WO2021208487A1 - 一种光连接器插芯和光连接器 - Google Patents

一种光连接器插芯和光连接器 Download PDF

Info

Publication number
WO2021208487A1
WO2021208487A1 PCT/CN2020/139235 CN2020139235W WO2021208487A1 WO 2021208487 A1 WO2021208487 A1 WO 2021208487A1 CN 2020139235 W CN2020139235 W CN 2020139235W WO 2021208487 A1 WO2021208487 A1 WO 2021208487A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferrule
optical
channels
channel
optical connector
Prior art date
Application number
PCT/CN2020/139235
Other languages
English (en)
French (fr)
Inventor
王保启
陈冲
赵俊英
孔凡华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020227039881A priority Critical patent/KR20220160702A/ko
Priority to EP20930681.0A priority patent/EP4130825A4/en
Priority to JP2022562861A priority patent/JP2023521479A/ja
Publication of WO2021208487A1 publication Critical patent/WO2021208487A1/zh
Priority to US17/966,479 priority patent/US20230036226A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3826Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres characterised by form or shape
    • G02B6/383Hermaphroditic connectors, i.e. two identical plugs mating with one another, each plug having both male and female diametrically opposed engaging parts
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3881Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls using grooves to align ferrule ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3834Means for centering or aligning the light guide within the ferrule
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3834Means for centering or aligning the light guide within the ferrule
    • G02B6/3835Means for centering or aligning the light guide within the ferrule using discs, bushings or the like
    • G02B6/3837Means for centering or aligning the light guide within the ferrule using discs, bushings or the like forwarding or threading methods of light guides into apertures of ferrule centering means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3869Mounting ferrules to connector body, i.e. plugs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3882Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls using rods, pins or balls to align a pair of ferrule ends

Definitions

  • This application relates to the field of optical communication technology, and in particular to an optical connector ferrule and an optical connector.
  • Optical communication is a communication method that uses light waves as the carrier wave.
  • Optical connectors are passive optical devices used to connect optical links and realize optical communication, and they can be reused.
  • the requirements for the number of cores of the monolithic ferrule (MT ferrule) in the optical connector are also getting higher and higher, and the number of cores of the MT ferrule is increasing in the direction Evolution. For example, increase from 12 cores to 24 cores.
  • the MT ferrule with a larger number of cores in the later generation is often not compatible with the MT ferrule with a smaller number of cores in the previous generation.
  • the 32-core MT ferrule is not compatible with the 16-core MT ferrule because of its symmetrical distribution.
  • the compatibility of the MT ferrule can be improved by increasing the number of optical channel rows of the MT ferrule.
  • the direction along the line extending along the center of the two guide holes with larger diameters is the row direction, and the direction perpendicular to the line connecting the centers of the two guide holes is the column direction.
  • the MT ferrule of the 3 rows of optical channels can be compatible with the MT ferrule of the 2 rows of optical channels, and it can also be compatible with the MT ferrule of the 1 row of optical channels.
  • solutions with 5 rows, 7 rows, 9 rows or even more technical rows can be designed to achieve forward compatibility.
  • MT ferrules with 9 rows of optical channels are compatible with MT ferrules with 1, 2, 3, 5 and 7 rows of optical channels.
  • the present application provides an optical connector ferrule and an optical connector, which realizes the compatibility of an optical connector ferrule with a larger number of cores to an optical connector ferrule with a smaller number of cores.
  • the optical connector ferrule provided in this application corresponds to the first ferrule of the optical connector, and the first ferrule includes n optical channels;
  • the first ferrule is compatible with the second ferrule, the second ferrule includes m optical channels, m and n are both positive integers, and n is greater than m;
  • the n optical channels of the first ferrule include the first type of optical channels and the second type of optical channels.
  • the arrangement of the first type of optical channels is the same as that of the m optical channels of the second ferrule.
  • One optical channel is located in at least one of the rows where the first type of optical channel is located.
  • the first ferrule provided in the present application utilizes m first-type optical channels, thereby achieving compatibility with a second ferrule with a smaller number of cores.
  • the optical channel density of the first ferrule in at least one row is compared with that of the second ferrule.
  • the second ferrule can be docked in the row direction, and other ferrules can also be docked (for example, an n-core third ferrule with the same arrangement of optical channels as the first ferrule). Therefore, this application satisfies the compatibility requirements for ferrules by encrypting the optical channel.
  • the compatibility of the ferrule provided in the present application does not depend on increasing the number of optical channel rows, so that the optical channel accuracy of the ferrule will not be affected.
  • At least one optical channel in the second type of optical channel is located in at least one row in the row where the first type of optical channel is located, specifically including: at least one optical channel in the second type of optical channel is located in two phases in the row direction. Between adjacent first-type optical channels.
  • At least one optical channel in the second type optical channel is located between two adjacent first-type optical channels in the row direction, it is equivalent to that at least one second-type optical channel is inserted in the row direction.
  • the minimum distance between the light channels in the row direction is reduced, and the arrangement density of the light channels in the row direction is increased.
  • Increasing the arrangement density of the optical channels in the row direction (for example, reducing the distance between adjacent optical channels to one-half the distance between the first type of optical channels) will not affect the accuracy of the optical channels, and at the same time improve the first insertion Compatibility of the core to at least one ferrule with a core number less than n.
  • the number of optical channel rows of the first ferrule is the same as the number of optical channel rows of the second ferrule.
  • the number of optical channel rows of the first ferrule is greater than the number of optical channel rows of the second ferrule.
  • the arrangement of each optical channel in the first ferrule can be set according to the arrangement of the optical channels of the second ferrule that needs to be compatible.
  • the specific arrangement method is not limited.
  • the spacing between every two adjacent optical channels in the same row among the n optical channels is equal, and the spacing between every two adjacent optical channels in the same row among the m optical channels is equal.
  • the distance between every two adjacent optical channels in all rows of n optical channels is d1
  • the distance between every two adjacent optical channels in all rows of m optical channels is d2
  • d1 is 1 of d2.
  • K is a positive integer greater than or equal to 2.
  • the n optical channels are n optical waveguide channels; the first ferrule further includes a substrate, wherein the n optical waveguide channels are arranged on the substrate.
  • the first ferrule further includes: a body base and an upper cover;
  • the base of the main body is provided with a concave groove, the substrate is assembled in the concave groove, and the bottom surface of the substrate is attached to the bottom of the concave groove, and the attachment surface of the concave groove and the substrate is provided with at least one first positioning mechanism;
  • the first positioning mechanism matches the second positioning mechanism, the first positioning mechanism matches the second positioning mechanism to fix the base plate and the concave groove; the upper cover matches the local base to fix the base plate.
  • the base and the upper cover jointly assemble the substrate and the n optical waveguide channels on the substrate, so that the substrate and the n optical waveguide channels on the substrate can be protected and fixed.
  • the second positioning mechanism includes a positioning wedge located in the groove
  • the first positioning mechanism includes a positioning slot located in the substrate
  • the positioning wedge matches the positioning slot.
  • the second positioning mechanism further includes a positioning post located in the groove
  • the first positioning mechanism further includes a positioning hole located on the substrate, and the positioning post matches the positioning hole.
  • the matching accuracy of the two butted ferrules is further ensured by adding the setting post to match the positioning hole.
  • a tail shield is provided on the substrate to protect the substrate; in the length direction of the first ferrule, the sum of the length of the body base and the tail shield is greater than the length of the substrate.
  • the n optical channels are n optical fiber channels
  • the first ferrule further includes: a body;
  • n fiber channels are arranged on the main body, and both sides of the main body include guide holes;
  • the guide hole is used to match the guide pin provided on the second ferrule for position positioning.
  • the n optical fiber channels are formed by injection molding of a mold core block, the upper and lower sides of the mold core block are both zigzag shapes, the n optical fiber channels are connected optical channels, and the upper and lower sides are both zigzag shapes.
  • the n optical fiber channels are formed by injection molding of a mold core block, the upper and lower sides of the mold core block are arched, the n optical fiber channels are connected optical channels, and the upper and lower sides are both arched.
  • Using the mold core block to form n optical fiber channels can effectively prevent the accuracy of a single optical fiber channel from being affected during the injection molding process.
  • the diameter of the fiber channel is less than or equal to 125um.
  • the optical connector provided by the present application includes a first ferrule and a second ferrule.
  • the first ferrule and the second ferrule are connected together to form an optical connector, wherein the first ferrule is any one as provided in the previous aspect.
  • the second ferrule is also an optical connector ferrule in any implementation manner provided in the previous aspect.
  • the first ferrule can be compatible with the second ferrule with a smaller number of cores.
  • the second ferrule may be an existing m-core ferrule product of the previous generation, or it may be an m-core ferrule that also has a function of compatibility with fewer ferrules.
  • the optical connector using the technical solution of the present application has significantly improved compatibility with multiple core numbers of ferrules, and because of the high precision of the optical channel, the optical connector has low loss and high yield. And the optical connector can be applied to diversified application scenarios, which expands the application range of the connector.
  • the first ferrule of the optical connector provided in the present application is an n-core ferrule with n optical channels, and the first ferrule is used to be compatible with an m-core ferrule with a small number of cores, that is, the second ferrule.
  • the n optical channels of the first ferrule include two types. The arrangement of the first type of optical channels is the same as that of the m optical channels of the second ferrule. Therefore, the first ferrule can be realized by using the first type of optical channels.
  • the m optical channels of the second ferrule are accurately connected to each other, so as to be compatible with the second ferrule with a small number of cores.
  • the n optical channels of the first ferrule also include a second type of optical channel.
  • At least one of the second type of optical channels is located in at least one row of the first type of optical channel.
  • the arrangement density of the optical channels of the first ferrule is greater than the arrangement density of the optical channels of the second ferrule in the corresponding row. Therefore, the first ferrule can also simultaneously utilize (part or all) the first type optical channel and (part or all) the second type optical channel to interface with the optical channels of other ferrules.
  • the optical channels of the first ferrule and the third ferrule are connected to each other, and the number of cores of the third ferrule is n.
  • the compatibility of the first ferrule is improved, so that it can be docked with ferrules with multiple core numbers.
  • the realization of the compatibility of the first ferrule does not depend on increasing the number of optical channel rows, thus avoiding the impact on the accuracy of the optical channel while achieving compatibility.
  • Figure 1 is a schematic diagram showing that the 32-core MT ferrule is not compatible with the 16-core MT ferrule;
  • Figure 2 is a schematic diagram of 3 rows of optical channel MT ferrules compatible with 1 row of optical channel MT ferrules and 2 rows of optical channel MT ferrules;
  • FIG. 3 is a schematic structural diagram of an optical connector provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of an n-core optical connector ferrule compatible with an m-core optical connector ferrule with an odd number of optical channels according to an embodiment of the application;
  • FIG. 5 is a schematic diagram of an n-core optical connector ferrule compatible with an m-core optical connector ferrule with an even-numbered optical channel according to an embodiment of the application;
  • FIG. 6 is a schematic diagram of an n-core optical connector ferrule compatible with an m-core optical connector ferrule with a variable pitch of an optical channel according to an embodiment of the application;
  • FIG. 7 is a schematic structural diagram of a dual-row n-core optical connector ferrule compatible with m-core optical connector ferrules according to an embodiment of the application;
  • FIG. 8A is a schematic diagram of a three-row n-core optical connector ferrule compatible with a single-row m-core optical connector ferrule provided by an embodiment of the application;
  • 8B is a schematic diagram of another three-row n-core optical connector ferrule compatible with a single-row m-core optical connector ferrule provided by an embodiment of the application;
  • 8C is a schematic diagram of a three-row n-core optical connector ferrule compatible with a three-row m-core optical connector ferrule provided by an embodiment of the application;
  • FIG. 9 is an exploded view of the structure of an optical waveguide type optical connector ferrule provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of the optical waveguide type optical connector ferrule of FIG. 9 after assembly
  • FIG. 11 is a schematic structural diagram of an optical fiber-type optical connector ferrule provided by an embodiment of the application.
  • FIG. 12 is a schematic diagram of a mold with mold core needles provided by an embodiment of the application.
  • FIG. 13 is a schematic diagram of a mold with a W-shaped mold core block on two sides according to an embodiment of the application;
  • FIG. 14 is a schematic diagram of a mold with two-sided arched mold core blocks provided by an embodiment of the application.
  • Figure 15 is a cross-sectional view of a ferrule formed using the mold of Figure 13;
  • Figure 16 is a cross-sectional view of a ferrule formed using the mold of Figure 14;
  • Figure 17 is a cross-sectional view of a connected double U-shaped optical channel
  • Fig. 18 is a schematic diagram of the effect that the 17-core optical connector ferrule is compatible with the 16-core optical connector ferrule.
  • the MT ferrule is the core component of the Multi-fiber Push On (MPO) connector.
  • the MT ferrule is a mechanical butt transmission ferrule with one or more rows of optical channels, which are used to realize the connection and transmission of optical signals. With the iterative update of MT ferrules, higher requirements have been put forward for the compatibility of MT ferrules.
  • the "compatible" mentioned in the embodiments of this application means that in an optical connector mating scene, two optical connector ferrules with different numbers of optical channels can be connected to each other, and some or all optical channels work stably. Compatibility refers to the compatibility of the optical channel in the row direction.
  • an optical connector ferrule with n optical channels can cooperate with an optical connector ferrule with m optical channels (n is greater than m), and realize the optical signal intercommunication of m optical channels and work stably.
  • ferrules with a larger number of cores can be compatible with ferrules with a smaller number of cores.
  • the accuracy of the mold core pin directly determines the optical channel accuracy of the MT ferrule after injection molding, and affects the loss and yield of the optical connector. Therefore, increasing the number of rows of optical channels cannot effectively solve the problem of compatibility between ferrules with a larger number of cores and ferrules with a smaller number of cores while ensuring the accuracy of the channels.
  • an optical connector ferrule and an optical connector are provided in the embodiments of the present application.
  • the n optical channels of the first ferrule (n-core) of the optical connector are specifically divided into two types, where the first-type optical channels are arranged in the same manner as the m optical channels of the second ferrule (m-core). Therefore, the first ferrule can be compatible with the second ferrule by using the first type of optical channel.
  • At least one of the optical channels of the second type of the first ferrule is located in at least one row in the row where the first type of optical channels is located. Therefore, in at least one row of the first ferrule, the arrangement density of the optical channels is greater than that of the second type of optical channel.
  • the first ferrule utilizes its relatively high density of optical channels to not only be compatible with the second ferrule, but also be able to interface with the optical channels of various types of ferrules.
  • the technical solution provided by the embodiment of the present application does not need to increase the number of optical channel rows, and only realizes the first ferrule with denser optical channels from the row direction. This realizes the compatibility of the first ferrule with the second ferrule. This solution can effectively prevent the ferrule compatibility from affecting the accuracy of the ferrule optical channel of the optical connector.
  • the number of cores of the optical connector ferrule is the same as the number of channels.
  • the optical connector ferrule is 48 cores, that is, the optical connector ferrule contains 48 optical channels.
  • FIG. 3 is a schematic structural diagram of an optical connector provided by an embodiment of the application.
  • the optical connector includes a first ferrule 301 and a second ferrule 302.
  • the first ferrule 301 and the second ferrule 302 are respectively provided with holes for socketing with the guide pin 303.
  • the first ferrule 301 and the second ferrule 302 are assembled together by using the guide pin 303 to realize the matching of all or part of the optical channels.
  • the first ferrule 301 and the second ferrule 302 are optically connected to each other.
  • the number of optical channels of the first ferrule 301 and the number of optical channels of the second ferrule 302 may be the same or different.
  • each optical channel of the first ferrule 301 matches each optical channel of the second ferrule 302 one by one.
  • both the first ferrule 301 and the second ferrule include 48 optical channels.
  • the ferrule with a larger number of optical channels in the first ferrule 301 and the second ferrule 302 has only some optical channels matched with the optical channels of the ferrule with a smaller number of optical channels, and matches
  • the number of optical channels is the same as that of ferrules with fewer optical channels.
  • the first ferrule 301 contains 48 optical channels
  • the second ferrule 302 contains 24 optical channels. This requires that the first ferrule 301 is compatible with the second ferrule 302, so that the 24 optical channels of the first ferrule 301 can be It is matched with the 24 optical channels of the second ferrule 302.
  • the second ferrule 302 needs to be assembled with a third optical connector ferrule (not shown in FIG. 3) with a smaller number of cores to form an optical connector, the second ferrule 302 is required to also be equipped with a third optical connector. The compatibility of the connector ferrule.
  • n-core optical connector ferrule In order to achieve the compatibility of the optical connector ferrule to the ferrule with a smaller number of cores (the number of optical channels), the following describes the implementation of the compatibility of the n-core optical connector ferrule to the m-core optical connector ferrule in conjunction with the embodiments and drawings. .
  • both n and m are positive integers, and n is greater than m.
  • the n-core optical connector ferrules all refer to the first ferrule described above
  • the m-core optical connector ferrules all refer to the second ferrule described above.
  • FIG. 4 is a schematic structural diagram of an n-core optical connector ferrule compatible with an m-core optical connector ferrule provided in an embodiment of the application.
  • the m-core optical connector ferrule is also shown below the n-core optical connector ferrule.
  • the n-core optical connector ferrule shown in FIG. 4 includes n optical channels, which are: optical channel a1, optical channel a2, ..., optical channel an.
  • n is an even number.
  • the optical channels a1 to an are located in the same row.
  • the first type of optical channels are odd-numbered optical channels from a1 to an, that is, a1, a3,..., an-1;
  • the second type of optical channels are even-numbered optical channels from a1 to an, that is, a2, a4,..., an.
  • the m-core optical connector ferrule includes m optical channels, which are: optical channel b1, optical channel b2, ..., optical channel bm, where the m optical channels are located in the same row. As shown in Figure 4, the arrangement of odd-numbered optical channels of the n-core optical connector ferrule is the same as the arrangement of b1-bm.
  • the first type optical channels and the second type optical channels of the n-core optical connector ferrule are alternately arranged.
  • the distance between adjacent optical channels of the n-core optical connector ferrule is d1
  • the distance between adjacent optical channels of the m-core optical connector ferrule is d2
  • d1 is 1/K times d2.
  • the odd-numbered optical channels of the n-core optical connector ferrule along the row direction correspond to the optical channels of the m-core optical connector ferrule one-to-one. As shown in Fig. 4, a1 matches b1, a3 matches b2, and a5 matches b3.
  • the even-numbered optical channels along the row direction of the n-core optical connector ferrule correspond to the optical channels of the m-core optical connector ferrule one-to-one.
  • a2 matches b1, a4 matches b2, and a6 matches b3.
  • n is an even number
  • the even-numbered optical channels a2, a4,..., an of the n-core optical connector ferrule are used as the first type of optical channels
  • the odd-numbered optical channels a1, a3,..., an-1 are used as the first type of optical channels.
  • Type 2 optical channel is an even number
  • the distance between adjacent optical channels is the same.
  • the distance between adjacent optical channels may also be different.
  • the distance between a1 and a2 is d3
  • the distance between a2 and a3 is d4, and d3 ⁇ d4.
  • d3 is greater than d4.
  • d4 may also be greater than d3.
  • the n-core optical connector ferrule shown in FIGS. 4 to 6 includes a row of optical channels.
  • the second type of optical channels are arranged in the same row as the first type of optical channels.
  • the optical channels of the n-core optical connector ferrule may be distributed in multiple rows.
  • a double-row optical channel is taken as an example for introduction and description.
  • FIG. 7 is a schematic structural diagram of a dual-row n-core optical connector ferrule compatible with m-core optical connector ferrules according to an embodiment of the present application.
  • n is an even number.
  • the double-row n-core optical connector ferrule shown in Figure 7 includes n optical channels, namely: optical channel a1, optical channel a2,..., optical channel a(n/2), optical channel a(n/2+ 1), optical channel a(n/2+2),..., optical channel an.
  • each row has a total of n/2 optical channels, optical channels a1 ⁇ a(n/2) are located in the first row, and optical channels a(n/2+1 ) ⁇ an is in the second row.
  • the odd-numbered optical channels in each row of the n-core optical connector ferrule are the first-type optical channels
  • the even-numbered optical channels in each row are the second-type optical channels. It can be seen from Fig. 7 that the arrangement of the first type of optical channels is the same as the arrangement of m optical channels of the m-core optical connector ferrule.
  • the second type of optical channel is located in at least one row of the first type of optical channel Inside.
  • the number of rows of optical channels is 2, and the second type of optical channels are distributed on both the first row and the second row; of course, in some other embodiments, the second type of optical channels can also be Only distributed in the first row or only distributed in the second row.
  • the distance between adjacent optical channels of the double-row n-core optical connector ferrule in the row direction is smaller than the distance between adjacent optical channels of the double-row m-core optical connector ferrule.
  • the number of optical channels of the n-core optical connector ferrule is greater than the number of optical channels of the m-core optical connector ferrule, and the n-core optical connector ferrule contains the position of the optical channel with the m-core optical connector ferrule Corresponding m optical channels, so the n-core optical connector ferrule can be compatible with the m-core optical connector ferrule.
  • the optical channel arrangement density of the n-core optical connector ferrule is greater than the optical channel arrangement density of the m-core optical connector ferrule in the corresponding row.
  • the n-core in the figure The optical connector ferrule can also use another n-core optical connector ferrule whose first type optical channel and second type optical channel are connected to all channels in the same arrangement.
  • Figures 4 to 7 respectively show that the number of optical channels of the n-core optical connector ferrule is twice the number of optical channels of the m-core optical connector ferrule, and the number of optical channel rows of the n-core optical connector ferrule is equal to m The number of optical channel rows of the core optical connector ferrule is equal.
  • the n-core optical connector ferrule can be compatible with m-core optical connector ferrules of the same row number.
  • the number of optical channel rows of the n-core optical connector ferrule and the number of optical channel rows of the m-core optical connector ferrule that need to be compatible may also be inconsistent.
  • FIG. 8A is a schematic diagram of a three-row n-core optical connector ferrule compatible with a single-row m-core optical connector ferrule.
  • the density of each row of optical channels is greater than that of one row of the m-core optical connector ferrule.
  • FIG. 8B in the three rows of n-core optical connector ferrules shown in the figure, only one row of optical channel density is greater than that of one row of m-core optical connector ferrules.
  • n-core optical connector ferrule shown in FIG. 8A only the odd-numbered optical channels in the second row are the first-type optical channels, and the remaining optical channels are the second-type optical channels.
  • the even-numbered optical channels in the second row are the first-type optical channels, and the remaining optical channels are the second-type optical channels.
  • the number of optical channel rows of the n-core optical connector ferrule is greater than the number of optical channel rows of the m-core optical connector ferrule
  • at least one of the second type optical channels of the n-core optical connector ferrule The light channels are located in rows other than the row where the first type of light channels are located, see the first row and the second row in FIGS. 8A and 8B.
  • the first type of optical channel matches the optical channel of the m-core optical connector ferrule in a one-to-one correspondence. It can be seen from FIGS. 8A and 8B that the n-core optical connector ferrule with a larger number of rows can also be compatible with the m-core optical connector ferrule with a smaller number of rows.
  • the n-core optical connector ferrule can be used for optical channel docking with the n-core optical connector ferrule with exactly the same channel arrangement, and it can also be compatible with a variety of optical connector ferrules with less than n cores.
  • the same n-core optical connector ferrule can be compatible with a variety of optical connector ferrules with a core number less than n.
  • the number of optical channel rows of the two ferrules is different.
  • all of the n-core optical connector ferrules correspond to the m-core optical connector ferrule.
  • the optical channels are all the first-type optical channels, and the remaining channels are the second-type optical channels.
  • the number of optical channel rows of the two ferrules is the same.
  • all the corresponding optical channels in the n-core optical connector ferrule are of the first type. aisle. It can be seen that the first type of optical channel and the second type of optical channel can be specifically divided according to the m-core optical connector ferrules that need to be compatible.
  • At least one optical channel in the second type of optical channels of the n-core optical connector ferrule is located in at least one row of the first type of optical channels.
  • at least one optical channel in the second-type optical channel may be specifically located between two adjacent first-type optical channels in the row direction.
  • at least one optical channel in the second-type optical channel may be specifically located before the first first-type optical channel in the row direction, or specifically after the last first-type optical channel in the row direction.
  • n-core optical connector ferrule provided in the above embodiments, its compatibility with the m-core optical connector ferrule does not depend on increasing the number of optical channel rows. Therefore, it will not affect the accuracy of the optical channel of the ferrule. Compatible with less number of cores.
  • n-core optical connector ferrule described in the embodiment of the present application can be implemented in a variety of ways. These implementations are introduced one by one below.
  • FIG. 9 is an exploded view of the structure of an optical waveguide type optical connector ferrule provided by an embodiment of the application.
  • the n-core optical connector ferrule includes a substrate 902, and n optical waveguide channels of the ferrule are arranged on the substrate 902.
  • the waveguide plate 901 is located on the upper layer of the substrate 902, and the substrate 902 supports the waveguide plate 901.
  • n optical waveguide channels can be formed on the waveguide plate 901.
  • the distance between at least two adjacent optical waveguide channels is smaller than the distance between any two adjacent optical channels in the m optical channels of the m-core optical connector ferrule. In this way, the n-core optical connector ferrule can be compatible with the m-core optical connector ferrule.
  • the substrate 902 and the waveguide plate 901 can also be embedded in the upper cover 903 and the body base 904 in practical applications.
  • the main body base 904 is provided with a concave groove.
  • the substrate 902 and the waveguide plate 901 are specifically assembled in the concave groove of the main body base 904, and the bottom surface of the substrate 902 is attached to the groove bottom of the concave groove.
  • the width of the substrate 902 and the waveguide plate 901 is less than or equal to the width of the concave groove of the main body base 904, so the substrate 902 and the waveguide plate 901 can be smoothly inserted into the concave groove.
  • the width of the upper cover 903 is also less than or equal to the width of the concave groove of the main body base 904. After the substrate 902 and the waveguide plate 901 are placed into the concave groove, the upper cover 903 can also be placed into the concave groove. The appearance is more smooth and fit.
  • the upper cover 903 and the main body base 904 are assembled in cooperation with each other, and the base plate 902 and the waveguide plate 901 can be fixed.
  • a tail jacket 905 is arranged around the middle position of the combination of the waveguide plate 901 and the base plate 902.
  • the tail jacket 905 can be used to protect the substrate 902 and the waveguide plate 901 to avoid damage to the substrate 902 and the waveguide plate 901 when assembling the optical waveguide type optical connector ferrule.
  • the upper cover 903 is provided with an upward groove on the contact surface with the tail sheath 905, and the contact surface between the body base 904 and the tail sheath 905 is provided with a lower groove.
  • the tail sheath 905 whose thickness is greater than the sum of the thickness of the base plate 902 and the waveguide plate 901 is embedded between the upper cover 903 and the body base 904.
  • the length of the substrate 902 is less than the length of the body base 904 and the tail sheath 905 after assembly
  • the sum of the lengths of the body base 904 and the tail sheath 905 after assembly is less than the length of the waveguide plate 901.
  • At least one first positioning mechanism is provided on the substrate 902.
  • the first positioning mechanism has a first preset positional relationship with at least one of the n optical waveguide channels.
  • a positioning hole 906 is provided on the substrate 902 as the first positioning mechanism, and the optical connector ferrule has 32 optical waveguide channels. In the width direction of the waveguide plate 901, the positioning hole 906 is located between the 16th optical waveguide channel and the Between 17 optical waveguide channels. Or, for example, the distance between the positioning hole and the first optical waveguide channel in the row direction and the distance between the positioning hole and the 32nd optical waveguide channel in the row direction are equal.
  • the positioning hole is the same distance from the second optical waveguide channel and the 31st optical waveguide channel, and so on. Because the optical waveguide channel has a first preset positional relationship with the first positioning mechanism, the position of each optical waveguide channel can be accurately determined by the first positioning mechanism, and the optical waveguide channel relative to all the optical waveguide channels can be determined by the first positioning mechanism.
  • the position of the substrate When assembling the optical connector ferrule, the main body base 904 and the substrate 902 are attached to each other, and at least one second positioning mechanism is provided on the attaching surface of the main body base 904. The position and size of the first positioning mechanism and the second positioning mechanism are matched.
  • a guide hole 907 is provided on each arm of the concave groove of the main body base 904, which is used to insert a guide pin when the optical connector ferrule is connected to the opposite end optical connector ferrule. Position location, see Figure 3.
  • the second positioning mechanism and the guide hole 907 have a second preset positional relationship.
  • the distances between the second positioning mechanism and the guide holes 907 on both sides are equal. Therefore, when the first positioning mechanism is matched with the second positioning mechanism, the mutual position of the light channel of the substrate and the guide hole of the body base can be fixed. Using the first preset positional relationship and the second preset positional relationship, the positional relationship between the optical waveguide channel and the guide hole 907 can be accurately obtained.
  • the positioning of the optical waveguide channel can be achieved by using the guide hole 907. Furthermore, to facilitate the assembly of the ferrules at both ends of the optical connector, the matching of the optical channels of the ferrules at both ends is achieved through the guide holes 907 of the ferrules at both ends.
  • the optical waveguide channel formed in the embodiment of the present application may be a single-mode optical waveguide channel or a multi-mode optical waveguide channel.
  • the optical waveguide plate 901 may be a single-layer optical waveguide, or a multilayer optical waveguide, or a combination of multiple optical waveguide plates 901 and a substrate 902.
  • optical channels are formed in different layers of optical waveguides.
  • the thickness of the substrate 902 under the waveguide plate 901 can be adjusted according to actual needs (for example, increasing the thickness of the substrate 902 or reducing the thickness of the substrate 902), so as to ensure that the optical waveguide channel and the guide hole 907 of the body base 904 are mutually connected after the ferrule is assembled. The location accuracy.
  • the positioning groove 908 on the base plate 902 and the positioning wedge 909 on the body base 904 serve as a pair of matching first positioning mechanism and second positioning mechanism, and the positioning wedge 909 is inserted into the positioning groove 908 to achieve matching.
  • the optical connector ferrule may also include another pair of first positioning mechanism and second positioning mechanism, namely the positioning hole 906 on the base plate 902 and the positioning post 910 on the body base 904, and the positioning post 910 is inserted into the positioning hole. 906 to achieve matching.
  • the position matching accuracy of the optical waveguide channel between the ferrules can be further improved, and the matching efficiency of the n-core optical connector ferrule and the same-core optical connector ferrule can be improved. , Or improve the matching effect of the optical channel compatibility between the n-core optical connector ferrule and the m-core optical connector ferrule.
  • Fig. 10 is a schematic diagram of the optical waveguide type optical connector ferrule of Fig. 9 after assembly.
  • the optical waveguide type optical connector ferrule has a smooth and adhered upper surface because the upper cover 903 is embedded in the groove of the main body base 904.
  • the end face of the optical waveguide connector is matched with the optical connector ferrule at the opposite end to ensure the optical coupling inside the optical connector.
  • the optical waveguide channel formed on the waveguide plate 901 extending from the tail jacket 905 is used to establish an optical connection with the first optical communication device in the optical communication scene.
  • the n-core optical connector ferrule with n optical waveguide channels is realized by printing or ion implanting the waveguide plate 901.
  • an injection molding process can also be used to manufacture an n-core optical connector ferrule with n optical fiber channels.
  • the mold used for injection molding and the fiber optic connector ferrule obtained by injection molding will be described below in conjunction with the embodiments and drawings.
  • Figure 11 is a schematic structural diagram of a fiber optic connector ferrule.
  • the optical connector ferrule includes a body, and the body is provided with n optical fiber channels processed by an injection molding process and two guide holes with a cross-sectional diameter larger than the diameter of the optical fiber channel.
  • Two guide holes are located on both sides of the body, and the fiber channel is located between the two guide holes in the row direction.
  • the guide hole is used to position the fiber optic connector ferrule (ie, the first ferrule) at the local end and the guide pin provided on the opposite end ferrule (ie, the second ferrule) when assembling. Refer to Figure 3 for the assembly relationship between the ferrule and the guide pin.
  • the n optical fiber channels shown in FIG. 11 can be obtained after injection molding using a separate mold core needle as a mold.
  • Figure 12 which shows an injection mold with n+2 core needles. Among them, two core needles 1201 with a larger diameter are used to form guide holes, and n core needles 1202 with a smaller diameter are used for Form the Fibre Channel. If the distance between adjacent fiber channels in n fiber channels is 125um, the diameter of the fiber channels is required to be less than 125um. It is necessary to customize an optical fiber with a diameter of less than 125um to form a fiber optic connector ferrule. As an example, the diameter of the mold core needle 1202 used to form the fiber channel is between 50 um and 90 um.
  • the density of the mold core needles in the mold can be increased in the row direction, and the distance between the fiber channels can be reduced, so that the formed fiber optic connector ferrule can be formed with a smaller number of channels.
  • Optical connector ferrule For example, a 32-core ferrule with a channel spacing of 125um is compatible with a 16-core ferrule with a channel spacing of 250um.
  • a mold core block can also be used as a mold to obtain n connected optical fiber channels by injection molding.
  • Figures 13 and 14 respectively show two different molds.
  • the upper and lower surfaces of the mold core block 1301 for forming the optical fiber channel are both sawtooth-shaped, that is, the upper surface is sawtooth, and the lower surface is also sawtooth.
  • the sawtooth may be V-shaped.
  • the fiber optic connector ferrule formed by the mold of FIG. 13 is shown in FIG. 15.
  • the ferrule contains n fiber channels connected and the upper and lower surfaces are also sawtooth, for example, the cross section is a connected upper and lower double V-shaped 1302.
  • the upper surface of the mold core block 1301 is sawtooth, and the lower surface is also sawtooth; for example, in the direction of the optical channel row, the upper edge of the cross section of a single fiber channel is V-shaped, and the lower edge is also V-shaped.
  • FIG. 14 the upper and lower sides of the mold core block 1401 of the mold for forming the optical fiber channel are both arched.
  • the curvature of the arch is unchanged.
  • the fiber optic connector ferrule formed by the mold of FIG. 14 is shown in FIG. It is understandable that if the curvature of the arch in FIG. 14 changes, the cross-section of a single fiber channel formed by the mold may also be a connected upper and lower double arch. Refer to the connected double arch channel section shown in FIG. 17. That is, in the direction of the optical channel column, the upper edge of the cross section of a single fiber channel is arched, and the lower edge is also arched.
  • the distance between two adjacent optical fiber channels is 125 um, so a standard optical fiber with a diameter of 125 um can be used to form an optical fiber connector ferrule.
  • a standard optical fiber with a diameter of 125 um can be used to form an optical fiber connector ferrule.
  • the optical fiber channel formed by the embodiment of the present application may be a single-mode optical fiber channel or a multi-mode optical fiber channel.
  • a single-mode optical fiber channel or a multi-mode optical fiber channel can be obtained by injection molding using a mold with a matching size.
  • the optical fiber channels of the ferrule may be distributed in one row or in multiple rows.
  • the compatibility effect of a row of fiber channels on the m-core optical connector ferrule can be seen in Figures 4 to 6; the compatibility effects of multiple rows of fiber channels on the m-core optical connector ferrule can be seen in Figure 7, Figure 8A and Figure 8B.
  • the distance between two adjacent optical channels can be the same, as shown in Figure 4, Figure 5, Figure 7 and Figure 8A; the distance between two adjacent optical channels can also be different, as shown in Figure 6.
  • Both the optical waveguide type n-core optical connector ferrule and the fiber type n-core optical connector ferrule provided in the embodiments of the present application can support compatible m-core optical connector ferrules.
  • the m-core optical connector ferrule is a previous-generation product of the n-core optical connector ferrule
  • the n-core optical connector ferrule provided in the embodiment of the present application is compatible with the previous-generation product.
  • the value of n can be m+1 ⁇ 2m. The following is an example to illustrate:
  • Single-row 17-32-core optical connector ferrules with a minimum optical channel spacing of 125um are compatible with a single-row 16-core optical connector ferrule with a 250um spacing, and a single-row 13-24-core optical connector ferrule with a minimum optical channel spacing of 125um.
  • Dual-row 33 ⁇ 64-core optical connector ferrules with a minimum optical channel spacing of 125um are compatible with dual-row 32-core optical connector ferrules with a 250um spacing, and dual-row 25-48-core optical connector ferrules with a minimum optical channel spacing of 125um are compatible Compatible with dual-row 24-core optical connector ferrule with 250um pitch;
  • Three rows of 49-96 core optical connector ferrules with a minimum optical channel spacing of 125um are compatible with three rows of 48-core optical connector ferrules with a 250um spacing, and three rows of 37-72 optical connector ferrules with a minimum optical channel spacing of 125um are available Compatible with three rows of 36-core optical connector ferrules with a pitch of 250um.
  • the 17-core optical connector ferrule with a single-row minimum optical channel spacing of 125um is compatible with a 16-core optical connector ferrule with a single-row optical channel spacing of 250um, as shown in Figure 18.
  • the above other example implementation manners are all modifications of FIG. 18, which can be seen in FIG. 18, and will not be described one by one in the embodiment of the present application.
  • the present application also provides an optical connector.
  • the optical connector includes a first ferrule and a second ferrule, where the first ferrule can refer to the first ferrule 301 in FIG. 3, and the second ferrule can refer to the second ferrule 302 in FIG. 3.
  • the first ferrule is a ferrule that is compatible with the second ferrule formed according to any of the methods described in the foregoing embodiments, and the second ferrule is an existing product in the current industry.
  • the number of cores of the second ferrule is less than the number of cores of the first ferrule.
  • the first ferrule and the second ferrule are respectively ferrules formed according to any of the methods described in the foregoing embodiments, wherein the number of compatible cores of the first ferrule is smaller than the number of cores of the first ferrule. With fewer second ferrules, the second ferrule can also be compatible with other ferrules with a smaller number of cores than its own.
  • the implementation of the optical channels of the first ferrule and the second ferrule may be the same or different.
  • FIG. 3 only shows that the first ferrule 301 is an optical fiber type optical connector ferrule, and the second ferrule 302 is an optical waveguide type optical connector ferrule as an example.
  • the first ferrule and the second ferrule may also both be optical waveguide type optical connector ferrules.
  • first ferrule and the second ferrule may also be both fiber optic connector ferrules.
  • the specific number of rows of ferrules and the number of optical channels in each row are not specifically limited.
  • At least one (item) refers to one or more, and “multiple” refers to two or more.
  • “And/or” is used to describe the association relationship of associated objects, indicating that there can be three types of relationships, for example, “A and/or B” can mean: only A, only B, and both A and B , Where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the following at least one item (a) or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, and c can be single or multiple.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光连接器插芯和光连接器,第一插芯(301)的n个光通道包括两类,其中第一类光通道与第二插芯(302)的m个光通道的排布方式相同,第一插芯(301)利用第一类光通道可实现与第二插芯(302)的m个光通道的准确对接,从而兼容该芯数较少的第二插芯(302)。此外,第一插芯(301)的n个光通道还包括第二类光通道,第二类光通道中至少一个光通道位于第一类光通道所在排中的至少一排内。通过在第一插芯(301)排方向上提高光通道排布密度,提升了第一插芯(301)的兼容能力,使其能够与多种芯数的插芯对接。第一插芯(301)兼容能力的实现不依赖于增加光通道排数,因此避免在兼容实现的同时对光通道精度造成影响。

Description

一种光连接器插芯和光连接器
本申请要求于2020年04月17日提交中华人民共和国国家知识产权局、申请号为202010306153.4、发明名称为“一种光连接器插芯和光连接器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信技术领域,尤其涉及一种光连接器插芯和光连接器。
背景技术
光通信是以光波为载波的通信方式。光连接器是用于接续光链路,实现光通信的无源光器件,且可以重复使用。随着数据传输速率和带宽的不断增大,对于光连接器中整体式插芯(Monolithic Ferrule,MT插芯)的芯数要求也越来越高,MT插芯的芯数沿着增加的方向演进。例如,从12芯增加到24芯。但是后一代芯数较多的MT插芯往往无法兼容前一代芯数较少的MT插芯。参见图1,32芯的MT插芯因为对称分布,不能兼容16芯的MT插芯。
目前现有的一种方式中,可以通过增加MT插芯的光通道排数的方式来提升MT插芯的兼容性能。如图2所示,沿着两个直径较大的导向孔中心连线延伸的方向为排方向,垂直于两个导向孔中心连线的方向为列方向。结合图2可以看出3排光通道的MT插芯可以兼容2排光通道的MT插芯,也可以兼容1排光通道的MT插芯。在传输速率和带宽需求进一步提升的情况下,还进一步提出,可以设计5排、7排、9排甚至更多技术排的方案,以实现前向兼容。例如,9排光通道的MT插芯来兼容1排、2排、3排、5排和7排光通道的MT插芯。
通过研究发现,当光通道的排数达到3排以上,MT插芯的光通道精度将大大降低。可见,采用增加光通道排数的方式提升插芯的兼容性能的实现方式,光通道排数受限,兼容效果不佳。
发明内容
为了解决以上技术问题,本申请提供一种光连接器插芯和光连接器,实现芯数较多的光连接器插芯对芯数较少的光连接器插芯的兼容。
本申请提供的光连接器插芯,对应光连接器的第一插芯,第一插芯包括n个光通道;
第一插芯用于兼容第二插芯,第二插芯包括m个光通道,m和n均为正整数,且n大于m;
第一插芯的n个光通道包括第一类光通道和第二类光通道,第一类光通道与第二插芯的m个光通道排布方式相同,第二类光通道中的至少一个光通道位于第一类光通道所在排中的至少一排内。
本申请提供的第一插芯利用m个第一类光通道,从而实现对较少芯数的第二插芯的兼容。此外,由于第二类光通道中至少一个光通道位于第一类光通道所在排中的至少一个排内,因此,第一插芯相比于第二插芯在至少一个排内的光通道密度较大,在排方向上即可以对接第二插芯,还可以对接其他插芯(例如光通道排布方式与第一插 芯一致的n芯第三插芯)。因此,该本申请通过加密光通道,满足了对插芯的兼容性需求。并且,本申请提供的插芯的兼容性能不依赖于增加光通道排数,从而不会影响插芯的光通道精度。
优选地,第二类光通道中的至少一个光通道位于第一类光通道所在排中的至少一排内,具体包括:第二类光通道中的至少一个光通道位于排方向上两个相邻的第一类光通道之间。
在该实现方式中,由于第二类光通道中至少一个光通道位于排方向上两个相邻的第一类光通道之间,因此,相当于至少一个第二类光通道插入在排方向上两个相邻的第一类光通之间,缩减了排方向上光通道的最小间距,进而增大排方向上的光通道的排布密度。在排方向上增大光通道的排布密度(例如将相邻光通道间距缩减为第一类光通道间距的二分之一),不会对光通道精度造成影响,同时提升了第一插芯对至少一种芯数小于n的插芯的兼容性能。
优选地,第一插芯的光通道排数与第二插芯的光通道排数相同。
优选地,第一插芯的光通道排数大于第二插芯的光通道排数。
本申请中,第一插芯中每个光通道的排布方式可以按照需兼容的第二插芯的光通道排布方式进行设置,此处对第一类光通道及第二类光通道的具体排布方式不进行限定。
优选地,n个光通道中同一排的每相邻两个光通道的间距相等,m个光通道中同一排的每相邻两个光通道的间距相等。
优选地,n个光通道中所有排的每相邻两个光通道的间距均为d1,m个光通道中所有排的每相邻两个光通道的间距均为d2,d1为d2的1/K倍,K为大于或等于2的正整数。
优选地,n个光通道为n个光波导通道;第一插芯还包括基板,其中,n个光波导通道设置在基板上。
优选地,第一插芯还包括:本体底座和上盖;
本体底座设有凹型槽,基板装配于凹型槽内,且基板的底面与凹型槽的槽底相贴合,凹型槽与基板的贴合面设有至少一个第一定位机构;基板上设有与第一定位机构匹配的第二定位机构,第一定位机构与第二定位机构匹配以固定基板与凹型槽;上盖与本地底座相配合,以固定基板。
在上述实现方式中,本体底座及上盖共同将基板及基板上的n个光波导通道装嵌于一体,因此可以保护和固定基板及基板上的n个光波导通道。
优选地,第二定位机构包括位于凹槽的定位楔,第一定位机构包括位于基板的定位槽,定位楔与定位槽相匹配。通过一对相互匹配的定位槽和定位楔,可以提升插芯之间光通道的匹配精度,进而提升第一插芯与同芯数光连接器插芯的匹配效率,或提升第一插芯对第二插芯的光通道兼容匹配效果。
优选地,第二定位机构还包括位于凹槽的定位柱,第一定位机构还包括位于基板的定位孔,定位柱与定位孔相匹配。通过增设定位柱与定位孔进行匹配,进一步保证 了对接的两个插芯的匹配精度。
优选地,基板上设有尾护套,以保护基板;在第一插芯的长度方向上,本体底座与尾护套装配后的长度之和大于基板的长度。通过在基板上增设尾护套,可以提升基板及基板之上形成的光波导通道的耐久度,延长该第一插芯的使用寿命。
优选地,n个光通道为n个光纤通道,第一插芯还包括:本体;
n个光纤通道设置在本体,本体的两侧包括导向孔;
在第一插芯与第二插芯连接时,导向孔用于与设于第二插芯上的导向针匹配进行位置定位。
优选地,n个光纤通道利用模仁块注塑形成,模仁块的上下两面均为锯齿形,n个光纤通道为连通的光通道且上下两面均为锯齿形。
优选地,n个光纤通道利用模仁块注塑形成,模仁块的上下两面均为拱形,n个光纤通道为连通的光通道且上下两面均为拱形。
利用模仁块形成n个光纤通道,可以有效避免单个光纤通道在注塑过程中通道的精度受到影响。
优选地,光纤通道的直径小于或等于125um。
本申请提供的光连接器,包括第一插芯和第二插芯,第一插芯和第二插芯连接在一起形成光连接器,其中,第一插芯为如前一个方面提供的任意一种实现方式的光连接器插芯。
优选地,第二插芯也为如前一个方面提供的任意一种实现方式的光连接器插芯。
在本申请提供的光连接器,利用第一插芯可以兼容芯数较少的第二插芯。该第二插芯可以是已有的前一代m芯插芯产品,也可以是同样具有对较少插芯的兼容功能的m芯插芯。应用本申请技术方案的光连接器,对多种芯数插芯的兼容性能得到显著提升,并因光通道的精度较高,光连接器的损耗低,良率高。并且光连接器可以适用于多样化的应用场景,扩展了连接器的应用范围。
本申请至少具有以下优点:
本申请提供的光连接器的第一插芯为n芯插芯,具有n个光通道,该第一插芯用于兼容芯数较少的m芯插芯,即第二插芯。第一插芯的n个光通道包括两类,其中第一类光通道与第二插芯的m个光通道的排布方式相同,因此,第一插芯利用第一类光通道即可以实现与第二插芯的m个光通道的准确对接,从而兼容该芯数较少的第二插芯。此外,第一插芯的n个光通道还包括第二类光通道,第二类光通道中至少一个光通道位于第一类光通道所在排中的至少一排内,在该第二类光通道所在的排中,第一插芯的光通道的排布密度大于第二插芯在相应排中的光通道的排布密度。因此,第一插芯还可以同时利用(部分或者全部)第一类光通道和(部分或者全部)第二类光通道与其他插芯的光通道对接。例如,第一插芯与第三插芯的光通道对接,该第三插芯的芯数为n。可见,通过在第一插芯排方向上提高光通道排布密度,提升了第一插芯的兼容能力,使其能够与多种芯数的插芯对接。在本申请技术方案中,第一插芯兼容能力的实现不依赖于增加光通道排数,因此避免在兼容实现的同时对光通道精度造成影响。
附图说明
图1为32芯MT插芯不可兼容16芯MT插芯的示意图;
图2为3排光通道MT插芯兼容1排光通道MT插芯和兼容2排光通道MT插芯的示意图;
图3为本申请实施例提供的一种光连接器的结构示意图;
图4为本申请实施例提供的一种以奇数光通道兼容m芯光连接器插芯的n芯光连接器插芯的示意图;
图5为本申请实施例提供的一种以偶数光通道兼容m芯光连接器插芯的n芯光连接器插芯的示意图;
图6为本申请实施例提供的一种以光通道变间距的n芯光连接器插芯兼容m芯光连接器插芯的示意图;
图7为本申请实施例提供的一种可兼容m芯光连接器插芯的双排n芯光连接器插芯的结构示意图;
图8A为本申请实施例提供的一种三排n芯光连接器插芯兼容单排m芯光连接器插芯的示意图;
图8B为本申请实施例提供的另一种三排n芯光连接器插芯兼容单排m芯光连接器插芯的示意图;
图8C为本申请实施例提供的一种三排n芯光连接器插芯兼容三排m芯光连接器插芯的示意图;
图9为本申请实施例提供的一种光波导型的光连接器插芯的结构爆炸图;
图10为图9的光波导型光连接器插芯装配后的示意图;
图11为本申请实施例提供的一种光纤型的光连接器插芯的结构示意图;
图12为本申请实施例提供的一种带有模仁针的模具的示意图;
图13为本申请实施例提供的一种带有两面W形模仁块的模具的示意图;
图14为本申请实施例提供的一种带有两面拱形模仁块的模具的示意图;
图15为利用图13的模具形成的插芯的截面视图;
图16为利用图14的模具形成的插芯的截面视图;
图17为一种连通的双U形光通道的截面视图;
图18为17芯光连接器插芯兼容16芯光连接器插芯的效果示意图。
具体实施方式
MT插芯是多芯插拔式光纤(Multi-fiber Push On,MPO)连接器的核心部件。MT插芯为机械式的对接传输插芯,具有一排或多排的光通道,这些光通道用于实现光信号的连接和传输。随着MT插芯的产品迭代更新,对MT插芯的兼容能力也提出了更高的要求。本申请实施例中提及的“兼容”,是指在光连接器配合场景,两种光通道数不同的光连接器插芯可以相互对接,部分光通道或全部光通道稳定工作,此处的兼容是指光通道在排方向的兼容,至于排方向是本领域比较熟知的概念,可以参见背景技术部分所做的解释,在此不再赘述。例如具有n个光通道的光连接器插芯可以与具有m个光通道的 光连接器插芯相互配合(n大于m),并实现m个光通道光信号互通,稳定地工作。
如上文所述,通过增加光通道的排数能够使芯数较多的插芯具备对芯数较少的插芯的兼容能力。但是目前MT插芯的生产模具中模仁针排数增多后,注塑材料填充困难,需要增大注塑压力,进而模仁针容易发生变形。模仁针的精度直接决定注塑成型后MT插芯的光通道精度,并影响光连接器的损耗和良率。因此,以增加光通道的排数方式并不能在保证通道精度的同时有效解决芯数较多插芯对芯数较少插芯的兼容问题。
为此,本申请实施例中提供一种光连接器插芯和光连接器。光连接器的第一插芯(n芯)的n个光通道具体分为两类,其中,第一类光通道与第二插芯(m芯)的m个光通道的排布方式相同,因此第一插芯利用第一类光通道可以实现对第二插芯的兼容。第一插芯的第二类光通道中至少一个光通道位于第一类光通道所在排中的至少一排,因此在第一插芯的至少一排中,光通道的排布密度大于第二插芯相应排的光通道排布密度。因此在排方向上,第一插芯利用其较大密度的光通道,不但能够兼容第二插芯,还能够对接多种类型的插芯的光通道。相比于以增加光通道排数的方式实现对插芯的兼容,本申请实施例提供的技术方案不需要增加光通道排数,仅从排方向实现光通道更加密集的第一插芯,以此实现第一插芯对第二插芯的兼容。该方案能够有效避免插芯兼容对光连接器插芯光通道的精度造成影响。值得注意的是,光连接器插芯的芯数与通道数一致。例如,光连接器插芯为48芯,即该光连接器插芯包含48个光通道。
为了使本领域技术人员更好地理解本申请实施例提供的技术方案,下面先介绍光连接器的结构。
参见图3,该图为本申请实施例提供的一种光连接器的结构示意图。
如图3所示,该光连接器包括第一插芯301和第二插芯302。该第一插芯301和第二插芯302上分别设有与导向针303套接的孔。第一插芯301与第二插芯302利用导向针303装配在一起,并实现全部或部分光通道的匹配。通过匹配光通道,第一插芯301与第二插芯302相互间实现光连接。
在图3所示的光连接器中,第一插芯301的光通道数与第二插芯302的光通道数可以相同,也可以不同。
当光通道数相同时,第一插芯301的各个光通道与第二插芯302的各个光通道一一匹配。例如,第一插芯301和第二插芯均包含48个光通道。
当光通道数量不同时,第一插芯301和第二插芯302中光通道数较多的插芯仅有部分光通道与光通道数较少的插芯的光通道一一匹配,并且匹配的光通道数与光通道数较少的插芯的光通道数一致。例如,第一插芯301包含48个光通道,第二插芯302包含24个光通道,这要求第一插芯301兼容第二插芯302,从而第一插芯301的24个光通道能够与第二插芯302的24个光通道进行匹配。此外,如果第二插芯302需要与芯数更少的第三光连接器插芯(图3中未示出)装配以形成光连接器时,要求第二插芯302也具备对第三光连接器插芯的兼容能力。
为实现光连接器插芯对较少芯数(光通道数)插芯的兼容性能,下面结合实施例 和附图介绍n芯光连接器插芯对m芯光连接器插芯的兼容实现方式。本申请实施例中,n与m均为正整数,且n大于m。在此后的实施例描述中,n芯光连接器插芯均指前文的第一插芯,m芯光连接器插芯均指前文的第二插芯。
参见图4,该图为本申请实施例提供的一种可兼容m芯光连接器插芯的n芯光连接器插芯的结构示意图。图4中n芯光连接器插芯下方还示意出m芯光连接器插芯。
图4所示的n芯光连接器插芯包括n个光通道,分别为:光通道a1,光通道a2,…,光通道an。在该示例中,n为偶数。在图4所示意的n芯光连接器插芯中,光通道a1~an位于同一排。其中,第一类光通道是a1~an中的奇数光通道,即a1,a3,…,an-1;第二类光通道是a1~an中的偶数光通道,即a2,a4,…,an。m芯光连接器插芯包括m个光通道,分别为:光通道b1,光通道b2,…,光通道bm,其中,这m个光通道位于同一排。如图4中所示,n芯光连接器插芯的奇数光通道的排布方式与b1~bm的排布方式相同。
以图4中箭头s所示的方向作为排方向,在排方向上,n芯光连接器插芯的第一类光通道和第二类光通道交替排布。n芯光连接器插芯的相邻光通道的间距为d1,m芯光连接器插芯的相邻光通道的间距为d2,d1为d2的1/K倍。K为大于或等于2的正整数。在图4的示例中,K=2。n芯光连接器插芯沿排方向的奇数光通道与m芯光连接器插芯的光通道一一对应,如图4中所示,a1匹配b1,a3匹配b2,a5匹配b3。
类似地,还可以通过设置n芯光连接器插芯的光通道位置,使n芯光连接器插芯沿排方向的偶数光通道与m芯光连接器插芯的光通道一一对应。如图5所示,a2匹配b1,a4匹配b2,a6匹配b3。在图5的示例中,n为偶数,n芯光连接器插芯的偶数光通道a2,a4,…,an作为第一类光通道,奇数光通道a1,a3,…,an-1作为第二类光通道。
在图4和图5所示的n芯光连接器插芯中,相邻光通道的间距相同。此外,相邻光通道的间距也可以是不同,例如a1与a2的间距为d3,a2与a3的间距为d4,d3≠d4。
参见图6,该图中,沿着排方向n芯光连接器插芯的相邻光通道间距存在跳变,间距大小依次为d3,d4,d3,d4,…,d4,d3。相邻奇数光通道的间距与相邻偶数光通道的间距相等,均等于d3+d4,并且d3+d4=d2。图6所示意的n芯光连接器插芯中,d3大于d4,此外,在其他示例形式的n芯光连接器插芯中,d4也可以大于d3。
在图4至图6示意的n芯光连接器插芯包括一排光通道。当n芯光连接器插芯包括一排光通道且m芯光连接器也包括一排光通道时,第二类光通道与第一类光通道排布在同一排。
在一些其他的实施例中,n芯光连接器插芯的光通道可以分布于多排。下面的实施例中以双排光通道为例进行介绍和说明。
参见图7,该图为本申请实施例提供的一种可兼容m芯光连接器插芯的双排n芯光连接器插芯的结构示意图。在该示例中,n为偶数。
图7所示的双排n芯光连接器插芯包括n个光通道,分别为:光通道a1,光通道a2,…,光通道a(n/2),光通道a(n/2+1),光通道a(n/2+2),…,光通道an。在图5所 示意的n芯光连接器插芯中,每一排共有n/2个光通道,光通道a1~a(n/2)位于第一排,光通道a(n/2+1)~an位于第二排。在图7的示例中,沿排方向,n芯光连接器插芯的每一排的奇数光通道为第一类光通道,每一排的偶数光通道为第二类光通道。从图7可以看到,第一类光通道的排布方式与m芯光连接器插芯的m个光通道排布方式相同。
n芯光连接器插芯与m芯光连接器插芯的光通道排数相同,且排数为大于1的整数时,第二类光通道位于第一类光通道所在的排的至少一排内。在图7的示例中,光通道的排数为2,第二类光通道在第一排和第二排上均有分布;当然,在一些其他的实施例中,第二类光通道还可以仅分布在第一排或仅分布在第二排。
图7中在排方向上双排n芯光连接器插芯的相邻光通道的间距小于双排m芯光连接器插芯的相邻光通道的间距。在排方向,n芯光连接器插芯的光通道数量大于m芯光连接器插芯的光通道数量,且n芯光连接器插芯中包含与m芯光连接器插芯的光通道位置对应的m个光通道,因此n芯光连接器插芯可以兼容该m芯光连接器插芯。如图7所示,在每一排上,n芯光连接器插芯的光通道排布密度大于m芯光连接器插芯在相应排上的光通道排布密度,该图中的n芯光连接器插芯还可以利用其第一类光通道和第二类光通道对接所有通道的排布方式均相同的另一个n芯光连接器插芯。
图4至图7分别示意的n芯光连接器插芯的光通道数量为m芯光连接器插芯的光通道数量的2倍,且n芯光连接器插芯的光通道排数与m芯光连接器插芯的光通道排数相等。n芯光连接器插芯可以兼容相同排数的m芯光连接器插芯。
在一些可能的实施例中,n芯光连接器插芯的光通道排数与其需要兼容的m芯光连接器插芯的光通道排数也可以不一致。
参见图8A,该图为三排n芯光连接器插芯兼容单排m芯光连接器插芯的示意图。在图8A示意的n芯光连接器插芯中,每一排光通道密度都大于m芯光连接器插芯的一排光通道密度。参见图8B,在该图示意的三排n芯光连接器插芯中,仅有一排光通道密度大于m芯光连接器插芯的一排光通道密度。
在图8A所示的三排n芯光连接器插芯中,仅第二排的奇数光通道为第一类光通道,其余光通道则为第二类光通道。在图8B所示的三排n芯光连接器插芯中,仅第二排的偶数光通道为第一类光通道,其余光通道则为第二类光通道。即,在n芯光连接器插芯的光通道排数大于m芯光连接器插芯的光通道排数的情况下,n芯光连接器插芯的第二类光通道中的至少有一个光通道位于第一类光通道所在的排之外的其他排内,参见图8A及图8B的第一排和第二排。第一类光通道与m芯光连接器插芯的光通道一一对应地匹配。由图8A和图8B可知,排数较多的n芯光连接器插芯也可以兼容排数较少的m芯光连接器插芯。
实际应用中,n芯光连接器插芯既可以与通道排布方式完全相同的n芯光连接器插芯进行光通道对接,还可以兼容多种芯数小于n的光连接器插芯。结合图8A和图8C,同一种n芯光连接器插芯可以兼容多种芯数小于n的光连接器插芯。在图8A中,两个插芯的光通道排数不同,对于图8A所示的m芯光连接器插芯,在n芯光连接器插芯中所有与m芯光连接器插芯对应的光通道均为第一类光通道,其余通道则为第二类光 通道。在图8C中,两个插芯的光通道排数相同,对于8C所示的m芯光连接器插芯,在n芯光连接器插芯中所有与其对应的光通道均为第一类光通道。由此可知,第一类光通道和第二类光通道可以是依据需要兼容的m芯光连接器插芯来具体划分的。
结合图4至图7,图8A至图8C可知,n芯光连接器插芯的第二类光通道中的至少一个光通道位于第一类光通道所在排中的至少一排内。在一种实现方式中,第二类光通道中的至少一个光通道可以具体位于排方向上两个相邻的第一类光通道之间。在另一种实现方式中,第二类光通道中的至少一个光通道可以具体位于排方向上第一个第一类光通道之前,或具体位于排方向上最后一个第一类光通道之后。
在以上实施例提供的n芯光连接器插芯,其对m芯光连接器插芯的兼容不依赖于增加光通道排数,因此,不会对插芯光通道的精度造成影响,同时实现对较少芯数插芯的兼容。
本申请实施例描述的n芯光连接器插芯可以采用多种方式实现。下面对这些实现方式逐一进行介绍。
参见图9,该图为本申请实施例提供的一种光波导型的光连接器插芯的结构爆炸图。
如图9所示,该n芯光连接器插芯包括基板902,该插芯的n个光波导通道设置在基板902上。在一种可能的实现方式中,波导板901位于基板902的上层,基板902对波导板901起到支撑作用。通过印制或者离子注入等工艺,在波导板901可以形成n个光波导通道。n个光波导通道中,至少两个相邻光波导通道的间距小于m芯光连接器插芯的m个光通道中任意两个相邻光通道的间距。如此,使n芯光连接器插芯可以兼容m芯光连接器插芯。
为了保护光连接器插芯的n个光波导通道,提升光连接器插芯的耐用性,实际应用中还可以将基板902及波导板901内嵌到上盖903和本体底座904之中。如图9所示,本体底座904上设置有凹型槽,装配时,基板902及波导板901具体装配于本体底座904的凹型槽中,基板902的底面与凹型槽的槽底相贴合。基板902及波导板901的宽度小于或等于本体底座904的凹型槽的宽度,因此基板902和波导板901能够顺利置入凹型槽。此外,上盖903的宽度也小于或等于本体底座904的凹型槽的宽度,在基板902和波导板901置入凹型槽之后,上盖903也可以置入凹型槽,光连接器插芯的整体外观更加平滑、贴合。上盖903与本体底座904相互配合装嵌,可以固定基板902及波导板901。
在插芯的长度方向上,波导板901与基板902的结合体的中间位置处四周环绕设置有尾护套905。该尾护套905可以用于保护基板902和波导板901,避免在装配该光波导型光连接器插芯时折损基板902和波导板901。如图9所示,为装嵌该尾护套905,上盖903与该尾护套905的接触面设置有向上凹槽,本体底座904与该尾护套905的接触面设置有下凹槽,从而将厚度大于基板902和波导板901厚度之和的尾护套905装嵌在上盖903和本体底座904之间。如图9所示,在n芯光连接器插芯的光通道传输方向上(或称,该插芯的长度方向上),基板902的长度小于本体底座904与尾护套905装配后的长度之和,本体底座904与尾护套905装配后的长度之和小于波导板901 的长度。
本申请实施例中,为了准确定位光波导通道,在基板902上设置有至少一个第一定位机构。第一定位机构与n个光波导通道中至少一个具有第一预设位置关系。例如,基板902上设置有一个定位孔906作为第一定位机构,光连接器插芯共有32个光波导通道,在波导板901的宽度方向上,定位孔906位于第16个光波导通道与第17个光波导通道中间。或者,例如定位孔与排方向的第1个光波导通道的距离以及定位孔与排方向的第32个光波导通道的距离相等。其他通道同理,定位孔与第2个光波导通道及第31个光波导通道的距离相等,以此类推。因为光波导通道与所述第一定位机构有第一预设位置关系,因此通过第一定位机构可以精确确定各个光波导通道的位置,以及通过第一定位机构确定所述光波导通道相对于所述基板的位置。在装配该光连接器插芯时,本体底座904与基板902相互贴合,在本体底座904的贴合面上设置有至少一个第二定位机构。第一定位机构与第二定位机构的位置匹配、尺寸匹配。在本申请实施例中,本体底座904凹型槽的两侧臂上各设有一个导向孔907,用于在该光连接器插芯与对端光连接器插芯连接时,通过插入导向针进行位置定位,参见图3。
第二定位机构与导向孔907具有第二预设位置关系。例如,第二定位机构与两侧导向孔907的距离分别相等。因此当第一定位机构与第二定位机构匹配时,可以固定所述基板的光通道与所述本体底座的导向孔的相互位置。利用第一预设位置关系和第二预设位置关系,可以精确地获得光波导通道与导向孔907的位置关系。
也就是说,当第一定位机构和第二定位机构相互匹配时,利用导向孔907便可以实现对光波导通道的定位。进而,便于光连接器两端的插芯装配时,通过两端插芯的导向孔907实现两端插芯光通道的匹配。
本申请实施例形成的光波导通道可以是单模光波导通道,也可以是多模光波导通道。光波导板901可以是单层光波导,也可以是多层光波导,或多个光波导板901和基板902的组合。例如,在不同层光波导分别形成光通道。波导板901下层的基板902的厚度可以更具实际需求进行调整(例如增加基板902厚度或减小基板902厚度),从而保证该插芯装配后光波导通道与本体底座904的导向孔907相互间的位置精度。
如图9所示,基板902上的定位槽908与本体底座904上的定位楔909作为一对相互匹配的第一定位机构和第二定位机构,定位楔909插入定位槽908中以实现匹配。在此基础上,光连接器插芯还可以包含另一对第一定位机构和第二定位机构,即基板902上的定位孔906与本体底座904上的定位柱910,定位柱910插入定位孔906中以实现匹配。通过增加第一定位机构和第二定位机构数量,可以进一步提升对插芯之间光波导通道的位置匹配精度,进而提升n芯光连接器插芯与同芯数光连接器插芯的匹配效率,或提升n芯光连接器插芯对m芯光连接器插芯的光通道兼容匹配效果。
图10为图9的光波导型光连接器插芯装配后的示意图。如图10所示,该光波导型光连接器插芯因为上盖903嵌入本体底座904的凹槽中,因此具有平滑且贴合的上表面。光波导连接器端面与对端的光连接器插芯进行配合对接,保证光连接器内部的光路耦合。延伸出尾护套905的波导板901上形成的光波导通道用于与光通信场景中 的第一光通信设备建立光连接。图10所示的光波导型光连接器插芯与对端插芯组装成光连接器后,实现第一光通信设备与第二光通信设备的光耦合。此处对第一光通信设备和第二光通信设备的具体类型不进行限定。
在上述实施例中,通过对波导板901进行印制或离子注入的方式实现具有n个光波导通道的n芯光连接器插芯。除此之外,还可以采用注塑成型工艺制作具有n个光纤通道的n芯光连接器插芯。下面结合实施例和附图描述注塑加工所用的模具及注塑成型得到的光纤型光连接器插芯。
参见图11,该图为一种光纤型光连接器插芯的结构示意图。
如图11所示,该光连接器插芯的包括本体,本体上设置有通过注塑成型工艺加工得到的n个光纤通道及两个截面直径大于光纤通道直径的导向孔。两个导向孔位于本体的两侧,在排方向上光纤通道位于两个导向孔之间。导向孔用于在本端的该光纤型光连接器插芯(即第一插芯)与设置在对端插芯(即第二插芯)的导向针装配时进行位置定位。插芯与导向针的装配关系可参见图3。
图11中所示的n个光纤通道可以是利用分离的模仁针作为模具注塑后得到。参见图12,该图为带有n+2个模仁针的注塑模具,其中,2个直径较大的模仁针1201用于形成导向孔,n个直径较小的模仁针1202用于形成光纤通道。如果n个光纤通道中相邻光纤通道的间距为125um,则要求光纤通道直径小于125um。需要定制直径小于125um的光纤以形成光纤型光连接器插芯。作为示例,用于形成光纤通道的模仁针1202的直径在50um至90um之间。
通过以上实施例的描述可知,在本申请中可以通过增加模具中模仁针在排方向的密度,减小光纤通道的间距,能够使形成的光纤型光连接器插芯兼容通道数较少的光连接器插芯。例如,32芯且通道间距为125um的插芯兼容16芯且通道间距为250um的插芯。
此外,本申请实施例中还可以利用模仁块作为模具,注塑得到连通的n个光纤通道。图13和图14分别示出了两种不同的模具。
图13中模具用于形成光纤通道的模仁块1301的上下两面均为锯齿形形,即上表面为锯齿形,下表面也是锯齿形,例如锯齿具体可以是V形。利用图13的模具形成的光纤型光连接器插芯如图15所示,该插芯包含的n个光纤通道连通且的上下表面也是锯齿形,例如横截面为连通的上下双V形1302。即,在光通道排方向上,模仁块1301的上表面为锯齿形,下面也锯齿形;例如在光通道列方向上,单个光纤通道的横截面的上边缘为V形,下边缘也为V形。
图14中模具用于形成光纤通道的模仁块1401的上下两面均为拱形。在图14中拱形的曲率不变,利用图14的模具形成的光纤型光连接器插芯如图16所示,该插芯包含的n个光纤通道连通且上下两面均为拱形1402。可以理解的是,如果图14中拱形的曲率变化,模具形成的单个光纤通道的横截面还可能为连通的上下双拱形,参见图17所示的连通的双拱形通道截面。即,在光通道列方向上,单个光纤通道的横截面的上边缘为拱形,下边缘也为拱形。
本申请实施例中,两个相邻光纤通道的间距为125um,因此可以使用标准的直径125um的光纤以形成光纤型光连接器插芯。在利用模仁块注塑形成连通的光纤通道的过程中,由于模仁块不易变形,因此可以保证形成的各个光纤通道具有较高的位置精度。
本申请实施例形成的光纤通道可以是单模光纤通道,也可以是多模光纤通道。实际应用中,可以采用尺寸匹配的模具以注塑成型得到单模光纤通道或多模光纤通道。
在本申请实施例提供的光纤型光连接器插芯,其光纤通道可以分布于一排,也可以分布于多排。一排光纤通道对m芯光连接器插芯的兼容效果可以参见图4至图6;多排光纤通道对m芯光连接器插芯的兼容效果可以参见图7、图8A和图8B。排方向上,相邻两个光通道的间距可以是相同的,如图4、图5、图7和图8A;相邻两个光通道的间距也可以是不同的,如图6。
在本申请实施例提供的光波导型n芯光连接器插芯及光纤型n芯光连接器插芯均可以支持兼容m芯光连接器插芯。假设m芯光连接器插芯为n芯光连接器插芯的前一代产品,则本申请实施例提供的n芯光连接器插芯即支持兼容前一代产品。为兼容m芯插芯,n的取值可以为m+1~2m,下面通过举例进行说明:
单排最小光通道间距125um的17~32芯光连接器插芯可兼容单排间距250um的16芯光连接器插芯,单排最小光通道间距125um的13~24芯光连接器插芯可兼容单排间距250um的12芯光连接器插芯;
双排最小光通道间距125um的33~64芯光连接器插芯可兼容双排间距250um的32芯光连接器插芯,双排最小光通道间距125um的25~48芯光连接器插芯可兼容双排间距250um的24芯光连接器插芯;
三排最小光通道间距125um的49~96芯光连接器插芯可兼容三排间距250um的48芯光连接器插芯,三排最小光通道间距125um的37~72芯光连接器插芯可兼容三排间距250um的36芯光连接器插芯。
单排最小光通道间距125um的17芯光连接器插芯兼容单排光通道间距250um的16芯光连接器插芯的效果可以参见图18。以上的其他示例实现方式均为图18的变形,可参见图18,本申请实施例中不再一一说明。
基于前述实施例提供的光连接器插芯,相应地,本申请还提供一种光连接器。
该光连接器包括第一插芯和第二插芯,其中第一插芯可以参见图3中的第一插芯301,第二插芯可以参见图3中的第二插芯302。
在一种可能的实现方式中,第一插芯为按照前述实施例描述的任一种方式形成的对第二插芯具有兼容能力的插芯,第二插芯为当前业内的已有产品,但是第二插芯的芯数少于第一插芯的芯数。结合前文描述可知,因为第一插芯中包含第一类光通道,因此第一插芯可以兼容该第二插芯。
在另一种可能的实现方式中,第一插芯和第二插芯分别为按照前述实施例描述的任一种方式形成的插芯,其中第一插芯可以兼容芯数相对自身芯数较少的第二插芯,第二插芯也可以兼容芯数相对自身芯数较少的其他插芯。在该实现方式中,第一插芯 和第二插芯的光通道实现方式可以相同也可以不同。图3仅是以第一插芯301为光纤型光连接器插芯,以第二插芯302为光波导型光连接器插芯为例进行图示。
例如,在一种实现方式中,第一插芯和第二插芯还可以均为光波导型光连接器插芯。
再例如,在另一种实现方式中,第一插芯和第二插芯还可以均为光纤型光连接器插芯。
本实施例中不具体限定插芯的具体排数和每排的光通道数目。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
以上所述,仅是本申请的较佳实施例而已,并非对本申请作任何形式上的限制。虽然本申请已以较佳实施例揭露如上,然而并非用以限定本申请。任何熟悉本领域的技术人员,在不脱离本申请技术方案范围情况下,都可利用上述揭示的方法和技术内容对本申请技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本申请技术方案的内容,依据本申请的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本申请技术方案保护的范围内。

Claims (17)

  1. 一种光连接器插芯,其特征在于,对应光连接器的第一插芯,所述第一插芯包括n个光通道;
    所述第一插芯用于兼容第二插芯,所述第二插芯包括m个光通道,所述m和n均为正整数,且n大于m;
    所述第一插芯的n个光通道包括第一类光通道和第二类光通道,所述第一类光通道与所述第二插芯的m个光通道排布方式相同,所述第二类光通道中的至少一个光通道位于所述第一类光通道所在排中的至少一排内。
  2. 根据权利要求1所述的插芯,其特征在于,所述第二类光通道中的至少一个光通道位于所述第一类光通道所在排中的至少一排内,具体包括:所述第二类光通道中的至少一个光通道位于排方向上两个相邻的第一类光通道之间。
  3. 根据权利要求1所述的插芯,其特征在于,所述第一插芯的光通道排数与所述第二插芯的光通道排数相同。
  4. 根据权利要求1所述的插芯,其特征在于,所述第一插芯的光通道排数大于所述第二插芯的光通道排数。
  5. 根据权利要求1所述的插芯,其特征在于,所述n个光通道中同一排的每相邻两个光通道的间距相等,所述m个光通道中同一排的每相邻两个光通道的间距相等。
  6. 根据权利要求5所述的插芯,其特征在于,所述n个光通道中所有排的每相邻两个光通道的间距均为d1,所述m个光通道中所有排的每相邻两个光通道的间距均为d2,所述d1为所述d2的1/K倍,K为大于或等于2的正整数。
  7. 根据权利要求1-6任一项所述的插芯,其特征在于,所述n个光通道为n个光波导通道;所述第一插芯还包括基板,其中,所述n个光波导通道设置在所述基板上。
  8. 根据权利要求7所述的插芯,其特征在于,所述第一插芯还包括:本体底座和上盖;
    所述本体底座设有凹型槽,所述基板装配于所述凹型槽内,且所述基板的底面与所述凹型槽的槽底相贴合,所述凹型槽与所述基板的贴合面设有至少一个第一定位机构;所述基板上设有与所述第一定位机构匹配的第二定位机构,所述第一定位机构与所述第二定位机构匹配以固定所述基板与所述凹型槽;
    所述上盖与所述本地底座相配合,以固定所述基板。
  9. 根据权利要求8所述的插芯,其特征在于,所述第二定位机构包括位于所述凹槽的定位楔,所述第一定位机构包括位于所述基板的定位槽,所述定位楔与所述定位槽相匹配。
  10. 根据权利要求9所述的插芯,其特征在于,所述第二定位机构还包括位于所述凹槽的定位柱,所述第一定位机构还包括位于所述基板的定位孔,所述定位柱与所述定位孔相匹配。
  11. 根据权利要求7所述的插芯,其特征在于,所述基板上设有尾护套,以保护所述基板;
    在所述第一插芯的长度方向上,所述本体底座与所述尾护套装配后的长度之和大于所述基板的长度。
  12. 根据权利要求1-6任一项所述的插芯,其特征在于,所述n个光通道为n个光纤通道,所述第一插芯还包括:本体;
    所述n个光纤通道设置在所述本体,所述本体的两侧包括导向孔;
    在所述第一插芯与所述第二插芯连接时,所述导向孔用于与设于所述第二插芯上的导向针匹配进行位置定位。
  13. 根据权利要求12所述的插芯,其特征在于,所述n个光纤通道利用模仁块注塑形成,所述模仁块的上下两面均为锯齿形,所述n个光纤通道为连通的光通道且上下两面均为锯齿形。
  14. 根据权利要求12所述的插芯,其特征在于,所述n个光纤通道利用模仁块注塑形成,所述模仁块的上下两面均为拱形,所述n个光纤通道为连通的光通道且上下两面均为拱形。
  15. 根据权利要求12所述的插芯,其特征在于,所述光纤通道的直径小于或等于125um。
  16. 一种光连接器,其特征在于,包括第一插芯和第二插芯,所述第一插芯和所述第二插芯连接在一起形成所述光连接器,其中,所述第一插芯为如权利要求1-15任一项所述的光连接器插芯。
  17. 根据权利要求16所述的光连接器,其特征在于,所述第二插芯也为如权利要求1-15任一项所述的光连接器插芯。
PCT/CN2020/139235 2020-04-17 2020-12-25 一种光连接器插芯和光连接器 WO2021208487A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227039881A KR20220160702A (ko) 2020-04-17 2020-12-25 광 커넥터 페룰 및 광 커넥터
EP20930681.0A EP4130825A4 (en) 2020-04-17 2020-12-25 FERRULE FOR AN OPTICAL CONNECTOR AND OPTICAL CONNECTOR
JP2022562861A JP2023521479A (ja) 2020-04-17 2020-12-25 光コネクタフェルールおよび光コネクタ
US17/966,479 US20230036226A1 (en) 2020-04-17 2022-10-14 Optical connector ferrule and optical connector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010306153.4 2020-04-17
CN202010306153.4A CN113534354B (zh) 2020-04-17 2020-04-17 一种光连接器插芯和光连接器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/966,479 Continuation US20230036226A1 (en) 2020-04-17 2022-10-14 Optical connector ferrule and optical connector

Publications (1)

Publication Number Publication Date
WO2021208487A1 true WO2021208487A1 (zh) 2021-10-21

Family

ID=78083758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139235 WO2021208487A1 (zh) 2020-04-17 2020-12-25 一种光连接器插芯和光连接器

Country Status (6)

Country Link
US (1) US20230036226A1 (zh)
EP (1) EP4130825A4 (zh)
JP (1) JP2023521479A (zh)
KR (1) KR20220160702A (zh)
CN (2) CN113534354B (zh)
WO (1) WO2021208487A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11899245B2 (en) * 2021-07-26 2024-02-13 Te Connectivity Solutions Gmbh Optical receptacle connector for an optical communication system
US11906801B2 (en) * 2021-07-26 2024-02-20 Te Connectivity Solutions Gmbh Optical receptacle connector for an optical communication system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1650211A (zh) * 2002-03-04 2005-08-03 美莎诺普有限公司 光纤套圈
US20170031106A1 (en) * 2014-05-13 2017-02-02 Senko Advanced Components, Inc. Optical fiber connector and ferrule
CN106547053A (zh) * 2017-01-16 2017-03-29 苏州盛维新电子科技有限公司 一种mems技术的光纤连接器插芯及mpo光纤连接器
CN108205177A (zh) * 2017-08-21 2018-06-26 中航光电科技股份有限公司 一种mt插头、mt插头耦合结构及使用该mt插头的连接器
CN208737044U (zh) * 2018-05-04 2019-04-12 华为技术有限公司 一种光纤插芯、光纤连接器
CN208847883U (zh) * 2018-10-12 2019-05-10 汇聚科技(惠州)有限公司 一种mt插芯

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4483559B2 (ja) * 2004-12-09 2010-06-16 住友電気工業株式会社 光ファイバ位置決め方法及び光接続部品
JP5201064B2 (ja) * 2009-04-09 2013-06-05 住友ベークライト株式会社 コネクタ
US8251591B2 (en) * 2009-06-17 2012-08-28 Corning Cable Systems Optical interconnection assemblies and systems for high-speed data-rate optical transport systems
CN201508424U (zh) * 2009-09-01 2010-06-16 浙江同星光电科技有限公司 用于多纤连接的双面接插用插芯
JP2016142951A (ja) * 2015-02-03 2016-08-08 富士通コンポーネント株式会社 光コネクタ
JP6842633B2 (ja) * 2016-04-12 2021-03-17 日東電工株式会社 光導波路用コネクタ部材およびそれを用いた光コネクタキット、並びにそれによって得られる光配線
CN108089270A (zh) * 2016-11-22 2018-05-29 深圳市比洋光通信科技股份有限公司 一种光纤连接插芯及装置
CN208334711U (zh) * 2018-05-11 2019-01-04 东莞福可喜玛通讯科技有限公司 一种三十六芯光纤连接器插芯
CN208654364U (zh) * 2018-08-17 2019-03-26 深圳市富士精陶科技有限公司 一种光纤插芯

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1650211A (zh) * 2002-03-04 2005-08-03 美莎诺普有限公司 光纤套圈
US20170031106A1 (en) * 2014-05-13 2017-02-02 Senko Advanced Components, Inc. Optical fiber connector and ferrule
CN106547053A (zh) * 2017-01-16 2017-03-29 苏州盛维新电子科技有限公司 一种mems技术的光纤连接器插芯及mpo光纤连接器
CN108205177A (zh) * 2017-08-21 2018-06-26 中航光电科技股份有限公司 一种mt插头、mt插头耦合结构及使用该mt插头的连接器
CN208737044U (zh) * 2018-05-04 2019-04-12 华为技术有限公司 一种光纤插芯、光纤连接器
CN208847883U (zh) * 2018-10-12 2019-05-10 汇聚科技(惠州)有限公司 一种mt插芯

Also Published As

Publication number Publication date
EP4130825A4 (en) 2023-09-13
CN116125605A (zh) 2023-05-16
EP4130825A1 (en) 2023-02-08
JP2023521479A (ja) 2023-05-24
KR20220160702A (ko) 2022-12-06
CN113534354B (zh) 2023-01-06
CN113534354A (zh) 2021-10-22
US20230036226A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
CN104335090B (zh) 用于光纤连接器的高密度多光纤
CN106886074B (zh) 光学连接器
KR100937284B1 (ko) 광 커넥터 페룰, 광 커넥터, 광 부품 및 광 배선 시스템
JP5798177B2 (ja) マルチコア光ファイバケーブルのための単心コネクタ
WO2021208487A1 (zh) 一种光连接器插芯和光连接器
WO2019210763A1 (zh) 一种光纤插芯、光纤连接器
JP5501166B2 (ja) 光コネクタ及び光通信システム
US11543599B2 (en) Ferrules including keying features and fiber optic junctions including the same
CN116057438A (zh) 光纤连接体、光通信系统、光设备、以及光纤连接体的制造方法
US11256045B2 (en) Optical fiber alignment mechanisms using clads with key elements
TW201704792A (zh) 用於光學連接器的人眼安全介面
JP5851947B2 (ja) 光ファイバガイド部品
JP5075562B2 (ja) 多心光コネクタおよびその組み立て方法
JP4134639B2 (ja) 多心光コネクタ、及び光モジュール
JP4395389B2 (ja) 光ファイバテープ心線保護部材及び光ファイバコネクタフェルールの接続方法
JP4017180B2 (ja) 多心光コネクタ
JP5411079B2 (ja) 光コネクターのプラグ
JP3813487B2 (ja) 光コネクタ用フェルール及び光コネクタ接続構造
WO2022249903A1 (ja) 光接続部品及び光接続構造
JPH0458205A (ja) 多心光ファイバコネクタおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930681

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022562861

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020930681

Country of ref document: EP

Effective date: 20221031

ENP Entry into the national phase

Ref document number: 20227039881

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE