WO2023176321A1 - 光電変換材料およびそれを用いた光電変換素子 - Google Patents

光電変換材料およびそれを用いた光電変換素子 Download PDF

Info

Publication number
WO2023176321A1
WO2023176321A1 PCT/JP2023/006032 JP2023006032W WO2023176321A1 WO 2023176321 A1 WO2023176321 A1 WO 2023176321A1 JP 2023006032 W JP2023006032 W JP 2023006032W WO 2023176321 A1 WO2023176321 A1 WO 2023176321A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
conversion material
ammonium salt
material according
layer
Prior art date
Application number
PCT/JP2023/006032
Other languages
English (en)
French (fr)
Inventor
紘子 奥村
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023176321A1 publication Critical patent/WO2023176321A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices

Definitions

  • the present disclosure relates to a photoelectric conversion material and a photoelectric conversion element using the same.
  • Non-Patent Document 1 discloses that after forming a layer made of CsPbI 3 , a layer made of tetrabutylammonium iodide (TBAI) is formed on the layer to provide TBAPbI 3 protection on the surface of the layer made of CsPbI 3 .
  • TBAI tetrabutylammonium iodide
  • An object of the present disclosure is to provide a novel photoelectric conversion material that can improve photoelectric conversion efficiency.
  • FIG. 6 is a graph showing the IV characteristics of Example 1, Example 3, Example 4, and Comparative Example 1.
  • FIG. 7 is a graph showing the IV characteristics of Example 2, Example 5, Example 6, Comparative Example 1, and Comparative Example 2.
  • FIG. 8 is a graph showing the IV characteristics of Examples 7 to 10.
  • FIG. 9 is a graph showing the photoluminescence (PL) emission spectrum of a single photoelectric conversion layer formed of CsSnI 3 +16 mol% SnF 2 .
  • FIG. 10 is a graph showing the PL emission spectrum of a single photoelectric conversion layer formed of CsSnI 3 +16 mol% SnF 2 +5 mol% butylammonium iodide.
  • FIG. PL photoluminescence
  • FIG. 11 is a graph showing the PL emission lifetime of a single photoelectric conversion layer formed of CsSnI 3 +16 mol% SnF 2 .
  • FIG. 12 is a graph showing the PL emission lifetime of a single photoelectric conversion layer formed of CsSnI 3 +16 mol% SnF 2 +5 mol% butylammonium iodide.
  • FIG. 13 shows an SEM (scanning electron microscope) photograph taken from above of a photoelectric conversion layer formed of CsSnI 3 +16 mol% SnF 2 .
  • FIG. 14 shows a SEM photograph taken from above of a photoelectric conversion layer formed of CsSnI 3 +16 mol% SnF 2 +5 mol% butylammonium iodide.
  • the photoelectric conversion material of the first embodiment includes a perovskite compound and an ammonium salt.
  • the photoelectric conversion efficiency of the photoelectric conversion material can be improved.
  • the photoelectric conversion material of the first embodiment may be, for example, a mixture of a perovskite compound and an ammonium salt.
  • the perovskite compound and the ammonium salt may be uniformly mixed throughout. Therefore, according to such a configuration, the photoelectric conversion material of the first embodiment can further improve the photoelectric conversion efficiency.
  • One of the reasons for this improvement in photoelectric conversion efficiency is thought to be that the inclusion of ammonium salt increases the particle size of the perovskite compound crystals in the photoelectric conversion material, reducing carrier recombination. . Since the PL emission lifetime is extended by the inclusion of an ammonium salt, it is thought that the carrier diffusion length is extended by the inclusion of the ammonium salt.
  • the average primary particle diameter of the perovskite compound is, for example, 2 ⁇ m or more.
  • the average primary particle diameter of the perovskite compound in the photoelectric conversion material of the first embodiment is determined by measuring the primary particle diameter of the perovskite compound using a SEM image and calculating the average value from the measured value.
  • the primary particle diameter measured is the maximum diameter of the primary particles. For example, 50 particles in the SEM image are selected in descending order of primary particle diameter.
  • the average value is calculated using these 50 primary particle diameters, and the obtained value is defined as the average primary particle diameter.
  • the average primary particle diameter of the perovskite compound may be 5 ⁇ m or more, or 10 ⁇ m or more.
  • the average primary particle diameter of the perovskite compound is, for example, 100 ⁇ m or less.
  • the energy of the PL emission peak of the photoelectric conversion material of the first embodiment may be substantially the same as the energy of the PL emission peak of the perovskite compound contained in the photoelectric conversion material. That is, the band gap of the photoelectric conversion material of the first embodiment may be substantially the same as the band gap of the perovskite compound contained in the photoelectric conversion material.
  • the crystal structure of the photoelectric conversion material of the first embodiment does not change depending on the presence or absence of an ammonium salt, and the crystal structure of a perovskite compound to which no ammonium salt is added can be maintained. Therefore, with this configuration, the photoelectric conversion material of the first embodiment can further improve the photoelectric conversion efficiency without changing the light absorption characteristics (for example, the wavelength of absorbed light).
  • the energies of the PL emission peaks are substantially the same means that the difference in energy of the PL emission peaks is within a range of 0 eV or more and 0.03 eV or less.
  • bandgaps are substantially the same means that the difference in bandgaps is within a range of 0 eV or more and 0.03 eV or less.
  • the energy of the PL emission peak of the photoelectric conversion material of the first embodiment may be smaller than 1.55 eV, for example. That is, the wavelength of the PL emission peak of the photoelectric conversion material of the first embodiment may be greater than 800 nm. By having such a PL emission peak, the photoelectric conversion material of the first embodiment can further improve photoelectric conversion efficiency.
  • the energy of the PL emission peak of the photoelectric conversion material of the first embodiment may be, for example, 1.1 eV or more. That is, the wavelength of the PL emission peak of the photoelectric conversion material of the first embodiment may be 1127 nm or less.
  • the ammonium salt may contain at least one selected from the group consisting of an alkyl group and an aryl group.
  • the number of carbon atoms in the alkyl group may be 1 or more and 10 or less.
  • the number of carbon atoms in the alkyl group may be 1 or more and 7 or less.
  • the ammonium salt may contain an alkyl group, and the alkyl group may have 1 or more and 10 or less carbon atoms.
  • the number of carbon atoms in the alkyl group may be 1 or more and 7 or less.
  • the ammonium salt may contain a quaternary ammonium salt.
  • the ammonium salt may include a quaternary ammonium salt and an ammonium salt other than the quaternary ammonium salt.
  • the ammonium salt may be a quaternary ammonium salt.
  • the ammonium salt may contain a halogen element.
  • halogen elements are fluorine, chlorine, bromine, and iodine.
  • the ammonium salt may include an iodine-containing ammonium salt.
  • the iodine-containing ammonium salt may be at least one selected from the group consisting of tetrapropylammonium iodide, tetrabutylammonium iodide, tetraamylammonium iodide, tetrahexylammonium iodide, and tetraheptylammonium iodide. good.
  • the iodine-containing ammonium salt may be tetrapropylammonium iodide, tetrabutylammonium iodide, and tetraamylammonium iodide.
  • FIG. 1A shows the molecular structure of tetrapropylammonium iodide, which is an example of a quaternary ammonium salt that can be used as an ammonium salt in the photoelectric conversion material of the first embodiment.
  • FIG. 1A shows the molecular structure of tetrapropylammonium iodide, which is an example of a quaternary ammonium salt that can be used as an ammonium salt in the photoelectric conversion material of the first embodiment.
  • FIG. 1B shows the molecular structure of tetrabutylammonium iodide, which is another example of a quaternary ammonium salt that can be used as an ammonium salt in the photoelectric conversion material of the first embodiment.
  • FIG. 1C shows the molecular structure of tetraamylammonium iodide, which is yet another example of a quaternary ammonium salt that can be used as an ammonium salt in the photoelectric conversion material of the first embodiment.
  • TPAI tetrapropylammonium iodide
  • TBAI tetrabutylammonium iodide
  • TAAI tetraamylammonium iodide
  • the ammonium salt may include a fluorine-containing ammonium salt.
  • the fluorine-containing ammonium salt may be at least one selected from the group consisting of tetramethylammonium fluoride and tetrabutylammonium fluoride.
  • TMAF tetramethylammonium fluoride
  • the molar ratio of the ammonium salt to the perovskite compound may be 0.01 or more and 0.50 or less.
  • the molar ratio of the ammonium salt to the perovskite compound may be 0.01 or more and 0.20 or less.
  • the molar ratio of the ammonium salt to the perovskite compound may be 0.05 or more and 0.10 or less.
  • the molar ratio of ammonium salt to perovskite compound is defined by any combination selected from the following values: 0.01, 0.05, 0.07, 0.1, 0.15, 0.2, and 0.5. Good too.
  • Perovskite compounds have a high light absorption coefficient in the wavelength range of the sunlight spectrum and high carrier mobility. Therefore, a photoelectric conversion material containing a perovskite compound has high photoelectric conversion efficiency.
  • the perovskite compound may contain a halogen anion. That is, the perovskite compound may be a halide.
  • the perovskite compound may be composed of a monovalent cation, a divalent cation, and a halogen anion.
  • the divalent cation may include at least one selected from the group consisting of Sn cation, Ge cation, and Pb cation.
  • the monovalent cation in the perovskite compound may contain 50 mol% or more of inorganic cations.
  • the perovskite compound is represented by the composition formula ABX 3 , for example.
  • A is a monovalent cation
  • B is a divalent metal cation
  • X is a monovalent anion.
  • Examples of monovalent cations A are organic cations or alkali metal cations. As mentioned above, the monovalent cation A may contain 50 mol% or more of an inorganic cation, that is, an alkali metal cation.
  • organic cations are the methylammonium cation (CH 3 NH 3 + ), the formamidinium cation (NH 2 CHNH 2 + ) or the guanidinium ion (C(NH 2 ) 3 + ).
  • alkali metal cations are Cs cations or Rb cations.
  • divalent metal cation B is a divalent metal cation.
  • divalent cations B are Pb cations, Sn cations or Ge cations.
  • X is a monovalent anion.
  • anion X is a halogen anion.
  • Halogen anions are, for example, chlorine, bromine, or iodine.
  • the sites of cation A, cation B, and anion X may each contain multiple types of ions.
  • the perovskite compound may be at least one selected from the group consisting of CsSnI 3 , CsGeI 3 , and CsPbI 3 .
  • the photoelectric conversion material of the first embodiment may further contain SnF2 .
  • SnF2 When the perovskite compound contains Sn cations as divalent cations, Sn defects can be reduced by further containing SnF 2 . Therefore, by further including SnF 2 in the photoelectric conversion material of the first embodiment, the photoelectric conversion efficiency can be improved.
  • the photoelectric conversion material of the first embodiment can be manufactured, for example, by the method below.
  • a precursor solution of the photoelectric conversion material of the first embodiment is prepared.
  • the precursor solution of the photoelectric conversion material of the first embodiment can be prepared, for example, by mixing a solution in which an ammonium salt is dissolved with a precursor solution of a perovskite compound.
  • the raw materials used for preparing the precursor solution of the photoelectric conversion material of the first embodiment include, for example, a compound containing a monovalent cation such as CsI and a halogen anion, a divalent cation such as SnI 2 , and a halogen anion. and compounds containing divalent cations and F anions such as SnF 2 .
  • the solvent one type of solvent may be used, or a mixed solvent containing a plurality of solvents may be used.
  • the solvent may be, for example, a mixed solvent containing DMF (dimethylformamide) and DMSO (dimethyl sulfoxide).
  • the precursor solution of the photoelectric conversion material of the first embodiment includes, for example, a first solution containing a compound containing a monovalent cation and a halogen anion, a compound containing a divalent cation and a halogen anion, and a solvent; Prepared by preparing a second solution containing a compound containing a halogen and an F anion, and a solvent, and a third solution containing an ammonium salt and a solvent, and mixing the second solution and the third solution with the first solution. may be done.
  • the prepared precursor solution of the photoelectric conversion material of the first embodiment is applied to a substrate by a coating method such as spin coating, and the resulting coating film is left to stand for a predetermined period of time. Growth of crystal nuclei in the film. After that, the film obtained by spin coating is fired. For example, when a mixed solvent of DMF and DMSO (1:1 volume ratio) is used, crystal nuclei are grown in the coating film at room temperature, and then the coating film is baked at a temperature of about 200°C. Good too.
  • the photoelectric conversion element according to the second embodiment includes a first electrode, a photoelectric conversion layer, and a second electrode.
  • the photoelectric conversion element according to the second embodiment may include a first electrode, a photoelectric conversion layer, and a second electrode in this order.
  • the photoelectric conversion layer contains the photoelectric conversion material of the first embodiment. Therefore, the photoelectric conversion element of the second embodiment has high photoelectric conversion efficiency.
  • the photoelectric conversion element is, for example, a solar cell.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of the photoelectric conversion element 100 of the second embodiment.
  • the photoelectric conversion element 100 includes a substrate 1, a first electrode 2, an electron transport layer 3, a photoelectric conversion layer 4, a hole transport layer 5, and a second electrode 6 in this order. Note that the substrate 1, the electron transport layer 3, and the hole transport layer 5 may not be provided.
  • the photoelectric conversion layer 4 contains the photoelectric conversion material of the first embodiment.
  • the photoelectric conversion layer 4 may be a single layer, and the single layer may be formed of the photoelectric conversion material of the first embodiment.
  • the photoelectric conversion layer 4 absorbs the light and separates the charges into electrons and holes. Electrons generated by this charge separation pass through the electron transport layer 3 and move to the first electrode 2. On the other hand, holes generated in the photoelectric conversion layer 4 move to the second electrode 6 via the hole transport layer 5. Thereby, the photoelectric conversion element 100 can extract current from the first electrode 2 as a negative electrode and the second electrode 6 as a positive electrode.
  • the substrate 1 plays a role of holding each layer of the photoelectric conversion element 100.
  • Substrate 1 can be formed from a transparent material.
  • a transparent material for example, a glass substrate or a plastic substrate can be used.
  • the plastic substrate may be, for example, a plastic film.
  • the substrate 1 may be formed from a material that does not have translucency.
  • a material metal, ceramics, or a resin material with low translucency can be used.
  • each layer can be held by the first electrode 2, so it is not necessary to provide the substrate 1.
  • the first electrode 2 has conductivity.
  • the first electrode 2 has translucency. For example, it transmits light from the visible region to the near-infrared region.
  • the first electrode 2 is made of, for example, a transparent and conductive material.
  • materials are metal oxides or metal nitrides.
  • examples of such materials are: (i) titanium oxide doped with at least one selected from the group consisting of lithium, magnesium, niobium, and fluorine; (ii) gallium oxide doped with at least one selected from the group consisting of tin and silicon; (iii) gallium nitride doped with at least one selected from the group consisting of silicon and oxygen; (iv) tin oxide doped with at least one selected from the group consisting of antimony and fluorine; (v) zinc oxide doped with at least one selected from the group consisting of boron, aluminum, gallium, and indium; (vi) indium-tin composite oxide, or (vii) composites of these; It is.
  • the first electrode 2 may be formed with a pattern through which light passes.
  • patterns through which light passes are lines, wavy lines, grids, or punched metal patterns in which a large number of fine through holes are regularly or irregularly arranged.
  • a non-transparent material can be used.
  • non-transparent electrode materials are platinum, gold, silver, copper, aluminum, rhodium, indium, titanium, iron, nickel, tin, zinc, or alloys containing any of these.
  • a carbon material having electrical conductivity may be used as a non-transparent electrode material.
  • the light transmittance of the first electrode 2 does not have to be achieved by the pattern that allows light to pass through as described above.
  • the first electrode 2 may be formed of a thin metal film with a thickness of about 10 nm.
  • Such thin film metals are, for example, platinum, gold, silver, copper, aluminum, rhodium, indium, titanium, iron, nickel, tin, zinc, or alloys containing any of these.
  • a carbon material having conductivity may be used instead of these metal materials.
  • the first electrode 2 has the ability to block holes from the photoelectric conversion layer 4. In this case, the first electrode 2 does not make ohmic contact with the photoelectric conversion layer 4. Furthermore, the property of blocking holes from the photoelectric conversion layer 4 refers to the property of allowing only electrons generated in the photoelectric conversion layer 4 to pass through and not allowing holes to pass through.
  • the Fermi energy of a material having such properties is higher than the energy at the top of the valence band of the photoelectric conversion layer 4.
  • the Fermi energy of the material having such properties may be higher than the Fermi energy of the photoelectric conversion layer 4.
  • a specific material is aluminum.
  • the first electrode 2 does not need to have the ability to block holes from the photoelectric conversion layer 4.
  • the first electrode 2 may be made of a material that can form ohmic contact with the photoelectric conversion layer 4. In this case, the first electrode 2 may or may not be in ohmic contact with the photoelectric conversion layer 4.
  • the light transmittance of the first electrode 2 may be, for example, 50% or more, or 80% or more.
  • the wavelength of light that should be transmitted through the first electrode 2 depends on the absorption wavelength of the photoelectric conversion layer 4.
  • the thickness of the first electrode 2 may be, for example, 1 nm or more and 1000 nm or less.
  • the electron transport layer 3 contains an electron transport material.
  • the electron transport material can be a semiconductor.
  • the electron transport layer 3 may be formed from a semiconductor having a band gap of 3.0 eV or more. Thereby, visible light and infrared light can be transmitted to the photoelectric conversion layer 4.
  • An example of an electron transport material is an inorganic n-type semiconductor.
  • Examples of inorganic n-type semiconductors are metal oxides, metal nitrides or perovskite oxides.
  • metal oxides are Cd, Zn, In, Pb, Mo, W, Sb, Bi, Cu, Hg, Ti, Ag, Mn, Fe, V, Sn, Zr, Sr, Ga, Si, or Cr. It is an oxide.
  • the metal oxide is, for example, TiO2 or SnO2 .
  • the metal nitride is, for example, GaN.
  • the perovskite oxide is, for example, SrTiO 3 or CaTiO 3 .
  • the electron transport layer 3 may be made of a semiconductor with a band gap of 6.0 eV or more.
  • semiconductors are halides of alkali metals or alkaline earth metals, such as lithium fluoride, calcium fluoride, alkali metal oxides, such as magnesium oxide, or silicon dioxide.
  • the electron transport layer 3 may have a thickness of, for example, 10 nm or less.
  • the electron transport layer 3 may include multiple layers made of different materials.
  • the photoelectric conversion layer 4 contains the photoelectric conversion material of the first embodiment.
  • the photoelectric conversion layer 4 may be a single layer, and the single layer may be formed of the photoelectric conversion material of the first embodiment.
  • the photoelectric conversion material of the first embodiment may be a mixture of a perovskite compound and an ammonium salt, and the perovskite compound and ammonium salt are uniformly mixed throughout. Good too. Therefore, the photoelectric conversion layer 4 formed of such a photoelectric conversion material may have a uniform composition in the thickness direction, and may also have a uniform composition overall.
  • the photoelectric conversion layer 4 may mainly contain the photoelectric conversion material of the first embodiment.
  • the photoelectric conversion layer 4 mainly contains the photoelectric conversion material of the first embodiment means that the photoelectric conversion layer 4 contains 50% by mass or more of the photoelectric conversion material of the first embodiment.
  • the photoelectric conversion layer 4 may contain 70% by mass or more of the photoelectric conversion material of the first embodiment.
  • the photoelectric conversion layer 4 may contain 90% by mass or more of the photoelectric conversion material of the first embodiment.
  • the photoelectric conversion layer 4 may be made of the photoelectric conversion material of the first embodiment.
  • the photoelectric conversion layer 4 only needs to contain the photoelectric conversion material of the first embodiment, and may contain defects or impurities.
  • the photoelectric conversion layer 4 may further include a photoelectric conversion material different from the photoelectric conversion material of the first embodiment.
  • the thickness of the photoelectric conversion layer 4 is, for example, 50 nm or more and 10 ⁇ m or less.
  • the photoelectric conversion layer 4 may be formed by a solution coating method, a printing method, or a vapor deposition method.
  • coating methods are a doctor blade method, a bar coating method, a spray method, a dip coating method, an inkjet method, a slit coating method (ie, a die coating method), or a spin coating method.
  • the hole transport layer 5 contains a hole transport material.
  • a hole transport material is a material that transports holes.
  • the hole transport material is, for example, an organic or inorganic semiconductor.
  • organic semiconductors examples include triphenylamine, triallylamine, phenylbenzidine, phenylenevinylene, tetrathiafulvalene, vinylnaphthalene, vinylcarbazole, thiophene, aniline, pyrrole, carbazole, triptycene, fluorene, azulene, pyrene, pentacene, perylene, acridine. , or phthalocyanine.
  • Examples of typical organic semiconductors used as hole transport materials are 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)9,9'-spirobifluorene, poly[bis( 4-phenyl) (2,4,6-trimethylphenyl)amine] (hereinafter also referred to as "PTAA”), poly(3-hexylthiophene-2,5-diyl), poly(3,4-ethylenedioxythiophene), or copper phthalosia Nin It is.
  • PTAA 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)9,9'-spirobifluorene
  • PTAA poly[bis( 4-phenyl) (2,4,6-trimethylphenyl)amine]
  • poly(3-hexylthiophene-2,5-diyl) poly(3,4-ethylenedioxythiophene
  • the inorganic semiconductor used as the hole transport material is a p-type semiconductor.
  • examples of inorganic semiconductors are Cu 2 O, CuGaO 2 , CuSCN, CuI, NiO x , MoO x , V 2 O 5 or carbon materials such as graphene oxide.
  • x satisfies x>0.
  • the hole transport layer 5 may include multiple layers made of different materials. For example, hole transport characteristics are improved by stacking a plurality of layers such that the ionization potential of the hole transport layer 5 is successively smaller than the ionization potential of the photoelectric conversion layer 4.
  • the thickness of the hole transport layer 5 may be 1 nm or more and 1000 nm or less, or may be 10 nm or more and 50 nm or less. Thereby, sufficient hole transport properties can be exhibited. Therefore, low resistance of the photoelectric conversion element 100 can be maintained, and high photoelectric conversion efficiency can be achieved.
  • the hole transport layer 5 is formed, for example, by a coating method, a printing method, or a vapor deposition method. This is similar to the photoelectric conversion layer 4.
  • coating methods are a doctor blade method, a bar coating method, a spray method, a dip coating method, an inkjet method, a slit coating method (ie, a die coating method), or a spin coating method.
  • An example of a printing method is screen printing.
  • the hole transport layer 5 may be prepared by mixing a plurality of materials, and then pressurized or fired. When the material of the hole transport layer 5 is an organic low molecular weight substance or an inorganic semiconductor, the hole transport layer 5 can also be produced by a vacuum evaporation method.
  • the hole transport layer 5 may contain not only a hole transport material but also an additive in order to improve conductivity.
  • additives are supporting electrolytes, solvents, or dopants.
  • the supporting electrolyte and the solvent have the effect of stabilizing holes in the hole transport layer 5.
  • the dopant has the effect of increasing the number of holes in the hole transport layer 5.
  • Examples of supporting electrolytes are ammonium salts, alkaline earth metal salts, or transition metal salts.
  • ammonium salts are tetrabutylammonium perchlorate, tetraethylammonium hexafluorophosphate, imidazolium salts or pyridinium salts.
  • Examples of alkali metal salts are lithium perchlorate or potassium tetrafluoride.
  • Examples of alkaline earth metal salts are lithium bis(trifluoromethanesulfonyl)imide or calcium bis(trifluoromethanesulfonyl)imide (II).
  • transition metal salts are bis(trifluoromethanesulfonyl)imide zinc(II) or tris[4-tert-butyl-2-(1H-pyrazol-1-yl)pyridine]cobalt(III) tris(trifluoromethanesulfonyl) It is an imide.
  • An example of the dopant is a fluorine-containing aromatic boron compound.
  • An example of a fluorine-containing aromatic boron compound is tris(pentafluorophenyl)borane.
  • the solvent contained in the hole transport layer 5 may have excellent ionic conductivity.
  • the solvent may be an aqueous solvent or an organic solvent.
  • the solvent contained in the hole transport layer 5 may be an organic solvent.
  • organic solvents are heterocyclic solvents such as tert-butylpyridine, pyridine, and n-methylpyrrolidone.
  • An ionic liquid may be used as the solvent.
  • Ionic liquids may be used alone or in combination with other solvents. Ionic liquids are desirable because they have low volatility and high flame retardancy.
  • ionic liquids examples include imidazolium-based, pyridine-based, alicyclic amine-based, aliphatic amine-based, or azonium amine-based, such as 1-ethyl-3-methylimidazolium tetracyanoborate.
  • the second electrode 6 has conductivity.
  • the second electrode 6 has the ability to block electrons from the photoelectric conversion layer 4. In this case, the second electrode 6 does not make ohmic contact with the photoelectric conversion layer 4 .
  • the ability to block electrons from the photoelectric conversion layer 4 refers to the property of allowing only holes generated in the photoelectric conversion layer 4 to pass through, but not allowing electrons to pass through.
  • the Fermi energy of a material having such properties is lower than the energy at the lower end of the conduction band of the photoelectric conversion layer 4.
  • the Fermi energy of the material having such properties may be lower than the Fermi energy of the photoelectric conversion layer 4. Specific materials include platinum, gold, or carbon materials such as graphene.
  • the second electrode 6 does not need to have the ability to block electrons from the photoelectric conversion layer 4.
  • the second electrode 6 may be made of a material that can form ohmic contact with the photoelectric conversion layer 4. Thereby, the second electrode 6 can be formed to have translucency.
  • the electrode on the side into which light is incident may have translucency. Therefore, one of the first electrode 2 and the second electrode 6 does not have to have translucency. That is, one of the first electrode 2 and the second electrode 6 does not need to be made of a light-transmitting material, and does not need to have a pattern including an opening that transmits light.
  • porous layer is formed on the electron transport layer 3 by, for example, a coating method.
  • the photoelectric conversion element 100 does not include the electron transport layer 3, it is formed on the first electrode 2.
  • the pore structure introduced by the porous layer serves as a foundation for forming the photoelectric conversion layer 4.
  • the porous layer does not inhibit light absorption of the photoelectric conversion layer 4 and electron transfer from the photoelectric conversion layer 4 to the electron transport layer 3.
  • the porous layer includes a porous body.
  • the porous body is formed, for example, by a series of insulating or semiconductor particles.
  • insulating particles are aluminum oxide particles or silicon oxide particles.
  • semiconductor particles are inorganic semiconductor particles.
  • inorganic semiconductors are metal oxides, perovskite oxides of metal elements, sulfides of metal elements, or metal chalcogenides.
  • metal oxides are Cd, Zn, In, Pb, Mo, W, Sb, Bi, Cu, Hg, Ti, Ag, Mn, Fe, V, Sn, Zr, Sr, Ga, Si, or Cr. It is an oxide.
  • the metal oxide is, for example, TiO2 .
  • perovskite oxides of metallic elements are SrTiO 3 or CaTiO 3 .
  • Examples of sulfides of metallic elements are CdS, ZnS, In 2 S 3 , PbS, Mo 2 S, WS 2 , Sb 2 S 3 , Bi 2 S 3 , ZnCdS 2 or Cu 2 S.
  • Examples of metal chalcogenides are CsSe, In2Se3 , WSe2 , HgS, PbSe or CdTe .
  • the thickness of the porous layer may be 0.01 ⁇ m or more and 10 ⁇ m or less, or 0.05 ⁇ m or more and 1 ⁇ m or less.
  • the surface roughness coefficient given by effective area/projected area may be 10 or more, or 100 or more.
  • Projected area is the area of the shadow that appears behind an object when it is illuminated with light from directly in front.
  • Effective area is the actual surface area of an object. The effective area can be calculated from the volume determined from the projected area and thickness of the object, and the specific surface area and bulk density of the material constituting the object. The specific surface area is measured, for example, by a nitrogen adsorption method.
  • the voids in the porous layer are connected from one main surface of the porous layer to the other main surface. That is, the voids in the porous layer are connected from the main surface of the porous layer in contact with the photoelectric conversion layer 4 to the main surface of the porous layer in contact with the electron transport layer 3.
  • the material of the photoelectric conversion layer 4 can fill the voids in the porous layer and reach the surface of the electron transport layer 3. Therefore, since the photoelectric conversion layer 4 and the electron transport layer 3 are in direct contact with each other, electrons can be exchanged.
  • the effect that the photoelectric conversion layer 4 can be easily formed can be obtained.
  • the material of the photoelectric conversion layer 4 enters into the voids of the porous layer, and the porous layer becomes a scaffold for the photoelectric conversion layer 4. Therefore, the material of the photoelectric conversion layer 4 is unlikely to be repelled or aggregated on the surface of the porous layer. Therefore, the photoelectric conversion layer 4 can be easily formed as a uniform film.
  • the photoelectric conversion layer 4 can be formed by the coating method described above.
  • the effect of increasing the optical path length of light passing through the photoelectric conversion layer 4 is also expected. It is predicted that as the optical path length increases, the amount of electrons and holes generated in the photoelectric conversion layer 4 will increase.
  • the photoelectric conversion material of technology 1 can improve the photoelectric conversion efficiency of the photoelectric conversion material.
  • the photoelectric conversion material of technology 3 can further improve the photoelectric conversion efficiency of the photoelectric conversion material.
  • the ammonium salt contains at least one selected from the group consisting of an alkyl group and an aryl group.
  • the photoelectric conversion material according to any one of Techniques 1 to 4.
  • the photoelectric conversion material of technology 7 can further improve the photoelectric conversion efficiency of the photoelectric conversion material.
  • the photoelectric conversion material of technology 8 can further improve the photoelectric conversion efficiency of the photoelectric conversion material.
  • the iodine-containing ammonium salt is at least one selected from the group consisting of tetrapropylammonium iodide, tetrabutylammonium iodide, tetraamylammonium iodide, tetrahexylammonium iodide, and tetraheptylammonium iodide.
  • Photoelectric conversion material according to technology 9.
  • the ammonium salt includes a fluorine-containing ammonium salt.
  • the photoelectric conversion material according to any one of Techniques 8 to 10.
  • the photoelectric conversion material of technology 11 can further improve the photoelectric conversion efficiency of the photoelectric conversion material.
  • the photoelectric conversion material of technology 12 can further improve the photoelectric conversion efficiency of the photoelectric conversion material.
  • the molar ratio of the ammonium salt to the perovskite compound is 0.01 or more and 0.50 or less, Photoelectric conversion material according to any one of Techniques 1 to 12.
  • the photoelectric conversion material of technology 13 can further improve the photoelectric conversion efficiency of the photoelectric conversion material.
  • the molar ratio is 0.05 or more and 0.10 or less, Photoelectric conversion material according to technology 13.
  • the photoelectric conversion material of technology 14 can further improve the photoelectric conversion efficiency of the photoelectric conversion material.
  • the perovskite compound contains a halogen anion, Photoelectric conversion material according to any one of Techniques 1 to 14.
  • the photoelectric conversion material of technology 15 can further improve the photoelectric conversion efficiency of the photoelectric conversion material.
  • the perovskite compound is composed of a monovalent cation, a divalent cation, and a halogen anion,
  • the divalent cation includes at least one selected from the group consisting of Sn cation, Ge cation, and Pb cation.
  • Photoelectric conversion material according to any one of Techniques 1 to 15.
  • the photoelectric conversion material of technology 16 can further improve the photoelectric conversion efficiency of the photoelectric conversion material.
  • the photoelectric conversion material of technology 17 can further improve the photoelectric conversion efficiency of the photoelectric conversion material.
  • the perovskite compound is at least one selected from the group consisting of CsSnI 3 , CsGeI 3 , and CsPbI 3 .
  • Photoelectric conversion material according to technology 16 or 17.
  • the photoelectric conversion material of technology 18 can further improve the photoelectric conversion efficiency of the photoelectric conversion material.
  • the photoelectric conversion material of technology 19 can further improve the photoelectric conversion efficiency of the photoelectric conversion material.
  • the photoelectric conversion layer includes the photoelectric conversion material according to any one of Techniques 1 to 19. Photoelectric conversion element.
  • the photoelectric conversion element of technology 20 can have high photoelectric conversion efficiency.
  • a precursor solution for the photoelectric conversion layer was obtained as follows. First, a 0.9 mol/L first solution was prepared by adding SnI 2 and CsI to a mixed solvent of DMF and DMSO (1:1 volume ratio). Next, a 0.9 mol/L second solution was prepared by adding SnF 2 to a mixed solvent of DMF and DMSO (1:1 volume ratio). Furthermore, a third solution of 0.9 mol/L was prepared by adding TBAI to a mixed solvent of DMF and DMSO (1:1 volume ratio). The second solution and the third solution were added to the first solution. Through the above steps, a precursor solution was obtained.
  • a gold film was formed on the hole transport layer by vapor deposition. In this way, a second electrode having a thickness of 200 nm was formed.
  • Example 2 A photoelectric conversion element was produced in the same manner as in Example 1, except that in producing the photoelectric conversion layer, the firing temperature of the coating film formed from the precursor solution of the photoelectric conversion layer was 220°C.
  • Example 3 In preparing the photoelectric conversion layer, a photoelectric conversion element was prepared in the same manner as in Example 1, except that the concentration of the third solution was 7.5 mol% when preparing the precursor solution for the photoelectric conversion layer. Created.
  • Example 9 In producing the photoelectric conversion layer, a photoelectric conversion element was produced in the same manner as in Example 7, except that the concentration of the third solution was 15 mol% when preparing the precursor solution for the photoelectric conversion layer. .
  • Example 10 In producing the photoelectric conversion layer, a photoelectric conversion element was produced in the same manner as in Example 7, except that when preparing the precursor solution for the photoelectric conversion layer, the concentration of the third solution was 20 mol%. .
  • the precursor solution for the photoelectric conversion layer was prepared by adding only the second solution to the first solution without adding the third solution, and the firing temperature of the coating film was 240 ° C.
  • a photoelectric conversion element was produced in the same manner as in Example 1 except for the following points.
  • the precursor solution for the photoelectric conversion layer was prepared by adding only the second solution to the first solution without adding the third solution, and the firing temperature of the coating film was 180 ° C.
  • a photoelectric conversion element was produced in the same manner as in Example 1 except for the following points.
  • Comparative example 6 A photoelectric conversion element was produced in the same manner as in Comparative Example 5, except that the firing temperature of the coating film was 200° C. in producing the photoelectric conversion layer. That is, in Comparative Example 6 as well, a TBAI layer was formed on the photoelectric conversion layer by the same method as in Comparative Example 5.
  • a solar simulator manufactured by Bunko Keiki Co., Ltd.
  • an electrochemical analyzer ALS manufactured by BAS Co., Ltd.
  • the photoelectric conversion element was irradiated with 1 sun of simulated sunlight.
  • the output of the solar simulator was set to 100 mW/cm 2 .
  • the IV characteristics of the photoelectric conversion element were measured by measuring the output current value while changing the applied voltage using an electrochemical analyzer.
  • the molar ratio of the ammonium salt to the perovskite compound determined from the charging ratio of the raw materials is larger than the molar ratio of the ammonium salt to the perovskite compound determined using the composition ratio determined from the elemental analysis of the photoelectric conversion layer produced.
  • the applicant's preliminary experiments have confirmed that there is no difference. That is, for example, in Example 1, since the concentration of ammonium salt added is 5 mol %, the molar ratio of ammonium salt to perovskite compound in the produced photoelectric conversion layer can be considered to be 0.05.
  • the photoelectric conversion elements of Examples 1 to 10 each having a photoelectric conversion layer formed of a photoelectric conversion material containing an ammonium salt were formed using a photoelectric conversion material not containing an ammonium salt.
  • the photoelectric conversion elements had higher conversion efficiency than the photoelectric conversion elements of Comparative Examples 1 to 4, which were provided with the photoelectric conversion layer.
  • the photoelectric conversion elements of Examples 1 to 10 were the photoelectric conversion elements of Comparative Examples 5 and 6, which were equipped with photoelectric conversion layers whose surfaces were post-treated using a TBAI solution, as disclosed in Non-Patent Document 1. It had a higher conversion efficiency than the conventional device. From these results, it was confirmed that the photoelectric conversion material of the present disclosure containing a perovskite compound and an ammonium salt can improve photoelectric conversion efficiency.
  • Example 2 Comparing Example 2, Example 5, Example 6, and Comparative Example 2, even when TPAI and TAAI were used as ammonium salts, the photoelectric conversion material without ammonium salt added was as good as when TBAI was used. It can be seen that the open circuit voltage increases for the photoelectric conversion element used (see FIG. 7), and high conversion efficiency can be obtained. Comparing Example 2, Example 5, and Example 6, under the present study conditions, the highest conversion efficiency was obtained when TBAI was used as the ammonium salt.
  • ⁇ PL emission/lifetime evaluation of photoelectric conversion layer> In order to measure the PL emission lifetime of the photoelectric conversion layer, a measurement sample was prepared using the same procedure as the photoelectric conversion layer of the photoelectric conversion element.
  • a precursor solution for a photoelectric conversion layer was applied onto a glass substrate by spin coating, and then baked at 200°C, 220°C, or 240°C for 10 minutes. In this way, a single film of the photoelectric conversion layer was formed.
  • chlorobenzene which is a poor solvent, was dropped.
  • a UV-curable epoxy resin was applied around the substrate, and the substrate was bonded to another glass substrate and UV irradiated. In this way, the epoxy resin was cured and the measurement sample was sealed.
  • a precursor solution for the photoelectric conversion layer was obtained as follows. First, a 0.9 mol/L first solution was prepared by adding SnI 2 and CsI to a mixed solvent of DMF and DMSO (1:1 volume ratio). Next, a 0.9 mol/L second solution was prepared by adding SnF 2 to a mixed solvent of DMF and DMSO (1:1 volume ratio). Furthermore, a third solution of 0.9 mol/L was prepared by adding TBAI to a mixed solvent of DMF and DMSO (1:1 volume ratio).
  • FIG. 10 is a graph showing the PL emission spectrum of a single photoelectric conversion layer formed of CsSnI 3 +16 mol% SnF 2 +5 mol% TBAI.
  • FIG. 11 is a graph showing the PL emission lifetime of a single photoelectric conversion layer formed of CsSnI 3 +16 mol% SnF 2 .
  • FIG. 12 is a graph showing the PL emission lifetime of a single photoelectric conversion layer formed of CsSnI 3 +16 mol% SnF 2 +5 mol% TBAI.
  • the SEM photograph was taken using a field emission scanning electron microscope (SU8200, manufactured by Hitachi High-Tech Corporation).
  • FIG. 13 shows an SEM photograph of a photoelectric conversion layer formed from a precursor solution of CsSnI 3 +16 mol% SnF 2 taken from above.
  • FIG. 14 shows a SEM photograph taken from above of a photoelectric conversion layer formed from a precursor solution of CsSnI 3 +16 mol% SnF 2 +5 mol% TBAI.
  • the crystal particle size of the photoelectric conversion material to which TBAI is added (FIG. 14) is larger than that of the photoelectric conversion material to which TBAI is not added (FIG. 13). was confirmed to be increasing. In this way, since the grain size of the crystal can be increased by adding TBAI, it is thought that the crystal grain boundaries in the photoelectric conversion material are reduced and carrier recombination is reduced. Therefore, it is considered that the photoelectric conversion material to which TBAI was added was able to improve the photoelectric conversion efficiency.
  • time-of-flight secondary ion mass spectrometry (TOF-SIMS) was performed on the photoelectric conversion layer, TBA + was detected in the film thickness direction. Further, when a film was formed by mixing only TBAI and SnI 2 and X-ray diffraction (XRD) measurement was performed, no peak was detected, indicating that TBASnI 3 crystals were not formed. From this, it is presumed that in the photoelectric conversion layer produced in the example, the ammonium salt is present without being incorporated into the crystal.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本開示の光電変換材料は、ペロブスカイト化合物と、アンモニウム塩と、を含む。前記アンモニウム塩は、アルキル基およびアリール基からなる群より選択される少なくとも1つを含んでいてもよい。前記アンモニウム塩は、第4級アンモニウム塩を含んでいてもよい。本開示の光電変換素子100は、第1電極2、光電変換層4、および第2電極6、をこの順で備える。光電変換層4は、本開示の光電変換材料を含む。

Description

光電変換材料およびそれを用いた光電変換素子
 本開示は、光電変換材料およびそれを用いた光電変換素子に関する。
 非特許文献1は、CsPbI3からなる層を成膜した後に、当該層上にヨウ化テトラブチルアンモニウム(TBAI)からなる層を成膜することによって、CsPbI3からなる層の表面にTBAPbI3保護層を形成する技術を開示している。
Xiamomin Liu、他7名、Angewandte Chemie、2021年、133巻、p.12459-12463
 本開示の目的は、光電変換効率を向上させることができる新規の光電変換材料を提供することにある。
 本開示の光電変換材料は、ペロブスカイト化合物と、アンモニウム塩と、を含む。
 本開示は、光電変換効率を向上させることができる新規の光電変換材料を提供する。
図1Aは、第1実施形態の光電変換材料においてアンモニウム塩として用いられうる第4級アンモニウム塩の一例であるヨウ化テトラプロピルアンモニウムの分子構造を示す。 図1Bは、第1実施形態の光電変換材料においてアンモニウム塩として用いられうる第4級アンモニウム塩の別の例であるヨウ化テトラブチルアンモニウムの分子構造を示す。 図1Cは、第1実施形態の光電変換材料においてアンモニウム塩として用いられうる第4級アンモニウム塩のさらに別の例であるヨウ化テトラアミルアンモニウムの分子構造を示す。 図2は、第2実施形態の光電変換素子100の概略構成を示す断面図である。 図3Aは、実施例1および比較例1の光電変換素子のIV特性を示すグラフである。 図3Bは、実施例2および比較例2の光電変換素子のIV特性を示すグラフである。 図3Cは、比較例3の光電変換素子のIV特性を示すグラフである。 図4は、CsSnI3へのヨウ化テトラブチルアンモニウム添加による開放電圧Vocの上昇を示すグラフである。 図5は、比較例1、2、および4から6の光電変換素子のIV特性を示すグラフである。 図6は、実施例1、実施例3、実施例4、および比較例1のIV特性を示すグラフである。 図7は、実施例2、実施例5、実施例6、比較例1、および比較例2のIV特性を示すグラフである。 図8は、実施例7から10のIV特性を示すグラフである。 図9は、CsSnI3+16mol%SnF2によって形成された光電変換層単膜のフォトルミネッセンス(PL)発光スペクトルを示すグラフである。 図10は、CsSnI3+16mol%SnF2+5mol%ヨウ化ブチルアンモニウムによって形成された光電変換層単膜のPL発光スペクトルを示すグラフである。 図11は、CsSnI3+16mol%SnF2によって形成された光電変換層単膜のPL発光寿命を示すグラフである。 図12は、CsSnI3+16mol%SnF2+5mol%ヨウ化ブチルアンモニウムによって形成された光電変換層単膜のPL発光寿命を示すグラフである。 図13は、CsSnI3+16mol%SnF2によって形成された光電変換層を上面から撮影したSEM(走査電子顕微鏡)写真を示す。 図14は、CsSnI3+16mol%SnF2+5mol%ヨウ化ブチルアンモニウムによって形成された光電変換層を上面から撮影したSEM写真を示す。
 以下、本開示の実施形態が、図面を参照しながら説明される。
 (第1実施形態)
 第1実施形態の光電変換材料は、ペロブスカイト化合物と、アンモニウム塩と、を含む。
 以上の構成によれば、光電変換材料の光電変換効率を向上させることができる。
 第1実施形態の光電変換材料は、例えば、ペロブスカイト化合物とアンモニウム塩との混合物であってもよい。第1実施形態の光電変換材料は、ペロブスカイト化合物とアンモニウム塩とが全体的に均一に混合されていてもよい。したがって、このような構成によれば、第1実施形態の光電変換材料は、光電変換効率をより向上させることができる。このように光電変換効率が向上する理由の一つは、アンモニウム塩が含まれることによって光電変換材料におけるペロブスカイト化合物の結晶の粒子径が大きくなり、キャリア再結合が低減されることであると考えられる。アンモニウム塩が含まれることによりPL発光寿命が伸びることからも、アンモニウム塩が含まれることによってキャリア拡散長が伸びると考えられる。
 第1実施形態の光電変換材料において、ペロブスカイト化合物の平均一次粒子径は、例えば2μm以上である。ペロブスカイト化合物の平均一次粒子径が2μm以上であることにより、キャリア再結合がより低減される。これにより、第1実施形態の光電変換材料の光電変換効率がより向上する。第1実施形態の光電変換材料におけるペロブスカイト化合物の平均一次粒子径は、SEM画像を用いてペロブスカイト化合物の一次粒子径を計測し、その計測値から平均値を算出することによって求められる。ここで、計測される一次粒子径は、一次粒子の最大径である。例えば、SEM画像における粒子から、一次粒子径の大きいものから順に50個を選択する。それら50個の一次粒子径を用いて平均値を算出し、得られた値を平均一次粒子径とする。ペロブスカイト化合物の平均一次粒子径は、5μm以上であってもよいし、10μm以上であってもよい。ペロブスカイト化合物の平均一次粒子径は、例えば100μm以下である。
 第1実施形態の光電変換材料において、アンモニウム塩は、ペロブスカイト化合物の結晶間に存在していてもよい。アンモニウム塩がこのような状態で光電変換材料中に存在することにより、ペロブスカイト化合物の結晶間にキャリアパスが形成されて、その結果、キャリアの再結合がより抑制されると考えられる。したがって、このような構成によれば、第1実施形態の光電変換材料は、光電変換効率をより向上させることができる。
 第1実施形態の光電変換材料のPL発光ピークのエネルギーは、当該光電変換材料に含まれるペロブスカイト化合物のPL発光ピークのエネルギーと実質的に同じであってもよい。すなわち、第1実施形態の光電変換材料のバンドギャップは、当該光電変換材料に含まれるペロブスカイト化合物のバンドギャップと実質的に同じであってもよい。換言すると、第1実施形態の光電変換材料は、アンモニウム塩の有無によって結晶構造が変化せず、アンモニウム塩が添加されていないペロブスカイト化合物の結晶構造が維持されうる。したがって、第1実施形態の光電変換材料は、この構成により、光吸収特性(たとえば、吸収する光の波長)を変更することなく、光電変換効率をより向上させることができる。ここで、PL発光ピークのエネルギーが実質的に同じであるとは、PL発光ピークのエネルギーの差が0eV以上0.03eV以下の範囲内であることをいう。また、バンドギャップが実質的に同じであるとは、バンドギャップの差が0eV以上0.03eV以下の範囲内であることをいう。
 第1実施形態の光電変換材料のPL発光ピークのエネルギーは、例えば、1.55eVよりも小さくてもよい。すなわち、第1実施形態の光電変換材料のPL発光ピークの波長は、800nmよりも大きくてもよい。このようなPL発光ピークを有することにより、第1実施形態の光電変換材料は、光電変換効率をより向上させることができる。第1実施形態の光電変換材料のPL発光ピークのエネルギーは、例えば、1.1eV以上であってもよい。すなわち、第1実施形態の光電変換材料のPL発光ピークの波長は、1127nm以下であってもよい。
 光電変換材料の光電変換効率を向上させるために、アンモニウム塩は、アルキル基およびアリール基からなる群より選択される少なくとも1つを含んでいてもよい。当該アルキル基の炭素数は、1以上かつ10以下であってもよい。当該アルキル基の炭素数は、1以上かつ7以下であってもよい。
 光電変換材料の光電変換効率を向上させるために、アンモニウム塩がアルキル基を含み、かつ当該アルキル基の炭素数が1以上かつ10以下であってもよい。当該アルキル基の炭素数は、1以上かつ7以下であってもよい。
 光電変換材料の光電変換効率を向上させるために、アンモニウム塩は、第4級アンモニウム塩を含んでいてもよい。アンモニウム塩は、第4級アンモニウム塩と、第4級アンモニウム塩以外のアンモニウム塩とを含んでいてもよい。光電変換材料の光電変換効率をより向上させるために、アンモニウム塩は、第4級アンモニウム塩であってもよい。
 光電変換材料の光電変換効率を向上させるために、アンモニウム塩は、ハロゲン元素を含んでいてもよい。ハロゲン元素は、例えば、フッ素、塩素、臭素、およびヨウ素である。
 光電変換材料の光電変換効率を向上させるために、アンモニウム塩は、ヨウ素含有アンモニウム塩を含んでいてもよい。ヨウ素含有アンモニウム塩は、ヨウ化テトラプロピルアンモニウム、ヨウ化テトラブチルアンモニウム、ヨウ化テトラアミルアンモニウム、ヨウ化テトラヘキシルアンモニウム、およびヨウ化テトラヘプチルアンモニウムからなる群より選択される少なくとも1つであってもよい。
 ヨウ素含有アンモニウム塩としてヨウ素を含む第4級アンモニウム塩が用いられる場合、光電変換材料の光電変換効率をより向上させるために、ヨウ素含有アンモニウム塩は、ヨウ化テトラプロピルアンモニウム、ヨウ化テトラブチルアンモニウム、およびヨウ化テトラアミルアンモニウムからなる群より選択される少なくとも1つであってもよい。図1Aは、第1実施形態の光電変換材料においてアンモニウム塩として用いられうる第4級アンモニウム塩の一例であるヨウ化テトラプロピルアンモニウムの分子構造を示す。図1Bは、第1実施形態の光電変換材料においてアンモニウム塩として用いられうる第4級アンモニウム塩の別の例であるヨウ化テトラブチルアンモニウムの分子構造を示す。図1Cは、第1実施形態の光電変換材料においてアンモニウム塩として用いられうる第4級アンモニウム塩のさらに別の例であるヨウ化テトラアミルアンモニウムの分子構造を示す。以下、ヨウ化テトラプロピルアンモニウムが「TPAI」と記載され、ヨウ化テトラブチルアンモニウムが「TBAI」と記載され、ヨウ化テトラアミルアンモニウムが「TAAI」と記載される。
 光電変換材料の光電変換効率を向上させるために、アンモニウム塩は、フッ素含有アンモニウム塩を含んでいてもよい。フッ素含有アンモニウム塩は、フッ化テトラメチルアンモニウムおよびフッ化テトラブチルアンモニウムからなる群より選択される少なくとも1つであってもよい。以下、フッ化テトラメチルアンモニウムが「TMAF」と記載される。
 光電変換材料の光電変換効率を向上させるために、第1実施形態の光電変換材料において、ペロブスカイト化合物に対するアンモニウム塩のモル比は、0.01以上かつ0.50以下であってもよい。
 光電変換材料の光電変換効率をさらに向上させるために、ペロブスカイト化合物に対するアンモニウム塩のモル比は、0.01以上かつ0.20以下であってもよい。
 光電変換材料の光電変換効率をさらに向上させるために、ペロブスカイト化合物に対するアンモニウム塩のモル比は、0.05以上かつ0.10以下であってもよい。
 ペロブスカイト化合物に対するアンモニウム塩のモル比は、0.01、0.05、0.07、0.1、0.15、0.2、および0.5の数値から選ばれる任意の組み合わせによって規定されてもよい。
 ペロブスカイト化合物は、太陽光スペクトルの波長域における光吸収係数が高く、かつ、キャリア移動度が高い。したがって、ペロブスカイト化合物を含む光電変換材料は、高い光電変換効率を有する。
 ペロブスカイト化合物は、ハロゲンアニオンを含んでいてもよい。すなわち、ペロブスカイト化合物は、ハロゲン化物であってもよい。
 ペロブスカイト化合物は、1価のカチオン、2価のカチオン、およびハロゲンアニオンから構成されていてもよい。ここで、2価のカチオンは、Snカチオン、GeカチオンおよびPbカチオンからなる群より選択される少なくとも1つを含んでいてもよい。
 ペロブスカイト化合物における1価のカチオンは、50モル%以上の無機カチオンを含んでいてもよい。
 ペロブスカイト化合物は、例えば、組成式ABX3により表される。ここで、Aは1価のカチオンであり、Bは2価の金属カチオンであり、Xは1価のアニオンである。
 1価のカチオンAの例は、有機カチオンまたはアルカリ金属カチオンである。上述のとおり、1価のカチオンAは、無機カチオン、すなわちアルカリ金属カチオンを50モル%以上含んでいてもよい。
 有機カチオンの例は、メチルアンモニウムカチオン(CH3NH3 +)、ホルムアミジニウムカチオン(NH2CHNH2 +)またはグアニジニウムイオン(C(NH23 +)である。
 アルカリ金属カチオンの例は、CsカチオンまたはRbカチオンである。
 Bは2価の金属カチオンである。2価のカチオンBの例は、Pbカチオン、Snカチオン、またはGeカチオンである。
 Xは1価のアニオンである。アニオンXの例は、ハロゲンアニオンである。ハロゲンアニオンは、例えば、塩素、臭素、またはヨウ素である。
 カチオンA、カチオンB、およびアニオンXのそれぞれのサイトは、それぞれ、複数種類のイオンを含んでいてもよい。
 ペロブスカイト化合物は、CsSnI3、CsGeI3、およびCsPbI3からなる群より選択される少なくとも1つであってもよい。
 第1実施形態の光電変換材料は、SnF2をさらに含んでもよい。ペロブスカイト化合物が2価のカチオンとしてSnカチオンを含む場合、SnF2がさらに含まれることによりSn欠陥を低減することができる。したがって、第1実施形態の光電変換材料がSnF2をさらに含むことにより、光電変換効率を向上させることができる。
 第1実施形態の光電変換材料は、例えば、下記の方法により製造され得る。
 まず、第1実施形態の光電変換材料の前駆体溶液が調製される。第1実施形態の光電変換材料の前駆体溶液は、例えばペロブスカイト化合物の前駆体溶液にアンモニウム塩が溶解した溶液を混合させることによって調製され得る。第1実施形態の光電変換材料の前駆体溶液の調製に用いられる原料は、例えば、CsIのような1価のカチオンおよびハロゲンアニオンを含む化合物、SnI2のような2価のカチオンおよびハロゲンアニオンを含む化合物、ならびにSnF2のような2価のカチオンおよびFアニオンを含む化合物である。溶媒として、1種の溶媒が使用されてもよく、複数の溶媒が含まれる混合溶媒が使用されてもよい。溶媒は、例えば、DMF(ジメチルホルムアミド)およびDMSO(ジメチルスルホキシド)を含む混合溶媒であってもよい。
 第1実施形態の光電変換材料の前駆体溶液は、例えば、まず1価のカチオンおよびハロゲンアニオンを含む化合物、2価のカチオンおよびハロゲンアニオンを含む化合物、ならびに溶媒を含む第1溶液と、2価のハロゲンおよびFアニオンを含む化合物、ならびに溶媒を含む第2溶液と、アンモニウム塩ならびに溶媒を含む第3溶液とを調製し、第1溶液に、第2溶液および第3溶液を混合することによって調製されてもよい。
 次に、調製された第1実施形態の光電変換材料の前駆体溶液を、例えばスピンコートのような塗布法で基材に塗布し、得られた塗膜を所定の時間静置して、塗膜中に結晶の核を成長させる。その後、スピンコートで得られた膜を焼成する。例えばDMFおよびDMSOの混合溶媒(1:1の体積比)が用いられる場合は、例えば、室温で塗膜中に結晶の核を成長させた後、200℃程度の温度で塗膜が焼成されてもよい。
 (第2実施形態)
 以下、第2実施形態の光電変換素子について説明する。第1実施形態において説明された事項は、適宜省略されうる。
 第2実施形態による光電変換素子は、第1電極、光電変換層、および第2電極を備える。第2実施形態による光電変換素子は、第1電極、光電変換層、および第2電極をこの順で備えていてもよい。光電変換層は、第1実施形態の光電変換材料を含む。このため、第2実施形態の光電変換素子は、高い光電変換効率を有する。
 光電変換素子は、例えば、太陽電池である。
 図2は、第2実施形態の光電変換素子100の概略構成を示す断面図である。
 光電変換素子100は、基板1、第1電極2、電子輸送層3、光電変換層4、正孔輸送層5、および第2電極6を、この順で備える。なお、基板1、電子輸送層3、および正孔輸送層5は、設けられていなくてもよい。
 光電変換層4は、第1実施形態の光電変換材料を含む。例えば、光電変換層4は単層であってもよく、当該単層が、第1実施形態の光電変換材料で形成されていてもよい。
 光電変換素子100に光が照射されると、光電変換層4が光を吸収し、電子と正孔に電荷分離する。この電荷分離により生じた電子は、電子輸送層3を通り第1電極2に移動する。一方、光電変換層4で生じた正孔は、正孔輸送層5を介して第2電極6に移動する。これにより、光電変換素子100は、負極としての第1電極2と、正極としての第2電極6とから、電流を取り出すことができる。
 以下、光電変換素子100の各構成要素について、具体的に説明する。
 (基板1)
 基板1は、光電変換素子100の各層を保持する役割を果たす。基板1は、透明な材料から形成することができる。基板1としては、例えば、ガラス基板またはプラスチック基板を用いることができる。プラスチック基板は、例えば、プラスチックフィルムであってもよい。
 第2電極6が透光性を有している場合には、基板1は、透光性を有さない材料から形成されていてもよい。このような材料として、金属、セラミックス、または透光性の小さい樹脂材料を用いることができる。
 第1電極2が十分な強度を有している場合、第1電極2によって各層を保持することができるため、基板1を設けなくてもよい。
 (第1電極2)
 第1電極2は、導電性を有する。
 第1電極2は、透光性を有する。例えば、可視領域から近赤外領域の光を透過する。
 第1電極2は、例えば、透明であり導電性を有する材料から構成される。当該材料の例は、金属酸化物または金属窒化物である。このような材料の例は、
(i)リチウム、マグネシウム、ニオブ、およびフッ素からなる群より選択される少なくとも1種がドープされた酸化チタン、
(ii)錫およびシリコンからなる群より選択される少なくとも1種がドープされた酸化ガリウム、
(iii)シリコンおよび酸素からなる群より選択される少なくとも1種がドープされた窒化ガリウム、
(iv)アンチモンおよびフッ素からなる群より選択される少なくとも1種がドープされた酸化錫、
(v)ホウ素、アルミニウム、ガリウム、およびインジウムからなる群より選択される少なくとも1種がドープされた酸化亜鉛、
(vi)インジウム-錫複合酸化物、または、
(vii)これらの複合物、
である。
 第1電極2は、光が透過するパターンを設けて形成されてもよい。光が透過するパターンの例は、線状、波線状、格子状、または多数の微細な貫通孔が規則的若しくは不規則に配列されたパンチングメタル状のパターンである。第1電極2がこれらのパターンを有すると、電極材料が存在しない部分を光が透過することができる。したがって、光が透過するパターンを設けることで、透明でない材料を用いることができる。透明でない電極材料の例は、白金、金、銀、銅、アルミニウム、ロジウム、インジウム、チタン、鉄、ニッケル、スズ、亜鉛、または、これらのいずれかを含む合金である。導電性を有する炭素材料が、透明でない電極材料として使用されてもよい。
 第1電極2の透光性は、上記のような光が透過するパターンによって実現されたものでなくてもよい。例えば、第1電極2は、10nm程度の厚さで成膜された薄膜金属で形成されていてもよい。このような薄膜金属は、例えば、白金、金、銀、銅、アルミニウム、ロジウム、インジウム、チタン、鉄、ニッケル、スズ、亜鉛、または、これらのいずれかを含む合金である。これらの金属材料の代わりに、導電性を有する炭素材料が使用されてもよい。
 光電変換素子100が電子輸送層3を備えていない場合、第1電極2は、光電変換層4からの正孔に対するブロック性を有する。この場合、第1電極2は、光電変換層4とオーミック接触しない。さらに、光電変換層4からの正孔に対するブロック性とは、光電変換層4で発生した電子のみ通過させ、正孔を通過させない性質のことである。このような性質を有する材料のフェルミエネルギーは、光電変換層4の価電子帯上端のエネルギーよりも高い。このような性質を有する材料のフェルミエネルギーは、光電変換層4のフェルミエネルギーよりも高くてもよい。具体的な材料としては、アルミニウムが挙げられる。
 光電変換素子100が電子輸送層3を備えている場合、第1電極2は、光電変換層4からの正孔に対するブロック性を有していなくてもよい。この場合、第1電極2は、光電変換層4との間でオーミック接触を形成可能な材料から構成され得る。この場合、第1電極2は、光電変換層4はとオーミック接触していてもよいし、していなくてもよい。
 第1電極2の光の透過率は、例えば50%以上であってもよく、80%以上であってもよい。第1電極2が透過すべき光の波長は、光電変換層4の吸収波長に依存する。
 第1電極2の厚さは、例えば、1nm以上かつ1000nm以下であってもよい。
 (電子輸送層3)
 電子輸送層3は、電子輸送材料を含有する。電子輸送材料は、半導体であり得る。電子輸送層3は、バンドギャップが3.0eV以上の半導体から形成されていてもよい。これにより、可視光および赤外光を光電変換層4まで透過させることができる。
 電子輸送材料の例は、無機のn型半導体である。
 無機のn型半導体の例は、金属酸化物、金属窒化物、またはペロブスカイト型酸化物である。金属酸化物の例は、Cd、Zn、In、Pb、Mo、W、Sb、Bi、Cu、Hg、Ti、Ag、Mn、Fe、V、Sn、Zr、Sr、Ga、Si、またはCrの酸化物である。金属酸化物は、例えば、TiO2またはSnO2である。金属窒化物は、例えば、GaNである。ペロブスカイト型酸化物は、例えば、SrTiO3またはCaTiO3である。
 紫外光を効果的に光電変換層4まで透過させる場合は、電子輸送層3は、バンドギャップが6.0eV以上の半導体を用いてもよい。このような半導体の例は、フッ化リチウム、フッ化カルシウムなどのアルカリ金属またはアルカリ土類金属のハロゲン化物、酸化マグネシウムなどのアルカリ金属酸化物、または二酸化ケイ素である。この場合、電子輸送層3の電子輸送性を確保するために、電子輸送層3は、例えば、10nm以下の厚みを有していてもよい。
 電子輸送層3は、互いに異なる材料からなる複数の層を含んでいてもよい。
 (光電変換層4)
 上述のとおり、光電変換層4は、第1実施形態の光電変換材料を含む。光電変換層4は単層であってもよく、当該単層が、第1実施形態の光電変換材料で形成されていてもよい。
 第1実施形態で説明したように、第1実施形態の光電変換材料は、ペロブスカイト化合物とアンモニウム塩との混合物であってもよく、ペロブスカイト化合物とアンモニウム塩とが全体的に均一に混合されていてもよい。したがって、このような光電変換材料によって形成された光電変換層4は、厚さ方向に均一な組成を有していてもよく、さらに全体的に均一な組成を有していてもよい。
 光電変換層4は、第1実施形態の光電変換材料を主として含んでもよい。ここで、「光電変換層4が、第1実施形態の光電変換材料を主として含む」とは、光電変換層4が、第1実施形態の光電変換材料を50質量%以上含むことである。光電変換層4は、第1実施形態の光電変換材料を70質量%以上含んでいてもよい。光電変換層4は、第1実施形態の光電変換材料を90質量%以上含んでいてもよい。光電変換層4は、第1実施形態の光電変換材料からなってもよい。光電変換層4は、第1実施形態の光電変換材料を含んでいればよく、欠陥または不純物を含んでもよい。
 光電変換層4は、第1実施形態の光電変換材料とは異なる光電変換材料をさらに含んでいてもよい。
 光電変換層4の厚みは、例えば、50nm以上かつ10μm以下である。
 光電変換層4は、溶液による塗布法、印刷法、または蒸着法により形成され得る。塗布法の例は、ドクターブレード法、バーコート法、スプレー法、ディップコーティング法、インクジェット法、スリットコート法(すなわち、ダイコート法)、またはスピンコート法である。
 (正孔輸送層5)
 正孔輸送層5は、正孔輸送材料を含有する。正孔輸送材料は、正孔を輸送する材料である。正孔輸送材料は、例えば、有機半導体または無機半導体である。
 有機半導体の例は、トリフェニルアミン、トリアリルアミン、フェニルベンジジン、フェニレンビニレン、テトラチアフルバレン、ビニルナフタレン、ビニルカルバゾール、チオフェン、アニリン、ピロール、カルバゾール、トリプチセン、フルオレン、アズレン、ピレン、ペンタセン、ペリレン、アクリジン、またはフタロシアニンである。
 正孔輸送材料として用いられる代表的な有機半導体の例は、2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine)9,9′-spirobifluorene、poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](以下、「PTAA」ともいう)、poly(3-hexylthiophene-2,5-diyl)、poly(3,4-ethylenedioxythiophene)、または銅フタロシアニンである。
 正孔輸送材料として用いられる無機半導体は、p型の半導体である。無機半導体の例は、Cu2O、CuGaO2、CuSCN、CuI、NiOx、MoOx、V25、または酸化グラフェンのようなカーボン材料である。ここで、xは、x>0を満たす。
 正孔輸送層5は、互いに異なる材料からなる複数の層を含んでいてもよい。例えば、光電変換層4のイオン化ポテンシャルに対して、正孔輸送層5のイオン化ポテンシャルが順々に小さくなるように複数の層が積層されることにより、正孔輸送特性が改善される。
 正孔輸送層5の厚みは、1nm以上かつ1000nm以下であってもよく、10nm以上かつ50nm以下であってもよい。これにより、十分な正孔輸送特性を発現できる。したがって、光電変換素子100の低抵抗を維持することができ、高い光電変換効率を実現できる。
 正孔輸送層5は、例えば、塗布法、印刷法、または蒸着法により形成される。これは、光電変換層4と同様である。塗布法の例は、ドクターブレード法、バーコート法、スプレー法、ディップコーティング法、インクジェット法、スリットコート法(すなわち、ダイコート法)、またはスピンコート法である。印刷法の例は、スクリーン印刷法である。必要に応じて、複数の材料を混合して正孔輸送層5を作製し、加圧または焼成するなどしてもよい。正孔輸送層5の材料が有機の低分子体または無機半導体である場合には、真空蒸着法によって、正孔輸送層5を作製することも可能である。
 正孔輸送層5は、導電性を高めるために、正孔輸送材料だけでなく、添加剤を含んでいてもよい。添加剤の例は、支持電解質、溶媒、またはドーパントである。支持電解質および溶媒は、正孔輸送層5中の正孔を安定化させる効果を有する。ドーパントは、正孔輸送層5中の正孔数を増す効果を有する。
 支持電解質の例は、アンモニウム塩、アルカリ土類金属塩、または遷移金属塩である。アンモニウム塩の例は、過塩素酸テトラブチルアンモニウム、六フッ化リン酸テトラエチルアンモニウム、イミダゾリウム塩、またはピリジニウム塩である。アルカリ金属塩の例は、過塩素酸リチウムまたは四フッ化ホウ素カリウムである。アルカリ土類金属塩の例は、リチウムビス(トリフルオロメタンスルホニル)イミドまたはビス(トリフルオロメタンスルホニル)イミドカルシウム(II)である。遷移金属塩の例は、ビス(トリフルオロメタンスルホニル)イミド亜鉛(II)またはトリス[4-tert-ブチル-2-(1H-ピラゾール-1-イル)ピリジン]コバルト(III)トリス(トリフルオロメタンスルホニル)イミドである。
 ドーパントの例は、含フッ素芳香族ホウ素化合物である。含フッ素芳香族ホウ素化合物の例は、トリス(ペンタフルオロフェニル)ボランである。
 正孔輸送層5に含まれる溶媒は、優れたイオン伝導性を有していてもよい。当該溶媒は、水系溶媒であってもよく、有機溶媒であってもよい。溶質をより安定化するために、正孔輸送層5に含まれる溶媒は、有機溶媒であってもよい。有機溶媒の例は、tert-ブチルピリジン、ピリジン、およびn-メチルピロリドンのような複素環化合物溶媒である。
 溶媒として、イオン液体が使用されてもよい。イオン液体は、単独で使用されてもよく、他の溶媒と混合されて使用されてもよい。イオン液体は、揮発性が低く、難燃性が高い点で望ましい。
 イオン液体の例は、1-エチル-3-メチルイミダゾリウムテトラシアノボレートのようなイミダゾリウム系、ピリジン系、脂環式アミン系、脂肪族アミン系、またはアゾニウムアミン系である。
 (第2電極6)
 第2電極6は、導電性を有する。
 光電変換素子100が正孔輸送層5を備えていない場合、第2電極6は、光電変換層4からの電子に対するブロック性を有する。この場合、第2電極6は、光電変換層4とオーミック接触しない。光電変換層4からの電子に対するブロック性とは、光電変換層4で発生した正孔のみを通過させ、電子を通過させない性質のことである。このような性質を有する材料のフェルミエネルギーは、光電変換層4の伝導帯下端のエネルギーよりも低い。このような性質を有する材料のフェルミエネルギーは、光電変換層4のフェルミエネルギーよりも低くてもよい。具体的な材料としては、白金、金、またはグラフェンのような炭素材料である。
 光電変換素子100が正孔輸送層5を備えている場合、第2電極6は、光電変換層4からの電子に対するブロック性を有していなくてもよい。この場合、第2電極6は、光電変換層4との間でオーミック接触を形成可能な材料から構成され得る。これにより、第2電極6を、透光性を有するように形成することができる。
 第1電極2および第2電極6のうち、光を入射させる側の電極が透光性を有していればよい。したがって、第1電極2および第2電極6の一方は、透光性を有さなくてもよい。すなわち、第1電極2および第2電極6の一方は、透光性を有する材料を用いていなくてもよいし、光を透過させる開口部分を含むパターンを有していなくてもよい。
 (多孔質層)
 多孔質層は、電子輸送層3の上に、例えば、塗布法によって形成される。光電変換素子100が電子輸送層3を備えない場合は、第1電極2の上に形成される。
 多孔質層によって導入された細孔構造は、光電変換層4を形成する際の土台となる。多孔質層は、光電変換層4の光吸収、および光電変換層4から電子輸送層3への電子移動を阻害しない。
 多孔質層は、多孔質体を含む。
 多孔質体は、例えば、絶縁性または半導体の粒子の連なりによって形成される。絶縁性の粒子の例は、酸化アルミニウム粒子または酸化ケイ素粒子である。半導体の粒子の例は、無機半導体粒子である。無機半導体の例は、金属酸化物、金属元素のペロブスカイト酸化物、金属元素の硫化物、または金属カルコゲナイドである。金属酸化物の例は、Cd、Zn、In、Pb、Mo、W、Sb、Bi、Cu、Hg、Ti、Ag、Mn、Fe、V、Sn、Zr、Sr、Ga、Si、またはCrの酸化物である。金属酸化物は、例えば、TiO2である。金属元素のペロブスカイト酸化物の例は、SrTiO3またはCaTiO3である。金属元素の硫化物の例は、CdS、ZnS、In23、PbS、Mo2S、WS2、Sb23、Bi23、ZnCdS2、またはCu2Sである。金属カルコゲナイドの例は、CsSe、In2Se3、WSe2、HgS、PbSe、またはCdTeである。
 多孔質層の厚みは、0.01μm以上かつ10μm以下であってもよく、0.05μm以上かつ1μm以下であってもよい。
 多孔質層の表面粗さについては、実効面積/投影面積で与えられる表面粗さ係数が10以上であってもよく、100以上であってもよい。投影面積とは、物体を真正面から光で照らしたときに、後ろにできる影の面積である。実効面積とは、物体の実際の表面積のことである。実効面積は、物体の投影面積および厚さから求められる体積と、物体を構成する材料の比表面積および嵩密度とから計算することができる。比表面積は、例えば、窒素吸着法によって測定される。
 多孔質層中の空隙は、多孔質層の一方の主面から、他方の主面まで繋がっている。すなわち、多孔質層中の空隙は、光電変換層4と接する多孔質層の主面から電子輸送層3と接する多孔質層の主面まで繋がっている。これにより、光電変換層4の材料が多孔質層の空隙を充填し、電子輸送層3の表面まで到達することができる。したがって、光電変換層4と電子輸送層3とは直接接触しているため、電子の授受が可能である。
 多孔質層を設けることにより、光電変換層4を容易に形成できるという効果が得られる。多孔質層が設けられることにより、多孔質層の空隙に光電変換層4の材料が侵入し、多孔質層が光電変換層4の足場となる。そのため、光電変換層4の材料が多孔質層の表面で弾かれたり、凝集したりすることが起こりにくい。したがって、光電変換層4は容易に均一な膜として形成されることができる。光電変換層4は、上記の塗布法などによって形成できる。
 多孔質層によって光散乱が起こることにより、光電変換層4を通過する光の光路長が増大する効果も期待される。光路長が増大すると、光電変換層4中で発生する電子および正孔の量が増加すると予測される。
 [他の実施形態]
 (付記)
 以上の実施形態の記載により、下記の技術が開示される。
 (技術1)
 ペロブスカイト化合物と、アンモニウム塩と、を含む、
光電変換材料。
 この構成により、技術1の光電変換材料は、光電変換材料の光電変換効率を向上させることができる。
 (技術2)
 前記光電変換材料のフォトルミネッセンス発光ピークのエネルギーは、1.55eVよりも小さい、
技術1に記載の光電変換材料。
 この構成により、技術2の光電変換材料は、光電変換材料の光電変換効率をより向上させることができる。
 (技術3)
 前記ペロブスカイト化合物の平均一次粒子径は、2μm以上である、
技術1または2に記載の光電変換材料。
 この構成により、技術3の光電変換材料は、光電変換材料の光電変換効率をより向上させることができる。
 (技術4)
 前記光電変換材料のフォトルミネッセンス発光ピークのエネルギーは、前記ペロブスカイト化合物のフォトルミネッセンス発光ピークのエネルギーと実質的に同じである、
技術1から3のいずれか一項に記載の光電変換材料。
 この構成により、技術4の光電変換材料は、光吸収特性(たとえば、吸収する光の波長)が変更を変更することなく、光電変換効率をより向上させることができる。
 (技術5)
 前記アンモニウム塩は、アルキル基およびアリール基からなる群より選択される少なくとも1つを含む、
技術1から4のいずれか一項に記載の光電変換材料。
 この構成により、技術5の光電変換材料は、光電変換材料の光電変換効率をより向上させることができる。
 (技術6)
 前記アンモニウム塩は、前記アルキル基を含み、
 前記アルキル基の炭素数は、1以上かつ10以下である、
技術5に記載の光電変換材料。
 この構成により、技術6の光電変換材料は、光電変換材料の光電変換効率をより向上させることができる。
 (技術7)
 前記アンモニウム塩は、第4級アンモニウム塩を含む、
技術1から6のいずれか一項に記載の光電変換材料。
 この構成により、技術7の光電変換材料は、光電変換材料の光電変換効率をより向上させることができる。
 (技術8)
 前記アンモニウム塩は、ハロゲン元素を含む、
技術1から7のいずれか一項に記載の光電変換材料。
 この構成により、技術8の光電変換材料は、光電変換材料の光電変換効率をより向上させることができる。
 (技術9)
 前記アンモニウム塩は、ヨウ素含有アンモニウム塩を含む、
技術8に記載の光電変換材料。
 この構成により、技術9の光電変換材料は、光電変換材料の光電変換効率をより向上させることができる。
 (技術10)
 前記ヨウ素含有アンモニウム塩は、ヨウ化テトラプロピルアンモニウム、ヨウ化テトラブチルアンモニウム、ヨウ化テトラアミルアンモニウム、ヨウ化テトラヘキシルアンモニウム、およびヨウ化テトラヘプチルアンモニウムからなる群より選択される少なくとも1つである、技術9に記載の光電変換材料。
 この構成により、技術10の光電変換材料は、光電変換材料の光電変換効率をより向上させることができる。
 (技術11)
 前記アンモニウム塩は、フッ素含有アンモニウム塩を含む、
技術8から10のいずれか一項に記載の光電変換材料。
 この構成により、技術11の光電変換材料は、光電変換材料の光電変換効率をより向上させることができる。
 (技術12)
 前記フッ素含有アンモニウム塩は、フッ化テトラメチルアンモニウムおよびフッ化テトラブチルアンモニウムからなる群より選択される少なくとも1つである、
技術11に記載の光電変換材料。
 この構成により、技術12の光電変換材料は、光電変換材料の光電変換効率をより向上させることができる。
 (技術13)
 前記ペロブスカイト化合物に対する前記アンモニウム塩のモル比は、0.01以上かつ0.50以下である、
技術1から12のいずれか一項に記載の光電変換材料。
 この構成により、技術13の光電変換材料は、光電変換材料の光電変換効率をより向上させることができる。
 (技術14)
 前記モル比は、0.05以上かつ0.10以下である、
技術13に記載の光電変換材料。
 この構成により、技術14の光電変換材料は、光電変換材料の光電変換効率をより向上させることができる。
 (技術15)
 前記ペロブスカイト化合物は、ハロゲンアニオンを含む、
技術1から14のいずれか一項に記載の光電変換材料。
 この構成により、技術15の光電変換材料は、光電変換材料の光電変換効率をより向上させることができる。
 (技術16)
 前記ペロブスカイト化合物は、1価のカチオン、2価のカチオン、およびハロゲンアニオンから構成され、
 前記2価のカチオンは、Snカチオン、GeカチオンおよびPbカチオンからなる群より選択される少なくとも1つを含む、
技術1から15のいずれか一項に記載の光電変換材料。
 この構成により、技術16の光電変換材料は、光電変換材料の光電変換効率をより向上させることができる。
 (技術17)
 前記1価のカチオンは、50モル%以上の無機カチオンを含む、
技術16に記載の光電変換材料。
 この構成により、技術17の光電変換材料は、光電変換材料の光電変換効率をより向上させることができる。
 (技術18)
 前記ペロブスカイト化合物は、CsSnI3、CsGeI3、およびCsPbI3からなる群より選択される少なくとも1つである、
技術16または17に記載の光電変換材料。
 この構成により、技術18の光電変換材料は、光電変換材料の光電変換効率をより向上させることができる。
 (技術19)
 SnF2をさらに含む、
技術1から18のいずれか一項に記載の光電変換材料。
 この構成により、技術19の光電変換材料は、光電変換材料の光電変換効率をより向上させることができる。
 (技術20)
 第1電極、光電変換層、および第2電極、を備え、
 前記光電変換層は、技術1から19のいずれか一項に記載の光電変換材料を含む、
光電変換素子。
 この構成により、技術20の光電変換素子は、高い光電変換効率を有することができる。
 以下、実施例および比較例を参照しながら、本開示がより詳細に説明される。
 以下、光電変換層および正孔輸送層の原料溶液の調整および成膜は、酸素濃度および水分濃度が1ppm以下のグローブボックス中で行われた。
 <光電変換素子の作製>
 (実施例1)
 まず、ガラス基板を用意した。当該基板は、本開示の光電変換素子における支持材の役割を果たす。
 基板上に、スパッタ法によりITO(Indium Tin Oxide)の層が形成された。更に、スパッタ法により、ITO層の上に、ATO(Antimony Tin Oxide)の層が形成された。このようにして、第1電極が形成された。
 次に、第1電極のATOの層上に、スパッタ法により酸化チタン(TiO2)の緻密な層が形成された。この酸化チタン(TiO2)の緻密な層は、例えば上記の第1実施形態で説明した電子輸送層に相当する。
 次に、30NR-D(Gratcell Solar Materials Pty Ltd製)の酸化チタンペースト0.45gをブタノール溶液2mLに溶解させた。得られた溶液をスピンコートにより電子輸送層上に塗布した後、500℃で20分間焼成した。このようにして、酸化チタンの多孔質層が形成された。スピンコートは、4000rpmで20秒間行われた。なお、上記の酸化チタンの緻密な層と、上記の酸化チタンの多孔質層とは、共に電子輸送性を有する。したがって、上記の酸化チタンの緻密な層と、上記の酸化チタンの多孔質層とによって、電子輸送層が構成されているとみなすことも可能である。
 光電変換層の前駆体溶液をスピンコートにより多孔質層上に塗布した後、室温で10分間静置した。その後に、塗布膜を200℃で10分間焼成した。このようにして、光電変換層が形成された。5000rpmで30秒間スピンコート成膜中に貧溶媒であるクロロベンゼンを滴下した。
 光電変換層の前駆体溶液は、次のようにして得られた。まず、SnI2およびCsIをDMFおよびDMSOの混合溶媒(1:1の体積比)に添加することにより、0.9mol/Lの第1溶液を調製した。次に、SnF2をDMFおよびDMSOの混合溶媒(1:1の体積比)に添加することにより、0.9mol/Lの第2溶液を調製した。さらに、TBAIをDMFおよびDMSOの混合溶媒(1:1の体積比)に添加することにより、0.9mol/Lの第3溶液を調製した。第1溶液へ第2溶液および第3溶液を添加した。以上により、前駆体溶液が得られた。
 実施例では、第1溶液に対し、第2溶液の添加濃度が16mol%、第3溶液の添加濃度が5mol%の前駆体溶液を用いた。実施例1および2では、光電変換層は、それぞれ200℃および220℃で焼成して得られた。
 次に、正孔輸送層の原料溶液をスピンコートにより光電変換層上に塗布した。このようにして、正孔輸送層が形成された。正孔輸送層の原料溶液は、PTAA(ポリ[ビス(4-フェニル)(2,4,6-トリフェニル)アミン])18mgをクロロベンゼン1mLに溶解させて調製した。スピンコートは、4000rpmで20秒間行われた。
 次に、正孔輸送層上に、蒸着により金の膜を形成した。このようにして、200nmの厚みを有する第2電極が形成された。
 最後に、UV硬化型エポキシ樹脂を基板の周囲に塗布し、もう1枚のガラス基板と貼り合わせてUV照射した。このようにして、エポキシ樹脂を硬化させ、発電要素を封止した。
 (実施例2)
 光電変換層の作製において、光電変換層の前駆体溶液によって形成された塗布膜の焼成温度を220℃とした点を除いて、実施例1と同様の方法で光電変換素子を作製した。
 (実施例3)
 光電変換層の作製において、光電変換層の前駆体溶液を調製する際に、第3溶液の添加濃度を7.5mol%とした点を除いて、実施例1と同様の方法で光電変換素子を作製した。
 (実施例4)
 光電変換層の作製において、光電変換層の前駆体溶液を調製する際に、第3溶液の添加濃度を10mol%とした点を除いて、実施例1と同様の方法で光電変換素子を作製した。
 (実施例5)
 光電変換層の作製において、光電変換層の前駆体溶液の調製に用いられる第3溶液を変更した点と、塗布膜の焼成温度を220℃とした点とを除いて、実施例1と同様の方法で光電変換素子を作製した。実施例5では、TPAIをDMFおよびDMSOの混合溶媒(1:1の体積比)に添加することにより、0.9mol/Lの第3溶液が調製された。光電変換層の前駆体溶液の調製において、第2溶液および第3溶液の添加濃度は実施例1と同じであった。すなわち、実施例5では、第2溶液の添加濃度が16mol%、第3溶液の添加濃度が5mol%であった。
 (実施例6)
 光電変換層の作製において、光電変換層の前駆体溶液の調製に用いられる第3溶液を変更した点と、塗布膜の焼成温度を220℃とした点とを除いて、実施例1と同様の方法で光電変換素子を作製した。実施例6では、TAAIをDMFおよびDMSOの混合溶媒(1:1の体積比)に添加することにより、0.9mol/Lの第3溶液が調製された。光電変換層の前駆体溶液の調製において、第2溶液および第3溶液の添加濃度は実施例1と同じであった。すなわち、実施例6では、第2溶液の添加濃度が16mol%、第3溶液の添加濃度が5mol%であった。
 (実施例7)
 光電変換層の作製方法が異なる点を除いて、実施例1と同様の方法で光電変換素子を作製した。実施例7における光電変換層の作製方法は、以下のとおりであった。
 光電変換層の前駆体溶液をスピンコートにより多孔質層上に塗布した後、室温で10分間静置した。その後に、塗布膜を160℃で1分間焼成した後、さらに240℃で10分間焼成した。このようにして、光電変換層が形成された。5000rpmで30秒間スピンコート成膜中に貧溶媒であるクロロベンゼンを滴下した。
 実施例7における光電変換層の前駆体溶液は、次のようにして得られた。まず、SnI2およびCsIをDMFおよびDMSOの混合溶媒(DMF:DMSO=1:4の体積比)に添加することにより、1.5mol/Lの第1溶液を調製した。次に、TMAFをDMFおよびDMSOの混合溶媒(DMF:DMSO=1:4の体積比)に添加することにより、1.5mol/Lの第3溶液を調製した。第1溶液へ第3溶液を添加濃度5mol%で添加した。以上により、光電変換層の前駆体溶液が得られた。なお、実施例7においては、実施例1とは異なり、光電変換層の前駆体溶液に第2溶液は用いられなかった。
 (実施例8)
 光電変換層の作製において、光電変換層の前駆体溶液を調製する際に、第3溶液の添加濃度を10mol%とした点を除いて、実施例7と同様の方法で光電変換素子を作製した。
 (実施例9)
 光電変換層の作製において、光電変換層の前駆体溶液を調製する際に、第3溶液の添加濃度を15mol%とした点を除いて、実施例7と同様の方法で光電変換素子を作製した。
 (実施例10)
 光電変換層の作製において、光電変換層の前駆体溶液を調製する際に、第3溶液の添加濃度を20mol%とした点を除いて、実施例7と同様の方法で光電変換素子を作製した。
 (比較例1)
 光電変換層の作製において、第3溶液を添加せず、第2溶液のみを第1溶液に添加して光電変換層の前駆体溶液を調製した点を除いて、実施例1と同様の方法で光電変換素子を作製した。
 (比較例2)
 光電変換層の作製において、第3溶液を添加せず、第2溶液のみを第1溶液に添加して光電変換層の前駆体溶液を調製した点と、塗布膜の焼成温度を220℃とした点とを除いて、実施例1と同様の方法で光電変換素子を作製した。
 (比較例3)
 光電変換層の作製において、第3溶液を添加せず、第2溶液のみを第1溶液に添加して光電変換層の前駆体溶液を調製した点と、塗布膜の焼成温度を240℃とした点とを除いて、実施例1と同様の方法で光電変換素子を作製した。
 (比較例4)
 光電変換層の作製において、第3溶液を添加せず、第2溶液のみを第1溶液に添加して光電変換層の前駆体溶液を調製した点と、塗布膜の焼成温度を180℃とした点とを除いて、実施例1と同様の方法で光電変換素子を作製した。
 (比較例5)
 光電変換層の作製方法が異なる点を除いて、実施例1と同様の方法で光電変換素子を作製した。比較例5における光電変換層の作製方法は、以下のとおりであった。
 光電変換層の前駆体溶液をスピンコートにより多孔質層上に塗布した後、室温で10分間静置した。その後に、塗布膜を180℃で10分間焼成した。このようにして、光電変換層が形成された。5000rpmで30秒間スピンコート成膜中に貧溶媒であるクロロベンゼンを滴下した。
 光電変換層の前駆体溶液は、次のようにして得られた。まず、SnI2およびCsIをDMFおよびDMSOの混合溶媒(1:1の体積比)に添加することにより、0.9mol/Lの第1溶液を調製した。次に、SnF2をDMFおよびDMSOの混合溶液(1:1の体積比)に添加することにより、0.9mol/Lの第2溶液を調製した。第1溶液へ第2溶液を添加濃度16mol%で添加することによって、光電変換層の前駆体溶液が得られた。さらに、光電変換層形成後の後処理用に、非特許文献1で一番特性の改善が得られた条件で第3溶液を調整した。すなわち、1mgのTBAIをIPA(イソプロピルアルコール)1mLへ添加して、第3溶液を調製した。
 次いで、非特許文献1で一番特性の改善が得られた条件で、形成された光電変換層に後処理を施した。具体的には、光電変換層上にTBAI層を形成した。TABI層は、第3溶液を5000rpmで30秒間スピンコートした後、100℃で3分間焼成することによって作製された。
 (比較例6)
 光電変換層の作製において、塗布膜の焼成温度を200℃とした点を除いて、比較例5と同様の方法で光電変換素子を作製した。すなわち、比較例6においても、比較例5と同様の方法で、光電変換層上にTBAI層を形成した。
 <光電変換素子の特性評価>
 実施例1から10および比較例1から6の光電変換素子について、電流電圧特性(すなわち、IV特性)を評価した。
 特性の評価には、ソーラーシミュレーター(分光計器株式会社製)および電気化学アナライザーALS(ビー・エー・エス株式会社製)を用いた。1sunの疑似太陽光下を光電変換素子に照射した。ソーラーシミュレーターの出力は、100mW/cm2に設定した。電気化学アナライザーを用いて印加電圧を変化させながら出力電流値を測定することにより、光電変換素子のIV特性を測定した。
 測定結果は、表1および2に示される。ηは、変換効率を表す。JSCは、短絡電流密度を表す。Vocは、開放電圧を表す。FFは、フィルファクターを表す。また、表1および2には、光電変換層を構成するペロブスカイト化合物であるCsSnI3への添加物(すなわち、アンモニウム塩)およびその添加濃度、光電変換層形成の焼成温度、ならびに光電変換層に対する後処理(すなわち、TBAI層の形成)の有無も示す。なお、表において、モル濃度は仕込み量で示した。また、ペロブスカイト化合物に対するアンモニウム塩のモル比は、原料の仕込み比から求めることができる。ここで、原料の仕込み比から求められるペロブスカイト化合物に対するアンモニウム塩のモル比が、作製された光電変換層の元素分析から決定された組成比を用いて求められるペロブスカイト化合物に対するアンモニウム塩のモル比と大きな差がないことは、出願人による予備実験により確認されている。すなわち、例えば実施例1では、アンモニウム塩の添加濃度が5mol%であるため、作製された光電変換層におけるペロブスカイト化合物に対するアンモニウム塩のモル比は0.05とみなすことができる。
 図3Aは、実施例1および比較例1の光電変換素子のIV特性を示すグラフである。図3Bは、実施例2および比較例2の光電変換素子のIV特性を示すグラフである。図3Cは、比較例3の光電変換素子のIV特性を示すグラフである。図4は、CsSnI3へのTBAI添加による開放電圧Vocの上昇を示すグラフである。図5は、比較例1、2、および4から6の光電変換素子のIV特性を示すグラフである。図6は、実施例1、実施例3、実施例4、および比較例1のIV特性を示すグラフである。図7は、実施例2、実施例5、実施例6、比較例1、および比較例2のIV特性を示すグラフである。図8は、実施例7から10のIV特性を示すグラフである。
 表1および2に示されているように、アンモニウム塩を含む光電変換材料によって形成された光電変換層を備えた実施例1から10の光電変換素子は、アンモニウム塩を含まない光電変換材料によって形成された光電変換層を備えた比較例1から4の光電変換素子よりも、高い変換効率を有していた。さらに、実施例1から10の光電変換素子は、非特許文献1に開示されているような、TBAI溶液を用いて表面が後処理された光電変換層を備えた比較例5および6の光電変換素子よりも、高い変換効率を有していた。これらの結果から、ペロブスカイト化合物とアンモニウム塩とを含む本開示の光電変換材料は、光電変換効率を向上させることができることが確認された。
 図3A、図3B、図3C、および図4に示されているように、実施例1および2の光電変換素子は、比較例1から3の光電変換素子に対し開放電圧が大きく上昇した。これにより、実施例1および2の光電変換素子は、比較例1から3の光電変換素子よりも1%程度高い変換効率を得ることができた。
 実施例1、実施例3、実施例4、および比較例1を比較すると、TABI添加濃度が5mol%、7.5mol%、および10mol%で高い変換効率が得られ、特に5mol%および7.5mol%でより高い変換効率が得られた。図6に示されているように、実施例1、3、および4の光電変換素子は、比較例1の光電変換素子に対し開放電圧が大きく上昇した。これにより、実施例1、3、および4の光電変換素子は、比較例1の光電変換素子よりも高い変換効率を得ることができ、特に実施例1および3の光電変換素子は、比較例1の光電変換素子よりも1%程度高い変換効率を得ることができた。
 実施例2、実施例5、実施例6、および比較例2を比較すると、アンモニウム塩としてTPAIおよびTAAIを用いた場合でも、TBAIと用いた場合と同様に、アンモニウム塩未添加の光電変換材料が用いられた光電変換素子に対して開放電圧が上昇し(図7参照)、高い変換効率が得られることがわかる。実施例2、実施例5、および実施例6を比較すると、今回の検討条件ではアンモニウム塩としてTBAIが用いられた場合に、最も高い変換効率が得られた。
 表2および図8からわかるように、アンモニウム塩としてTMAFを用いた場合でも、高い開放電圧が得られ、高い変換効率が得られた。
 <光電変換層のPL発光・寿命評価>
 光電変換層のPL発光寿命を測定するために、光電変換素子の光電変換層と同じ手順で、測定用サンプルが作製された。
 具体的には、光電変換層の前駆体溶液をスピンコートによりガラス基板上に塗布した後、200℃、220℃、または240℃で10分間焼成した。このようにして、光電変換層の単膜を成膜した。5000rpmで30秒間スピンコート成膜中に貧溶媒であるクロロベンゼンを滴下した。次に、UV硬化型エポキシ樹脂を基板の周囲に塗布し、もう1枚のガラス基板と貼り合わせてUV照射した。このようにして、エポキシ樹脂を硬化させ、測定用サンプルを封止した。
 光電変換層の前駆体溶液は、次のようにして得られた。まず、SnI2およびCsIをDMFおよびDMSOの混合溶媒(1:1の体積比)に添加することにより、0.9mol/Lの第1溶液を調製した。次に、SnF2をDMFおよびDMSOの混合溶媒(1:1の体積比)に添加することにより、0.9mol/Lの第2溶液を調製した。さらに、TBAIをDMFおよびDMSOの混合溶媒(1:1の体積比)に添加することにより、0.9mol/Lの第3溶液を調製した。
 第1溶液へ第2溶液を添加して、CsSnI3+16mol%SnF2の前駆体溶液が得られた。また、第1溶液へ第2溶液および第3溶液を添加して、CsSnI3+16mol%SnF2+5mol%TBAIの前駆体溶液が得られた。
 PL発光寿命は、近赤外蛍光寿命測定装置(浜松ホトニクス製、C7990VIS/NIR)を用いて測定された。構成装置のうちフォトセンサモジュールには、H7422が使用された。測定結果は、蛍光寿命ソフトウエアU8167-03で解析した。
 図9は、CsSnI3+16mol%SnF2によって形成された光電変換層単膜のPL発光スペクトルを示すグラフである。
 図10は、CsSnI3+16mol%SnF2+5mol%TBAIによって形成された光電変換層単膜のPL発光スペクトルを示すグラフである。
 図11は、CsSnI3+16mol%SnF2によって形成された光電変換層単膜のPL発光寿命を示すグラフである。
 図12は、CsSnI3+16mol%SnF2+5mol%TBAIによって形成された光電変換層単膜のPL発光寿命を示すグラフである。
 図9から明らかなように、CsSnI3+16mol%SnF2によって形成された光電変換層単膜のPL発光ピークは、1.28eVから1.30eVであった。また、図10から明らかなように、CsSnI3+16mol%SnF2へ5mol%のTBAIを添加したところ、得られた光電変換層単膜のPL発光ピークは1.29eVから1.30eVであった。このように、TBAI添加前後でバンドギャップはほぼ変わっていないと考えられた。すなわち、TBAIが添加されてもペロブスカイト化合物CsSnI3はそのまま維持されており、結晶構造が変化しないことが確認された。
 図11に示されたPL発光寿命を図12に示されたPL発光寿命と比較すると明らかなように、CsSnI3+16mol%SnF2に5mol%のTBAIを添加することにより、光電変換材料のPL発光寿命は、6.5nsから9.6nsの範囲から、19.8nsから24.8nsへの範囲へと著しく伸びた。
 <光電変換層のSEM写真の評価>
 実施例1と同様に準備した多孔質層の上に光電変換層を形成した。
 具体的には、多孔質層まで成膜されたガラス基板上に光電変換層の前駆体溶液をスピンコートにより塗布した後、180℃で10分間焼成して単膜を成膜した。5000rpmで30秒間スピンコート成膜中に貧溶媒であるクロロベンゼンを滴下した。
 光電変換層の前駆体溶液は、次のようにして得られた。まず、SnI2およびCsIをDMFおよびDMSOの混合溶媒液(1:1の体積比)に添加することにより、0.9mol/Lの第1溶液を調製した。次に、SnF2をDMFおよびDMSOの混合溶媒(1:1の体積比)に添加することにより、0.9mol/Lの第2溶液を調製した。さらに、TBAIをDMFおよびDMSOの混合溶媒(1:1の体積比)に添加することにより、0.9mol/Lの第3溶液を調製した。
 第1溶液へ第2溶液を添加して、CsSnI3+16mol%SnF2の前駆体溶液が得られた。また、第1溶液へ第2溶液および第3溶液を添加して、CsSnI3+16mol%SnF2+5mol%TBAIの前駆体溶液が得られた。
 SEM写真は、電界放出型走査電子顕微鏡(株式会社日立ハイテク製、SU8200)を用いて撮影された。
 図13は、CsSnI3+16mol%SnF2の前駆体溶液によって形成された光電変換層を上面から撮影したSEM写真を示す。
 図14は、CsSnI3+16mol%SnF2+5mol%TBAIの前駆体溶液によって形成された光電変換層を上面から撮影したSEM写真を示す。
 図14のSEM写真を図13のSEM写真と比較すると明らかなように、TBAIが添加された光電変換材料(図14)では、TBAIが添加されない光電変換材料(図13)よりも結晶の粒子径が大きくなっていることが確認された。このように、TBAIの添加によって結晶の粒子径を増大化させることができるので、光電変換材料における結晶粒界が低減し、キャリア再結合が低減されると考えられる。したがって、TBAIが添加された光電変換材料は、光電変換効率を向上させることができたと考えられる。
 また、光電変換層について、飛行時間型二次イオン質量分析(TOF-SIMS)を行ったところ、膜厚方向にTBA+が検出された。また、TBAIとSnI2のみを混合して成膜し、X線回折(XRD)測定を行ったとこころ、ピークが検出されずTBASnI3の結晶はできていないと考えられた。このことから、実施例で作製された光電変換層において、アンモニウム塩は結晶内に取り込まれずに存在していると推定される。
 本開示の光電変換材料は、例えば、太陽電池において使用できる。

Claims (20)

  1.  ペロブスカイト化合物と、アンモニウム塩と、を含む、
    光電変換材料。
  2.  前記光電変換材料のフォトルミネッセンス発光ピークのエネルギーは、1.55eVよりも小さい、
    請求項1に記載の光電変換材料。
  3.  前記ペロブスカイト化合物の平均一次粒子径は、2μm以上である、
    請求項1または2に記載の光電変換材料。
  4.  前記光電変換材料のフォトルミネッセンス発光ピークのエネルギーは、前記ペロブスカイト化合物のフォトルミネッセンス発光ピークのエネルギーと実質的に同じである、
    請求項1から3のいずれか一項に記載の光電変換材料。
  5.  前記アンモニウム塩は、アルキル基およびアリール基からなる群より選択される少なくとも1つを含む、
    請求項1から4のいずれか一項に記載の光電変換材料。
  6.  前記アンモニウム塩は、前記アルキル基を含み、
     前記アルキル基の炭素数は、1以上かつ10以下である、
    請求項5に記載の光電変換材料。
  7.  前記アンモニウム塩は、第4級アンモニウム塩を含む、
    請求項1から6のいずれか一項に記載の光電変換材料。
  8.  前記アンモニウム塩は、ハロゲン元素を含む、
    請求項1から7のいずれか一項に記載の光電変換材料。
  9.  前記アンモニウム塩は、ヨウ素含有アンモニウム塩を含む、
    請求項8に記載の光電変換材料。
  10.  前記ヨウ素含有アンモニウム塩は、ヨウ化テトラプロピルアンモニウム、ヨウ化テトラブチルアンモニウム、ヨウ化テトラアミルアンモニウム、ヨウ化テトラヘキシルアンモニウム、およびヨウ化テトラヘプチルアンモニウムからなる群より選択される少なくとも1つである、請求項9に記載の光電変換材料。
  11.  前記アンモニウム塩は、フッ素含有アンモニウム塩を含む、
    請求項8から10のいずれか一項に記載の光電変換材料。
  12.  前記フッ素含有アンモニウム塩は、フッ化テトラメチルアンモニウムおよびフッ化テトラブチルアンモニウムからなる群より選択される少なくとも1つである、
    請求項11に記載の光電変換材料。
  13.  前記ペロブスカイト化合物に対する前記アンモニウム塩のモル比は、0.01以上かつ0.50以下である、
    請求項1から12のいずれか一項に記載の光電変換材料。
  14.  前記モル比は、0.05以上かつ0.10以下である、
    請求項13に記載の光電変換材料。
  15.  前記ペロブスカイト化合物は、ハロゲンアニオンを含む、
    請求項1から14のいずれか一項に記載の光電変換材料。
  16.  前記ペロブスカイト化合物は、1価のカチオン、2価のカチオン、およびハロゲンアニオンから構成され、
     前記2価のカチオンは、Snカチオン、GeカチオンおよびPbカチオンからなる群より選択される少なくとも1つを含む、
    請求項1から15のいずれか一項に記載の光電変換材料。
  17.  前記1価のカチオンは、50モル%以上の無機カチオンを含む、
    請求項16に記載の光電変換材料。
  18.  前記ペロブスカイト化合物は、CsSnI3、CsGeI3、およびCsPbI3からなる群より選択される少なくとも1つである、
    請求項16または17に記載の光電変換材料。
  19.  SnF2をさらに含む、
    請求項1から18のいずれか一項に記載の光電変換材料。
  20.  第1電極、光電変換層、および第2電極、を備え、
     前記光電変換層は、請求項1から19のいずれか一項に記載の光電変換材料を含む、
    光電変換素子。
     
PCT/JP2023/006032 2022-03-18 2023-02-20 光電変換材料およびそれを用いた光電変換素子 WO2023176321A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-044663 2022-03-18
JP2022044663 2022-03-18

Publications (1)

Publication Number Publication Date
WO2023176321A1 true WO2023176321A1 (ja) 2023-09-21

Family

ID=88023405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006032 WO2023176321A1 (ja) 2022-03-18 2023-02-20 光電変換材料およびそれを用いた光電変換素子

Country Status (1)

Country Link
WO (1) WO2023176321A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025170A (ja) * 2014-07-18 2016-02-08 学校法人桐蔭学園 有機無機ハイブリッド構造からなる光電変換素子
CN108232014A (zh) * 2017-12-30 2018-06-29 杭州纤纳光电科技有限公司 一种掺杂离子稳定剂的钙钛矿薄膜及其制备方法和应用
JP2018129506A (ja) * 2017-02-10 2018-08-16 パナソニックIpマネジメント株式会社 光吸収材料、光吸収材料の製造方法、および光吸収材料を用いた太陽電池
JP2019068018A (ja) * 2017-10-05 2019-04-25 大阪ガスケミカル株式会社 光電変換素子及びその製造方法
CN109775749A (zh) * 2018-12-12 2019-05-21 宁波工程学院 一种Sn-Pb合金无机钙钛矿薄膜及其在太阳能电池中的应用
CN112968129A (zh) * 2021-02-01 2021-06-15 中国科学院化学研究所 一种热稳定的无机钙钛矿薄膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025170A (ja) * 2014-07-18 2016-02-08 学校法人桐蔭学園 有機無機ハイブリッド構造からなる光電変換素子
JP2018129506A (ja) * 2017-02-10 2018-08-16 パナソニックIpマネジメント株式会社 光吸収材料、光吸収材料の製造方法、および光吸収材料を用いた太陽電池
JP2019068018A (ja) * 2017-10-05 2019-04-25 大阪ガスケミカル株式会社 光電変換素子及びその製造方法
CN108232014A (zh) * 2017-12-30 2018-06-29 杭州纤纳光电科技有限公司 一种掺杂离子稳定剂的钙钛矿薄膜及其制备方法和应用
CN109775749A (zh) * 2018-12-12 2019-05-21 宁波工程学院 一种Sn-Pb合金无机钙钛矿薄膜及其在太阳能电池中的应用
CN112968129A (zh) * 2021-02-01 2021-06-15 中国科学院化学研究所 一种热稳定的无机钙钛矿薄膜及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AI YUQUAN, ZHANG YANG, SONG JING, KONG TENGFEI, LI YAHONG, XIE HAIBING, BI DONGQIN: "In Situ Perovskitoid Engineering at SnO 2 Interface toward Highly Efficient and Stable Formamidinium Lead Triiodide Perovskite Solar Cells", JOURNAL OF PHYSICAL CHEMISTRY LETTERS, AMERICAN CHEMICAL SOCIETY, US, vol. 12, no. 43, 4 November 2021 (2021-11-04), US , pages 10567 - 10573, XP093092657, ISSN: 1948-7185, DOI: 10.1021/acs.jpclett.1c03002 *
BIDIKOUDI MARIA, SIMAL CARMEN, DRACOPOULOS VASILLIOS, STATHATOS ELIAS: "Exploring the Effect of Ammonium Iodide Salts Employed in Multication Perovskite Solar Cells with a Carbon Electrode", MOLECULES, vol. 26, no. 19, 22 September 2021 (2021-09-22), pages 5737, XP093092639, DOI: 10.3390/molecules26195737 *
JAHANDAR MUHAMMAD; KHAN NASIR; JAHANKHAN MUHAMMAD; SONG CHANG EUN; LEE HANG KEN; LEE SANG KYU; SHIN WON SUK; LEE JONG-CHEOL; IM SA: "High-performance CH3NH3PbI3 inverted planar perovskite solar cells via ammonium halide additives", JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, THE KOREAN SOCIETY OF INDUSTRIAL AND ENGINEERING CHEMISTRY, KOREA, vol. 80, 9 August 2019 (2019-08-09), KOREA , pages 265 - 272, XP085865808, ISSN: 1226-086X, DOI: 10.1016/j.jiec.2019.08.004 *
LI HAIYAN, YANG SONGWANG, GONG SHUIPING, WU JIAWEI, PAN SHANGKE, CHEN ZONGQI, ZHAO QINGBAO, SHOU CHUNHUI, SHEN QU: "Perovskite films with a sacrificial cation for solar cells with enhanced stability based on carbon electrodes", JOURNAL OF ALLOYS AND COMPOUNDS, ELSEVIER SEQUOIA, LAUSANNE., CH, vol. 797, 1 August 2019 (2019-08-01), CH , pages 811 - 819, XP093092647, ISSN: 0925-8388, DOI: 10.1016/j.jallcom.2019.05.148 *
MANGRULKAR MAYURIBALA, STEVENSON KEITH J.: "The Progress of Additive Engineering for CH3NH3PbI3 Photo-Active Layer in the Context of Perovskite Solar Cells", CRYSTALS, vol. 11, no. 7, 13 July 2021 (2021-07-13), pages 814, XP093092661, DOI: 10.3390/cryst11070814 *

Similar Documents

Publication Publication Date Title
EP3499597A1 (en) Electron specific oxide double layer contacts for highly efficient and uv stable perovskite device
US10573766B2 (en) Solar cell
US11737291B2 (en) Solar cell
CN110040979B (zh) 光吸收材料和使用该光吸收材料的太阳能电池
US20220285639A1 (en) Solar cell
US20220246362A1 (en) Solar cell
WO2023176321A1 (ja) 光電変換材料およびそれを用いた光電変換素子
US20190237267A1 (en) Solar cell
WO2023199728A1 (ja) 組成物およびそれを用いた光電変換層の製造方法
US20240065093A1 (en) Compound, and electronic device and light-emitting device using the same
WO2023063429A1 (ja) 光電変換材料およびそれを用いた光電変換素子
WO2023054073A1 (ja) 光電変換素子およびその製造方法、ならびに組成物
RU2788942C2 (ru) Фотовольтаическое устройство с перовскитным фотоактивным слоем и неорганическим пассивирующим покрытием на основе галогенидов металлов и способ изготовления этого устройства
US11696456B2 (en) Solar cell
WO2022244336A1 (ja) 太陽電池および太陽電池の製造方法
EP4343872A1 (en) Solar cell and solar cell manufacturing method
CN118104413A (zh) 光电转换材料及使用了其的光电转换元件
Bhaumik et al. A perspective on perovskite solar cells
EP3955329B1 (en) Solar cell
WO2022244289A1 (ja) 半導体材料および光電変換素子
US20240023349A1 (en) Solar battery
WO2022244413A1 (ja) 太陽電池および太陽電池の製造方法
WO2022244412A1 (ja) 太陽電池および太陽電池の製造方法
US20210327654A1 (en) Solar cell
WO2021261190A1 (ja) 太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770280

Country of ref document: EP

Kind code of ref document: A1