WO2022249559A1 - 化合物ならびにそれを用いた電子デバイスおよび発光素子 - Google Patents
化合物ならびにそれを用いた電子デバイスおよび発光素子 Download PDFInfo
- Publication number
- WO2022249559A1 WO2022249559A1 PCT/JP2022/004782 JP2022004782W WO2022249559A1 WO 2022249559 A1 WO2022249559 A1 WO 2022249559A1 JP 2022004782 W JP2022004782 W JP 2022004782W WO 2022249559 A1 WO2022249559 A1 WO 2022249559A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cation
- photoelectric conversion
- layer
- compound according
- electrode
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 176
- 238000006243 chemical reaction Methods 0.000 claims abstract description 225
- -1 halide ions Chemical class 0.000 claims abstract description 73
- 150000002892 organic cations Chemical class 0.000 claims abstract description 17
- 150000001768 cations Chemical class 0.000 claims abstract description 13
- 230000005525 hole transport Effects 0.000 claims description 50
- 239000000872 buffer Substances 0.000 claims description 35
- BAVYZALUXZFZLV-UHFFFAOYSA-O Methylammonium ion Chemical compound [NH3+]C BAVYZALUXZFZLV-UHFFFAOYSA-O 0.000 claims description 6
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 claims description 6
- 229940006461 iodide ion Drugs 0.000 claims description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 claims description 3
- OJOSABWCUVCSTQ-UHFFFAOYSA-N cyclohepta-2,4,6-trienylium Chemical compound C1=CC=C[CH+]=C[CH]1 OJOSABWCUVCSTQ-UHFFFAOYSA-N 0.000 claims description 2
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 claims description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N protonated dimethyl amine Natural products CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 claims description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-O trimethylammonium Chemical compound C[NH+](C)C GETQZCLCWQTVFV-UHFFFAOYSA-O 0.000 claims description 2
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 270
- 239000000463 material Substances 0.000 description 45
- 239000000758 substrate Substances 0.000 description 42
- 230000032258 transport Effects 0.000 description 41
- 239000000243 solution Substances 0.000 description 35
- 238000000034 method Methods 0.000 description 20
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 19
- 239000002904 solvent Substances 0.000 description 18
- 229910021612 Silver iodide Inorganic materials 0.000 description 17
- 238000002441 X-ray diffraction Methods 0.000 description 17
- 239000004065 semiconductor Substances 0.000 description 17
- 238000012360 testing method Methods 0.000 description 17
- 238000000576 coating method Methods 0.000 description 16
- 238000005259 measurement Methods 0.000 description 16
- 239000002994 raw material Substances 0.000 description 14
- 239000000203 mixture Substances 0.000 description 12
- 239000013078 crystal Substances 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 10
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 238000001228 spectrum Methods 0.000 description 9
- 238000004528 spin coating Methods 0.000 description 9
- 229920001167 Poly(triaryl amine) Polymers 0.000 description 8
- 239000000284 extract Substances 0.000 description 8
- 238000000085 photoelectron yield spectroscopy Methods 0.000 description 8
- 238000005424 photoluminescence Methods 0.000 description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 7
- 150000001767 cationic compounds Chemical class 0.000 description 7
- 229910001411 inorganic cation Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910044991 metal oxide Inorganic materials 0.000 description 7
- 150000004706 metal oxides Chemical class 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- 238000004770 highest occupied molecular orbital Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 238000007639 printing Methods 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- 239000011550 stock solution Substances 0.000 description 6
- 239000011135 tin Substances 0.000 description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical class C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000003795 desorption Methods 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- 229910052718 tin Inorganic materials 0.000 description 5
- 238000007740 vapor deposition Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- 239000002608 ionic liquid Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- OBAJXDYVZBHCGT-UHFFFAOYSA-N tris(pentafluorophenyl)borane Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1B(C=1C(=C(F)C(F)=C(F)C=1F)F)C1=C(F)C(F)=C(F)C(F)=C1F OBAJXDYVZBHCGT-UHFFFAOYSA-N 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052787 antimony Inorganic materials 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- SXGBREZGMJVYRL-UHFFFAOYSA-N butan-1-amine;hydrobromide Chemical compound [Br-].CCCC[NH3+] SXGBREZGMJVYRL-UHFFFAOYSA-N 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- PBAYDYUZOSNJGU-UHFFFAOYSA-N chelidonic acid Natural products OC(=O)C1=CC(=O)C=C(C(O)=O)O1 PBAYDYUZOSNJGU-UHFFFAOYSA-N 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 229910052701 rubidium Inorganic materials 0.000 description 3
- 239000003115 supporting electrolyte Substances 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- 239000012780 transparent material Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- VMQMZMRVKUZKQL-UHFFFAOYSA-N Cu+ Chemical compound [Cu+] VMQMZMRVKUZKQL-UHFFFAOYSA-N 0.000 description 2
- 229910002601 GaN Inorganic materials 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 229910021607 Silver chloride Inorganic materials 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- CUFNKYGDVFVPHO-UHFFFAOYSA-N azulene Chemical compound C1=CC=CC2=CC=CC2=C1 CUFNKYGDVFVPHO-UHFFFAOYSA-N 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 229940006460 bromide ion Drugs 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Chemical compound [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 description 2
- 150000004770 chalcogenides Chemical class 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- ZASWJUOMEGBQCQ-UHFFFAOYSA-L dibromolead Chemical compound Br[Pb]Br ZASWJUOMEGBQCQ-UHFFFAOYSA-L 0.000 description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- RQQRAHKHDFPBMC-UHFFFAOYSA-L lead(ii) iodide Chemical compound I[Pb]I RQQRAHKHDFPBMC-UHFFFAOYSA-L 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- ISWNAMNOYHCTSB-UHFFFAOYSA-N methanamine;hydrobromide Chemical compound [Br-].[NH3+]C ISWNAMNOYHCTSB-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 230000027756 respiratory electron transport chain Effects 0.000 description 2
- WFUBYPSJBBQSOU-UHFFFAOYSA-M rubidium iodide Chemical compound [Rb+].[I-] WFUBYPSJBBQSOU-UHFFFAOYSA-M 0.000 description 2
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 150000004763 sulfides Chemical class 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 description 1
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical compound C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 1
- JKFYKCYQEWQPTM-UHFFFAOYSA-N 2-azaniumyl-2-(4-fluorophenyl)acetate Chemical compound OC(=O)C(N)C1=CC=C(F)C=C1 JKFYKCYQEWQPTM-UHFFFAOYSA-N 0.000 description 1
- UUIMDJFBHNDZOW-UHFFFAOYSA-N 2-tert-butylpyridine Chemical compound CC(C)(C)C1=CC=CC=N1 UUIMDJFBHNDZOW-UHFFFAOYSA-N 0.000 description 1
- LOIBXBUXWRVJCF-UHFFFAOYSA-N 4-(4-aminophenyl)-3-phenylaniline Chemical compound C1=CC(N)=CC=C1C1=CC=C(N)C=C1C1=CC=CC=C1 LOIBXBUXWRVJCF-UHFFFAOYSA-N 0.000 description 1
- SOIPESGJSYYVQD-UHFFFAOYSA-N 4-tert-butyl-2-pyrazol-1-ylpyridine Chemical compound CC(C)(C)C1=CC=NC(N2N=CC=C2)=C1 SOIPESGJSYYVQD-UHFFFAOYSA-N 0.000 description 1
- SNFCXVRWFNAHQX-UHFFFAOYSA-N 9,9'-spirobi[fluorene] Chemical compound C12=CC=CC=C2C2=CC=CC=C2C21C1=CC=CC=C1C1=CC=CC=C21 SNFCXVRWFNAHQX-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- 229910002971 CaTiO3 Inorganic materials 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 229910021595 Copper(I) iodide Inorganic materials 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910015711 MoOx Inorganic materials 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 229910005855 NiOx Inorganic materials 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- 229910002370 SrTiO3 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NGDCLPXRKSWRPY-UHFFFAOYSA-N Triptycene Chemical compound C12=CC=CC=C2C2C3=CC=CC=C3C1C1=CC=CC=C12 NGDCLPXRKSWRPY-UHFFFAOYSA-N 0.000 description 1
- 229910003090 WSe2 Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910001508 alkali metal halide Inorganic materials 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910001615 alkaline earth metal halide Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- QWANGZFTSGZRPZ-UHFFFAOYSA-N aminomethylideneazanium;bromide Chemical compound Br.NC=N QWANGZFTSGZRPZ-UHFFFAOYSA-N 0.000 description 1
- QHJPGANWSLEMTI-UHFFFAOYSA-N aminomethylideneazanium;iodide Chemical compound I.NC=N QHJPGANWSLEMTI-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- XLKNMWIXNFVJRR-UHFFFAOYSA-N boron potassium Chemical compound [B].[K] XLKNMWIXNFVJRR-UHFFFAOYSA-N 0.000 description 1
- XUPYJHCZDLZNFP-UHFFFAOYSA-N butyl butanoate Chemical compound CCCCOC(=O)CCC XUPYJHCZDLZNFP-UHFFFAOYSA-N 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- NCMHKCKGHRPLCM-UHFFFAOYSA-N caesium(1+) Chemical compound [Cs+] NCMHKCKGHRPLCM-UHFFFAOYSA-N 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- WFABOCFDABTAPE-UHFFFAOYSA-N calcium;bis(trifluoromethylsulfonyl)azanide Chemical group [Ca+2].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F.FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F WFABOCFDABTAPE-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229940006165 cesium cation Drugs 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GSOLWAFGMNOBSY-UHFFFAOYSA-N cobalt Chemical compound [Co][Co][Co][Co][Co][Co][Co][Co] GSOLWAFGMNOBSY-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- ONCCWDRMOZMNSM-FBCQKBJTSA-N compound Z Chemical compound N1=C2C(=O)NC(N)=NC2=NC=C1C(=O)[C@H]1OP(O)(=O)OC[C@H]1O ONCCWDRMOZMNSM-FBCQKBJTSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- PDZKZMQQDCHTNF-UHFFFAOYSA-M copper(1+);thiocyanate Chemical compound [Cu+].[S-]C#N PDZKZMQQDCHTNF-UHFFFAOYSA-M 0.000 description 1
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 1
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- GUVUOGQBMYCBQP-UHFFFAOYSA-N dmpu Chemical compound CN1CCCN(C)C1=O GUVUOGQBMYCBQP-UHFFFAOYSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 150000004693 imidazolium salts Chemical class 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- NQMRYBIKMRVZLB-UHFFFAOYSA-N methylamine hydrochloride Chemical compound [Cl-].[NH3+]C NQMRYBIKMRVZLB-UHFFFAOYSA-N 0.000 description 1
- LLWRXQXPJMPHLR-UHFFFAOYSA-N methylazanium;iodide Chemical compound [I-].[NH3+]C LLWRXQXPJMPHLR-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- KKFHAJHLJHVUDM-UHFFFAOYSA-N n-vinylcarbazole Chemical compound C1=CC=C2N(C=C)C3=CC=CC=C3C2=C1 KKFHAJHLJHVUDM-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 238000001420 photoelectron spectroscopy Methods 0.000 description 1
- 238000000103 photoluminescence spectrum Methods 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- NCCSSGKUIKYAJD-UHFFFAOYSA-N rubidium(1+) Chemical compound [Rb+] NCCSSGKUIKYAJD-UHFFFAOYSA-N 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000002094 self assembled monolayer Substances 0.000 description 1
- 239000013545 self-assembled monolayer Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229940045105 silver iodide Drugs 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910052959 stibnite Inorganic materials 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- KBLZDCFTQSIIOH-UHFFFAOYSA-M tetrabutylazanium;perchlorate Chemical compound [O-]Cl(=O)(=O)=O.CCCC[N+](CCCC)(CCCC)CCCC KBLZDCFTQSIIOH-UHFFFAOYSA-M 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- ISXOBTBCNRIIQO-UHFFFAOYSA-N tetrahydrothiophene 1-oxide Chemical compound O=S1CCCC1 ISXOBTBCNRIIQO-UHFFFAOYSA-N 0.000 description 1
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical compound C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 description 1
- OSBSFAARYOCBHB-UHFFFAOYSA-N tetrapropylammonium Chemical compound CCC[N+](CCC)(CCC)CCC OSBSFAARYOCBHB-UHFFFAOYSA-N 0.000 description 1
- FHCPAXDKURNIOZ-UHFFFAOYSA-N tetrathiafulvalene Chemical compound S1C=CSC1=C1SC=CS1 FHCPAXDKURNIOZ-UHFFFAOYSA-N 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- VPYJNCGUESNPMV-UHFFFAOYSA-N triallylamine Chemical compound C=CCN(CC=C)CC=C VPYJNCGUESNPMV-UHFFFAOYSA-N 0.000 description 1
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/371—Metal complexes comprising a group IB metal element, e.g. comprising copper, gold or silver
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F1/00—Compounds containing elements of Groups 1 or 11 of the Periodic Table
- C07F1/10—Silver compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/50—Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
- H10K30/15—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
- H10K30/151—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/84—Layers having high charge carrier mobility
- H10K30/86—Layers having high hole mobility, e.g. hole-transporting layers or electron-blocking layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the present disclosure relates to compounds and electronic devices and light-emitting elements using the same.
- perovskite solar cells using an organic-inorganic hybrid perovskite compound as a photoelectric conversion layer has progressed.
- a perovskite solar cell using a perovskite compound containing lead exhibits high photoelectric conversion efficiency and can be formed by coating, so it is considered to be applicable to various uses.
- Non-Patent Document 1 the energy levels of various three-dimensional perovskite compounds are investigated.
- lead lead methylammonium chloride can have the largest bandgap (3.04 eV)
- tin formamidinium chloride can have the largest bandgap (3.55 eV). It is shown.
- Non-Patent Document 2 (C 6 H 5 —C 2 H 4 —NH 3 ) 2 PbCl 4 , which is a layered two-dimensional perovskite compound formed by a coating method, has an exciton near 3.64 eV in its absorption spectrum. It is shown to have absorption peaks.
- Non-Patent Document 3 crystals of (C 4 H 9 NH 3 ) 2 PbCl 4 , a two-dimensional perovskite compound produced by the liquid phase growth method, show efficient photoluminescence near 3.65 eV, that is, It has been reported to exhibit band edge emission. That is, Non-Patent Document 3 shows that a crystal of (C 4 H 9 NH 3 ) 2 PbCl 4 , which is a two-dimensional perovskite compound produced by the liquid phase growth method, has a bandgap of 3.65 eV. ing.
- An object of the present disclosure is to provide a compound having a bandgap suitable for electronic devices.
- the compounds of the present disclosure are consisting of A, Ag, and X;
- A is a monovalent cation and includes an organic cation;
- X is at least one selected from the group consisting of halide ions and thiocyanate ions.
- the present disclosure provides compounds having bandgaps suitable for electronic devices.
- FIG. 1 is a cross-sectional view showing a schematic configuration of a photoelectric conversion element 100 according to the second embodiment.
- FIG. 2 is a cross-sectional view showing a schematic configuration of a photoelectric conversion element 200 according to the second embodiment.
- FIG. 3 is a cross-sectional view showing a schematic configuration of a photoelectric conversion element 300 according to the second embodiment.
- FIG. 4 is a cross-sectional view showing a schematic configuration of a photoelectric conversion element 400 according to the second embodiment.
- FIG. 5 is a graph showing the X-ray diffraction patterns of the compounds according to Examples 1-4.
- FIG. 6 is a graph showing the X-ray diffraction patterns of the compounds according to Examples 5-8.
- FIG. 7 is a graph showing the X-ray diffraction patterns of the compounds according to Examples 9-10.
- FIG. 8 is a graph showing the X-ray diffraction patterns of the compounds according to Examples 11-15.
- FIG. 9 is a graph showing Tauc plots of compounds according to Examples 1-4.
- FIG. 10 is a graph showing Tauc plots of compounds according to Examples 5-8.
- FIG. 11 is a graph showing Tauc plots of compounds according to Examples 9-10.
- FIG. 12 is a graph showing Tauc plots of compounds according to Examples 11-15.
- FIG. 15 is a graph showing photoelectron yield spectroscopy spectra of compounds according to Examples 9 to 10.
- FIG. 16 is a graph showing photoelectron yield spectroscopy spectra
- Non-Patent Document 1 discloses a three-dimensional perovskite compound having a wide bandgap of 3.04 eV to 3.64 eV. However, since these materials have an excessively deep energy level of ⁇ 6.9 eV or less at the upper end of the valence band, there is a problem that it is difficult to take out holes when they are used in the photoelectric conversion layer.
- the (C 6 H 5 —C 2 H 4 —NH 3 ) 2 PbCl 4 film disclosed in Non-Patent Document 2 has an exciton absorption peak near 3.64 eV in the absorption spectrum.
- the (C 4 H 9 NH 3 ) 2 PbCl 4 crystal disclosed in Non-Patent Document 3 exhibits efficient photoluminescence around 3.65 eV.
- a lead-free organic-inorganic hybrid silver halide compound has a bandgap and a shallow energy level suitable for a photoelectric conversion device or a light-emitting device. It was newly found that the valence band has the upper end of the valence band. Furthermore, the silver halide compound can be easily formed into a thin film by a coating method.
- a compound according to a first embodiment consists of A, Ag, and X, where A is a monovalent cation and comprises an organic cation, and X is selected from the group consisting of halide ions and thiocyanate ions. at least one
- the compounds according to the first embodiment have bandgaps suitable for electronic devices.
- a compound according to the first embodiment has a large bandgap.
- the halide ion may be at least one selected from the group consisting of fluoride ion, chloride ion, bromide ion, and iodide ion.
- the compound according to the first embodiment may have a bandgap of 3.10 eV or more and 5.10 eV or less.
- a compound according to the first embodiment may have a bandgap of greater than or equal to 3.38 eV and less than or equal to 4.93 eV.
- the compound according to the first embodiment has a valence band top with a shallow energy level.
- the compound according to the first embodiment may have a valence band top of ⁇ 6.20 eV or more and ⁇ 5.00 eV or less with respect to the vacuum level.
- the compound according to the first embodiment may have a valence band top of ⁇ 6.00 eV or more and ⁇ 5.19 eV or less with respect to the vacuum level.
- the compound according to the first embodiment can be used, for example, in electronic devices or light-emitting elements operating in the ultraviolet region.
- An electronic device is, for example, a photoelectric conversion element.
- photoelectric conversion elements are solar cells, UV sensors or light emitting diodes. Since the compound according to the first embodiment is transparent, it may be used in see-through solar cells.
- the compound according to the first embodiment absorbs, for example, ultraviolet light and emits light.
- the compound according to the first embodiment absorbs, for example, ultraviolet light and emits light.
- the compound according to the first embodiment can be used in a light-emitting device, for example, due to the above-mentioned properties of light emission due to absorption of ultraviolet light.
- Light-emitting devices can be used as phosphors in LED lamps, plasma displays, and the like.
- the ionic radius (that is, effective ionic radius) of the monovalent organic cation A may be 216 pm or more and 450 pm or less. This allows the compound to have a stabilized crystal structure. As a result, phase separation can be suppressed.
- ionic radius means "effective ionic radius”.
- the monovalent organic cation A is hydroxylamine cation, methylammonium cation, hydrazinium cation, azetidinium cation, formamidinium cation, imidazolium cation, dimethylammonium cation, ethylammonium cation , guanidinium cation, trimethylammonium cation, tetramethylammonium cation, thiazolium cation, piperazinium cation, tropylium cation, dabconium cation, butylammonium cation, benzylammonium cation, phenethylammonium cation, and tetrapropylammonium cation It may be at least one selected from the group consisting of cations. This causes the compound to have a stabilized crystal structure. As a result, phase separation is suppressed.
- organic cations for example, when used with a lead-containing perovskite compound, can be placed in the interstices of the Pb—X lattice of the perovskite compound. Also, since the ionic radius of Ag + (115 pm) is close to that of Pb 2+ (119 pm), the above organic cations can also be placed in the interstices of the Ag—X lattice.
- the ionic radius of organic cations that can be placed in the interstices of the Ag—X lattice for example, has a lower limit of 216 pm for hydroxylamine or methylammonium and an upper limit of 450 pm for tetrapropylammonium.
- the value of the ionic radius of the organic cation described in this specification is a generally known value, and can also be calculated from the ionic radius of an atom (Gregor Kieslich, 2 others, Chemical Science, 2014, Vol. 5, 4712-4715).
- the monovalent organic cation A is a methylammonium cation (hereinafter referred to as “MA” or “MA + "), a formamidinium cation (hereinafter referred to as “FA” or “FA + "). , ethylammonium cation (hereinafter referred to as “EA” or “EA + ”), and guanidinium cation (hereinafter referred to as “GA” or “GA + ”). good.
- the compound according to the first embodiment can have a larger bandgap, a valence band top with a shallow energy level, and a stabilized crystal structure.
- X may contain at least one selected from the group consisting of chloride ion, bromide ion and iodide ion.
- X may contain an iodide ion.
- X may be an iodide ion. Accordingly, the compound according to the first embodiment has a large bandgap, a valence band top with a shallow energy level, and a stabilized crystal structure.
- a compound according to the first embodiment may have a composition represented by AAgX2 , AAg2X3 , A2AgX3 , AAg3X4 , or A3AgX4 .
- a compound according to the first embodiment may have a composition represented by AAgX 2 , AAg 2 X 3 , or A 2 AgX 3 . These compounds have a larger bandgap, a shallow valence band top, and a stabilized crystal structure.
- the formation energy was theoretically calculated in advance for the case where A is FA and X is an iodide ion.
- the compounds represented by FAAgI2 , FAAg2I3 , FAAg3I4 , or FA2AgI3 had stable structures and their formation energies were as low as less than 34.2 meV/atom. . Therefore, these compounds are easy to synthesize.
- the formation energy of FA x Ag 1-x I 2 is E form (Z) and the total energy of first-principles calculation is E tot (Z)
- x satisfies 0 ⁇ x ⁇ 1, and FA was calculated with 1 atom count.
- MA ionic radius: 216 pm
- EA ionic radius: 274 pm
- GA ionic radius: 278 pm
- FA ionic radius: 253 pm
- part of Ag sites may be substituted with monovalent inorganic cations.
- monovalent inorganic cations that replace part of the Ag site are lithium cations (ionic radius: 76 pm), sodium cations (ionic radius: 102 pm), potassium cations (ionic radius: 138 pm), copper cation (ionic radius: 77 pm), or gold cation (ionic radius: 137 pm).
- a monovalent inorganic cation with a large ionic radius such as a cesium cation (ionic radius: 167 pm) or a rubidium cation (ionic radius: 152 pm) has an ionic radius close to the lower limit of the ionic radius of the organic cation A. Therefore, when replacing the Ag site with an inorganic cation having a large ionic radius, the structure of the compound is expected to become unstable unless the ionic radius of the organic cation A is also large.
- a portion of the A site of the compound according to the first embodiment may be substituted with a monovalent inorganic cation.
- monovalent inorganic cations are lithium, sodium, potassium, copper, gold, cesium or rubidium cations. Due to the difference in ionic radius, even small-sized inorganic cations that normally do not replace the A-site can enter the A-site in the form of terminating defects.
- the compound according to the first embodiment may consist of A, Ag and X.
- the compound according to the first embodiment can be synthesized, for example, by a coating method.
- a thin film made of the compound according to the first embodiment is formed by applying a heat treatment after spin-coating the raw material solution onto the substrate.
- the raw material solution is obtained by, for example, weighing AI as an organic halide and silver iodide (AgI) so as to obtain a desired stoichiometric composition, and dissolving them in N,N-dimethylformamide (DMF) as a solvent. be done. If necessary, these iodides may be completely dissolved by heating the raw material solution.
- AgI alone does not dissolve in DMF, but the simultaneous mixing of AI and AgI promotes dissolution.
- a solvent having a high number of Gutmann donors is desirable in order to facilitate formation of the intermediate.
- examples of such solvents are dimethylsulfoxide, tetrahydrothiophene 1-oxide, dimethylacetamide, N-methyl-2-pyrrolidone or N,N'-dimethylpropyleneurea. It was also confirmed that the crystallinity of the compound according to the first embodiment is improved by dropping a poor solvent during coating formation, as in the case of forming a general three-dimensional perovskite compound by a coating method. rice field.
- the Inverse Temperature Crystallization method (MI Saidaminov, 13 others, Nature Communications, July 2015, Vol. 6, p.7586.) You may grow a single crystal using it.
- a solvent for the raw material solution used in the inverse temperature crystallization method one having a low number of Gutmann donors or acceptors is preferable. Examples of such solvents are ⁇ -butyrolactone, ⁇ -valerolactone, ethylene carbonate, propylene carbonate, sulfolane, acetonitrile or nitromethane.
- the electronic device according to the second embodiment contains the compound according to the first embodiment.
- the electronic device according to the second embodiment can operate in the ultraviolet region by containing the compound according to the first embodiment.
- the electronic device according to the second embodiment includes, for example, a first electrode, a photoelectric conversion layer, and a second electrode in this order.
- An electronic device comprises a compound according to the first embodiment.
- the photoelectric conversion layer may contain the compound according to the first embodiment.
- the electronic device further comprises a hole-transporting layer and a buffer layer, the hole-transporting layer disposed between the photoelectric conversion layer and the second electrode, the buffer layer comprising the hole-transporting layer and the photoelectric conversion layer.
- a buffer layer may comprise the compound according to the first embodiment.
- the electronic device is, for example, a photoelectric conversion element.
- a photoelectric conversion element is, for example, a solar cell, an ultraviolet sensor, or a light emitting diode.
- FIG. 1 is a cross-sectional view showing a schematic configuration of a photoelectric conversion element 100 according to the second embodiment.
- a photoelectric conversion element 100 according to the second embodiment includes a substrate 1, a first electrode 2, an electron transport layer 3, a photoelectric conversion layer 4, a hole transport layer 5, and a second electrode 6 in this order.
- the photoelectric conversion layer 4 When the photoelectric conversion element 100 is irradiated with light, the photoelectric conversion layer 4 absorbs the light and generates excited electrons and holes. The excited electrons move to the first electrode 2 through the electron transport layer 3 . On the other hand, holes generated in the photoelectric conversion layer 4 move to the second electrode 6 via the hole transport layer 5 . Thereby, the photoelectric conversion element 100 can extract current from the first electrode 2 as the negative electrode and the second electrode 6 as the positive electrode.
- the photoelectric conversion layer 4 may contain the compound according to the first embodiment.
- the compound according to the first embodiment has a large bandgap and can absorb ultraviolet light.
- the compound according to the first embodiment has a valence band top with a shallow energy level, it is easy to take out holes. Therefore, a photoelectric conversion element having high photoelectric conversion efficiency in the ultraviolet region can be realized. Since the compound according to the first embodiment has transparency, it may be used as a see-through photoelectric conversion element (for example, a see-through solar cell).
- the photoelectric conversion element 100 may or may not have the substrate 1 .
- the photoelectric conversion element 100 may or may not have the electron transport layer 3 .
- the photoelectric conversion element 100 can efficiently transfer electrons to the first electrode 2 .
- the photoelectric conversion element 100 can efficiently extract current.
- the photoelectric conversion element 100 may or may not have the hole transport layer 5 .
- the photoelectric conversion element 100 can efficiently move holes to the second electrode 6 .
- the photoelectric conversion element 100 can efficiently extract current.
- the photoelectric conversion element 100 can be produced, for example, by the following method.
- the first electrode 2 is formed on the surface of the substrate 1 by chemical vapor deposition, sputtering, or the like.
- the electron transport layer 3 is formed by a chemical vapor deposition method, a sputtering method, a solution coating method, or the like.
- a photoelectric conversion layer 4 is formed on the electron transport layer 3 .
- the photoelectric conversion layer 4 may be formed by, for example, a coating method using a solution, a printing method, or a vapor deposition method. Further, for example, a perovskite compound cut into a predetermined thickness may be used as the photoelectric conversion layer 4 and disposed on the electron transport layer 3 .
- the hole transport layer 5 is formed on the photoelectric conversion layer 4 by chemical vapor deposition, sputtering, solution coating, or the like.
- a second electrode 6 is formed on the hole transport layer 5 by chemical vapor deposition, sputtering, solution coating, or the like. As described above, the photoelectric conversion element 100 is obtained.
- the photoelectric conversion element according to the second embodiment may further include a porous layer.
- the porous layer is arranged, for example, between the electron transport layer and the photoelectric conversion layer.
- FIG. 2 is a cross-sectional view showing a schematic configuration of a photoelectric conversion element 200 according to the second embodiment.
- a photoelectric conversion element 200 includes a substrate 1, a first electrode 2, an electron transport layer 3, a porous layer 7, a photoelectric conversion layer 4, a hole transport layer 5, and a second electrode 6 in this order.
- the porous layer 7 contains a porous body.
- the porous body contains voids.
- the photoelectric conversion element 200 may or may not have the substrate 1 .
- the photoelectric conversion element 200 may or may not have the electron transport layer 3 . If the photoelectric conversion element 200 does not have the electron transport layer 3 , the porous layer 7 is arranged between the first electrode 2 and the photoelectric conversion layer 4 . When the photoelectric conversion element 200 has the electron transport layer 3 , electrons can be efficiently transferred to the first electrode 2 . As a result, the photoelectric conversion element 200 can efficiently extract current.
- the photoelectric conversion element 200 may or may not have the hole transport layer 5 .
- holes can be efficiently transferred to the second electrode 6 .
- the photoelectric conversion element 200 can efficiently extract current.
- the photoelectric conversion element according to the second embodiment may further include an intermediate layer.
- the intermediate layer is arranged, for example, between the porous layer and the photoelectric conversion layer.
- FIG. 3 is a cross-sectional view showing a schematic configuration of a photoelectric conversion element 300 according to the second embodiment.
- Photoelectric conversion element 300 includes substrate 1, first electrode 2, electron transport layer 3, porous layer 7, intermediate layer 8, photoelectric conversion layer 4, hole transport layer 5, and second electrode 6 in this order. .
- the photoelectric conversion element 300 may or may not have the substrate 1 .
- the photoelectric conversion element 300 may or may not have the electron transport layer 3 .
- electrons can be efficiently transferred to the first electrode 2 .
- the photoelectric conversion element 300 can efficiently extract current.
- the photoelectric conversion element 300 may or may not have the porous layer 7 . If the photoelectric conversion element 300 does not have the porous layer 7 , the intermediate layer 8 is arranged between the electron transport layer 3 and the photoelectric conversion layer 4 .
- the photoelectric conversion element 300 may or may not have the hole transport layer 5 .
- holes can be efficiently transferred to the second electrode 6 .
- the photoelectric conversion element 300 can efficiently extract current.
- the photoelectric conversion element according to the second embodiment may further include a buffer layer.
- the buffer layer is arranged, for example, between the photoelectric conversion layer and the hole transport layer.
- the buffer layer may contain the compound according to the first embodiment.
- the photoelectric conversion layer may not contain the compound according to the first embodiment, and the buffer layer may contain the compound according to the first embodiment.
- FIG. 4 is a cross-sectional view showing a schematic configuration of a photoelectric conversion element 400 according to the second embodiment.
- the photoelectric conversion element 400 includes a substrate 1, a first electrode 2, an electron transport layer 3, a porous layer 7, an intermediate layer 8, a photoelectric conversion layer 4, a buffer layer 9, a hole transport layer 5, and a second electrode 6, Prepare in this order.
- the photoelectric conversion element 400 may or may not have the substrate 1 .
- the photoelectric conversion element 400 may or may not have the electron transport layer 3 .
- electrons can be efficiently transferred to the first electrode 2 .
- the photoelectric conversion element 400 can efficiently extract current.
- the photoelectric conversion element 400 may or may not have the porous layer 7 .
- the photoelectric conversion element 400 may or may not have the intermediate layer 8 .
- the photoelectric conversion element 400 may or may not have the hole transport layer 5 . If the photoelectric conversion element 400 does not have the hole transport layer 5 , the buffer layer 9 is arranged between the photoelectric conversion layer 4 and the second electrode 6 .
- the substrate 1 is an ancillary component.
- the substrate 1 plays a role of holding each layer of the photoelectric conversion element.
- Substrate 1 may be formed from a transparent material.
- a transparent material for example, a glass substrate or a plastic substrate can be used.
- the plastic substrate may be, for example, a plastic film.
- the substrate 1 may be made of a non-translucent material. Metals, ceramics, or resin materials with low translucency can be used as such materials.
- each layer can be held by the first electrode 2, so the substrate 1 does not have to be provided.
- the first electrode 2 has conductivity.
- the first electrode 2 has translucency. For example, it transmits light in the visible region to the near-infrared region.
- the first electrode 2 is made of, for example, a transparent and conductive material.
- materials are metal oxides or metal nitrides.
- examples of such materials include (i) titanium oxide doped with at least one selected from the group consisting of lithium, magnesium, niobium, and fluorine; (ii) at least one selected from the group consisting of tin and silicon; Gallium oxide doped with one, (iii) gallium nitride doped with at least one selected from the group consisting of silicon and oxygen, and (iv) doped with at least one selected from the group consisting of antimony and fluorine.
- the first electrode 2 may be formed with a pattern through which light is transmitted.
- Examples of light-transmitting patterns are linear, wavy, lattice, or punching metal patterns in which a large number of fine through-holes are regularly or irregularly arranged.
- non-transparent materials can be used by providing a pattern through which light can pass.
- Examples of non-transparent electrode materials are platinum, gold, silver, copper, aluminum, rhodium, indium, titanium, iron, nickel, tin, zinc, or alloys containing any of these.
- Conductive carbon materials may be used as non-transparent electrode materials.
- the first electrode 2 has a property of blocking holes from the photoelectric conversion layer 4 .
- the first electrode 2 does not make ohmic contact with the photoelectric conversion layer 4 .
- the property of blocking holes from the photoelectric conversion layer 4 means the property of allowing only electrons generated in the photoelectric conversion layer 4 to pass through and not allowing holes to pass therethrough.
- the Fermi energy of the material having such properties is higher than the energy at the top of the valence band of the photoelectric conversion layer 4 .
- the Fermi energy of the material having such properties may be higher than the Fermi energy of the photoelectric conversion layer 4 .
- a specific material is aluminum.
- the first electrode 2 does not have to block holes from the photoelectric conversion layer 4 .
- the first electrode 2 can be made of a material capable of forming an ohmic contact with the photoelectric conversion layer 4 .
- the first electrode 2 may or may not be in ohmic contact with the photoelectric conversion layer 4 .
- the light transmittance of the first electrode 2 may be, for example, 50% or more, or may be 80% or more.
- the wavelength of light that the first electrode 2 should transmit depends on the absorption wavelength of the photoelectric conversion layer 4 .
- the thickness of the first electrode 2 may be, for example, 1 nm or more and 1000 nm or less.
- the electron transport layer 3 contains a semiconductor.
- the electron transport layer 3 may be made of a semiconductor with a bandgap of 3.0 eV or more. Thereby, visible light and infrared light can be transmitted to the photoelectric conversion layer 4 .
- Examples of semiconductors are inorganic n-type semiconductors.
- Examples of inorganic n-type semiconductors are metal oxides, metal nitrides or perovskite oxides.
- metal oxides include Cd, Zn, In, Pb, Mo, W, Sb, Bi, Cu, Hg, Ti, Ag, Mn, Fe, V, Sn, Zr, Sr, Ga, Si, or Cr. It is an oxide.
- Metal oxides are, for example, TiO 2 or SnO 2 .
- a metal nitride is, for example, GaN.
- Perovskite oxides are, for example, SrTiO 3 or CaTiO 3 .
- the electron transport layer 3 may use a semiconductor with a bandgap of 6.0 eV or more.
- semiconductors are lithium fluoride, alkali metal or alkaline earth metal halides such as calcium fluoride, alkali metal oxides such as magnesium oxide, or silicon dioxide.
- the electron transport layer 3 may have a thickness of 10 nm or less, for example, in order to ensure the electron transport property of the electron transport layer 3 .
- the electron transport layer 3 may include multiple layers made of different materials.
- the photoelectric conversion layer 4 contains a photoelectric conversion material.
- the photoelectric conversion material may be, for example, a perovskite compound. That is, the photoelectric conversion layer 4 may contain a perovskite compound. Perovskite compounds have a high light absorption coefficient and high carrier mobility in the wavelength region of the sunlight spectrum. Therefore, a photoelectric conversion device containing a perovskite compound has high photoelectric conversion efficiency.
- the perovskite compound may be, for example, a three-dimensional perovskite compound represented by the compositional formula A'BX3 .
- A' is a monovalent cation.
- monovalent cations are alkali metal cations or organic cations.
- alkali metal cations are potassium cations (K + ), cesium cations (Cs + ) or rubidium cations (Rb + ).
- Examples of organic cations are methylammonium cations (MA + ), formamidinium cations (FA + ), ethylammonium cations (EA + ) or guanidinium cations (GA + ).
- B is a divalent cation.
- divalent cations are lead cations (Pb 2+ ) or tin cations (Sn 2+ ).
- X is a monovalent anion.
- monovalent anions are halogen anions. Each of the A, B, and X sites may be occupied by multiple types of ions.
- the photoelectric conversion layer 4 may contain the compound according to the first embodiment.
- the thickness of the photoelectric conversion layer 4 is, for example, 50 nm or more and 10 ⁇ m or less.
- the photoelectric conversion layer 4 can be formed by a coating method using a solution, a printing method, or a vapor deposition method.
- the photoelectric conversion layer 4 may be formed by cutting out and arranging a three-dimensional perovskite compound.
- the photoelectric conversion layer 4 may mainly contain a three-dimensional perovskite compound represented by the composition formula A'BX3 .
- the photoelectric conversion layer 4 mainly contains a three-dimensional perovskite compound represented by the composition formula A'BX3 means that the photoelectric conversion layer 4 contains a three-dimensional perovskite compound represented by the composition formula A'BX3 . It is to contain 90% by mass or more of the compound.
- the photoelectric conversion layer 4 may contain 95% by mass or more of the three-dimensional perovskite compound represented by the composition formula A'BX3 .
- the photoelectric conversion layer 4 may be made of a three-dimensional perovskite compound represented by the composition formula A'BX3 .
- the photoelectric conversion layer 4 only needs to contain the three-dimensional perovskite compound represented by the composition formula A'BX3 , and may contain defects or impurities.
- the photoelectric conversion layer 4 may further contain other compounds different from the three-dimensional perovskite compound represented by the composition formula A'BX3 .
- Examples of different other compounds are compounds with Ruddlesden-Popper type layered perovskite structures.
- the photoelectric conversion layer 4 may contain the compound according to the first embodiment.
- Hole transport layer 5 contains a hole transport material.
- a hole-transporting material is a material that transports holes. Hole-transporting materials are, for example, organic or inorganic semiconductors.
- organic semiconductors examples include triphenylamine, triallylamine, phenylbenzidine, phenylenevinylene, tetrathiafulvalene, vinylnaphthalene, vinylcarbazole, thiophene, aniline, pyrrole, carbazole, triptycene, fluorene, azulene, pyrene, pentacene, perylene, acridine , or a phthalocyanine.
- Examples of typical organic semiconductors used as hole transport materials include 2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine)9,9′-spirobifluorene, poly[bis( 4-phenyl)(2,4,6-trimethylphenyl)amine] (hereinafter also referred to as "PTAA”), poly(3-hexylthiophene-2,5-diyl), poly(3,4-ethylenedioxythiophene), or copper phthalocyanine is.
- PTAA 2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine)9,9′-spirobifluorene
- PTAA poly[bis( 4-phenyl)(2,4,6-trimethylphenyl)amine]
- poly(3-hexylthiophene-2,5-diyl) poly(3,4-ethylenedioxythiophene)
- Inorganic semiconductors used as hole transport materials are p-type semiconductors.
- Examples of inorganic semiconductors are Cu2O , CuGaO2 , CuSCN, CuI , NiOx , MoOx , V2O5 , or carbon materials such as graphene oxide. where x>0.
- the hole transport layer 5 may include multiple layers made of different materials. For example, by laminating a plurality of layers so that the ionization potential of the hole transport layer 5 becomes smaller than the ionization potential of the photoelectric conversion layer 4, the hole transport characteristics are improved.
- the thickness of the hole transport layer 5 may be 1 nm or more and 1000 nm or less, or may be 10 nm or more and 50 nm or less. Thereby, sufficient hole transport properties can be exhibited. Therefore, the low resistance of the solar cell can be maintained, and high photoelectric conversion efficiency can be achieved.
- the hole transport layer 5 is formed by, for example, a coating method, a printing method, or a vapor deposition method. This is the same as the photoelectric conversion layer 4 .
- Examples of application methods are doctor blading, bar coating, spraying, dip coating or spin coating.
- An example of a printing method is screen printing. If necessary, a plurality of materials may be mixed to form the hole transport layer 5, and pressurized or baked.
- the hole transport layer 5 can also be produced by a vacuum deposition method.
- the hole-transporting layer 5 may contain not only the hole-transporting material but also an additive in order to increase conductivity.
- additives are supporting electrolytes, solvents or dopants.
- the supporting electrolyte and solvent have the effect of stabilizing the holes in the hole transport layer 5 .
- Dopants have the effect of increasing the number of holes in the hole transport layer 5 .
- Examples of supporting electrolytes are ammonium salts, alkaline earth metal salts, or transition metal salts.
- ammonium salts are tetrabutylammonium perchlorate, tetraethylammonium hexafluorophosphate, imidazolium salts or pyridinium salts.
- Examples of alkali metal salts are lithium perchlorate or potassium boron tetrafluoride.
- An example of an alkaline earth metal salt is bis(trifluoromethanesulfonyl)imide calcium(II).
- transition metal salts are bis(trifluoromethanesulfonyl)imidozinc(II) or tris[4-tert-butyl-2-(1H-pyrazol-1-yl)pyridine]cobalt(III) tris(trifluoromethanesulfonyl) is an imide.
- An example of a dopant is a fluorine-containing aromatic boron compound.
- An example of a fluorine-containing aromatic boron compound is tris(pentafluorophenyl)borane.
- the solvent contained in the hole transport layer 5 may have excellent ionic conductivity.
- the solvent may be an aqueous solvent or an organic solvent.
- the solvent contained in the hole transport layer 5 may be an organic solvent in order to stabilize the solute more.
- organic solvents are heterocyclic solvents such as tert-butylpyridine, pyridine, and n-methylpyrrolidone.
- An ionic liquid may be used as the solvent.
- the ionic liquid may be used alone or mixed with other solvents. Ionic liquids are desirable because of their low volatility and high flame retardancy.
- ionic liquids examples include imidazolium-based, such as 1-ethyl-3-methylimidazolium tetracyanoborate, pyridine-based, alicyclic amine-based, aliphatic amine-based, or azonium amine-based.
- the second electrode 6 has conductivity.
- the second electrode 6 has a property of blocking electrons from the photoelectric conversion layer 4 .
- the second electrode 6 does not make ohmic contact with the photoelectric conversion layer 4 .
- the property of blocking electrons from the photoelectric conversion layer 4 means the property of allowing only holes generated in the photoelectric conversion layer 4 to pass therethrough and not allowing electrons to pass therethrough.
- the Fermi energy of the material having such properties is lower than the energy at the bottom of the conduction band of the photoelectric conversion layer 4 .
- the Fermi energy of the material having such properties may be lower than the Fermi energy of the photoelectric conversion layer 4 .
- Specific materials are platinum, gold, or carbon materials such as graphene.
- the second electrode 6 does not have to block electrons from the photoelectric conversion layer 4 .
- the second electrode 6 can be made of a material capable of forming an ohmic contact with the photoelectric conversion layer 4 . Thereby, the second electrode 6 can be formed to have translucency.
- the electrode on the light incident side only needs to be translucent. Therefore, one of the first electrode 2 and the second electrode 6 does not have to be translucent. That is, one of the first electrode 2 and the second electrode 6 may not use a translucent material or may not have a pattern including openings that transmit light.
- porous layer 7 is formed on the electron transport layer 3 by, for example, a coating method. If the photoelectric conversion device does not have an electron transport layer 3 , it is formed on the first electrode 2 .
- the pore structure introduced by the porous layer 7 serves as a foundation for forming the photoelectric conversion layer 4 .
- the porous layer 7 does not hinder light absorption by the photoelectric conversion layer 4 and electron transfer from the photoelectric conversion layer 4 to the electron transport layer 3 .
- the porous layer 7 contains a porous body.
- the porous body is formed, for example, by a series of insulating or semiconducting particles.
- insulating particles are aluminum oxide particles or silicon oxide particles.
- semiconductor particles are inorganic semiconductor particles.
- inorganic semiconductors are metal oxides, perovskite oxides of metallic elements, sulfides of metallic elements or metal chalcogenides.
- metal oxides include Cd, Zn, In, Pb, Mo, W, Sb, Bi, Cu, Hg, Ti, Ag, Mn, Fe, V, Sn, Zr, Sr, Ga, Si, or Cr. It is an oxide.
- a metal oxide is, for example, TiO2 .
- Examples of perovskite oxides of metallic elements are SrTiO3 or CaTiO3 .
- sulfides of metallic elements are CdS, ZnS, In2S3 , PbS, Mo2S , WS2 , Sb2S3 , Bi2S3 , ZnCdS2 or Cu2S .
- metal chalcogenides are CsSe, In2Se3 , WSe2 , HgS, PbSe, or CdTe .
- the thickness of the porous layer 7 may be 0.01 ⁇ m or more and 10 ⁇ m or less, or may be 0.05 ⁇ m or more and 1 ⁇ m or less.
- the surface roughness coefficient given by effective area/projected area may be 10 or more, or 100 or more.
- the projected area is the area of the shadow behind the object when it is illuminated directly from the front.
- Effective area is the actual surface area of an object.
- the effective area can be calculated from the volume determined from the projected area and thickness of the object, and the specific surface area and bulk density of the material forming the object.
- the specific surface area is measured, for example, by a nitrogen adsorption method.
- the voids in the porous layer 7 are connected from one main surface of the porous layer 7 to the other main surface. That is, the voids in the porous layer 7 are connected from the main surface of the porous layer 7 in contact with the photoelectric conversion layer 4 to the main surface of the porous layer 7 in contact with the electron transport layer 3 . Thereby, the material of the photoelectric conversion layer 4 can fill the voids of the porous layer 7 and reach the surface of the electron transport layer 3 . Therefore, since the photoelectric conversion layer 4 and the electron transport layer 3 are in direct contact with each other, electron transfer is possible.
- the effect that the photoelectric conversion layer 4 can be easily formed can be obtained.
- the material of the photoelectric conversion layer 4 penetrates into the voids of the porous layer 7 , and the porous layer 7 serves as a scaffold for the photoelectric conversion layer 4 . Therefore, it is difficult for the material of the photoelectric conversion layer 4 to repel or aggregate on the surface of the porous layer 7 . Therefore, the photoelectric conversion layer 4 can be easily formed as a uniform film.
- the photoelectric conversion layer 4 can be formed by the above coating method, printing method, vapor deposition method, or the like.
- the light scattering caused by the porous layer 7 is expected to increase the optical path length of the light passing through the photoelectric conversion layer 4 . It is expected that the amount of electrons and holes generated in the photoelectric conversion layer 4 will increase as the optical path length increases.
- the intermediate layer 8 includes a fullerene ( C60 ), a C60 derivative, or a self-assembled monolayer with C60 (hereinafter also referred to as "C60SAM"). Since the intermediate layer 8 efficiently collects electrons, resistance loss when transporting electrons to the electron transport layer 3 is reduced.
- C60SAM a self-assembled monolayer with C60
- C 60 derivatives are [6,6]-Phenyl C 61 butyric acid methyl ester or [6,6]-Phenyl-C 61 butyric acid butyl ester.
- An example of a C60SAM is 4-(1′,5′-Dihydro-1′-methyl-2′H-[5,6]fullereno-C 60 -Ih-[1,9-c]pyrrol-2′-yl ) benzoic acid, (1,2-Methanofullerene C 60 )-61-carboxylic acid, or C 60 Pyrrolidine tris-acid.
- the intermediate layer 8 is formed by, for example, a coating method using a solution, a dipping method, a printing method, or a vapor deposition method.
- the buffer layer 9 terminates defects in the photoelectric conversion layer 4, suppresses entry of outside air (oxygen, moisture, etc.) into the photoelectric conversion layer 4, and decomposes gas (iodine, methylamine, etc.) generated in the photoelectric conversion layer 4. It has a function of suppressing desorption of , or having an energy level capable of improving hole extraction.
- the buffer layer 9 may contain the compound according to the first embodiment.
- the buffer layer 9 containing the compound according to the first embodiment can suppress desorption of decomposition gas generated in the photoelectric conversion layer 4 and improve hole extraction. This is because the compound according to the first embodiment moves the valence band top between the energy level of the valence band top of the photoelectric conversion layer 4 and the HOMO (Highest Occupied Molecular Orbital) level of the hole transport layer 5. Realize to have. For example, when the photoelectric conversion layer 4 contains a three-dimensional perovskite compound, it is known that iodine, methylamine, or the like is desorbed from the perovskite compound by heating.
- the light-emitting device contains the compound according to the first embodiment.
- a light-emitting device for example, comprises a light-emitting layer, and the light-emitting layer contains the compound according to the first embodiment.
- the light-emitting element according to the third embodiment can absorb ultraviolet light and emit light.
- the light emitting device according to the third embodiment absorbs ultraviolet light and emits light.
- the light-emitting device according to the third embodiment can be used, for example, as phosphors for LED lamps, plasma displays, and the like.
- a silver halide compound was prepared, the presence or absence of an impurity phase was confirmed by X-ray diffraction (XRD) measurement, the optical bandgap was evaluated by transmittance measurement, and the work function (that is, valence electron The energy at the top of the band) was evaluated, and the emission intensity was evaluated by photoluminescence measurement. Further, a photoelectric conversion element was produced using the produced silver halide compound as a buffer layer, and the initial characteristics of the photoelectric conversion element and the characteristics after the heat resistance test were evaluated.
- XRD X-ray diffraction
- Example 1 a DMF solution containing CH 3 NH 3 I (hereinafter referred to as “MAI”) and AgI as solutes was prepared.
- the concentration of MAI in this solution was 1 mol/L and the concentration of AgI was 1 mol/L.
- the solute was completely dissolved by heat-treating this solution on a hot plate at 60° C. or higher and 70° C. or lower.
- the above solution was applied onto the substrate by spin coating.
- a glass substrate having a thickness of 0.7 mm was used as the substrate.
- the substrate was heat-treated on a hot plate at 100° C. for 10 minutes.
- the compound according to Example 1 designated by MAAgI2 , was obtained.
- Example 2 In Example 2, HC(NH 2 ) 2 I (hereinafter referred to as “FAI”) was used as the solute instead of MAI. Otherwise analogous to Example 1, the compound according to Example 2 represented by FAAgI2 was obtained.
- FAI HC(NH 2 ) 2 I
- Example 3 CH 3 CH 2 NH 3 I (hereinafter referred to as “EAI”) was used as the solute instead of MAI. Otherwise analogous to Example 1, the compound according to Example 3 represented by EAAgI2 was obtained.
- EAI CH 3 CH 2 NH 3 I
- Example 4 C((NH) 2 ) 3 I (hereinafter referred to as “GAI”) was used as the solute instead of MAI. Otherwise analogous to Example 1, the compound according to Example 4 represented by GAAgI2 was obtained.
- Example 5 First, a DMF solution containing MAI and AgI as solutes was prepared.
- the MAI concentration in this solution was 0.5 mol/L, and the AgI concentration was 1 mol/L.
- Example 5 represented by MAAg 2 I 3 was obtained.
- Example 6 In Example 6, FAI was used instead of MAI as the solute. Otherwise analogous to Example 5, the compound according to Example 6 represented by FAAg 2 I 3 was obtained.
- Example 7 In Example 7, EAI was used as the solute instead of MAI. Otherwise, the compound according to Example 7 represented by EAAg 2 I 3 was obtained in the same manner as in Example 5.
- Example 8 In Example 8, GAI was used as the solute instead of MAI.
- the compound according to Example 8 represented by GAAg 2 I 3 was otherwise analogous to Example 5.
- Example 9 In Example 9, FABr was used instead of MAI and AgBr was used instead of AgI as solutes. Otherwise analogous to Example 1, the compound according to Example 9 represented by FAAgBr 2 was obtained.
- Example 10 EABr was used instead of MAI and AgBr was used instead of AgI as solutes. Otherwise analogous to Example 1, the compound according to Example 10 represented by EAAgBr 2 was obtained.
- Example 11 First, a DMF solution containing FAI and AgI as solutes was prepared. The concentration of FAI in this solution was 1 mol/L and the concentration of AgI was 0.5 mol/L.
- Example 11 represented by FA 2 AgI 3 was thus obtained.
- Example 12 In Example 12, EAI was used as the solute instead of FAI. Otherwise, the compound according to Example 12 represented by EA2AgI3 was obtained in the same manner as in Example 11.
- Example 13 In Example 13, FABr was used instead of FAI and AgBr was used instead of AgI as solutes. Otherwise, the compound according to Example 13 represented by FA2AgBr3 was obtained in the same manner as in Example 11.
- Example 14 In Example 14, EABr was used instead of FAI and AgBr was used instead of AgI as solutes. Otherwise, in the same manner as in Example 11, the compound according to Example 14 represented by EA2AgBr3 was obtained.
- Example 15 In Example 15, FACl was used instead of FAI and AgCl was used instead of AgI as solutes. Otherwise analogous to Example 11, the compound according to Example 15 represented by FA 2 AgCl 3 was obtained.
- Photoelectric conversion devices according to Example 16 and Comparative Example 1 were produced as follows. Each configuration of the photoelectric conversion element is as follows. ⁇ Substrate: glass substrate (thickness: 0.7 mm) ⁇ First electrode: transparent electrode indium-tin composite oxide layer (thickness: 200 nm) -Electron transport layer: titanium oxide (TiO 2 ) (thickness: 10 nm) ⁇ Porous layer: Mesoporous structure titanium oxide (TiO 2 ) Intermediate layer: 4-(1′,5′-Dihydro-1′-methyl-2′H-[5,6]fullereno-C 60 -Ih-[1,9-c]pyrrol-2′-yl) benzoic acid (ie, C60SAM) (manufactured by Sigma-Aldrich) Photoelectric conversion layer: a layer mainly containing HC(NH 2 ) 2 PbI 3 (thickness: 500 nm) ⁇ Buffer layer: A layer containing EAAg 2 I 3 or
- Example 16 ⁇ Production of photoelectric conversion element> (Example 16) First, a glass substrate having a thickness of 0.7 mm was prepared.
- a layer of indium-tin composite oxide was formed on the substrate by sputtering.
- the first electrode was formed.
- 30NR-D manufactured by Great Cell Solar
- 30NR-D was applied onto the electron transport layer by spin coating, and then baked at 500°C for 30 minutes to form a titanium oxide layer having a mesoporous structure.
- a porous layer was formed.
- the substrate formed up to the porous layer was immersed in the C60SAM solution for 30 minutes and then taken out.
- the C60SAM solution is a mixed solution in which tetrahydrofuran (manufactured by FUJIFILM Wako Pure Chemical Industries) and ethanol (manufactured by FUJIFILM Wako Pure Chemical Industries) are mixed at a volume ratio of 1:1, and C60SAM is added at a concentration of 1 ⁇ 10 ⁇ 5 . It was obtained by adding so as to be mol/L. After thoroughly rinsing the removed substrate with an ethanol solution, it was annealed on a hot plate at 100° C. for 30 minutes. After annealing, the C60SAM-modified substrate was obtained by natural cooling to room temperature. Thus, an intermediate layer was formed.
- the raw material solution contains 0.92 mol/L lead (II) iodide (manufactured by Tokyo Chemical Industry), 0.17 mol/L lead (II) bromide (manufactured by Tokyo Chemical Industry), 0.83 mol/L iodine Formamidinium chloride (manufactured by GreatCell Solar), 0.17 mol/L methylammonium bromide (manufactured by GreatCell Solar), 0.05 mol/L cesium iodide (manufactured by Iwatani Corporation), and 0.05 mol/L iodide It was a solution containing rubidium (manufactured by Iwatani Corporation).
- the solvent of the solution was a mixture of dimethylsulfoxide (DMSO) (manufactured by acros) and DMF (manufactured by acros).
- DMSO dimethylsulfoxide
- DMF manufactured by acros
- the mixing ratio of DMSO and DMF (DMSO:DMF) in this raw material solution was 1:4 by volume.
- a buffer layer was formed by applying a raw material solution of a buffer material on the photoelectric conversion layer by spin coating.
- the solvent of the raw material solution of the buffer material was 2-propanol (manufactured by FUJIFILM Wako Pure Chemical Industries).
- the buffer material stock solution contained less than 6.5 ⁇ 10 ⁇ 3 mol/L EAAg 2 I 3 .
- a hole-transporting layer was formed by applying a raw material solution of a hole-transporting material onto the buffer layer by spin coating.
- the solvent of the raw material solution of the hole transport material was toluene (manufactured by Acros).
- the hole transport material stock solution contained 10 g/L of PTAA and TPFPB.
- a second electrode was formed by depositing an Au film on the hole transport layer by vacuum evaporation.
- Example 17 In Example 17, no porous layer was formed.
- the raw material solution of the photoelectric conversion material is 0.84 mol/L lead (II) iodide (manufactured by Tokyo Chemical Industry), 0.25 mol/L lead (II) bromide (manufactured by Tokyo Chemical Industry), and 0.73 mol/L.
- Example 18 In Example 18, the buffer material stock solution contained EAAgBr2 instead of FAAgBr2 .
- a photoelectric conversion device according to Example 18 was obtained in the same manner as in Example 17 except for the above.
- Comparative example 1 In Comparative Example 1, the buffer material stock solution contained n-butylammonium bromide instead of EAAg 2 I 3 . A photoelectric conversion device according to Comparative Example 1 was obtained in the same manner as in Example 16 except for the above.
- Comparative example 2 In Comparative Example 2, the buffer material stock solution contained n-butylammonium bromide instead of FAAgBr2 .
- a photoelectric conversion device according to Comparative Example 2 was obtained in the same manner as in Example 17 except for the above.
- ⁇ Crystal structure analysis> The compounds according to Examples 1 to 15 were subjected to X-ray diffraction measurements using CuK ⁇ radiation.
- the measurement wavelength was 0.15405 nm, and a fully automatic horizontal multi-purpose X-ray diffractometer (manufactured by Rigaku, SmartLab) was used.
- FIG. 5 is a graph showing the X-ray diffraction patterns of the compounds according to Examples 1-4. That is, FIG. 5 is a graph showing the X-ray diffraction patterns of the AAgI2- based compounds according to Examples 1-4.
- FIG. 6 is a graph showing the X-ray diffraction patterns of the compounds according to Examples 5-8. That is, FIG. 6 is a graph showing the X-ray diffraction patterns of the AAg 2 I 3 based compounds according to Examples 5-8.
- FIG. 7 is a graph showing the X-ray diffraction patterns of the compounds according to Examples 9-10. That is, FIG.
- FIG. 7 is a graph showing the X-ray diffraction patterns of the AAgBr2- based compounds according to Examples 9-10.
- FIG. 8 is a graph showing the X-ray diffraction patterns of the compounds according to Examples 11-15. That is, FIG. 8 is a graph showing the X-ray diffraction patterns of the A 2 AgX 3 based compounds according to Examples 11-15. 5 to 8, the horizontal axis indicates the diffraction angle 2 ⁇ , and the vertical axis indicates the X-ray diffraction intensity.
- the peak positions in the X-ray diffraction patterns are significantly different. From the above, it can be seen that the AAgI2 -based compound, the AAg2I3 - based compound, and the A2AgX3 - based compound have different crystal structures.
- ⁇ Tauc plot> The transmittance of the compounds of Examples 1 to 15 was measured using a spectrophotometer (Solidspec-3700 manufactured by Shimadzu Corporation). The wavelength was from 190 nm or 300 nm to 1400 nm. The absorption coefficient ⁇ was calculated from the transmittance T, and Tauc plotted with light energy h ⁇ on the horizontal axis and ( ⁇ h ⁇ ) 2 on the vertical axis.
- FIG. 9 is a graph showing Tauc plots of the compounds according to Examples 1-4.
- FIG. 10 is a graph showing Tauc plots of compounds according to Examples 5-8.
- FIG. 11 is a graph showing Tauc plots of compounds according to Examples 9-10.
- FIG. 12 is a graph showing Tauc plots of compounds according to Examples 11-15.
- the optical bandgap can be estimated from the intersection of the obtained straight line and the horizontal axis by fitting a straight line near the inflection point of the Tauc plot.
- Table 1 shows the bandgap Eg of the compounds according to Examples 1-15. As shown in Table 1, the Eg of the compounds according to Examples 1 to 15 ranged from 3.38 eV to 4.93 eV.
- VBM valence band top energy
- FIG. 13 is a graph showing the photoelectron yield spectroscopy spectra of the compounds according to Examples 1-4.
- 14 is a graph showing photoelectron yield spectroscopy spectra of compounds according to Examples 5 to 8.
- FIG. 15 is a graph showing photoelectron yield spectroscopy spectra of compounds according to Examples 9 to 10.
- FIG. 16 is a graph showing photoelectron yield spectroscopy spectra of compounds according to Examples 11 to 15.
- FIG. In FIGS. 13 to 16 the horizontal axis indicates light energy, and the vertical axis indicates the cube root of electron count rate (cps).
- VBM The work function (that is, VBM) was estimated from the intersection of the approximate straight line of the plot after the graph rises, that is, the plot in which the electron count rate sharply increases, and the horizontal axis.
- Table 1 shows the VBM of Examples 1-15. As shown in Table 1, the VBM of the compounds according to Examples 1 to 15 ranged from -6.00 eV to -5.19 eV.
- the compounds according to Examples 1 to 15 were subjected to photoluminescence measurement using a compact fluorescence lifetime measurement device (Quantaurus-Tau manufactured by Hamamatsu Photonics). The excitation wavelength was 254 nm.
- Table 1 shows the relative emission intensities of the compounds according to Examples 1-15.
- the relative emission intensity is the maximum peak photoluminescence intensity observed at a wavelength of 375 nm to 795 nm for the compounds of Examples 1 to 15, and the maximum peak photoluminescence intensity observed at a wavelength of 375 nm to 795 nm for the compound of Example 4. It is a normalized value.
- the maximum peak photoluminescence intensity observed from 375 nm to 795 nm of the compound according to Example 4 was 541 a. u. Met.
- the VBMs of the compounds according to Examples 1 to 15 are relatively shallow and located at relatively easy hole extraction. Furthermore, the bandgaps of the compounds according to Examples 1 to 15 are large enough to transmit visible and infrared light and absorb ultraviolet light. From the above results, the compounds according to Examples 1 to 15 are suitable for photoelectric conversion layers of photoelectric conversion elements (e.g., solar cells, ultraviolet sensors, etc.) that operate in the ultraviolet region, and light-emitting layers of light-emitting elements such as light-emitting diodes. It was confirmed that it is applicable.
- photoelectric conversion elements e.g., solar cells, ultraviolet sensors, etc.
- the compounds according to Examples 1 to 15 have band gaps and valence band upper end energy levels applicable to photoelectric conversion devices operating in the ultraviolet region, and in addition absorb ultraviolet light. It was confirmed that it emits light and that it can be applied to light-emitting elements such as phosphors.
- the photoelectric conversion efficiency was measured in the initial state and after the heat resistance test using an electrochemical analyzer (ALS440B, manufactured by BAS) and a xenon light source (BPS X300BA, manufactured by Spectroscopy Instruments). Before measurement, the light intensity was calibrated to 1 Sun (100 mW/cm 2 ) using a silicon photodiode. The voltage sweep speed was 100 mV/s. No preconditioning, such as light irradiation and long-term forward bias application, was performed before the start of the measurement. In order to fix the effective area and reduce the influence of scattered light, while the photoelectric conversion element was masked with a black mask having an opening of 0.1 cm 2 , light was irradiated from the mask/substrate side.
- ALS440B electrochemical analyzer
- BPS X300BA manufactured by Spectroscopy Instruments
- Photoelectric conversion efficiency measurements were performed at room temperature under dry air ( ⁇ 2% RH). From the above measurements, the open-circuit voltage (V oc ), the short-circuit current density (J sc ), the fill factor (FF), and the photoelectric conversion efficiency (Eff) were calculated as the photoelectric conversion characteristics of the photoelectric conversion element.
- Heat resistance test A A heat resistance test A was performed on the photoelectric conversion elements according to Example 16 and Comparative Example 1. In the heat resistance test A, the photoelectric conversion element was kept at 85° C. for 158 hours in a constant temperature bath. After the heat resistance test A, the photoelectric conversion efficiency of the photoelectric conversion element was measured by the method described above. Table 2 shows the photoelectric conversion characteristics measured before and after the heat resistance test A.
- Heat resistance test B> A heat resistance test B was performed on the photoelectric conversion elements according to Examples 17 and 18 and Comparative Example 2. In heat resistance test B, the photoelectric conversion element was kept at 85° C. for 20, 106, or 460 hours in a constant temperature bath. After each period of time, the low illuminance output of the photoelectric conversion element was measured by the method described above. Table 3 shows the output under light irradiation of 200 lux in the heat resistance test B.
- EAAg 2 I 3 as a buffer layer greatly suppresses thermal deterioration. This is because the VBM of EAAg 2 I 3 is positioned between the VBM of the three-dimensional perovskite constituting the photoelectric conversion layer and the HOMO level of PTAA constituting the hole-transporting layer. This is probably because the buffer layer could suppress desorption of decomposed gas (iodine, methylamine, etc.) from the photoelectric conversion layer due to heat without any hindrance.
- decomposed gas iodine, methylamine, etc.
- the VBM of the three-dimensional perovskite forming the photoelectric conversion layer in the photoelectric conversion elements according to Example 16 and Comparative Example 1 was ⁇ 5.6 eV
- the VBM of EAAg 2 I3 forming the buffer layer was ⁇ 5. 57 eV
- the HOMO level of PTAA constituting the hole transport layer is -5.3 eV.
- the output of Examples 17 and 18 was higher than that of Comparative Example 2 at all heat resistance test times. This means that defects at the interface between the photoelectric conversion layer and the hole transport layer are reduced.
- the decrease in output over time was greatly suppressed.
- Example 18 is higher than that of Example 17 is that the VBM of EAAgBr 2 is located between the VBM of the three-dimensional perovskite constituting the photoelectric conversion layer and the HOMO level of PTAA constituting the hole transport layer. It is considered that this is because the extraction of holes was not hindered due to the presence of
- the compound of the present disclosure has a large bandgap and a shallow valence band upper end of the energy level, for example, electronic devices such as photoelectric conversion elements in the ultraviolet region (see-through solar cells, ultraviolet sensors, etc.) and light emission It can be applied to devices, and it can be said that the possibility of industrial application is extremely high.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
A、Ag、およびXからなり、
Aは、1価のカチオンであり、かつ、有機カチオンを含み、
Xは、ハロゲン化物イオンおよびチオシアン酸イオンからなる群より選択される少なくとも1つである。
これまでに、紫外領域での電子デバイスの光電変換層あるいは発光層の材料として、種々のワイドバンドギャップを有する材料が報告されている。
第1実施形態による化合物は、A、Ag、およびXからなり、Aは、1価のカチオンであり、かつ、有機カチオンを含み、Xは、ハロゲン化物イオンおよびチオシアン酸イオンからなる群より選択される少なくとも1つである。
ハロゲン化物イオンは、フッ化物イオン、塩化物イオン、臭化物イオン、およびヨウ化物イオンからなる群より選択される少なくとも1つであってもよい。
以下、第2実施形態による電子デバイスが説明される。第1実施形態において説明された事項は、適宜、省略され得る。
基板1は、付随的な構成要素である。基板1は、光電変換素子の各層を保持する役割を果たす。基板1は、透明な材料から形成することができる。基板1としては、例えば、ガラス基板またはプラスチック基板を用いることができる。プラスチック基板は、例えば、プラスチックフィルムであってもよい。
第1電極2は、導電性を有する。
電子輸送層3は、半導体を含む。電子輸送層3は、バンドギャップが3.0eV以上の半導体から形成されていてもよい。これにより、可視光および赤外光を光電変換層4まで透過させることができる。半導体の例は、無機のn型半導体である。
光電変換層4は、光電変換材料を含む。
正孔輸送層5は、正孔輸送材料を含有する。正孔輸送材料は、正孔を輸送する材料である。正孔輸送材料は、例えば、有機半導体または無機半導体である。
第2電極6は、導電性を有する。
多孔質層7は、電子輸送層3の上に、例えば、塗布法によって形成される。光電変換素子が電子輸送層3を備えない場合は、第1電極2の上に形成される。
中間層8は、フラーレン(C60)、C60誘導体、またはC60を持つ自己組織化単分子層(以下、「C60SAM」ともいう)を含む。中間層8により効率的に電子収集が行わるため、電子を電子輸送層3へ輸送する際の抵抗損失が低減される。
バッファ層9は、光電変換層4の欠陥を終端する、光電変換層4への外気(酸素および水分など)の侵入を抑制する、光電変換層4で発生した分解ガス(ヨウ素またはメチルアミンなど)の脱離を抑制する、あるいは正孔取り出しを改善できるエネルギー準位を持つ、などの機能を有する。
以下、第2実施形態による発光素子が説明される。第1実施形態および第2実施形態において説明された事項は、適宜、省略され得る。
(実施例1)
まず、溶質としてCH3NH3I(以下、「MAI」という。)およびAgIを含むDMF溶液を用意した。この溶液におけるMAIの濃度は1mol/Lであり、AgIの濃度は1mol/Lであった。この溶液を60℃以上かつ70℃以下のホットプレート上で熱処理することにより、溶質を完全に溶解させた。
実施例2では、溶質としてMAIの代わりにHC(NH2)2I(以下、「FAI」という。)を用いた。それ以外は、実施例1と同様にして、FAAgI2により表される実施例2による化合物が得られた。
実施例3では、溶質としてMAIの代わりにCH3CH2NH3I(以下、「EAI」という。)を用いた。それ以外は、実施例1と同様にして、EAAgI2により表される実施例3による化合物が得られた。
実施例4では、溶質としてMAIの代わりにC((NH)2)3I(以下、「GAI」という。)を用いた。それ以外は、実施例1と同様にして、GAAgI2により表される実施例4による化合物が得られた。
まず、溶質としてMAIおよびAgIを含むDMF溶液を用意した。この溶液におけるMAIの濃度は0.5mol/Lであり、AgIの濃度は1mol/Lであった。
実施例6では、溶質としてMAIの代わりにFAIを用いた。それ以外は、実施例5と同様にして、FAAg2I3により表される実施例6による化合物が得られた。
実施例7では、溶質としてMAIの代わりにEAIを用いた。それ以外は、実施例5と同様にして、EAAg2I3により表される実施例7による化合物が得られた。
実施例8では、溶質としてMAIの代わりにGAIを用いた。それ以外は、実施例5と同様にして、GAAg2I3により表される実施例8による化合物が得られた。
実施例9では、溶質としてMAIの代わりにFABrを、AgIの代わりにAgBrを用いた。それ以外は、実施例1と同様にして、FAAgBr2により表される実施例9による化合物が得られた。
実施例10では、溶質としてMAIの代わりにEABrを、AgIの代わりにAgBrを用いた。それ以外は、実施例1と同様にして、EAAgBr2により表される実施例10による化合物が得られた。
まず、溶質としてFAIおよびAgIを含むDMF溶液を用意した。この溶液におけるFAIの濃度は1mol/Lであり、AgIの濃度は0.5mol/Lであった。
実施例12では、溶質としてFAIの代わりにEAIを用いた。それ以外は、実施例11と同様にして、EA2AgI3により表される実施例12による化合物が得られた。
実施例13では、溶質としてFAIの代わりにFABrを、AgIの代わりにAgBrを用いた。それ以外は、実施例11と同様にして、FA2AgBr3により表される実施例13による化合物が得られた。
実施例14では、溶質としてFAIの代わりにEABrを、AgIの代わりにAgBrを用いた。それ以外は、実施例11と同様にして、EA2AgBr3により表される実施例14による化合物が得られた。
実施例15では、溶質としてFAIの代わりにFAClを、AgIの代わりにAgClを用いた。それ以外は、実施例11と同様にして、FA2AgCl3により表される実施例15による化合物が得られた。
・基板:ガラス基板(厚さ:0.7mm)
・第1電極:透明電極 インジウム-錫複合酸化物層(厚さ:200nm)
・電子輸送層:酸化チタン(TiO2)(厚さ:10nm)
・多孔質層:メソポーラス構造酸化チタン(TiO2)
・中間層:4-(1′,5′-Dihydro-1′-methyl-2′H-[5,6]fullereno-C60-Ih-[1,9-c]pyrrol-2′-yl)benzoic acid(すなわち、C60SAM)(Sigma-Aldrich製)
・光電変換層:HC(NH2)2PbI3を主として含む層(厚さ:500nm)
・バッファ層:EAAg2I3またはn-ブチルアンモニウムブロミド(greatcellSolar製)を含む層
・正孔輸送層:PTAAを主として含む層(但し、添加剤として、トリス(ペンタフルオロフェニル)ボラン(TPFPB)(東京化成工業製)が含まれる)(厚さ:50nm)
・第2電極:Au(厚さ:200nm)
(実施例16)
まず、0.7mmの厚みを有するガラス基板を用意した。
実施例17では、多孔質層を形成しなかった。光電変換材料の原料溶液は0.84mol/Lのヨウ化鉛(II)(東京化成工業製)、0.25mol/Lの臭化鉛(II)(東京化成工業製)、0.73mol/Lのヨウ化ホルムアミジニウム(GreatCell Solar製)、0.02mol/Lのヨウ化メチルアンモニウム(GreatCell Solar製)、0.15mol/Lの臭化メチルアンモニウム(GreatCell Solar製)、0.1mol/Lの臭化ホルムアミジニウム(GreatCell Solar製)、0.05mol/Lのヨウ化セシウム(岩谷産業製)、および0.025mol/Lのヨウ化ルビジウム(岩谷産業製)を含む溶液であり、バッファ材料の原料溶液は、EAAg2I3の代わりにFAAgBr2を含んでいた。上記の事項以外は、実施例16と同様にして、実施例17による光電変換素子が得られた。
実施例18では、バッファ材料の原料溶液は、FAAgBr2の代わりにEAAgBr2を含んでいた。それ以外は、実施例17と同様にして、実施例18による光電変換素子が得られた。
比較例1では、バッファ材料の原料溶液は、EAAg2I3の代わりにn-ブチルアンモニウムブロミドを含んでいた。それ以外は、実施例16と同様にして、比較例1による光電変換素子が得られた。
比較例2では、バッファ材料の原料溶液は、FAAgBr2の代わりにn-ブチルアンモニウムブロミドを含んでいた。それ以外は、実施例17と同様にして、比較例2による光電変換素子が得られた。
実施例1から15による化合物について、CuKα線を用いてX線回折測定を行った。測定波長は0.15405nmであり、全自動水平型多目的X線回折装置(Rigaku製、SmartLab)を用いた。
実施例1から15による化合物について、分光光度計(島津製作所製、Solidspec-3700)を用いて透過率を測定した。波長は、190nmまたは300nmから1400nmであった。透過率Tから吸収係数αを算出し、横軸を光のエネルギーhν、縦軸を(αhν)2として、Taucプロットした。
実施例1から15による化合物について、大気中における光電子分光測定により仕事関数を求めた。すなわち、実施例1から15による化合物について、価電子帯上端のエネルギー(VBM)を求めた。測定は、光電子収量分光装置(理研計器製、AC-2)を用いて行われた。
実施例1から15による化合物について、小型蛍光寿命測定装置(浜松ホトニクス製、Quantaurus-Tau)を用いて、フォトルミネッセンス測定を行った。励起波長は254nmであった。表1に、実施例1から15による化合物の相対発光強度を示した。相対発光強度は、実施例1から15による化合物の波長375nmから795nmに観測された最大ピークのフォトルミネッセンス強度を、実施例4による化合物の波長375nmから795nmに観測された最大ピークのフォトルミネッセンス強度で規格化した値である。なお、実施例4による化合物の波長375nmから795nmに観測された最大ピークのフォトルミネッセンス強度は541a.u.であった。
実施例16および比較例1による光電変換素子の光電変換効率を測定した。
実施例17、18、および比較例2による光電変換素子の出力を測定した。
測定には、電気化学アナライザ(ALS440B、BAS製)および蛍光灯を用いた。測定前に、シリコンフォトダイオードを用いて、光強度を200luxに校正した。電圧の掃引速度は100mV/sで行った。測定開始前に、光照射および長時間の順バイアス印加のような事前調整は行わなかった。実効面積を固定し散乱光の影響を減少させるために、開口部0.1cm2の黒色マスクで太陽電池をマスクした状態で、マスク/基板側から光を照射した。出力の測定は、室温で、乾燥空気(<2%RH)下で行った。
実施例16および比較例1による光電変換素子について、耐熱試験Aを実施した。耐熱試験Aでは、光電変換素子を恒温槽中にて85℃で158時間維持された。耐熱試験A後に、上記の方法で、光電変換素子の光電変換効率が測定された。耐熱試験Aの前後に測定された光電変換特性が、表2に示される。
実施例17、18および比較例2による光電変換素子について、耐熱試験Bを実施した。耐熱試験Bでは、光電変換素子を恒温槽中にて85℃で20、106、または460時間維持された。それぞれの時間が経過した後に、上記の方法で、光電変換素子の低照度出力が測定された。耐熱試験Bによる200luxの光照射時の出力が、表3に示される。
表2に示されるように、耐熱試験前の実施例16の光電変換効率は、比較例1より低いものの、耐熱試験後の実施例16の光電変換効率は、比較例1より高かった。比較例1の光電変換効率の熱劣化率が-44.5%であるのに対して、実施例16の光電変換効率の熱劣化率は-3.3%であった。ここで、光電変換効率の熱劣化率は、(耐熱試験後の光電変換効率-耐熱試験前の光電変換効率)/耐熱試験前の光電変換効率×100(%)により算出された。したがって、EAAg2I3をバッファ層として適用することで、熱劣化が大きく抑制されることが明らかとなった。これは、EAAg2I3のVBMが、光電変換層を構成する3次元ペロブスカイトのVBMと正孔輸送層を構成するPTAAのHOMO準位との間に位置していることにより、正孔取り出しを妨げることなく、バッファ層によって熱による光電変換層からの分解ガス(ヨウ素またはメチルアミンなど)の脱離を抑制できたためと考えられる。なお、実施例16および比較例1による光電変換素子における光電変換層を構成する3次元ペロブスカイトのVBMは、-5.6eVであり、バッファ層を構成するEAAg2I3のVBMは、-5.57eVであり、正孔輸送層を構成するPTAAのHOMO準位は、-5.3eVである。
表3に示されるように、実施例17および18の出力は、いずれの耐熱試験時間においても比較例2よりも高かった。これは、光電変換層および正孔輸送層の界面の欠陥が低減されたことを意味する。また、実施例17および18は、比較例2と比較して、時間経過による出力の減少は大きく抑制された。したがって、FAAgBr2またはEAAgBr2をバッファ層として適用した場合においても、熱劣化が大きく抑制されることが明らかとなった。これは、バッファ層によって熱による光電変換層からの分解ガス(ヨウ素またはメチルアミンなど)の脱離を抑制できたためと考えられる。なお、実施例17、18、および比較例2による光電変換素子における光電変換層を構成する3次元ペロブスカイトのVBMは、-5.66eVであり、バッファ層を構成するFAAgBr2のVBMは、-5.75eVであり、EAAgBr2のVBMは-5.45eVであり、正孔輸送層を構成するPTAAのHOMO準位は、-5.3eVである。実施例18が実施例17よりも出力が高い要因は、EAAgBr2のVBMが、光電変換層を構成する3次元ペロブスカイトのVBMと正孔輸送層を構成するPTAAのHOMO準位との間に位置していることにより、正孔取り出しを妨げなかったためと考えられる。
2 第1電極
3 電子輸送層
4 光電変換層
5 正孔輸送層
6 第2電極
7 多孔質層
8 中間層
9 バッファ層
100、200、300、400 太陽電池
Claims (12)
- A、Ag、およびXからなり、
Aは、1価のカチオンであり、かつ、有機カチオンを含み、
Xは、ハロゲン化物イオンおよびチオシアン酸イオンからなる群より選択される少なくとも1つである、
化合物。 - 3.10eV以上かつ5.10eV以下のバンドギャップを有する、
請求項1に記載の化合物。 - エネルギー準位が真空準位を基準として-6.20eV以上かつ-5.00eV以下である価電子帯上端を有する、請求項1または2に記載の化合物。
- 前記有機カチオンのイオン半径は、216pm以上かつ450pm以下である、
請求項1から3のいずれか一項に記載の化合物。 - 前記有機カチオンは、ヒドロキシルアミンカチオン、メチルアンモニウムカチオン、ヒドラジニウムカチオン、アゼチジニウムカチオン、ホルムアミジニウムカチオン、イミダゾリウムカチオン、ジメチルアンモニウムカチオン、エチルアンモニウムカチオン、グアニジニウムカチオン、トリメチルアンモニウムカチオン、テトラメチルアンモニウムカチオン、チアゾリウムカチオン、ピペラジニウムカチオン、トロピリウムカチオン、ダブコニウムカチオン、ブチルアンモニウムカチオン、ベンジルアンモニウムカチオン、フェネチルアンモニウムカチオン、およびテトラプロピルアンモニウムカチオンからなる群より選択される少なくとも1つである、
請求項1から4のいずれか一項に記載の化合物。 - 前記有機カチオンは、メチルアンモニウムカチオン、ホルムアミジニウムカチオン、エチルアンモニウムカチオン、およびグアニジニウムカチオンからなる群より選択される少なくとも1つである、請求項5に記載の化合物。
- AAgX2、AAg2X3、またはA2AgX3、により表される、
請求項1から6のいずれか一項に記載の化合物。 - Xは、ヨウ化物イオンを含む、
請求項1から7のいずれか一項に記載の化合物。 - 第1電極、光電変換層、および第2電極、をこの順で備えた電子デバイスであって、
前記電子デバイスは、
請求項1から8のいずれか一項に記載の化合物を含む、電子デバイス。 - 前記光電変換層は、前記化合物を含む、請求項9に記載の電子デバイス。
- 正孔輸送層およびバッファ層をさらに備え、
前記正孔輸送層は、前記光電変換層および前記第2電極の間に配置され、
前記バッファ層は、前記正孔輸送層および前記光電変換層の間に配置され、
前記バッファ層は、前記化合物を含む、
請求項9に記載の電子デバイス。 - 発光層を備え、
前記発光層は、請求項1から8のいずれか一項に記載の化合物を含む、
発光素子。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023523979A JP7515062B2 (ja) | 2021-05-26 | 2022-02-08 | 化合物ならびにそれを用いた電子デバイスおよび発光素子 |
EP22810844.5A EP4350791A4 (en) | 2021-05-26 | 2022-02-08 | ELECTRONIC COMPOUND AND DEVICE AND LIGHT-EMITTING ELEMENT USING SAME |
CN202280035007.XA CN117337633A (zh) | 2021-05-26 | 2022-02-08 | 化合物以及使用了其的电子器件和发光元件 |
US18/499,277 US20240065093A1 (en) | 2021-05-26 | 2023-11-01 | Compound, and electronic device and light-emitting device using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021088718 | 2021-05-26 | ||
JP2021-088718 | 2021-05-26 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/499,277 Continuation US20240065093A1 (en) | 2021-05-26 | 2023-11-01 | Compound, and electronic device and light-emitting device using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022249559A1 true WO2022249559A1 (ja) | 2022-12-01 |
Family
ID=84229725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/004782 WO2022249559A1 (ja) | 2021-05-26 | 2022-02-08 | 化合物ならびにそれを用いた電子デバイスおよび発光素子 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240065093A1 (ja) |
EP (1) | EP4350791A4 (ja) |
JP (1) | JP7515062B2 (ja) |
CN (1) | CN117337633A (ja) |
WO (1) | WO2022249559A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160155974A1 (en) * | 2014-12-01 | 2016-06-02 | The Regents Of The University Of California | Complex pnictide metal halides for optoelectronic applications |
US20170194101A1 (en) * | 2015-12-31 | 2017-07-06 | The Board Of Trustees Of The Leland Stanford Junior University | HALIDE DOUBLE PEROVSKITE Cs2AgBiBr6 SOLAR-CELL ABSORBER HAVING LONG CARRIER LIFETIMES |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2016316984B2 (en) * | 2015-09-02 | 2021-11-25 | Oxford University Innovation Limited | Double perovskite |
CN106319623B (zh) * | 2016-09-18 | 2018-09-11 | 济南大学 | 一种银碘基杂化二阶非线性光学材料及其合成与应用 |
CN109053578B (zh) * | 2018-09-27 | 2021-04-20 | 安阳师范学院 | 一种无机有机杂化银碘化物、其制备方法及作为荧光温度计的应用 |
-
2022
- 2022-02-08 WO PCT/JP2022/004782 patent/WO2022249559A1/ja active Application Filing
- 2022-02-08 JP JP2023523979A patent/JP7515062B2/ja active Active
- 2022-02-08 CN CN202280035007.XA patent/CN117337633A/zh active Pending
- 2022-02-08 EP EP22810844.5A patent/EP4350791A4/en active Pending
-
2023
- 2023-11-01 US US18/499,277 patent/US20240065093A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160155974A1 (en) * | 2014-12-01 | 2016-06-02 | The Regents Of The University Of California | Complex pnictide metal halides for optoelectronic applications |
US20170194101A1 (en) * | 2015-12-31 | 2017-07-06 | The Board Of Trustees Of The Leland Stanford Junior University | HALIDE DOUBLE PEROVSKITE Cs2AgBiBr6 SOLAR-CELL ABSORBER HAVING LONG CARRIER LIFETIMES |
Non-Patent Citations (10)
Title |
---|
G. LANTY ET AL., THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS, vol. 5, October 2014 (2014-10-01), pages 3958 - 3963 |
GRAY MATTHEW B., HOLZAPFEL NOAH P., LIU TIANYU, DA CRUZ PINHA BARBOSA VICTOR, HARVEY NICHOLAS P., WOODWARD PATRICK M.: "Synthesis, crystal chemistry, and optical properties of two methylammonium silver halides: CH 3 NH 3 AgBr 2 and CH 3 NH 3 Ag 2 I 3", JOURNAL OF MATERIALS CHEMISTRY C, vol. 9, no. 29, 2 June 2021 (2021-06-02), GB , pages 9251 - 9260, XP093007615, ISSN: 2050-7526, DOI: 10.1039/D1TC01737C * |
GREGOR KIESLICH ET AL., CHEMICAL SCIENCE, vol. 5, 2014, pages 4712 - 4715 |
JANA MANOJ K., JANKE SVENJA M., DIRKES DAVID J., DOVLETGELDI SEYITLIYEV, LIU CHI, QIN XIXI, GUNDOGDU KENAN, YOU WEI, BLUM VOLKER, : "Direct-Bandgap 2D Silver–Bismuth Iodide Double Perovskite: The Structure-Directing Influence of an Oligothiophene Spacer Cation", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 141, no. 19, 15 May 2019 (2019-05-15), pages 7955 - 7964, XP093007609, ISSN: 0002-7863, DOI: 10.1021/jacs.9b02909 * |
L. DOU ET AL., SCIENCE, vol. 349, September 2015 (2015-09-01), pages 1518 - 1521 |
LI YA-JUAN, WU TAO, SUN LEI, YANG RUI-XIA, JIANG LEI, CHENG PENG-FEI, HAO QUN-QING, WANG TIAN-JUN, LU RUI-FENG, DENG WEI-QIAO: "Lead-free and stable antimony–silver-halide double perovskite (CH 3 NH 3 ) 2 AgSbI 6", RSC ADVANCES, vol. 7, no. 56, 13 July 2017 (2017-07-13), pages 35175 - 35180, XP093007604, DOI: 10.1039/C7RA06130G * |
M. I. SAIDAMINOV ET AL., NATURE COMMUNICATIONS, vol. 6, July 2015 (2015-07-01), pages 7586 |
S. TAO ET AL., NATURE COMMUNICATIONS, vol. 10, June 2019 (2019-06-01), pages 2560 |
See also references of EP4350791A4 |
SUN CHEN, GUO YA-HUI, YUAN YUN, CHU WEN-XIN, HE WEN-LI, CHE HANG-XIN, JING ZHI-HONG, YUE CHENG-YANG, LEI XIAO-WU: "Broadband White-Light Emission in One-Dimensional Organic–Inorganic Hybrid Silver Halide", INORGANIC CHEMISTRY, vol. 59, no. 7, 6 April 2020 (2020-04-06), Easton , US , pages 4311 - 4319, XP093007600, ISSN: 0020-1669, DOI: 10.1021/acs.inorgchem.9b03139 * |
Also Published As
Publication number | Publication date |
---|---|
EP4350791A4 (en) | 2024-09-18 |
EP4350791A1 (en) | 2024-04-10 |
US20240065093A1 (en) | 2024-02-22 |
CN117337633A (zh) | 2024-01-02 |
JPWO2022249559A1 (ja) | 2022-12-01 |
JP7515062B2 (ja) | 2024-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7129066B2 (ja) | 混合カチオンペロブスカイト固体太陽電池とその製造 | |
KR20210080572A (ko) | 광기전 장치를 위한 향상된 페로브스카이트 물질 | |
Thambidurai et al. | Improved photovoltaic performance of triple-cation mixed-halide perovskite solar cells with binary trivalent metals incorporated into the titanium dioxide electron transport layer | |
EP3381070A1 (en) | Mixed cation perovskite | |
JP7304517B2 (ja) | 太陽電池 | |
JP7232032B2 (ja) | 太陽電池 | |
WO2021100237A1 (ja) | 太陽電池 | |
JP2017199893A (ja) | 光吸収材料およびそれを用いた太陽電池 | |
US20240057360A1 (en) | Solar cell and method of producing solar cell | |
JP7165942B2 (ja) | 光吸収材料及びそれを用いた太陽電池 | |
WO2022249559A1 (ja) | 化合物ならびにそれを用いた電子デバイスおよび発光素子 | |
WO2021261176A1 (ja) | 太陽電池 | |
JP2019134158A (ja) | 太陽電池 | |
WO2021182431A1 (ja) | 高純度化スズ含有ペロブスカイト半導体材料 | |
WO2022244336A1 (ja) | 太陽電池および太陽電池の製造方法 | |
WO2023176321A1 (ja) | 光電変換材料およびそれを用いた光電変換素子 | |
WO2023106042A1 (ja) | 太陽電池 | |
WO2023063429A1 (ja) | 光電変換材料およびそれを用いた光電変換素子 | |
JP7386443B2 (ja) | 太陽電池 | |
WO2023054073A1 (ja) | 光電変換素子およびその製造方法、ならびに組成物 | |
WO2022244412A1 (ja) | 太陽電池および太陽電池の製造方法 | |
WO2022244289A1 (ja) | 半導体材料および光電変換素子 | |
EP4343872A1 (en) | Solar cell and solar cell manufacturing method | |
RU2788942C2 (ru) | Фотовольтаическое устройство с перовскитным фотоактивным слоем и неорганическим пассивирующим покрытием на основе галогенидов металлов и способ изготовления этого устройства | |
WO2022176335A1 (ja) | 太陽電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22810844 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023523979 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280035007.X Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022810844 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022810844 Country of ref document: EP Effective date: 20240102 |