明は、以下の例示に限定されるものではなく、請求の範囲に示され、請求の範囲と均等の範囲における全ての変更が含まれることが意図される。図面の説明において同一または相当する要素には同一の符号を付し、重複する説明を適宜省略する。また、図面は、理解の容易化のため、一部を簡略化または誇張して描いている場合があり、寸法比率等は図面に記載のものに限定されない。
(第1実施形態)
 図1は、第1実施形態に係る光接続部品10を備えた光接続構造1を示す斜視図である。図1に示されるように、光接続構造1は、例えば、光接続部品10、シングルコアファイバアレイ20及びガイドピン3を備える。光接続部品10は、第1方向D1に沿って光信号を伝送する。光接続部品10及びシングルコアファイバアレイ20は、第1方向D1に沿って並んでいる。ガイドピン3は、光接続部品10に対するシングルコアファイバアレイ20の位置決めのために設けられる。
 図2は、シングルコアファイバアレイ20を示す斜視図である。図1及び図2に示されるように、シングルコアファイバアレイ20は、光接続部品10に対向する第1面21と、第1面21とは反対側を向く第2面22と、第3面23とを有する。第3面23は、第1面21及び第2面22を互いに接続すると共に第1方向D1、及び第1方向D1に交差(例えば直交)する第2方向D2に延在する。第3面23は、第1方向D1及び第2方向D2の双方に交差(例えば直交)する第3方向D3に向けられている。
 例えば、シングルコアファイバアレイ20はポリフェニレンサルファイド(PPS:Poly Phenylene Sulfide)製である。しかしながら、シングルコアファイバアレイ20はガラス製であってもよい。シングルコアファイバアレイ20は、シングルコアファイバが挿入される光ファイバ保持孔27を有する。光ファイバ保持孔27は、第1面21と第2面22の間においてシングルコアファイバアレイ20を第1方向D1に貫通している。
 シングルコアファイバアレイ20は、複数の光ファイバ保持孔27を有する。各光ファイバ保持孔27は第2面22に開口している。例えば、光ファイバ保持孔27は、第1方向D1に沿って延在する内面27bと、内面27bから第2面22に向かって拡径する傾斜面27cとによって画成されている。例えば、複数の光ファイバ保持孔27が第2方向D2に沿って並ぶと共に第3方向D3に沿って並んでいる。一例として、4個の光ファイバ保持孔27が第2方向D2に沿って並んでおり、2個の光ファイバ保持孔27が第3方向D3に沿って並んでいる。
 シングルコアファイバアレイ20は、ガイドピン3が載せられる位置決め部28を有する。位置決め部28は、例えば、第1方向D1に沿って延在するV溝である。シングルコアファイバアレイ20は第2方向D2に沿って並ぶ2つの位置決め部28を有する。2つの位置決め部28のそれぞれにガイドピン3が載せられる。位置決め部28に載せられたガイドピン3によって光接続部品10に対するシングルコアファイバアレイ20の位置合わせがなされる。
 図3は、光接続部品10を示す斜視図である。光接続部品10は、シングルコアファイバアレイ20に第1方向D1に沿って対向する第1面11と、第1面11とは反対側を向く第2面12とを有する。第1面11及び第2面12は第1方向D1に沿って並んでいる。第1面11及び第2面12のそれぞれは第2方向D2及び第3方向D3に延在する。光接続部品10は、第1面11及び第2面12の他に、第3面13と、第4面14と、第5面15と、第6面16とを有する。第3面13は第1方向D1及び第2方向D2に延在し、第4面は第3面13とは反対側を向く。第5面15は第1方向D1及び第3方向D3に延在し、第6面16は第5面15とは反対側を向く。
 光接続部品10は、クラッド10Aと、クラッド10Aの内部に配置されており第1方向D1に沿って光信号を伝送するコア17とを備える。コア17は、例えば、フェムト秒レーザの照射によって作製される。光接続部品10では一体のクラッド10Aの内部に少なくとも3個(本実施形態では8個)のコア17が配置されている。複数のコア17のそれぞれは、第1方向D1に沿って延びると共に第2方向D2及び第3方向D3に曲げられている。光接続部品10は、コア17において光信号を第1方向D1、第2方向D2及び第3方向D3に曲げながら伝送する3次元光導波路を有する。
 各コア17は、第1面11から、第1方向D1に沿って延びて第2面12まで延在している。例えば、第1面11及び第2面12のそれぞれにおいて各コア17が露出している。第1面11に露出する各コア17は、シングルコアファイバアレイ20の光ファイバ保持孔27に挿入された各シングルコアファイバと光接続する。例えば、第2面12に露出する複数のコア17はマルチコアファイバと光接続する。
 図1及び図3に示されるように、複数のシングルコアファイバを保持するシングルコアファイバアレイ20が第1面11に接続される。例えば、第2面12には1つまたは複数のマルチコアファイバが接続される。図4及び図5に示されるように、第2面12には1つまたは複数のマルチコアファイバを保持するマルチコアファイバアレイ30が接続されてもよい。マルチコアファイバアレイ30は、シングルコアファイバアレイ20と同様、第1面31と、第1面31とは反対側を向く第2面32と、第1面31及び第2面32を互いに接続する第3面33とを有する。マルチコアファイバアレイ30は、第2面32に開口する光ファイバ保持孔37と、ガイドピン3が載せられる位置決め部38を有する。位置決め部38は、前述した位置決め部28と同様、V溝である。第2面12に露出する複数のコア17は、マルチコアファイバアレイ30の光ファイバ保持孔37に保持されたマルチコアファイバと光接続する。
 光接続部品10は、シングルコアファイバアレイ20を位置決めする第1位置決め部18を有する。第1位置決め部18は、例えば、第1方向D1に沿って延在するV溝である。光接続部品10は第2方向D2に沿って並ぶ2つの第1位置決め部18を有する。2つの第1位置決め部18のそれぞれにガイドピン3が載せられる。第1位置決め部18はシングルコアファイバアレイ20の位置決め部28の延長上に設けられる。すなわち、第1位置決め部18及び位置決め部28は一直線上に配置される。従って、第1位置決め部18及び位置決め部28にガイドピン3が載せられることにより、光接続部品10に対するシングルコアファイバアレイ20の位置合わせが可能となる。第1位置決め部18は、例えば、レーザの照射で選択的にエッチングを行うことによって形成される。この場合、第1位置決め部18をコア17の作製と同一のプロセスで形成できる。
 光接続部品10は、第2面12に接続されるマルチコアファイバを位置決めする第2位置決め部19を有していてもよい。第2位置決め部19は、例えば、第1位置決め部18の延長上に設けられる。図1及び図3では、第1位置決め部18及び第2位置決め部19が一直線上に配置された例を示している。例えば、第2面12にはシングルコアファイバアレイ20と同様のマルチコアファイバアレイが接続され、第2位置決め部19及びマルチコアファイバアレイの位置決め部にガイドピン3が載せられる。これにより、光接続部品10に対する当該マルチコアファイバアレイの位置合わせが可能となる。
 図6は、図4及び図5とは光ファイバ保持孔27,37の数が異なる一例としての光接続構造1Bを示す斜視図である。図7は、図6の光接続構造1Bを図6とは異なる方向から見た斜視図である。図6及び図7に示されるように、光接続構造1Bは、光接続部品10B、シングルコアファイバアレイ20B及びマルチコアファイバアレイ30Bを有する。シングルコアファイバアレイ20Bは第2面22に16個(2×8個)の光ファイバ保持孔27を有し、マルチコアファイバアレイ30Bは第2面32に2個の光ファイバ保持孔37を有する。光接続部品10B、シングルコアファイバアレイ20B及びマルチコアファイバアレイ30Bの構成は、光ファイバ保持孔27,37の数及び配置態様以外は、前述した光接続部品10、シングルコアファイバアレイ20及びマルチコアファイバアレイ30の構成と同一である。
 図8は、図3に示される光接続部品10の第1面11及び第2面12のそれぞれにおけるコア17の配置の例を示している。図8に示されるように、第1面11及び第2面12のそれぞれにおいて、3個以上のコア17が、一本の直線上に並ばないように配置されている。図8の例では、第1面11における8個のコア17の配置は矩形状(第3方向D3に沿った2個×第2方向D2に沿った4個)であり、第2面12における8個のコア17の配置は円形状である。但し、コア17の数及び配置は図8の例に限定されない。
 以上のように、第1面11において3個以上のコア17で定義されるコア配置P1は、第2面12において3個以上のコア17で定義されるコア配置P2と異なっている。「コア配置」とは、複数のコアが画成する複数のコアからなる形状及び大きさを示している。図8の例では、コア配置P1は長方形状であり、コア配置P2は円形状である。このように、コア配置P1の形状はコア配置P2の形状と異なっている。
 「コア配置が異なる」ことは、例えば、コア配置の形状は同一であるがコア配置の大きさが異なる場合も含む。例えば、図9に示されるように、コア配置P1が長方形状であって、コア配置P2がコア配置P1の形状と相似である場合も「コア配置が異なる」場合に含まれる。以上のように、本実施形態では、コア配置P1の形状及び大きさの少なくともいずれかがコア配置P2の形状及び大きさの少なくともいずれかとは異なっている。
 前述した光接続部品10では、第1面11及び第2面12のそれぞれにおいて、3個以上のコア17が、一本の直線上に並ばないように配置されている。従って、第1面11及び第2面12のそれぞれにおいてコア17が2次元的に配置されるので、接続されるシングルコアファイバアレイ20のシングルコアファイバの数が増えても、コア17が占める領域の増大を抑制できる。本実施形態では、コア17が占める領域が第2方向D2に広がりすぎないようにすることができる。よって、空間利用効率の低下を抑制することができる。
(第2実施形態)
 次に、第2実施形態に係る光接続部品40について図10及び図11を参照しながら説明する。図10は、光接続部品40を備えた光接続構造1Aを示す斜視図である。図11は、光接続部品40を示す斜視図である。光接続構造1Aの一部の構成は、前述した光接続構造1の一部の構成と重複するため、光接続構造1の構成と重複する部分については同一の符号を付して説明を適宜省略する。
 図10及び図11に示されるように、光接続構造1Aは、光接続部品40、シングルコアファイバアレイ50及びガイドピン6を備える。シングルコアファイバアレイ50は、ガイドピン6が通される位置決め部58を有する。位置決め部58は、例えば、第1方向D1に沿ってシングルコアファイバアレイ50を貫通するガイド孔である。シングルコアファイバアレイ50は第2方向D2に沿って並ぶ2つの位置決め部58を有し、2つの位置決め部58のそれぞれにガイドピン6が挿通される。
 光接続部品40は、シングルコアファイバアレイ50を位置決めする第1位置決め部48を有する。第1位置決め部48は、例えば、第1方向D1に沿って延在する光接続部品40のガイド孔である。第1位置決め部48は、例えば、第1面11から第2面12まで貫通するピン孔であってもよい。光接続部品40は第2方向D2に沿って並ぶ2つの第1位置決め部48を有し、2つの第1位置決め部48のそれぞれにガイドピン6が通される。第1位置決め部48はシングルコアファイバアレイ50の位置決め部58の延長上に設けられる。従って、第1位置決め部48及び位置決め部58にガイドピン6が通されることにより、光接続部品40に対するシングルコアファイバアレイ50の位置合わせが可能となる。
 光接続部品40は、第2面12に接続されるマルチコアファイバを位置決めする第2位置決め部49を有していてもよい。第2位置決め部49は、例えば、第1面11から第2面12まで貫通するピン孔であってもよい。第2位置決め部49は、例えば、第1位置決め部48の延長上に設けられる。例えば、第2面12にはシングルコアファイバアレイ50と同様のマルチコアファイバアレイが接続され、第2位置決め部49及びマルチコアファイバアレイの位置決め部にガイドピン6が通される。これにより、光接続部品40に対する当該マルチコアファイバアレイの位置合わせが可能となる。
(第3実施形態)
 図12は、第3実施形態に係る光接続部品70を示す斜視図である。図12に示される光接続部品70は、コア17が露出する第1面11に対向する位置にシングルコアファイバ保持部71を備える。シングルコアファイバ保持部71は、第1面11に配置された各コア17に光接続する複数のシングルコアファイバを保持する。シングルコアファイバ保持部71は、当該シングルコアファイバを保持する光ファイバ保持孔77を有する。
 光ファイバ保持孔77の形状及び大きさは、例えば、前述したシングルコアファイバアレイ20の光ファイバ保持孔27の形状及び大きさと同様である。シングルコアファイバ保持部71は、例えば、前述したシングルコアファイバアレイ20,50と同様、複数のシングルコアファイバを保持する機能を有すると共に、クラッド10Aと一体化している。従って、光接続部品70とは別にシングルコアファイバアレイ20,50を用意する必要がない。
 シングルコアファイバ保持部71と第1面11との間には隙間72が形成されている。隙間72は、光ファイバ保持孔77にシングルコアファイバを固定する接着剤の気泡を逃がすために設けられる。隙間72は、シングルコアファイバ保持部71の光ファイバ保持孔77と第1面11のコア17との間に形成されている。隙間72は、例えば、光接続部品70を第3方向D3に貫通しており、第3面13及び第4面14に開口している。
 一例として、隙間72は、第1面11と、第1面11に対向する第1内面73と、第2方向D2に沿って並ぶ一対の第2内面74と、第1傾斜面75と、第2傾斜面76とによって画成される。第1内面73には光ファイバ保持孔77が開口している。第1傾斜面75は第3面13に向かって広がるように傾斜している。第2傾斜面76は第4面14に向かって広がるように傾斜している。
 以上、光接続部品70では、光ファイバ保持孔77の内面とシングルコアファイバとの間に入り込む接着剤から生じた気泡が隙間72を介して光接続部品70の外部に抜け出ることとなる。従って、気泡を光接続部品70の外部に逃がすことができる。第3実施形態では、隙間72が第1内面73、一対の第2内面74、第1傾斜面75及び第2傾斜面76によって画成される例について説明した。しかしながら、シングルコアファイバ保持部71と第1面11との間に形成される隙間の形状は、上記の例に限られず適宜変更可能である。
 以上、各実施形態について説明したが。本開示は前述した実施形態に限定されるものではなく、各請求項に記載した要旨を変更しない範囲において様々な変更が可能である。例えば、光接続部品及び光接続構造のコアの数及び配置態様は上記の要旨を変更しない範囲において更に変更可能である。例えば、前述の実施形態では、シングルコアファイバアレイ20の位置決めを行う第1位置決め部18、及びマルチコアファイバアレイの位置決めを行う第2位置決め部19が一直線上に配置される例について説明した。しかしながら、第1位置決め部及び第2位置決め部は、一直線上に配置されていなくてもよく、例えば、互いに異なる位置に別々に設けられていてもよい。
 前述の実施形態では、図12に示されるように、シングルコアファイバ保持部71を備える光接続部品70について説明した。このシングルコアファイバ保持部71と同様に、光接続部品はマルチコアファイバ保持部を備えていてもよい。マルチコアファイバ保持部は、例えば、コア17が露出する第2面(第1面11と同様、第2面12よりも第1方向D1の内側に位置する面)に対向する位置に設けられ、当該第2面に配置された各コア17に光接続する1または複数のマルチコアファイバを保持する。このマルチコアファイバ保持部は、当該マルチコアファイバを保持する光ファイバ保持孔を有する。この光ファイバ保持孔の形状及び大きさは、例えば、前述したマルチコアファイバアレイ30又はマルチコアファイバアレイ30Bの光ファイバ保持孔37の形状及び大きさと同様である。マルチコアファイバ保持部は、例えば、前述したマルチコアファイバアレイ30,30Bと同様、1または複数のマルチコアファイバを保持する機能を有すると共に、クラッド10Aと一体化している。この場合、光接続部品70とは別にマルチコアファイバアレイ30,30Bを用意する必要はない。更に、上記のマルチコアファイバ保持部と当該第2面との間に隙間72と同様の隙間が形成されていてもよい。この場合、前述した光接続部品70と同様の効果が得られる。
1,1A,1B…光接続構造
3,6…ガイドピン
10,10B,40,70…光接続部品
10A…クラッド
11…第1面
12…第2面
13…第3面
14…第4面
15…第5面
16…第6面
17…コア
18,48…第1位置決め部
19,49…第2位置決め部
20,20B,50…シングルコアファイバアレイ
21…第1面
22…第2面
23…第3面
27…光ファイバ保持孔
27b…内面
27c…傾斜面
28,58…位置決め部
30,30B…マルチコアファイバアレイ
31…第1面
32…第2面
33…第3面
37…光ファイバ保持孔
38…位置決め部
71…シングルコアファイバ保持部
72…隙間
73…第1内面
74…第2内面
75…第1傾斜面
76…第2傾斜面
77…光ファイバ保持孔
D1…第1方向
D2…第2方向
D3…第3方向
P1,P2…コア配置

 

Claims (14)

  1.  第1方向に沿って光信号を伝送する少なくとも3個のコアを備えた光接続部品であって、
     前記第1方向に交差する第2方向、及び、前記第1方向及び前記第2方向の双方に交差する第3方向に延在する第1面と、
     前記第2方向及び前記第3方向に延在すると共に、前記第1方向に沿って前記第1面に並ぶ第2面と、
    を有し、
     各前記コアは、前記第1面から、前記第1方向に沿って延びて前記第2面まで延在しており、
     前記第1面及び前記第2面のそれぞれにおいて、前記3個以上のコアが、一本の直線上に並ばないように配置されており、
     前記第1面において前記3個以上のコアで定義されるコア配置は、前記第2面において前記3個以上のコアで定義されるコア配置と異なっている、
    光接続部品。
  2.  複数のシングルコアファイバを保持するシングルコアファイバアレイを位置決めする第1位置決め部を有する、
    請求項1に記載の光接続部品。
  3.  前記第1位置決め部は、前記第1面と前記第2面を接続する第3面上にあるV溝である、
    請求項2に記載の光接続部品。
  4.  前記第1位置決め部は、前記第1面から前記第2面まで貫通するピン孔である、
    請求項2に記載の光接続部品。
  5.  マルチコアファイバを保持するマルチコアファイバアレイを位置決めする第2位置決め部を有する、
    請求項1または請求項2に記載の光接続部品。
  6.  前記第2位置決め部は、前記第1面と前記第2面を接続する第3面上にあるV溝である、
    請求項5に記載の光接続部品。
  7.  前記第2位置決め部は、前記第1面から前記第2面まで貫通するピン孔である、
    請求項5に記載の光接続部品。
  8.  複数のシングルコアファイバを保持するシングルコアファイバアレイが前記第1面に接続され、マルチコアファイバを保持するマルチコアファイバアレイが前記第2面に接続される、
    請求項1から請求項7のいずれか一項に記載の光接続部品。
  9.  前記シングルコアファイバアレイ及び前記マルチコアファイバアレイがポリフェニレンサルファイド製である、
    請求項8に記載の光接続部品。
  10.  前記シングルコアファイバアレイ及び前記マルチコアファイバアレイがガラス製である、
    請求項8に記載の光接続部品。
  11.  前記第1面に配置された各前記コアに光接続する複数のシングルコアファイバを保持するシングルコアファイバ保持部を備える、
    請求項1に記載の光接続部品。
  12.  前記シングルコアファイバ保持部は、前記第1面に向かって開口し、
     前記複数のシングルコアファイバに対応する複数の孔を有する、
    請求項11に記載の光接続部品。
  13.  前記シングルコアファイバ保持部と前記第1面との間に隙間を有する、
    請求項11または請求項12に記載の光接続部品。
  14.  光接続部品を介して複数のシングルコアファイバと1つまたは複数のマルチコアファイバとを接続する光接続構造であって、
     前記光接続部品は、
     第1方向に沿って光信号を伝送する少なくとも3個のコアと、
     前記第1方向に交差する第2方向、及び、前記第1方向及び前記第2方向の双方に交差する第3方向に延在する第1面と、
     前記第2方向及び前記第3方向に延在すると共に、前記第1方向に沿って前記第1面に並ぶ第2面と、を有し、
     各前記コアは、前記第1面から、前記第1方向に沿って延びて前記第2面まで延在しており、
     前記第1面及び前記第2面のそれぞれにおいて、前記3個以上のコアが、一本の直線上に並ばないように配置されており、
     前記第1面において前記3個以上のコアで定義されるコア配置は、前記第2面において前記3個以上のコアで定義されるコア配置とは異なっており、
     前記複数のシングルコアファイバは前記第1面に接続され、
     前記1つまたは複数のマルチコアファイバは前記第2面に接続される、
    光接続構造。

     
PCT/JP2022/020266 2021-05-24 2022-05-13 光接続部品及び光接続構造 WO2022249903A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280031094.1A CN117255962A (zh) 2021-05-24 2022-05-13 光连接部件以及光连接结构
JP2023523413A JPWO2022249903A1 (ja) 2021-05-24 2022-05-13
US18/287,792 US20240201452A1 (en) 2021-05-24 2022-05-13 Optical connection component and optical connection structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021087091 2021-05-24
JP2021-087091 2021-05-24

Publications (1)

Publication Number Publication Date
WO2022249903A1 true WO2022249903A1 (ja) 2022-12-01

Family

ID=84229976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020266 WO2022249903A1 (ja) 2021-05-24 2022-05-13 光接続部品及び光接続構造

Country Status (4)

Country Link
US (1) US20240201452A1 (ja)
JP (1) JPWO2022249903A1 (ja)
CN (1) CN117255962A (ja)
WO (1) WO2022249903A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000066062A (ja) * 1999-09-13 2000-03-03 Sumitomo Electric Ind Ltd 並列伝送モジュ―ル
JP2004020656A (ja) * 2002-06-12 2004-01-22 Omron Corp 光導波路装置および光導波路装置の製造方法
JP2004061772A (ja) * 2002-07-26 2004-02-26 Matsushita Electric Works Ltd 光デバイスと光ファイバの結合方法
JP2011237573A (ja) * 2010-05-10 2011-11-24 Sumitomo Electric Ind Ltd 光ファイバ結合用光学部品、光学モジュール、光ファイバ結合用光学部品の製造方法、および光学モジュールの製造方法
WO2018099575A1 (en) * 2016-12-02 2018-06-07 Telefonaktiebolaget Lm Ericsson (Publ) Multicore optical fiber connector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000066062A (ja) * 1999-09-13 2000-03-03 Sumitomo Electric Ind Ltd 並列伝送モジュ―ル
JP2004020656A (ja) * 2002-06-12 2004-01-22 Omron Corp 光導波路装置および光導波路装置の製造方法
JP2004061772A (ja) * 2002-07-26 2004-02-26 Matsushita Electric Works Ltd 光デバイスと光ファイバの結合方法
JP2011237573A (ja) * 2010-05-10 2011-11-24 Sumitomo Electric Ind Ltd 光ファイバ結合用光学部品、光学モジュール、光ファイバ結合用光学部品の製造方法、および光学モジュールの製造方法
WO2018099575A1 (en) * 2016-12-02 2018-06-07 Telefonaktiebolaget Lm Ericsson (Publ) Multicore optical fiber connector

Also Published As

Publication number Publication date
US20240201452A1 (en) 2024-06-20
JPWO2022249903A1 (ja) 2022-12-01
CN117255962A (zh) 2023-12-19

Similar Documents

Publication Publication Date Title
US6045269A (en) Multicore optical connector and method of producing the connector
US7431514B2 (en) Multifiber optical connector
JP5513588B2 (ja) 光コネクタ
US20110026882A1 (en) Lensed optical connector with passive alignment features
US11372169B2 (en) Waveguide substrates and waveguide substrate connector assemblies having waveguides and alignment features and methods of fabricating the same
JP6157457B2 (ja) 多心光コネクタ
WO2008023544A1 (fr) Élément de modification de trajet lumineux et connecteur optique pour rayons lumineux à trajet modifié
US10416393B2 (en) Connector for waveguide and alignment method
JP2012194481A (ja) 光コネクタ、光ファイバの実装方法、及び電子情報機器
JP2007256372A (ja) 光ファイバ接続部品
KR102521508B1 (ko) 광 커넥터 및 이것을 탑재하는 기기
JP2016529549A (ja) マルチコアファイバ用光カプラ
US6210047B1 (en) Method of fabricating a fiber optic connector ferrule
JP2016180945A (ja) 光コネクタフェルール
JP2008209767A (ja) 光モジュール及びその製造方法
WO2021208487A1 (zh) 一种光连接器插芯和光连接器
WO2022249903A1 (ja) 光接続部品及び光接続構造
JP2001201667A (ja) 高密度マルチチップファイバーアレイコネクター
JP5065112B2 (ja) 光コネクタ用フェルール
TWI514021B (zh) 光學連接器
JP6506138B2 (ja) 光モジュール及び光モジュール用レセプタクル
US11150418B2 (en) Optical connector ferrule and optical connector
JP2008102282A (ja) 光モジュール
KR100863936B1 (ko) 광 백플레인 장치
JP3966835B2 (ja) 多心光コネクタおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22811176

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18287792

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280031094.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023523413

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22811176

Country of ref document: EP

Kind code of ref document: A1