WO2023054073A1 - 光電変換素子およびその製造方法、ならびに組成物 - Google Patents
光電変換素子およびその製造方法、ならびに組成物 Download PDFInfo
- Publication number
- WO2023054073A1 WO2023054073A1 PCT/JP2022/035040 JP2022035040W WO2023054073A1 WO 2023054073 A1 WO2023054073 A1 WO 2023054073A1 JP 2022035040 W JP2022035040 W JP 2022035040W WO 2023054073 A1 WO2023054073 A1 WO 2023054073A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- photoelectric conversion
- layer
- phosphate ester
- conversion element
- composition
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 359
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 32
- 239000000203 mixture Substances 0.000 title claims description 48
- 239000000463 material Substances 0.000 claims abstract description 117
- -1 phosphate ester Chemical class 0.000 claims abstract description 105
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims abstract description 73
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 65
- 239000010452 phosphate Substances 0.000 claims abstract description 64
- 239000002243 precursor Substances 0.000 claims abstract description 64
- 238000000576 coating method Methods 0.000 claims abstract description 29
- 239000000758 substrate Substances 0.000 claims abstract description 28
- 239000002904 solvent Substances 0.000 claims abstract description 27
- 239000002994 raw material Substances 0.000 claims abstract description 16
- 239000011248 coating agent Substances 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims description 62
- 150000001875 compounds Chemical class 0.000 claims description 56
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 34
- 229910052736 halogen Inorganic materials 0.000 claims description 23
- 150000002367 halogens Chemical class 0.000 claims description 20
- 239000000126 substance Substances 0.000 claims description 20
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Chemical compound [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 claims description 15
- 229910052738 indium Inorganic materials 0.000 claims description 15
- 229910052718 tin Inorganic materials 0.000 claims description 15
- 229910052782 aluminium Inorganic materials 0.000 claims description 14
- 229910052802 copper Inorganic materials 0.000 claims description 14
- 229910052737 gold Inorganic materials 0.000 claims description 14
- 229910052742 iron Inorganic materials 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 claims description 14
- 229910052725 zinc Inorganic materials 0.000 claims description 14
- 229910052783 alkali metal Inorganic materials 0.000 claims description 13
- 229910052787 antimony Inorganic materials 0.000 claims description 13
- 150000001768 cations Chemical class 0.000 claims description 13
- 229910052733 gallium Inorganic materials 0.000 claims description 13
- 229910052697 platinum Inorganic materials 0.000 claims description 13
- 229910052797 bismuth Inorganic materials 0.000 claims description 12
- 229910052793 cadmium Inorganic materials 0.000 claims description 12
- 229910052745 lead Inorganic materials 0.000 claims description 12
- 229910052750 molybdenum Inorganic materials 0.000 claims description 12
- 229910052759 nickel Inorganic materials 0.000 claims description 12
- 229910052709 silver Inorganic materials 0.000 claims description 12
- 229910052712 strontium Inorganic materials 0.000 claims description 12
- 229910052719 titanium Inorganic materials 0.000 claims description 12
- 229910052721 tungsten Inorganic materials 0.000 claims description 12
- 229910052720 vanadium Inorganic materials 0.000 claims description 12
- 229910052726 zirconium Inorganic materials 0.000 claims description 12
- 229910052749 magnesium Inorganic materials 0.000 claims description 11
- 229910052758 niobium Inorganic materials 0.000 claims description 11
- 229910052684 Cerium Inorganic materials 0.000 claims description 10
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 10
- 229910052691 Erbium Inorganic materials 0.000 claims description 10
- 229910052693 Europium Inorganic materials 0.000 claims description 10
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 10
- 229910052779 Neodymium Inorganic materials 0.000 claims description 10
- 229910052781 Neptunium Inorganic materials 0.000 claims description 10
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 10
- 229910052772 Samarium Inorganic materials 0.000 claims description 10
- 229910052771 Terbium Inorganic materials 0.000 claims description 10
- 229910052776 Thorium Inorganic materials 0.000 claims description 10
- 229910052770 Uranium Inorganic materials 0.000 claims description 10
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 10
- 229910052785 arsenic Inorganic materials 0.000 claims description 10
- 229910052788 barium Inorganic materials 0.000 claims description 10
- 238000009835 boiling Methods 0.000 claims description 10
- 229910052791 calcium Inorganic materials 0.000 claims description 10
- 229910052804 chromium Inorganic materials 0.000 claims description 10
- 229910052732 germanium Inorganic materials 0.000 claims description 10
- 229910052741 iridium Inorganic materials 0.000 claims description 10
- 229910052746 lanthanum Inorganic materials 0.000 claims description 10
- 229910052748 manganese Inorganic materials 0.000 claims description 10
- 229910052762 osmium Inorganic materials 0.000 claims description 10
- 229910052763 palladium Inorganic materials 0.000 claims description 10
- 229910052702 rhenium Inorganic materials 0.000 claims description 10
- 229910052713 technetium Inorganic materials 0.000 claims description 10
- 229910052727 yttrium Inorganic materials 0.000 claims description 10
- 229910052753 mercury Inorganic materials 0.000 claims description 9
- 229910052716 thallium Inorganic materials 0.000 claims description 9
- 229910052703 rhodium Inorganic materials 0.000 claims description 8
- 150000001340 alkali metals Chemical class 0.000 claims description 7
- 150000003014 phosphoric acid esters Chemical class 0.000 claims description 7
- 239000000470 constituent Substances 0.000 claims description 6
- 229910052707 ruthenium Inorganic materials 0.000 claims description 6
- 239000013078 crystal Substances 0.000 claims description 5
- 125000005843 halogen group Chemical group 0.000 claims 2
- 238000010304 firing Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 66
- 235000021317 phosphate Nutrition 0.000 description 53
- 239000010408 film Substances 0.000 description 40
- 238000005516 engineering process Methods 0.000 description 34
- 230000005525 hole transport Effects 0.000 description 29
- 230000032258 transport Effects 0.000 description 28
- 239000004065 semiconductor Substances 0.000 description 17
- 238000004528 spin coating Methods 0.000 description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 13
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 13
- 239000011135 tin Substances 0.000 description 12
- 239000010949 copper Substances 0.000 description 11
- 239000010931 gold Substances 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- 239000011701 zinc Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 239000010936 titanium Substances 0.000 description 9
- 239000011777 magnesium Substances 0.000 description 8
- 239000010955 niobium Substances 0.000 description 8
- 239000011575 calcium Substances 0.000 description 7
- 229910044991 metal oxide Inorganic materials 0.000 description 7
- 150000004706 metal oxides Chemical class 0.000 description 7
- 239000010948 rhodium Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical class C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 5
- 229920001167 Poly(triaryl amine) Polymers 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 4
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 239000002608 ionic liquid Substances 0.000 description 4
- 150000002892 organic cations Chemical class 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 239000003115 supporting electrolyte Substances 0.000 description 3
- 239000012780 transparent material Substances 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910002601 GaN Inorganic materials 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-O Methylammonium ion Chemical compound [NH3+]C BAVYZALUXZFZLV-UHFFFAOYSA-O 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 229920000144 PEDOT:PSS Polymers 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910002367 SrTiO Inorganic materials 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 229910052789 astatine Inorganic materials 0.000 description 2
- CUFNKYGDVFVPHO-UHFFFAOYSA-N azulene Chemical compound C1=CC=CC2=CC=CC2=C1 CUFNKYGDVFVPHO-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- 150000004770 chalcogenides Chemical class 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000007607 die coating method Methods 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 230000027756 respiratory electron transport chain Effects 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 229910052701 rubidium Inorganic materials 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- SKRWFPLZQAAQSU-UHFFFAOYSA-N stibanylidynetin;hydrate Chemical compound O.[Sn].[Sb] SKRWFPLZQAAQSU-UHFFFAOYSA-N 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000010345 tape casting Methods 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- HVLLSGMXQDNUAL-UHFFFAOYSA-N triphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)OC1=CC=CC=C1 HVLLSGMXQDNUAL-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 description 1
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical compound C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 1
- UUIMDJFBHNDZOW-UHFFFAOYSA-N 2-tert-butylpyridine Chemical compound CC(C)(C)C1=CC=CC=N1 UUIMDJFBHNDZOW-UHFFFAOYSA-N 0.000 description 1
- LOIBXBUXWRVJCF-UHFFFAOYSA-N 4-(4-aminophenyl)-3-phenylaniline Chemical compound C1=CC(N)=CC=C1C1=CC=C(N)C=C1C1=CC=CC=C1 LOIBXBUXWRVJCF-UHFFFAOYSA-N 0.000 description 1
- SOIPESGJSYYVQD-UHFFFAOYSA-N 4-tert-butyl-2-pyrazol-1-ylpyridine Chemical compound CC(C)(C)C1=CC=NC(N2N=CC=C2)=C1 SOIPESGJSYYVQD-UHFFFAOYSA-N 0.000 description 1
- SNFCXVRWFNAHQX-UHFFFAOYSA-N 9,9'-spirobi[fluorene] Chemical compound C12=CC=CC=C2C2=CC=CC=C2C21C1=CC=CC=C1C1=CC=CC=C21 SNFCXVRWFNAHQX-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 229910021595 Copper(I) iodide Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910015711 MoOx Inorganic materials 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 229910005855 NiOx Inorganic materials 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- NGDCLPXRKSWRPY-UHFFFAOYSA-N Triptycene Chemical compound C12=CC=CC=C2C2C3=CC=CC=C3C1C1=CC=CC=C12 NGDCLPXRKSWRPY-UHFFFAOYSA-N 0.000 description 1
- 229910003090 WSe2 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910001508 alkali metal halide Inorganic materials 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 229910001615 alkaline earth metal halide Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- XLKNMWIXNFVJRR-UHFFFAOYSA-N boron potassium Chemical compound [B].[K] XLKNMWIXNFVJRR-UHFFFAOYSA-N 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- WFABOCFDABTAPE-UHFFFAOYSA-N calcium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Ca+2].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F.FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F WFABOCFDABTAPE-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GSOLWAFGMNOBSY-UHFFFAOYSA-N cobalt Chemical compound [Co][Co][Co][Co][Co][Co][Co][Co] GSOLWAFGMNOBSY-UHFFFAOYSA-N 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- PDZKZMQQDCHTNF-UHFFFAOYSA-M copper(1+);thiocyanate Chemical compound [Cu+].[S-]C#N PDZKZMQQDCHTNF-UHFFFAOYSA-M 0.000 description 1
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 1
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 150000004693 imidazolium salts Chemical class 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- KKFHAJHLJHVUDM-UHFFFAOYSA-N n-vinylcarbazole Chemical compound C1=CC=C2N(C=C)C3=CC=CC=C3C2=C1 KKFHAJHLJHVUDM-UHFFFAOYSA-N 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910052959 stibnite Inorganic materials 0.000 description 1
- KBLZDCFTQSIIOH-UHFFFAOYSA-M tetrabutylazanium;perchlorate Chemical compound [O-]Cl(=O)(=O)=O.CCCC[N+](CCCC)(CCCC)CCCC KBLZDCFTQSIIOH-UHFFFAOYSA-M 0.000 description 1
- FHCPAXDKURNIOZ-UHFFFAOYSA-N tetrathiafulvalene Chemical compound S1C=CSC1=C1SC=CS1 FHCPAXDKURNIOZ-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- VPYJNCGUESNPMV-UHFFFAOYSA-N triallylamine Chemical compound C=CCN(CC=C)CC=C VPYJNCGUESNPMV-UHFFFAOYSA-N 0.000 description 1
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
- OBAJXDYVZBHCGT-UHFFFAOYSA-N tris(pentafluorophenyl)borane Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1B(C=1C(=C(F)C(F)=C(F)C=1F)F)C1=C(F)C(F)=C(F)C(F)=C1F OBAJXDYVZBHCGT-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/50—Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/40—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/84—Layers having high charge carrier mobility
- H10K30/85—Layers having high electron mobility, e.g. electron-transporting layers or hole-blocking layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
- H10K71/15—Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/40—Thermal treatment, e.g. annealing in the presence of a solvent vapour
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the present disclosure relates to a photoelectric conversion element, a manufacturing method thereof, and a composition.
- Non-Patent Document 1 reports that a CsGeI 3 film was formed by physical vapor deposition, and a solar cell efficiency of 0.58% was obtained for the CsGeI 3 film.
- Non-Patent Document 2 reports that a CsGeI 3 film was formed by a spin coating method, which is a coating method, and a solar cell efficiency of 0.11% was obtained for the CsGeI 3 film.
- An object of the present disclosure is to provide a photoelectric conversion element having a configuration suitable for improving photoelectric conversion efficiency.
- a photoelectric conversion element of the present disclosure includes a first electrode, a photoelectric conversion layer, and a second electrode,
- the photoelectric conversion layer contains a photoelectric conversion material and a phosphate ester.
- the present disclosure provides a photoelectric conversion element having a configuration suitable for improving photoelectric conversion efficiency.
- FIG. 1 shows the structural formula of triphenyl phosphate, which is an example of a phosphate ester.
- FIG. 2 shows the supposed weak bond between triphenyl phosphate and Ge.
- FIG. 3 is a cross-sectional view showing a schematic configuration of the photoelectric conversion element 100 according to the first embodiment.
- FIG. 4 is a graph showing IV characteristics when the photoelectric conversion elements of Examples and Comparative Examples were irradiated for 1 sun.
- FIG. 5 is a graph showing IV characteristics when dark currents of the photoelectric conversion elements of Examples and Comparative Examples are measured.
- FIG. 6 shows the IV characteristics of a reverse stacked CsGeI 3 device under 1 sun irradiation.
- CsGeI 3 which is an example of a photoelectric conversion material, is a direct transition type and is expected to have high absorbance and high mobility. Therefore, attempts have been made to improve the photoelectric conversion efficiency of, for example, CsGeI 3 by forming films by various methods.
- Non-Patent Document 1 reports that a CsGeI 3 film was formed by physical vapor deposition and a solar cell efficiency of 0.58% was obtained.
- Non-Patent Document 2 reports that a film of CsGeI 3 was formed by a spin coating method, which is a coating method, and a solar cell efficiency of 0.11% was obtained.
- DMSO dimethyl sulfoxide
- the precursor solution changes from a yellow solution to a reddish brown gel before coating, making it difficult to obtain a good film quality by the coating method.
- the film quality of the photoelectric conversion layer to be formed is deteriorated, and the power generation efficiency is lowered.
- FIG. 1 shows the structural formula of triphenyl phosphate, which is an example of a phosphate ester.
- FIG. 2 shows the supposed weak bond between triphenyl phosphate and Ge. Phosphate esters such as triphenyl phosphate form weak bonds with Ge, as shown in FIG. 2, so that unwanted side reactions can be suppressed.
- the unwanted side reaction here is the reaction between Ge and DMSO. Therefore, by using a phosphoric acid ester to suppress the reaction between Ge and DMSO as described above, the pot life of the precursor solution is lengthened, and a good film can be formed.
- a photoelectric conversion element having a photoelectric conversion layer formed of such a high-quality film can improve photoelectric conversion efficiency. Furthermore, after the film is formed, the existence of the phosphate ester in the film can be expected to suppress undesirable reactions such as oxidation. In addition, since the boiling point of the phosphate ester is high, improvement in heat resistance and flexibility of the photoelectric conversion layer can be expected.
- phosphite such as triphenyl phosphite
- the phosphite reacts with Ge, and it is believed that the above effects cannot be obtained.
- a photoelectric conversion element includes a first electrode, a photoelectric conversion layer, and a second electrode.
- the photoelectric conversion layer contains a photoelectric conversion material and a phosphate ester.
- the photoelectric conversion layer can have good film quality.
- a photoelectric conversion layer having such good film quality can improve the photoelectric conversion efficiency. That is, the photoelectric conversion element according to the first embodiment has a configuration suitable for improving photoelectric conversion efficiency.
- the photoelectric conversion layer in the photoelectric conversion element according to the first embodiment can have good film quality by being formed by a coating method using, for example, the following precursor solution.
- the precursor solution contains a raw material for the photoelectric conversion material, a phosphate ester, and a solvent containing DMSO.
- DMSO is used as a solvent when forming a photoelectric conversion layer by a coating method in order to form a photoelectric conversion layer having good film quality.
- the phosphate ester contained in the precursor solution can form a weak bond with the raw material of the photoelectric conversion material (that is, the precursor of the photoelectric conversion material). Due to such a weak bond with the precursor, the phosphate ester can suppress the reaction between DMSO and the precursor of the photoelectric conversion material in the precursor solution without inhibiting the production of the photoelectric conversion material.
- Such action of the phosphate ester prolongs the pot life of the precursor solution, making it possible to form a good-quality film, that is, to form a photoelectric conversion layer with improved photoelectric conversion efficiency made of a good-quality film. Furthermore, after the film is formed, the existence of the phosphate ester in the film can be expected to suppress undesirable reactions such as oxidation. Further, since the boiling point of the phosphate ester is high, improvement in heat resistance and improvement in flexibility of the photoelectric conversion layer can be expected.
- the photoelectric conversion material contained in the photoelectric conversion layer of the photoelectric conversion element according to the first embodiment may be a perovskite compound.
- Perovskite compounds have a high light absorption coefficient and high carrier mobility in the wavelength region of the sunlight spectrum. Therefore, perovskite compounds have high photoelectric conversion efficiency.
- Perovskite compounds include Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Yb, Lu, Ta, W, Re, Os, Ir, At least one selected from the group consisting of Pt, Au, Hg, Tl, Pb, Bi, Th, U, and Np may be included. Perovskite compounds containing these elements and their precursors can react with DMSO to form complexes.
- the perovskite compound may contain Ge. Thereby, the photoelectric conversion material can realize high photoelectric conversion efficiency.
- a perovskite compound means a perovskite crystal structure represented by the chemical formula ABX 3 and a structure having crystals similar thereto.
- A is a monovalent cation
- B is a divalent cation
- X is a halogen anion.
- the photoelectric conversion material may be a material represented by the following chemical formula (1).
- A is a monovalent cation.
- B is Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh , Pd, Ag, Cd, In, Sn, Sb, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Yb, Lu, Ta, W, Re, Os, Ir, Pt , Au, Hg, Tl, Pb, Bi, Th, U, and Np.
- X is a halogen element and contains I;
- the material represented by the above chemical formula (1) has high photoelectric conversion efficiency.
- the photoelectric conversion material may be a material represented by the following chemical formula (2).
- A is a monovalent cation.
- X is a halogen element and contains I;
- the material represented by the above chemical formula (2) has high photoelectric conversion efficiency.
- Examples of monovalent cations represented by A in the above chemical formulas (1) and (2) are organic cations or alkali metal cations.
- Examples of organic cations are methylammonium cation (i.e. CH3NH3 + ) , formamidinium cation (i.e. NH2CHNH2 + ) , phenylethylammonium cation ( i.e. C6H5C2H4NH3 + ), or the guanidinium cation (ie, CH 6 N 3 + ).
- Examples of alkali metal cations are potassium cations (K + ), cesium cations (ie Cs + ), or rubidium cations (Rb + ).
- A may contain multiple types of cations.
- A may contain both organic and alkali metal cations.
- A may contain Cs.
- A may be Cs.
- A may contain Cs.
- A may be Cs. That is, the photoelectric conversion material may be a material represented by CsGeX3 .
- X may be I.
- X may be I. That is, the photoelectric conversion material may be a material represented by AGeI 3 .
- the photoelectric conversion material may be a material represented by CsGeI3 .
- Phosphates exclude, for example, phosphites.
- the phosphate ester contained in the photoelectric conversion layer does not form part of the perovskite structure.
- the phosphate ester may not be contained at any site of the perovskite compound.
- the photoelectric conversion material contained in the photoelectric conversion layer is a perovskite compound
- the phosphate ester may not be contained at any site of the perovskite compound as the photoelectric conversion material.
- the photoelectric conversion material contained in the photoelectric conversion layer is a perovskite compound
- the phosphate ester contained in the photoelectric conversion layer may exist between crystals of the perovskite compound.
- the phosphate ester may have a boiling point of 200°C or higher. This can be expected to further improve the heat resistance of the photoelectric conversion layer.
- the boiling point of the phosphate ester is, for example, 400° C. or less.
- the phosphate ester may contain triphenyl phosphate having the structure shown in FIG. This can further improve the effect of suppressing the reaction of DMSO with the photoelectric conversion material and its precursor.
- FIG. 3 is a cross-sectional view showing a schematic configuration of the photoelectric conversion element 100 according to the first embodiment.
- a photoelectric conversion element 100 includes, for example, a substrate 1, a first electrode 2, an electron transport layer 3, a photoelectric conversion layer 4, a hole transport layer 5, and a second electrode 6 in this order. Note that the substrate 1, the electron transport layer 3, and the hole transport layer 5 may not be provided.
- the photoelectric conversion layer 4 absorbs the light and separates the charges into electrons and holes. Electrons generated by this charge separation move to the first electrode 2 through the electron transport layer 3 . On the other hand, holes generated in the photoelectric conversion layer 4 move to the second electrode 6 via the hole transport layer 5 . Thereby, the photoelectric conversion element 100 can extract current from the first electrode 2 as the negative electrode and the second electrode 6 as the positive electrode.
- the substrate 1 is an ancillary component.
- the substrate 1 plays a role of holding each layer of the photoelectric conversion element 100 .
- Substrate 1 may be formed from a transparent material.
- a glass substrate or a plastic substrate can be used as the substrate 1, for example, a glass substrate or a plastic substrate can be used.
- the plastic substrate may be, for example, a plastic film.
- the substrate 1 may be made of a non-translucent material. Metals, ceramics, or resin materials with low translucency can be used as such materials.
- each layer can be held by the first electrode 2, so the substrate 1 does not have to be provided.
- the first electrode 2 has conductivity.
- the first electrode 2 has translucency. For example, it transmits light in the visible region to the near-infrared region.
- the first electrode 2 is made of, for example, a transparent and conductive material.
- materials are metal oxides or metal nitrides.
- examples of such materials are (i) titanium oxide doped with at least one selected from the group consisting of lithium, magnesium, niobium, and fluorine; (ii) gallium oxide doped with at least one selected from the group consisting of tin and silicon; (iii) gallium nitride doped with at least one selected from the group consisting of silicon and oxygen; (iv) tin oxide doped with at least one selected from the group consisting of antimony and fluorine; (v) zinc oxide doped with at least one selected from the group consisting of boron, aluminum, gallium, and indium; (vi) indium-tin composite oxide, or (vii) composites thereof, is.
- the first electrode 2 may be formed with a pattern through which light is transmitted.
- Examples of light-transmitting patterns are linear, wavy, lattice, or punching metal patterns in which a large number of fine through-holes are regularly or irregularly arranged.
- non-transparent materials can be used by providing a pattern through which light can pass.
- Examples of non-transparent electrode materials are platinum, gold, silver, copper, aluminum, rhodium, indium, titanium, iron, nickel, tin, zinc, or alloys containing any of these.
- Conductive carbon materials may be used as non-transparent electrode materials.
- the first electrode 2 does not have to be realized by the above-described pattern through which light is transmitted.
- the first electrode 2 may be made of a thin metal film having a thickness of about 10 nm.
- Such thin film metals are, for example, platinum, gold, silver, copper, aluminum, rhodium, indium, titanium, iron, nickel, tin, zinc, or alloys containing any of these.
- a conductive carbon material may be used instead of these metal materials.
- the first electrode 2 has a property of blocking holes from the photoelectric conversion layer 4 .
- the first electrode 2 does not make ohmic contact with the photoelectric conversion layer 4 .
- the property of blocking holes from the photoelectric conversion layer 4 means the property of allowing only electrons generated in the photoelectric conversion layer 4 to pass through and not allowing holes to pass therethrough.
- the Fermi energy of the material having such properties is higher than the energy at the top of the valence band of the photoelectric conversion layer 4 .
- the Fermi energy of the material having such properties may be higher than the Fermi energy of the photoelectric conversion layer 4 .
- a specific material is aluminum.
- the first electrode 2 does not have to block holes from the photoelectric conversion layer 4 .
- the first electrode 2 can be made of a material capable of forming an ohmic contact with the photoelectric conversion layer 4 .
- the first electrode 2 may or may not be in ohmic contact with the photoelectric conversion layer 4 .
- the light transmittance of the first electrode 2 may be, for example, 50% or more, or may be 80% or more.
- the wavelength of light that the first electrode 2 should transmit depends on the absorption wavelength of the photoelectric conversion layer 4 .
- the thickness of the first electrode 2 may be, for example, 1 nm or more and 1000 nm or less.
- the electron transport layer 3 contains a semiconductor.
- the electron transport layer 3 may be made of a semiconductor with a bandgap of 3.0 eV or more. Thereby, visible light and infrared light can be transmitted to the photoelectric conversion layer 4 .
- Examples of semiconductors are inorganic n-type semiconductors.
- Examples of inorganic n-type semiconductors are metal oxides, metal nitrides or perovskite oxides.
- metal oxides include Cd, Zn, In, Pb, Mo, W, Sb, Bi, Cu, Hg, Ti, Ag, Mn, Fe, V, Sn, Zr, Sr, Ga, Si, or Cr. It is an oxide.
- Metal oxides are, for example, TiO 2 or SnO 2 .
- a metal nitride is, for example, GaN.
- Perovskite oxides are, for example, SrTiO 3 or CaTiO 3 .
- the electron transport layer 3 may use a semiconductor with a bandgap of 6.0 eV or more.
- semiconductors are lithium fluoride, alkali metal or alkaline earth metal halides such as calcium fluoride, alkali metal oxides such as magnesium oxide, or silicon dioxide.
- the electron transport layer 3 may have a thickness of 10 nm or less, for example, in order to ensure the electron transport property of the electron transport layer 3 .
- the electron transport layer 3 may include multiple layers made of different materials.
- the photoelectric conversion layer 4 contains a photoelectric conversion material and a phosphate ester.
- the materials described above can be used as the photoelectric conversion material and the phosphate ester.
- the content of the phosphate ester in the photoelectric conversion layer 4 may be more than 0 and 9 mol% or less, or 1 mol% or more and 9 mol% or less. good too. In order to further improve the photoelectric conversion efficiency, the content may be 1 mol % or more and 3 mol % or less.
- the thickness of the photoelectric conversion layer 4 is, for example, 50 nm or more and 10 ⁇ m or less.
- the photoelectric conversion layer 4 can be formed, for example, by a coating method using a solution.
- a coating method using a solution examples include doctor blading, bar coating, spraying, dip coating, ink jetting, slit coating (ie die coating), or spin coating.
- the photoelectric conversion layer 4 may mainly contain a perovskite compound as a photoelectric conversion material.
- the photoelectric conversion layer 4 mainly contains a perovskite compound means that the photoelectric conversion layer 4 contains 50% by mass or more of the perovskite compound.
- the photoelectric conversion layer 4 may contain 70% by mass or more of the perovskite compound.
- the photoelectric conversion layer 4 may contain 90% by mass or more of the perovskite compound.
- Hole transport layer 5 contains a hole transport material.
- a hole-transporting material is a material that transports holes. Hole-transporting materials are, for example, organic or inorganic semiconductors.
- organic semiconductors examples include triphenylamine, triallylamine, phenylbenzidine, phenylenevinylene, tetrathiafulvalene, vinylnaphthalene, vinylcarbazole, thiophene, aniline, pyrrole, carbazole, triptycene, fluorene, azulene, pyrene, pentacene, perylene, acridine , or a phthalocyanine.
- Examples of typical organic semiconductors used as hole transport materials include 2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine)9,9′-spirobifluorene, poly[bis( 4-phenyl)(2,4,6-trimethylphenyl)amine] (hereinafter also referred to as "PTAA”), poly(3-hexylthiophene-2,5-diyl), poly(3,4-ethylenedioxythiophene), or copper phthalocyanine is.
- PTAA 2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine)9,9′-spirobifluorene
- PTAA poly[bis( 4-phenyl)(2,4,6-trimethylphenyl)amine]
- poly(3-hexylthiophene-2,5-diyl) poly(3,4-ethylenedioxythiophene)
- Inorganic semiconductors used as hole transport materials are p-type semiconductors.
- Examples of inorganic semiconductors are Cu2O , CuGaO2 , CuSCN, CuI , NiOx , MoOx , V2O5 , or carbon materials such as graphene oxide.
- x satisfies x>0.
- the hole transport layer 5 may include multiple layers made of different materials. For example, by laminating a plurality of layers so that the ionization potential of the hole transport layer 5 becomes smaller than the ionization potential of the photoelectric conversion layer 4, the hole transport characteristics are improved.
- the thickness of the hole transport layer 5 may be 1 nm or more and 1000 nm or less, or may be 10 nm or more and 50 nm or less. Thereby, sufficient hole transport properties can be exhibited. Therefore, a low resistance of the photoelectric conversion element 100 can be maintained, and a high photoelectric conversion efficiency can be realized.
- the hole transport layer 5 is formed by, for example, a coating method, a printing method, or a vapor deposition method. This is the same as the photoelectric conversion layer 4 .
- application methods are doctor blading, bar coating, spraying, dip coating, ink jetting, slit coating (ie die coating), or spin coating.
- An example of a printing method is screen printing. If necessary, a plurality of materials may be mixed to form the hole transport layer 5, and pressurized or baked.
- the material of the hole transport layer 5 is an organic low-molecular substance or an inorganic semiconductor, the hole transport layer 5 can also be produced by a vacuum deposition method.
- the hole-transporting layer 5 may contain not only the hole-transporting material but also an additive in order to increase conductivity.
- additives are supporting electrolytes, solvents or dopants.
- the supporting electrolyte and solvent have the effect of stabilizing the holes in the hole transport layer 5 .
- Dopants have the effect of increasing the number of holes in the hole transport layer 5 .
- Examples of supporting electrolytes are ammonium salts, alkaline earth metal salts, or transition metal salts.
- ammonium salts are tetrabutylammonium perchlorate, tetraethylammonium hexafluorophosphate, imidazolium salts or pyridinium salts.
- Examples of alkali metal salts are lithium perchlorate or potassium boron tetrafluoride.
- Examples of alkaline earth metal salts are lithium bis(trifluoromethanesulfonyl)imide or bis(trifluoromethanesulfonyl)imide calcium(II).
- transition metal salts are bis(trifluoromethanesulfonyl)imidozinc(II) or tris[4-tert-butyl-2-(1H-pyrazol-1-yl)pyridine]cobalt(III) tris(trifluoromethanesulfonyl) is an imide.
- An example of a dopant is a fluorine-containing aromatic boron compound.
- An example of a fluorine-containing aromatic boron compound is tris(pentafluorophenyl)borane.
- the solvent contained in the hole transport layer 5 may have excellent ionic conductivity.
- the solvent may be an aqueous solvent or an organic solvent.
- the solvent contained in the hole transport layer 5 may be an organic solvent in order to stabilize the solute more.
- organic solvents are heterocyclic solvents such as tert-butylpyridine, pyridine, and n-methylpyrrolidone.
- An ionic liquid may be used as the solvent.
- the ionic liquid may be used alone or mixed with other solvents. Ionic liquids are desirable because of their low volatility and high flame retardancy.
- ionic liquids examples include imidazolium-based, such as 1-ethyl-3-methylimidazolium tetracyanoborate, pyridine-based, alicyclic amine-based, aliphatic amine-based, or azonium amine-based.
- the second electrode 6 has conductivity.
- the second electrode 6 has a property of blocking electrons from the photoelectric conversion layer 4 .
- the second electrode 6 does not make ohmic contact with the photoelectric conversion layer 4 .
- the property of blocking electrons from the photoelectric conversion layer 4 means the property of allowing only holes generated in the photoelectric conversion layer 4 to pass therethrough and not allowing electrons to pass therethrough.
- the Fermi energy of the material having such properties is lower than the energy at the bottom of the conduction band of the photoelectric conversion layer 4 .
- the Fermi energy of the material having such properties may be lower than the Fermi energy of the photoelectric conversion layer 4 .
- Specific materials are platinum, gold, or carbon materials such as graphene.
- the second electrode 6 does not have to block electrons from the photoelectric conversion layer 4 .
- the second electrode 6 can be made of a material capable of forming an ohmic contact with the photoelectric conversion layer 4 . Thereby, the second electrode 6 can be formed to have translucency.
- the electrode on the light incident side only needs to be translucent. Therefore, one of the first electrode 2 and the second electrode 6 does not have to be translucent. That is, one of the first electrode 2 and the second electrode 6 may not use a translucent material or may not have a pattern including openings that transmit light.
- a porous layer is formed on the electron transport layer 3 by, for example, a coating method.
- the photoelectric conversion element 100 does not have the electron transport layer 3 , it is formed on the first electrode 2 .
- the pore structure introduced by the porous layer serves as a foundation for forming the photoelectric conversion layer 4.
- the porous layer does not inhibit light absorption by the photoelectric conversion layer 4 and electron transfer from the photoelectric conversion layer 4 to the electron transport layer 3 .
- the porous layer contains a porous body.
- the porous body is formed, for example, by a series of insulating or semiconducting particles.
- insulating particles are aluminum oxide particles or silicon oxide particles.
- semiconductor particles are inorganic semiconductor particles.
- inorganic semiconductors are metal oxides, perovskite oxides of metallic elements, sulfides of metallic elements or metal chalcogenides.
- metal oxides include Cd, Zn, In, Pb, Mo, W, Sb, Bi, Cu, Hg, Ti, Ag, Mn, Fe, V, Sn, Zr, Sr, Ga, Si, or Cr. It is an oxide.
- a metal oxide is, for example, TiO 2 .
- Examples of perovskite oxides of metallic elements are SrTiO 3 or CaTiO 3 .
- sulfides of metallic elements are CdS, ZnS, In2S3 , PbS, Mo2S , WS2 , Sb2S3 , Bi2S3 , ZnCdS2 or Cu2S .
- metal chalcogenides are CsSe, In2Se3 , WSe2 , HgS, PbSe, or CdTe .
- the thickness of the porous layer may be 0.01 ⁇ m or more and 10 ⁇ m or less, or may be 0.05 ⁇ m or more and 1 ⁇ m or less.
- the surface roughness coefficient given by effective area/projected area may be 10 or more, or 100 or more.
- the projected area is the area of the shadow behind the object when it is illuminated directly from the front.
- Effective area is the actual surface area of an object.
- the effective area can be calculated from the volume determined from the projected area and thickness of the object, and the specific surface area and bulk density of the material forming the object.
- the specific surface area is measured, for example, by a nitrogen adsorption method.
- the voids in the porous layer are connected from one main surface of the porous layer to the other main surface. That is, the voids in the porous layer are connected from the main surface of the porous layer in contact with the photoelectric conversion layer 4 to the main surface of the porous layer in contact with the electron transport layer 3 . Thereby, the material of the photoelectric conversion layer 4 can fill the voids of the porous layer and reach the surface of the electron transport layer 3 . Therefore, since the photoelectric conversion layer 4 and the electron transport layer 3 are in direct contact with each other, electron transfer is possible.
- the porous layer By providing the porous layer, the effect that the photoelectric conversion layer 4 can be easily formed can be obtained.
- the material of the photoelectric conversion layer 4 penetrates into the voids of the porous layer, and the porous layer serves as a scaffold for the photoelectric conversion layer 4 . Therefore, it is difficult for the material of the photoelectric conversion layer 4 to repel or aggregate on the surface of the porous layer. Therefore, the photoelectric conversion layer 4 can be easily formed as a uniform film.
- the photoelectric conversion layer 4 can be formed by the above coating method or the like.
- the effect of increasing the optical path length of light passing through the photoelectric conversion layer 4 is also expected due to light scattering caused by the porous layer. It is expected that the amount of electrons and holes generated in the photoelectric conversion layer 4 will increase as the optical path length increases.
- the photoelectric conversion layer is formed by, for example, a coating method. Therefore, in the method for manufacturing a photoelectric conversion element according to the first embodiment, for example, a raw material of a photoelectric conversion material, a phosphoric acid ester, a solvent containing DMSO, and a precursor solution containing a precursor solution are applied on a substrate to form a coating film. and baking the coating film to form a photoelectric conversion layer.
- the said base material means a member used as a base when forming a photoelectric conversion layer by coating. Therefore, in the photoelectric conversion element 100 having the configuration shown in FIG. 3, for example, the electron transport layer 3 on which the photoelectric conversion layer 4 is formed corresponds to the substrate. Moreover, when the photoelectric conversion layer is formed on the porous layer, the porous layer corresponds to the substrate.
- the phosphate ester contained in the precursor solution the phosphate ester material contained in the photoelectric conversion layer described above can be used. That is, a phosphate ester having a boiling point of 200° C. or higher may be used. The phosphate ester may also be triphenyl phosphate. Thereby, the effect of suppressing the reaction between the photoelectric conversion material and its precursor and DMSO can be improved.
- the raw material of the photoelectric conversion material contained in the precursor solution is not particularly limited as long as it can be the raw material of the desired photoelectric conversion material.
- the precursor solution contains, as raw materials of the photoelectric conversion material, a first compound containing A and a first halogen element as constituent elements, and B and a second compound containing a second halogen element as a constituent element.
- at least one selected from the group consisting of the first halogen element and the second halogen element includes I.
- a constituting the first compound may be an alkali metal element.
- the first compound can be cesium iodide (ie, CsI).
- the solvent of the precursor solution may further contain DMF (dimethylformamide). That is, the precursor solution may contain DMF together with DMSO as a solvent.
- DMF dimethylformamide
- the content of the phosphate ester in the photoelectric conversion layer may be, for example, more than 0 and 9 mol % or less in order to improve the photoelectric conversion efficiency. Therefore, the precursor solution may contain a phosphate ester such that the phosphate content in the photoelectric conversion layer to be formed is more than 0 and 9 mol % or less.
- a composition according to the second embodiment contains at least one selected from the group consisting of a photoelectric conversion material and a precursor of the photoelectric conversion material, a solvent containing DMSO, and a phosphate ester.
- the photoelectric conversion material and the phosphoric acid ester described in the first embodiment can be used as the photoelectric conversion material and the phosphoric acid ester, respectively.
- composition according to the second embodiment contains a precursor of a photoelectric conversion material, for example, it can be used as a precursor solution used in the method for manufacturing a photoelectric conversion element described in the first embodiment.
- the composition according to the second embodiment contains a photoelectric conversion material
- the composition according to the second embodiment includes, for example, a synthesized photoelectric conversion material produced in the process of forming the photoelectric conversion layer, and DMSO. It can be a composition in which the solvent and the phosphate ester are present at the same time. Further, when DMSO remains in the formed photoelectric conversion layer, the photoelectric conversion layer corresponds to a layer composed of the composition according to the second embodiment.
- the photoelectric conversion material in the composition according to the second embodiment corresponds to the photoelectric conversion material described in the first embodiment.
- the photoelectric conversion material may be a perovskite compound.
- Perovskite compounds include Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Yb, Lu, Ta, W, Re, Os, Ir, At least one selected from the group consisting of Pt, Au, Hg, Tl, Pb, Bi, Th, U, and Np may be included.
- a photoelectric conversion material containing these elements can react with DMSO to form a bond such as a complex. Therefore, coexistence with the phosphate ester can suppress the reaction. As a result, the pot life of the composition becomes longer, and it becomes possible to form a good quality film using the composition according to the second embodiment.
- the perovskite compound may contain Ge. Thereby, the photoelectric conversion material can realize high photoelectric conversion efficiency.
- the photoelectric conversion material may be a material represented by the following chemical formula (2) described in the first embodiment.
- the material represented by chemical formula (2) has high photoelectric conversion efficiency.
- Examples of monovalent cations mentioned above are organic cations or alkali metal cations.
- Examples of organic cations are methylammonium cation (i.e. CH3NH3 + ) , formamidinium cation (i.e. NH2CHNH2 + ) , phenylethylammonium cation (i.e. C6H5C2H4NH3 + ), or the guanidinium cation (ie, CH 6 N 3 + ).
- Examples of alkali metal cations are potassium cations (K + ), cesium cations (ie Cs + ), or rubidium cations (Rb + ).
- A may contain multiple types of cations.
- A may contain both organic and alkali metal cations.
- A may contain Cs.
- A may be Cs.
- X may be I. That is, the photoelectric conversion material may be a material represented by AGeI 3 .
- the solvent may further contain DMF. That is, the composition of the second embodiment may contain DMF together with DMSO as a solvent.
- the phosphate ester contained in the composition of the second embodiment may have a boiling point of 200°C or higher.
- the phosphate ester may contain triphenyl phosphate. This can improve the effect of suppressing the reaction between the photoelectric conversion material and DMSO.
- composition of the second embodiment may further contain a compound composed of an alkali metal element and a halogen element.
- a compound composed of an alkali metal element and a halogen element is cesium iodide (CsI).
- the photoelectric conversion layer contains a photoelectric conversion material and a phosphate ester, Photoelectric conversion element.
- the photoelectric conversion layer can have good film quality.
- a photoelectric conversion layer having such good film quality can improve the photoelectric conversion efficiency. That is, the photoelectric conversion element of technique 1 has a configuration suitable for improving the photoelectric conversion efficiency.
- the photoelectric conversion material is a perovskite compound
- the perovskite compound is Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Sr, Y, Zr, Nb, Mo, Tc, Ru , Rh, Pd, Ag, Cd, In, Sn, Sb, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Yb, Lu, Ta, W, Re, Os, Ir , Pt, Au, Hg, Tl, Pb, Bi, Th, U, and at least one selected from the group consisting of Np, The photoelectric conversion element according to Technique 1.
- the photoelectric conversion element of Technology 2 can improve the photoelectric conversion efficiency.
- the photoelectric conversion material of Technology 3 can further improve the photoelectric conversion efficiency.
- the photoelectric conversion element of Technology 4 can effectively exhibit the function of the phosphate ester and improve the photoelectric conversion efficiency.
- the photoelectric conversion material is represented by the following chemical formula (1), ABX 3 (1) here, A is a monovalent cation, B is Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh , Pd, Ag, Cd, In, Sn, Sb, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Yb, Lu, Ta, W, Re, Os, Ir, Pt , Au, Hg, Tl, Pb, Bi, Th, U, and at least one selected from the group consisting of Np; X is a halogen element, and contains I, The photoelectric conversion element according to any one of Techniques 1 to 4.
- the photoelectric conversion element of Technology 5 can improve the photoelectric conversion efficiency.
- the photoelectric conversion material in the photoelectric conversion element of Technology 6 can have high absorbance and high mobility. Therefore, the photoelectric conversion element of technique 6 can further improve the photoelectric conversion efficiency.
- the photoelectric conversion element of Technology 7 can improve the heat resistance of the photoelectric conversion layer.
- the photoelectric conversion element of Technology 8 can improve the photoelectric conversion efficiency.
- the photoelectric conversion element of Technology 9 can improve the photoelectric conversion efficiency.
- a method for manufacturing a photoelectric conversion element according to any one of Techniques 1 to 9, The manufacturing method is A precursor solution containing a raw material of the photoelectric conversion material, the phosphoric acid ester, and a solvent containing dimethylsulfoxide is applied on a substrate to form a coating film, and the coating film is baked to form the photoelectric conversion layer.
- a method for manufacturing a photoelectric conversion element comprising:
- the precursor solution having the above structure containing a phosphate ester can suppress the reaction between dimethyl sulfoxide and the precursor of the photoelectric conversion material in the precursor solution without inhibiting the production of the photoelectric conversion material.
- Such action of the phosphate ester prolongs the pot life of the precursor solution, making it possible to form a good quality film, that is, to form a photoelectric conversion layer composed of a good quality film. Therefore, according to the manufacturing method of technique 10, a photoelectric conversion element with improved photoelectric conversion efficiency can be manufactured.
- the photoelectric conversion element is the photoelectric conversion element according to Technique 5,
- the precursor solution as the raw material of the photoelectric conversion material, a first compound containing A and a first halogen element as constituent elements; a second compound containing B and a second halogen element as constituent elements; including At least one selected from the group consisting of the first halogen element and the second halogen element contains I,
- a photoelectric conversion element with improved photoelectric conversion efficiency can be manufactured.
- a photoelectric conversion element with improved photoelectric conversion efficiency can be manufactured.
- a photoelectric conversion element with improved photoelectric conversion efficiency can be manufactured.
- a photoelectric conversion layer having good film quality can be formed, so a photoelectric conversion element with improved photoelectric conversion efficiency can be manufactured.
- a photoelectric conversion element with improved photoelectric conversion efficiency can be manufactured.
- composition of technique 16 can be used, for example, as a precursor solution that can be used to produce a photoelectric conversion element with improved photoelectric conversion efficiency.
- the photoelectric conversion material is a perovskite compound
- the perovskite compound is Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Sr, Y, Zr, Nb, Mo, Tc, Ru , Rh, Pd, Ag, Cd, In, Sn, Sb, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Yb, Lu, Ta, W, Re, Os, Ir , Pt, Au, Hg, Tl, Pb, Bi, Th, U, and at least one selected from the group consisting of Np, The composition according to Technique 16.
- composition of Technique 17 can be used, for example, as a precursor solution that can be used to produce a photoelectric conversion element with improved photoelectric conversion efficiency.
- composition of technique 18 can be used, for example, as a precursor solution that can be used to produce a photoelectric conversion element with improved photoelectric conversion efficiency.
- the photoelectric conversion material is represented by the following chemical formula (2), AGeX3 (2) here, A is a monovalent cation, X is a halogen element, and contains I, The composition of any one of Techniques 16-18.
- composition of Technique 19 can be used, for example, as a precursor solution that can be used to produce a photoelectric conversion element with improved photoelectric conversion efficiency.
- composition of technique 20 can be used, for example, as a precursor solution that can be used to produce a photoelectric conversion element with improved photoelectric conversion efficiency.
- composition of technique 21 can be used, for example, as a precursor solution that can be used to produce a photoelectric conversion element with improved photoelectric conversion efficiency.
- the composition of technique 22 can be used, for example, as a precursor solution that can be used to manufacture a photoelectric conversion element with improved heat resistance in addition to photoelectric conversion efficiency.
- composition of Technique 23 can be used, for example, as a precursor solution that can be used to produce a photoelectric conversion element with improved photoelectric conversion efficiency.
- composition of technique 24 can be used, for example, as a precursor solution that can be used to produce a photoelectric conversion element with improved photoelectric conversion efficiency.
- composition of technique 25 can be used, for example, as a precursor solution that can be used to produce a photoelectric conversion element with improved photoelectric conversion efficiency.
- a glass substrate was prepared.
- the substrate serves as a support material in the photoelectric conversion element of the present disclosure.
- An ITO (Indium Tin Oxide) layer was formed on the substrate by sputtering. Furthermore, a layer of ATO (Antimony Tin Oxide) was formed on the ITO layer by sputtering. Thus, the first electrode was formed.
- ITO Indium Tin Oxide
- ATO Antimony Tin Oxide
- TiO 2 titanium oxide
- This dense layer of titanium oxide (TiO 2 ) corresponds to, for example, the electron transport layer described in the first embodiment.
- titanium oxide paste of 30NR-D manufactured by Gratcell Solar Materials Pty Ltd
- the resulting solution was applied onto the electron transport layer by spin coating, and then baked at 500° C. for 20 minutes. Thus, a porous layer of titanium oxide was formed. Spin coating was performed at 4000 rpm for 20 seconds. Both the dense layer of titanium oxide (TiO 2 ) and the porous layer of titanium oxide have electron transport properties. Therefore, it can be considered that the electron transport layer is composed of the dense layer of titanium oxide (TiO 2 ) and the porous layer of titanium oxide.
- the precursor solution for the photoelectric conversion layer was applied onto the porous layer by spin coating, it was baked at 120°C for 30 minutes. Thus, a photoelectric conversion layer was formed. Spin coating was performed at 2000 rpm for 45 seconds.
- a precursor solution for a photoelectric conversion layer was obtained as follows. First, a 1.6 M GeI 2 solution was obtained by dissolving GeI 2 in DMF (N,N-dimethylformamide). Then, TPPa (Triphenyl Phosphate) was dissolved in this solution. A 1.6 M CsI solution was then obtained by dissolving CsI in DMSO. Finally, 0.8 M CsGeI 3 was obtained by mixing the GeI 2 solution with TPPa added and the CsI solution in the same volume. Precursor solutions were used for spin coating immediately after preparation.
- TPPa-added GeI 2 solution the concentrations of TPPa were 2 mol%, 6 mol%, and 18 mol%.
- the concentration of TPPa in the precursor solution was adjusted so that the TPPa content in the formed photoelectric conversion layer was 1 mol %, 3 mol %, and 9 mol %.
- a precursor solution containing no TPPa was also prepared.
- a raw material solution for the hole transport layer was applied onto the photoelectric conversion layer by spin coating.
- a hole transport layer was formed.
- a raw material solution for the hole transport layer was prepared by dissolving 18 mg of PTAA [Poly(triarylamine)] in 1 mL of chlorobenzene. Spin coating was performed at 4000 rpm for 20 seconds.
- a UV curable epoxy resin was applied around the substrate, attached to another glass substrate, and irradiated with UV. In this manner, the epoxy resin was cured and the power generation element was encapsulated.
- Photoelectric conversion elements with TPPa contents of 1 mol %, 3 mol %, and 9 mol % in the photoelectric conversion layer were used as photoelectric conversion elements of Examples 1, 2, and 3, respectively.
- a photoelectric conversion element containing no TPPa, that is, a photoelectric conversion element having a TPPa content of 0 mol % in the photoelectric conversion layer was used as a photoelectric conversion element of a comparative example.
- a solar simulator manufactured by Spectroscopy Instruments Co., Ltd.
- an electrochemical analyzer ALS manufactured by BAS Co., Ltd.
- the photoelectric conversion element was irradiated with one sun of simulated sunlight.
- the power of the solar simulator was set at 100 mW/cm 2 .
- the current-voltage characteristics (that is, IV characteristics) of the photoelectric conversion element were measured by measuring the output current value while changing the applied voltage using an electrochemical analyzer.
- FIG. 4 is a graph showing the IV characteristics when the photoelectric conversion elements of Examples and Comparative Examples were irradiated for 1 sun.
- the horizontal axis of FIG. 4 indicates applied voltage, and the vertical axis indicates current density.
- FIG. 5 is a graph showing IV characteristics when dark currents of the photoelectric conversion elements of Examples and Comparative Examples are measured. 5 at the time of dark current measurement, the IV curve at the time of 1 sun irradiation in FIG. 4 moved upward, and it was found that the photoelectric conversion element certainly performed photoelectric conversion.
- the photoelectric conversion element according to Example 4 was produced as follows.
- the substrate serves as a support material in the photoelectric conversion element of the present disclosure.
- An ITO layer was formed on the substrate by a sputtering method. Thus, the first electrode was formed.
- PEDOT:PSS poly(3,4-ethylenedioxythiophene)polystyrene sulfonate
- the precursor solution for the photoelectric conversion layer was applied onto the hole transport layer by spin coating, it was baked at 120°C for 30 minutes. Thus, a photoelectric conversion layer was formed. Spin coating was performed at 2000 rpm for 45 seconds.
- a precursor solution for a photoelectric conversion layer was obtained as follows. First, a 1.6 M GeI 2 solution was obtained by dissolving GeI 2 in DMF (N,N-dimethylformamide). Then, TPPa (Triphenyl Phosphate) was dissolved in this solution. A 1.6 M CsI solution was then obtained by dissolving CsI in DMSO. Finally, 0.8 M CsGeI 3 was obtained by mixing the GeI 2 solution with TPPa added and the CsI solution in the same volume. Precursor solutions were used for spin coating immediately after preparation.
- Example 4 in the TPPa-added GeI 2 solution, the concentration of TPPa was 6 mol %. The concentration of TPPa in the precursor solution was adjusted so that the content of TPPa in the formed photoelectric conversion layer was 3 mol %.
- a raw material solution for the electron transport layer was prepared by dissolving 25 mg of PCBM ([6,6]-phenyl C61 butyric acid methyl ester) in 1 mL of chlorobenzene.
- bathocuproine BCP was deposited with a thickness of 6 nm and Al with a thickness of 200 nm by vacuum deposition.
- a UV curable epoxy resin was applied around the substrate, attached to another glass substrate, and irradiated with UV. In this manner, the epoxy resin was cured and the power generation element was encapsulated.
- FIG. 6 shows the IV characteristics of a reverse stacked CsGeI 3 device under 1 sun irradiation.
- the method for evaluating the IV characteristics of the inversely stacked CsGeI 3 device of Example 4 when irradiated for 1 sun was the same as the method for evaluating the device of Examples 1-3.
- the photoelectric conversion efficiency of the photoelectric conversion element was improved by using the example in which the phosphate ester was added to the photoelectric conversion layer containing the perovskite compound containing Ge as the photoelectric conversion material. .
- Such an effect is not limited to the case where a perovskite compound containing Ge is used as a photoelectric conversion material. Materials can be similarly obtained.
- the photoelectric conversion device of the present disclosure can be used, for example, in solar cells.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
前記光電変換層は、光電変換材料およびリン酸エステルを含有する。
光電変換素子について、光電変換材料を含む光電変換層をさまざまな製法を用いて成膜することにより、光電変換素子の光電変換効率を向上させることが試みられている。例えば、光電変換材料の一例であるCsGeI3は、直接遷移型で高い吸光度を有し、また高い移動度を有すると予測されている。したがって、例えばCsGeI3についても、さまざまな製法で成膜することにより、光電変換効率を向上させることが試みられている。
以下、本開示の実施形態が、図面を参照しながら説明される。
第1実施形態による光電変換素子は、第1電極、光電変換層、および第2電極を備える。光電変換層は、光電変換材料およびリン酸エステルを含有する。
ABX3 ・・・(1)
ここで、Aは、1価のカチオンである。Bは、Mg、Al、Si、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Sr、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Ba、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Er、Yb、Lu、Ta、W、Re、Os、Ir、Pt、Au、Hg、Tl、Pb、Bi、Th、U、およびNpからなる群より選択される少なくとも1つである。Xは、ハロゲン元素であり、かつ、Iを含む。
AGeX3 ・・・(2)
ここで、Aは、1価のカチオンである。Xは、ハロゲン元素であり、かつ、Iを含む。
基板1は、付随的な構成要素である。基板1は、光電変換素子100の各層を保持する役割を果たす。基板1は、透明な材料から形成することができる。基板1としては、例えば、ガラス基板またはプラスチック基板を用いることができる。プラスチック基板は、例えば、プラスチックフィルムであってもよい。
第1電極2は、導電性を有する。
(i)リチウム、マグネシウム、ニオブ、およびフッ素からなる群より選択される少なくとも1種がドープされた酸化チタン、
(ii)錫およびシリコンからなる群より選択される少なくとも1種がドープされた酸化ガリウム、
(iii)シリコンおよび酸素からなる群より選択される少なくとも1種がドープされた窒化ガリウム、
(iv)アンチモンおよびフッ素からなる群より選択される少なくとも1種がドープされた酸化錫、
(v)ホウ素、アルミニウム、ガリウム、およびインジウムからなる群より選択される少なくとも1種がドープされた酸化亜鉛、
(vi)インジウム-錫複合酸化物、または、
(vii)これらの複合物、
である。
電子輸送層3は、半導体を含む。電子輸送層3は、バンドギャップが3.0eV以上の半導体から形成されていてもよい。これにより、可視光および赤外光を光電変換層4まで透過させることができる。半導体の例は、無機のn型半導体である。
光電変換層4は、光電変換材料およびリン酸エステルを含有する。
正孔輸送層5は、正孔輸送材料を含有する。正孔輸送材料は、正孔を輸送する材料である。正孔輸送材料は、例えば、有機半導体または無機半導体である。
第2電極6は、導電性を有する。
多孔質層は、電子輸送層3の上に、例えば、塗布法によって形成される。光電変換素子100が電子輸送層3を備えない場合は、第1電極2の上に形成される。
以下、第2実施形態による組成物について説明する。第1実施形態において説明された事項は、適宜省略され得る。
AGeX3 ・・・(2)
ここで、
Aは、1価のカチオンであり、
Xは、ハロゲン元素であり、かつ、Iを含む。
(付記)
以上の実施形態の記載により、下記の技術が開示される。
第1電極、光電変換層、および第2電極を備え、
前記光電変換層は、光電変換材料およびリン酸エステルを含有する、
光電変換素子。
前記光電変換材料は、ペロブスカイト化合物であり、
前記ペロブスカイト化合物は、Mg、Al、Si、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Sr、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Ba、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Er、Yb、Lu、Ta、W、Re、Os、Ir、Pt、Au、Hg、Tl、Pb、Bi、Th、U、およびNpからなる群より選択される少なくとも1つを含む、
技術1に記載の光電変換素子。
前記ペロブスカイト化合物は、Geを含む、技術2に記載の光電変換素子。
前記リン酸エステルは、前記ペロブスカイト化合物の結晶間に存在する、技術2または3に記載の光電変換素子。
前記光電変換材料は、以下の化学式(1)で表され、
ABX3 ・・・(1)
ここで、
Aは、1価のカチオンであり、
Bは、Mg、Al、Si、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Sr、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Ba、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Er、Yb、Lu、Ta、W、Re、Os、Ir、Pt、Au、Hg、Tl、Pb、Bi、Th、U、およびNpからなる群より選択される少なくとも1つであり、
Xは、ハロゲン元素であり、かつ、Iを含む、
技術1から4のいずれか一項に記載の光電変換素子。
Aは、Csを含む、技術5に記載の光電変換素子。
前記リン酸エステルは、200℃以上の沸点を有する、技術1から6のいずれか一項に記載の光電変換素子。
前記リン酸エステルは、リン酸トリフェニルを含む、技術1から7のいずれか一項に記載の光電変換素子。
前記光電変換層における前記リン酸エステルの含有量は、0超かつ9mol%以下である、技術1から8のいずれかの一項に記載の光電変換素子。
技術1から9のいずれか一項に記載の光電変換素子の製造方法であって、
前記製造方法は、
前記光電変換材料の原料と、前記リン酸エステルと、ジメチルスルホキシドを含む溶媒と含む前駆体溶液を基材上に塗布して塗膜を形成し、前記塗膜を焼成して前記光電変換層を形成すること、
を含む、光電変換素子の製造方法。
前記光電変換素子が技術5に記載の光電変換素子であり、
前記前駆体溶液は、前記光電変換材料の前記原料として、
Aおよび第1ハロゲン元素を構成元素として含む第1化合物と、
Bおよび第2ハロゲン元素を構成元素として含む第2化合物と、
を含み、
前記第1ハロゲン元素および前記第2ハロゲン元素からなる群より選択される少なくとも1つは、Iを含む、
技術10に記載の製造方法。
Aは、アルカリ金属元素である、技術11に記載の製造方法。
前記第1化合物は、ヨウ化セシウムである、技術12に記載の製造方法。
前記溶媒は、ジメチルホルムアミドをさらに含む、技術10から13のいずれか一項に記載の製造方法。
前記前駆体溶液は、形成される前記光電変換層における前記リン酸エステルの含有量が0超かつ9mol%以下となるように、前記リン酸エステルを含む、技術10から14のいずれか一項に記載の製造方法。
光電変換材料および前記光電変換材料の前駆体からなる群より選択される少なくとも1つと、
ジメチルスルホキシドを含む溶媒と、
リン酸エステルと、
を含む、組成物。
前記光電変換材料は、ペロブスカイト化合物であり、
前記ペロブスカイト化合物は、Mg、Al、Si、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Sr、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Ba、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Er、Yb、Lu、Ta、W、Re、Os、Ir、Pt、Au、Hg、Tl、Pb、Bi、Th、U、およびNpからなる群より選択される少なくとも1つを含む、
技術16に記載の組成物。
前記ペロブスカイト化合物は、Geを含む、技術17に記載の組成物。
前記光電変換材料は、以下の化学式(2)で表され、
AGeX3 ・・・(2)
ここで、
Aは、1価のカチオンであり、
Xは、ハロゲン元素であり、かつ、Iを含む、
技術16から18のいずれか一項に記載の組成物。
Aは、Csを含む、技術18に記載の組成物。
前記溶媒は、ジメチルホルムアミドをさらに含む、技術16から20のいずれか一項に記載の組成物。
前記リン酸エステルは、200℃以上の沸点を有する、技術16から21のいずれか一項に記載の組成物。
前記リン酸エステルは、リン酸トリフェニルを含む、技術16から22のいずれか一項に記載の組成物。
前記前駆体は、アルカリ金属元素およびハロゲン元素からなる化合物を含む、技術16から23のいずれか一項に記載の組成物。
前記化合物は、ヨウ化セシウムである、技術24に記載の組成物。
まず、ガラス基板を用意した。当該基板は、本開示の光電変換素子における支持材の役割を果たす。
実施例および比較例の光電変換素子について、IV特性を評価した。
Claims (25)
- 第1電極、光電変換層、および第2電極を備え、
前記光電変換層は、光電変換材料およびリン酸エステルを含有する、
光電変換素子。 - 前記光電変換材料は、ペロブスカイト化合物であり、
前記ペロブスカイト化合物は、Mg、Al、Si、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Sr、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Ba、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Er、Yb、Lu、Ta、W、Re、Os、Ir、Pt、Au、Hg、Tl、Pb、Bi、Th、U、およびNpからなる群より選択される少なくとも1つを含む、
請求項1に記載の光電変換素子。 - 前記ペロブスカイト化合物は、Geを含む、
請求項2に記載の光電変換素子。 - 前記リン酸エステルは、前記ペロブスカイト化合物の結晶間に存在する、
請求項2または3に記載の光電変換素子。 - 前記光電変換材料は、以下の化学式(1)で表され、
ABX3 ・・・(1)
ここで、
Aは、1価のカチオンであり、
Bは、Mg、Al、Si、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Sr、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Ba、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Er、Yb、Lu、Ta、W、Re、Os、Ir、Pt、Au、Hg、Tl、Pb、Bi、Th、U、およびNpからなる群より選択される少なくとも1つであり、
Xは、ハロゲン元素であり、かつ、Iを含む、
請求項1から4のいずれか一項に記載の光電変換素子。 - Aは、Csを含む、
請求項5に記載の光電変換素子。 - 前記リン酸エステルは、200℃以上の沸点を有する、
請求項1から6のいずれか一項に記載の光電変換素子。 - 前記リン酸エステルは、リン酸トリフェニルを含む、
請求項1から7のいずれか一項に記載の光電変換素子。 - 前記光電変換層における前記リン酸エステルの含有量は、0超かつ9mol%以下である、
請求項1から8のいずれかの一項に記載の光電変換素子。 - 請求項1から9のいずれか一項に記載の光電変換素子の製造方法であって、
前記製造方法は、
前記光電変換材料の原料と、前記リン酸エステルと、ジメチルスルホキシドを含む溶媒と含む前駆体溶液を基材上に塗布して塗膜を形成し、前記塗膜を焼成して前記光電変換層を形成すること、
を含む、光電変換素子の製造方法。 - 前記光電変換素子が請求項5に記載の光電変換素子であり、
前記前駆体溶液は、前記光電変換材料の前記原料として、
Aおよび第1ハロゲン元素を構成元素として含む第1化合物と、
Bおよび第2ハロゲン元素を構成元素として含む第2化合物と、
を含み、
前記第1ハロゲン元素および前記第2ハロゲン元素からなる群より選択される少なくとも1つは、Iを含む、
請求項10に記載の製造方法。 - Aは、アルカリ金属元素である、
請求項11に記載の製造方法。 - 前記第1化合物は、ヨウ化セシウムである、
請求項12に記載の製造方法。 - 前記溶媒は、ジメチルホルムアミドをさらに含む、
請求項10から13のいずれか一項に記載の製造方法。 - 前記前駆体溶液は、形成される前記光電変換層における前記リン酸エステルの含有量が0超かつ9mol%以下となるように、前記リン酸エステルを含む、
請求項10から14のいずれか一項に記載の製造方法。 - 光電変換材料および前記光電変換材料の前駆体からなる群より選択される少なくとも1つと、
ジメチルスルホキシドを含む溶媒と、
リン酸エステルと、
を含む、組成物。 - 前記光電変換材料は、ペロブスカイト化合物であり、
前記ペロブスカイト化合物は、Mg、Al、Si、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Sr、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Ba、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Er、Yb、Lu、Ta、W、Re、Os、Ir、Pt、Au、Hg、Tl、Pb、Bi、Th、U、およびNpからなる群より選択される少なくとも1つを含む、
請求項16に記載の組成物。 - 前記ペロブスカイト化合物は、Geを含む、
請求項17に記載の組成物。 - 前記光電変換材料は、以下の化学式(2)で表され、
AGeX3 ・・・(2)
ここで、
Aは、1価のカチオンであり、
Xは、ハロゲン元素であり、かつ、Iを含む、
請求項16から18のいずれか一項に記載の組成物。 - Aは、Csを含む、
請求項19に記載の組成物。 - 前記溶媒は、ジメチルホルムアミドをさらに含む、
請求項16から20のいずれか一項に記載の組成物。 - 前記リン酸エステルは、200℃以上の沸点を有する、
請求項16から21のいずれか一項に記載の組成物。 - 前記リン酸エステルは、リン酸トリフェニルを含む、
請求項16から22のいずれか一項に記載の組成物。 - 前記前駆体は、アルカリ金属元素およびハロゲン元素からなる化合物を含む、
請求項16から23のいずれか一項に記載の組成物。 - 前記化合物は、ヨウ化セシウムである、
請求項24に記載の組成物。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22875943.7A EP4412426A1 (en) | 2021-09-28 | 2022-09-20 | Photoelectric conversion element, method for producing same, and composition |
JP2023551352A JPWO2023054073A1 (ja) | 2021-09-28 | 2022-09-20 | |
CN202280065351.3A CN118020399A (zh) | 2021-09-28 | 2022-09-20 | 光电转换元件及其制造方法、以及组合物 |
US18/618,776 US20240244956A1 (en) | 2021-09-28 | 2024-03-27 | Photoelectric conversion element, method for producing same, and composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021158482 | 2021-09-28 | ||
JP2021-158482 | 2021-09-28 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/618,776 Continuation US20240244956A1 (en) | 2021-09-28 | 2024-03-27 | Photoelectric conversion element, method for producing same, and composition |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023054073A1 true WO2023054073A1 (ja) | 2023-04-06 |
Family
ID=85782563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/035040 WO2023054073A1 (ja) | 2021-09-28 | 2022-09-20 | 光電変換素子およびその製造方法、ならびに組成物 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240244956A1 (ja) |
EP (1) | EP4412426A1 (ja) |
JP (1) | JPWO2023054073A1 (ja) |
CN (1) | CN118020399A (ja) |
WO (1) | WO2023054073A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5721634A (en) * | 1996-10-09 | 1998-02-24 | Boeing North American, Inc. | Cesium-germanium halide salts forming nonlinear optical crystals |
JPH10303445A (ja) * | 1997-04-28 | 1998-11-13 | Matsushita Denchi Kogyo Kk | CdTe膜の製造方法とそれを用いた太陽電池 |
CN106711338A (zh) * | 2017-02-24 | 2017-05-24 | 哈尔滨工业大学深圳研究生院 | 一种锡基钙钛矿薄膜、制备方法及其太阳能电池器件 |
JP2018129506A (ja) * | 2017-02-10 | 2018-08-16 | パナソニックIpマネジメント株式会社 | 光吸収材料、光吸収材料の製造方法、および光吸収材料を用いた太陽電池 |
WO2019139153A1 (ja) * | 2018-01-15 | 2019-07-18 | 国立大学法人九州工業大学 | ペロブスカイト化合物及びこれを用いた光変換素子 |
CN110400876A (zh) * | 2018-04-25 | 2019-11-01 | 杭州纤纳光电科技有限公司 | 一种掺杂抗氧化剂的钙钛矿薄膜及其制备方法和应用 |
-
2022
- 2022-09-20 JP JP2023551352A patent/JPWO2023054073A1/ja active Pending
- 2022-09-20 EP EP22875943.7A patent/EP4412426A1/en active Pending
- 2022-09-20 CN CN202280065351.3A patent/CN118020399A/zh active Pending
- 2022-09-20 WO PCT/JP2022/035040 patent/WO2023054073A1/ja active Application Filing
-
2024
- 2024-03-27 US US18/618,776 patent/US20240244956A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5721634A (en) * | 1996-10-09 | 1998-02-24 | Boeing North American, Inc. | Cesium-germanium halide salts forming nonlinear optical crystals |
JPH10303445A (ja) * | 1997-04-28 | 1998-11-13 | Matsushita Denchi Kogyo Kk | CdTe膜の製造方法とそれを用いた太陽電池 |
JP2018129506A (ja) * | 2017-02-10 | 2018-08-16 | パナソニックIpマネジメント株式会社 | 光吸収材料、光吸収材料の製造方法、および光吸収材料を用いた太陽電池 |
CN106711338A (zh) * | 2017-02-24 | 2017-05-24 | 哈尔滨工业大学深圳研究生院 | 一种锡基钙钛矿薄膜、制备方法及其太阳能电池器件 |
WO2019139153A1 (ja) * | 2018-01-15 | 2019-07-18 | 国立大学法人九州工業大学 | ペロブスカイト化合物及びこれを用いた光変換素子 |
CN110400876A (zh) * | 2018-04-25 | 2019-11-01 | 杭州纤纳光电科技有限公司 | 一种掺杂抗氧化剂的钙钛矿薄膜及其制备方法和应用 |
Non-Patent Citations (2)
Title |
---|
KYLE A. MONTIEL, CONFERENCE RECORD OF THE IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, May 2019 (2019-05-01), pages 1183 - 1186 |
THIRUMAL KRISHNAMOORTHY, JOURNAL OF MATERIALS CHEMISTRY A, October 2015 (2015-10-01), pages 23829 - 23832 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023054073A1 (ja) | 2023-04-06 |
CN118020399A (zh) | 2024-05-10 |
US20240244956A1 (en) | 2024-07-18 |
EP4412426A1 (en) | 2024-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kour et al. | Potential substitutes for replacement of lead in perovskite solar cells: a review | |
Jena et al. | Halide perovskite photovoltaics: background, status, and future prospects | |
CN108369991A (zh) | 混合阳离子钙钛矿 | |
Dong et al. | Carbon-based all-inorganic perovskite solar cells: Progress, challenges and strategies toward 20% efficiency | |
KR20190141742A (ko) | 장기 고 가동 안정성을 갖는 무기 홀 도체 기초 퍼로브스카이트 광전 전환 장치 | |
US10573766B2 (en) | Solar cell | |
WO2021100237A1 (ja) | 太陽電池 | |
JP7432088B2 (ja) | スズ系ペロブスカイト層の製造方法,重ハロゲン化スズ系物質の精製方法,溶液,スズ系ペロブスカイト層,発光性材料,及び光電変換素子 | |
US20190237267A1 (en) | Solar cell | |
WO2022244413A1 (ja) | 太陽電池および太陽電池の製造方法 | |
WO2023054073A1 (ja) | 光電変換素子およびその製造方法、ならびに組成物 | |
WO2021261176A1 (ja) | 太陽電池 | |
WO2021182431A1 (ja) | 高純度化スズ含有ペロブスカイト半導体材料 | |
WO2023199728A1 (ja) | 組成物およびそれを用いた光電変換層の製造方法 | |
WO2023063429A1 (ja) | 光電変換材料およびそれを用いた光電変換素子 | |
WO2022244289A1 (ja) | 半導体材料および光電変換素子 | |
WO2023176321A1 (ja) | 光電変換材料およびそれを用いた光電変換素子 | |
JP7507321B2 (ja) | 太陽電池 | |
JP7515062B2 (ja) | 化合物ならびにそれを用いた電子デバイスおよび発光素子 | |
WO2022244336A1 (ja) | 太陽電池および太陽電池の製造方法 | |
JP2016015409A (ja) | 薄膜太陽電池 | |
RU2788942C2 (ru) | Фотовольтаическое устройство с перовскитным фотоактивным слоем и неорганическим пассивирующим покрытием на основе галогенидов металлов и способ изготовления этого устройства | |
EP4343872A1 (en) | Solar cell and solar cell manufacturing method | |
EP3955329B1 (en) | Solar cell | |
WO2022244412A1 (ja) | 太陽電池および太陽電池の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22875943 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023551352 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280065351.3 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022875943 Country of ref document: EP Effective date: 20240429 |