WO2022247505A1 - 一种大面积超高分子量聚乙烯超薄膜及其制备方法 - Google Patents

一种大面积超高分子量聚乙烯超薄膜及其制备方法 Download PDF

Info

Publication number
WO2022247505A1
WO2022247505A1 PCT/CN2022/086512 CN2022086512W WO2022247505A1 WO 2022247505 A1 WO2022247505 A1 WO 2022247505A1 CN 2022086512 W CN2022086512 W CN 2022086512W WO 2022247505 A1 WO2022247505 A1 WO 2022247505A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultra
stretching
molecular weight
high molecular
weight polyethylene
Prior art date
Application number
PCT/CN2022/086512
Other languages
English (en)
French (fr)
Inventor
李润莱
傅强
孙威龙
杨凯霖
田可
董澎
Original Assignee
四川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川大学 filed Critical 四川大学
Publication of WO2022247505A1 publication Critical patent/WO2022247505A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/16Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/0009After-treatment of articles without altering their shape; Apparatus therefor using liquids, e.g. solvents, swelling agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • B29C2071/022Annealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0658PE, i.e. polyethylene characterised by its molecular weight
    • B29K2023/0683UHMWPE, i.e. ultra high molecular weight polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a large-area ultra-thin ultra-high molecular weight polyethylene film and a preparation method thereof, belonging to the field of polymer processing.
  • the current methods for preparing polyolefin microporous membranes mainly include melt stretching method (dry method) and thermally induced phase separation method (wet method).
  • dry method dry method
  • wet method thermally induced phase separation method
  • the invention avoids the disadvantages of the existing wet method film production, and performs process replacement and optimization to obtain a large-area ultrathin polyolefin microporous film.
  • the existing wet method for preparing polyolefin microporous membranes usually adopts extruder extruding technology to prepare gel membranes, and carries out bidirectional synchronous stretching or unidirectional asynchronous stretching to the gel membranes to prepare microporous membranes.
  • the extruded gel film is the precursor of the stretched film, whether the internal structure of the gel film is uniform seriously affects the subsequent preparation of the film, and the extrusion method inevitably causes orientation in the gel film, and its The source of orientation is usually near-melt state stretching and film collection curling process, the resulting orientation is usually an uncontrolled orientation produced in a non-isothermal process, the efficiency and effect of chain orientation are not ideal, resulting in many defects in the film , which in turn causes the film to break during stretching or the final stretched film to be thick and uneven in thickness.
  • ultra-thin polymer porous membranes for example, for lithium-ion batteries, when used as a power battery, a separator with a large surface area is required; for fuel cells or liquid crystals that involve large-scale energy conversion and storage
  • the ultra-thin film can also be combined with proton-conducting functional polymers to prepare a composite proton-conducting ultra-thin film as a battery separator; in the separation process, such as gas exchange and gas-liquid separation, a sufficiently large film area can realize expanded production.
  • the present invention aims to overcome the deficiencies in the existing polyolefin microporous membrane preparation technology, optimize the film stretching process, and provide a method for preparing a large-area ultra-thin ultra-high molecular weight polyethylene film, which can effectively reduce the microporous membrane. Thickness, substantially increases its surface area, and improves its strength and stability.
  • the first technical problem to be solved in the present invention is to provide a kind of preparation method of large-area ultra-high molecular weight polyethylene ultra-thin film, and described preparation method comprises the following steps:
  • the stretching method is as follows: first, the gel film is stretched bidirectionally synchronously or bidirectionally asynchronously to obtain an ultra-high molecular weight polyethylene film with a thickness of 20um to 50um; The large-area ultra-high molecular weight polyethylene film is stretched in the way of stage stretching, and the total stretching ratio is controlled at 400 to 500 times.
  • the bidirectional asynchronous multistage stretching method is: stretching the obtained ultra-high molecular weight polyethylene film n times, and the stretching ratio of the nth time is smaller than the stretching ratio of the (n-1)th time Ratio (that is, the stretch ratio decreases successively); among them, n ⁇ 2, each stretching process is: first stretch to a certain stretch ratio along the direction perpendicular to the extrusion direction, and then stretch to a certain stretch along the extrusion direction Ratio; the stretching ratio of the two directions in each stretching process is the same, and the stretching ratio in each stretching process is 1-2.
  • step 3 the stretching rate is controlled to be 0.5-0.7%/s during the bidirectional asynchronous multi-stage stretching process.
  • the bidirectional asynchronous multi-stage stretching process specifically includes: stretching the ultra-high molecular weight polyethylene film along the direction perpendicular to the extrusion direction to a stretch ratio of 1.1-2, and then stretching the ultra-high molecular weight polyethylene film along the extrusion direction.
  • stretch ratio is 1.1 ⁇ 2; then stretch along the direction perpendicular to the extrusion direction until the stretch ratio is 1.1 ⁇ 1.6, and then stretch along the extrusion direction until the stretch ratio is 1.1 ⁇ 1.6; then stretch along the extrusion direction Stretch in the direction perpendicular to the extrusion direction to a stretch ratio of 1.1 to 1.4, then stretch in the extrusion direction to a stretch ratio of 1.1 to 1.4; finally stretch in a direction perpendicular to the extrusion direction to a stretch ratio of 1.1 to 1.2, Then stretch along the extrusion direction until the stretch ratio is 1.1-1.2.
  • the process of preparing an ultra-high molecular weight polyethylene film with a thickness of 20um to 50um by bidirectional synchronous stretching or biaxial asynchronous stretching is: stretching the gel sheet to The draw ratio is 3 ⁇ 3 ⁇ 10 ⁇ 10.
  • step 1) the mass ratio of the ultra-high molecular weight polyethylene to the solvent is: 1.5-9.5:98.5-90.5; the antioxidant is 0.5-1.5% of the total mass of the ultra-high molecular weight polyethylene and the solvent.
  • the melt blending temperature is 180-220°C.
  • the molecular weight of the ultra-high molecular weight polyethylene is 1 million to 10 million.
  • the solvent is selected from at least one of short-chain hydrocarbons with a molecular weight of 100-1000 such as white oil, petrolatum, mineral oil, vaseline or paraffin oil.
  • the antioxidants include phenolic antioxidants and phosphate antioxidants.
  • antioxidant 1010 tetra[ ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl) propionate] pentaerythritol ester
  • antioxidant 168 three [2.4 -di-tert-butylphenyl]phosphite
  • vitamin E three [2.4 -di-tert-butylphenyl]phosphite
  • the extrusion adopts two extrusions.
  • the purpose of two extrusions is to increase the residence time of the material in the extruder, to enhance the effects of homogeneity, swelling and disentanglement, and to supplement antioxidants in the middle of the two extrusions to improve the system's resistance to thermally induced chain scission and shearing. Negative impact of chain scission; if not extruded twice, the extruded gel sheet may not be uniform enough, or the degree of swelling and disentanglement may not be sufficient (affecting subsequent processing performance), or/and accompanied by chain scission, reducing the final stretch rate.
  • step 2) the feeding method in the extrusion process of the suspension is as follows: when the ultra-high molecular weight polyethylene is in a molten state, a siphon device (siphon) is used to use the force of the liquid level difference to pass the suspension through the feeding into the extruder.
  • a siphon device siphon
  • step 2) when two extrusion processes are used, antioxidants need to be supplemented during the extrusion process.
  • step 2) in the banburying method, the banburying temperature is 120-220°C, the shear rate is 20-35rpm, and the banburying time is 0.5-1h.
  • step 2) the temperature of the press molding is 160-180° C., the pressure is 0.5-15 t, and the pressing time is 1-2 hours.
  • step 3 the stretching temperature during the bidirectional synchronous or bidirectional asynchronous stretching process is 120°C.
  • the bidirectional asynchronous stretching temperature is 120°C.
  • step 3 the solvent is sucked out while stretching during the stretching process.
  • step 3 during the annealing process, the annealing temperature is controlled to be 125°C.
  • the extraction method is: using n-hexane or octane to extract the solvent and antioxidant by Soxhlet extraction, the extraction time is 9-12 hours, and the cycle is at least 3 times.
  • the second technical problem to be solved by the present invention is to provide a large-area ultra-high molecular weight polyethylene ultra-thin film, which is prepared by the above method.
  • the thickness of the large-area ultra-thin is between 70 and 200 nanometers.
  • the area of the large-area ultra-thin is ⁇ 0.6 square meters.
  • the area of the large-area ultra-thin is 0.6-1 square meter.
  • the present invention can prepare large-area (square meter level) ultra-high molecular weight polyethylene ultra-thin films.
  • the microporous membrane is expected to be used as a battery separator, thus having a high degree of irreplaceable sex.
  • the present invention can prepare ultra-thin microporous membranes with a thickness lower than 200nm; the mass transfer internal resistance of the ultra-thin films is very small, because of the interface effect and the nano-confinement effect, the orientation degree of the film during the stretching process will be higher than that of the thick film case is much more effective. And after non-orientation extrusion, there is no uncontrollable orientation in the film, and then bidirectional asynchronous stretching, the effective stretching degree is greater, and the crystallinity is more controllable, so the film is ultra-thin and tough at the same time. High stability, used as a battery separator , can effectively increase the energy density of the battery.
  • the prepared ultra-thin film has remarkable stability.
  • the method of sucking out the solvent while stretching can effectively improve the stability of the ultra-thin film, so that The film is stretched uniformly, reducing the possibility of film breakage during stretching. This is because in the later stage of stretching, it is necessary to reduce the solvent content and increase the intermolecular force of UHMWPE so that it exists stably in an ultra-thin form.
  • the present invention adopts a multi-stage asynchronous stretching method, which can effectively increase the stretching ratio, reduce the film thickness and uniformly stretch.
  • the method adopted in the present invention is conducive to saving a large amount of manpower and material resources and improving production efficiency.
  • the preparation of ultra-high molecular polyethylene ultra-thin film is independently stretched twice, but the present invention adopts bidirectional asynchronous multi-stage stretching, from heating to stretching to cooling within 5 minutes, which can be controlled within three minutes in the future;
  • the present invention can avoid the unevenness of the film introduced by human factors, and the uncontrollability of each batch; finally, a large amount of waste of materials: the first is the yield, which can be judged according to the ratio of the area of the final film to the area of the initial sheet.
  • the stretching method increases the sheet area by 20 times, while the two-way asynchronous stretching can reach 150 times; and in the unidirectional stretching, the other direction will shrink, resulting in a low effective stretching ratio of the film.
  • the final size is only It can achieve extremely limited film size expansion; secondly, the film collection rate of two independent stretches is less than 60%, because the part of the film clamped by the clamp needs to be cut off during the second stretch, the film shrinks in the middle and the second stretch When only using the uniform stretching part in the middle, these practices will lose a lot of material; and the asynchronous biaxial stretching method provided by the present invention can effectively collect 95% of the area of the film.
  • the gel sheet after mixing + hot pressing can be stretched to prepare a larger area and thinner film, such as an ultra-thin film with an area greater than 0.9 ⁇ 0.9m2 , and the average thickness of the film Only 92nm.
  • Fig. 1 is the physical photograph of embodiment 1 gained film.
  • Fig. 2 is the thickness test result of the film obtained in embodiment 1.
  • Fig. 3 is the physical photo of the obtained film of embodiment 2.
  • Fig. 4 is the actual photo of the film obtained in Comparative Example 1.
  • Fig. 5 is the actual photo of the film obtained in Comparative Example 2.
  • Fig. 6 is the actual photo of the film obtained in Comparative Example 4.
  • Fig. 7 is the thickness test result of the film obtained in Example 3.
  • Fig. 8 is the actual photo of the film obtained in embodiment 3.
  • the existing method is semi-continuous production, and in the stretching step, it is often stretched twice in the horizontal and vertical directions independently. This process is completely unable to cooperate with continuous production. A very high stretching ratio can be achieved, and the stretching process does not require human operation at all, which is conducive to continuous production. And in this scheme, the solvent content in the film is dynamically regulated during stretching, so that the prepared ultra-thin film is more stable.
  • the stretching temperature in the process of bidirectional synchronous stretching and multi-stage asynchronous stretching is 120°C
  • the stretching rate in the process of bidirectional synchronous stretching is 2%/s
  • the stretching ratio is 9 ⁇ 9
  • step 2 of the present invention adopts a single extrusion process, specifically: the extrusion temperature is 160°C, and the extrusion rate is 3mm/s; the gel film after the primary extrusion is subjected to the same After stretching in the stretching process of the stretching process, rupture occurs (as shown in Figure 3); it can be seen that large-area ultra-thin films cannot be obtained only through one extrusion.
  • the stretching process in step 3 is different: the thickness of the gel sheet is made to be 5um by bidirectional synchronous stretching of the gel sheet in a bidirectional stretching machine, and then the stretched gel sheet is The film adopts the method of bidirectional multi-stage asynchronous stretching, and the result is shown in Figure 4: the area of the obtained ultra-thin film is 20 ⁇ 20 cm2; that is, the ultra-thin film of the square meter level cannot be obtained.
  • step 3 the two stretchings all adopt bidirectional synchronous stretching, the first stretching rate is 2%/s, the second stretching rate is 0.7%/s, In the case of the same stretching ratio of 467, the film would rupture early during the stretching process, and the resulting ultra-thin film would be incomplete (as shown in Figure 5). It can be seen that synchronous stretching will cause a weak area in the middle of the film, and the film will be broken during the stretching process, and the stretching ratio of the film will only reach 200 times at the highest, resulting in a thicker film.
  • step 3 the gel sheet is stretched twice uniaxially, and after the first stretch of 2000%, the second stretch adopts an elastic body attached to the side.
  • the method is to control the lateral shrinkage and continue to stretch 2000%, but the area of the film produced is not more than 100mm ⁇ 400mm. Even if you switch to a wider uniaxial stretching machine, the elastic bodies on both sides cannot completely avoid lateral shrinkage, and cause great stress concentration during stretching, and the second stretching will often be complete at 200%-400%. tearing rupture.
  • step 3 adopts bidirectional asynchronous stretching, but does not adopt bidirectional multistage asynchronous stretching, that is, the bidirectional multistage asynchronous stretching process is: first at 2%/s Under the stretching rate, the gel sheet after bidirectional synchronous stretching was stretched asynchronously to a stretching ratio of 9 ⁇ 9; then the stretching rate was adjusted to 0.7%/s, and the stretching ratio was asynchronously stretched to 2.4 ⁇ 2.4, The resulting film is shown in Figure 6, and it can be seen from Figure 6 that the film will rupture, that is, it is impossible to obtain a large-area ultra-thin film.
  • the inner frame of the fixture is 30 ⁇ 30cm. After covering the fixture, cool it to 60°C, put it into a hot press machine, and heat it at 180°C. Carry out multiple up-and-down reciprocating hot-pressing, and the pressure is gradually increased, respectively: 0.5, 1, 5, 10 and 15t. After hot-pressing for half an hour, keep the pressure and stop heating, and cool down to below the melting point of UHMWPE in 2 hours.
  • the gel sheet is cooled to room temperature, and the thickness of the obtained gel sheet is 2 mm, and the area is about 40 ⁇ 40 square centimeters;
  • the thickness of the ultra-thin film after extraction is measured on a step meter after sample cutting, as shown in Figure 7, the average thickness of the film is 92nm; the obtained film is shown in Figure 8, with an area of 0.9 ⁇ 0.9m 2 , It can be seen that the gel sheet after banburying + hot pressing can be prepared by bidirectional asynchronous multi-stage stretching to obtain an ultra-thin film with a larger area and a smaller thickness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

本发明涉及一种大面积超薄超高分子量聚乙烯膜及其制备方法,属于高分子加工领域。本发明提供一种大面积超高分子量聚乙烯超薄膜的制备方法,所述制备方法包括下述步骤:1)将聚超高分子量聚乙烯、溶剂和抗氧化剂搅拌熔融共混形成均一的悬浮液;2)将悬浮液经挤出或密炼,然后压制成型得到凝胶膜;3)将所得凝胶膜经过拉伸、退火、萃取和干燥处理得大面积超高分子量聚乙烯膜。本发明提供了一种制备大面积超薄超高分子量聚乙烯膜的制备方法,可以得到厚度为70~200纳米,面积≥0.6平方米的大面积超薄超高分子量聚乙烯薄膜,并且所得膜具有较高的强度和稳定性。

Description

一种大面积超高分子量聚乙烯超薄膜及其制备方法 技术领域
本发明涉及一种大面积超薄超高分子量聚乙烯膜及其制备方法,属于高分子加工领域。
背景技术
目前制备聚烯烃微孔膜的方法主要包括熔融拉伸法(干法)和热致相分离法(湿法)。干法制备聚烯烃微孔膜时,虽然设备简单、成本低、孔隙率较高,但是孔的形状不规则,对孔大小的控制较差;湿法成膜过程更易控制,可制备不同形貌的微孔结构。本发明通过规避现有湿法制膜的缺点,进行工艺替换和优化,得到一种大面积超薄的聚烯烃微孔膜。
现有的湿法制备聚烯烃微孔膜的方法,通常采用挤出机挤出的工艺制备凝胶膜,并对凝胶膜进行双向同步拉伸或单向异步拉伸制备微孔膜,这些方法存在诸多缺陷:因为挤出的凝胶膜是拉伸薄膜的前驱体,凝胶膜的内部结构是否均匀严重影响了薄膜的后续制备,而挤出法难免使凝胶膜中存在取向,其取向的来源通常是接近熔融态拉伸和薄膜收集卷曲过程,所产生的取向通常是在非等温过程中产生的非受控取向,链取向的效率和效果都不理想,导致薄膜中存在很多缺陷,进而导致薄膜拉伸时破裂或最终拉伸后的薄膜较厚且厚度不均匀。除此之外,采用挤出的方法,由于口模尺寸有限,其更换代价大,故难以制备尺寸较大的凝胶膜,进而无法制备平方米级的超薄聚烯烃微孔膜;
对于拉伸过程,双向同步拉伸时,薄膜中间区域薄弱,拉伸时易破裂,薄膜较厚、失败率高。单向异步拉伸不仅会让拉伸薄膜取向难以实现各向同性,而且各批次之间的结构性质差异明显。工艺耗时费力,并且造成物料大量浪费,不适合于工业放大。
在能源领域和分离过程对大面积超薄高分子多孔膜有迫切需求:比如对于锂离子电池,当作为动力电池时,需要大表面积的隔膜;对于涉及大规模能量转换和储存的燃料电池或液流电池,也可以利用该超薄膜与导质子功能高分子复合,制备复合导质子超薄膜,作为电池隔膜;分离过程中,如气体交换和气液分离,足够大的薄膜面积能实现扩大化生产。
发明内容
针对上述缺陷,本发明旨在克服现有聚烯烃微孔膜制备技术的不足,优化薄膜拉伸工艺,提供一种制备大面积超薄超高分子量聚乙烯膜的方法,可以有效降低微孔膜厚度,大幅增加其表面积,并提高其强度和稳定性。
本发明的技术方案:
本发明要解决的第一个技术问题是提供一种大面积超高分子量聚乙烯超薄膜的制备方法,所述制备方法包括下述步骤:
1)将超高分子量聚乙烯、溶剂和抗氧化剂搅拌熔融共混形成均一的悬浮液;
2)将悬浮液经挤出或密炼,然后压制成型得到凝胶膜;
3)将所得凝胶膜经过拉伸、退火、萃取和干燥处理得大面积超高分子量聚乙烯膜;
其中,所述拉伸方法为:先将凝胶膜通过双向同步或双向异步拉伸制得厚度为20um~50um的超高分子量聚乙烯膜;然后将所得超高分子量聚乙烯膜采用双向异步多级拉伸的方式拉伸制得大面积超高分子量聚乙烯膜,总拉伸倍率控制为400~500倍。
进一步,步骤3)中,所述双向异步多级拉伸方法为:将所得超高分子量聚乙烯膜进行n次拉伸,第n次的拉伸比小于第(n-1)次的拉伸比(即拉伸比逐次降低);其中,n≥2,每一次拉伸过程为:先沿挤出方向的垂直方向拉伸至一定拉伸比,再沿挤出方向拉伸至一定拉伸比;每次拉伸过程中两个方向的拉伸比相同,每次拉伸过程中的拉伸比为1~2。
进一步,步骤3)中,所述双向异步多级拉伸过程中拉伸速率控制为0.5~0.7%/s。
进一步,步骤3)中,所述双向异步多级拉伸过程具体为:对超高分子量聚乙烯膜先沿挤出方向的垂直方向拉伸至拉伸比为1.1~2,再沿挤出方向拉伸至拉伸比为1.1~2;然后沿挤出方向的垂直方向拉伸至拉伸比为1.1~1.6,再沿挤出方向拉伸至拉伸比为1.1~1.6;接着沿挤出方向的垂直方向拉伸至拉伸比为1.1~1.4,再沿挤出方向拉伸至拉伸比为1.1~1.4;最后沿挤出方向的垂直方向拉伸至拉伸比为1.1~1.2,再沿挤出方向拉伸至拉伸比为1.1~1.2。
进一步,所述双向同步拉伸或双向异步拉伸制得厚度为20um~50um的超高分子量聚乙烯膜的过程为:在2~5%/s的拉伸速率下将凝胶片拉伸至拉伸比为3×3~10×10。
进一步,步骤1)中,超高分子量聚乙烯与溶剂的质量比为:1.5~9.5:98.5~90.5;抗氧化剂为超高分子量聚乙烯与溶剂总质量的0.5~1.5%。
进一步,步骤1)中,熔融共混温度为180~220℃。
进一步,步骤1)中,所述超高分子量聚乙烯的分子量为100万~1000万。
进一步,步骤1)中,所述溶剂选自:白油、矿脂、矿物油、凡士林或石蜡油等分子量在100~1000之间的短链碳氢化合物中的至少一种。
进一步,步骤1)中,所述抗氧化剂包括酚类抗氧化剂和磷酸盐类抗氧化剂。
更进一步,所述抗氧化剂选自:抗氧剂1010(四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯)、抗氧剂168(三[2.4-二叔丁基苯基]亚磷酸酯)或维他命E。
进一步,步骤2)中,所述挤出采用两次挤出。两次挤出是为了提高物料在挤出机内的停留时间,加强均质、溶胀和解缠结的效果,并且在两次挤出中间可以补充抗氧化剂,提高体系对抗热致断链和剪切断链的负面影响;如果没有经过两次挤出,挤出的凝胶片可能会不够均匀,或者溶胀和解缠结程度不够(影响后续加工性能),或者/和伴有断链现象,降低最终的拉伸率。
进一步,步骤2)中,悬浮液的挤出工艺中的加料方式为:在超高分子量聚乙烯处于熔融状态下,采用虹吸装置(虹吸管)利用液面高度差的作用力,将悬浮液通过加料口加入挤出机中。
进一步,步骤2)中,当采用两次挤出工艺时,挤出过程中需补充抗氧化剂。
进一步,步骤2)中,所述密炼方法中,密炼温度为120~220℃,剪切速率20~35rpm,密炼时间0.5~1h。
进一步,步骤2)中,压制成型的温度160~180℃,压力0.5~15t,压制时间1~2h。
进一步,步骤3)中,双向同步或双向异步拉伸过程中拉伸温度为120℃。
进一步,步骤3)中,双向异步拉伸温度为120℃。
进一步,步骤3)中,拉伸过程中边拉伸边吸出溶剂。
进一步,步骤3)中,所述退火过程中,控制退火温度为125℃。
进一步,步骤3)中,所述萃取方法为:采用正己烷或辛烷通过索氏萃取法萃取溶剂和抗氧化剂,萃取时间为9~12h,循环至少3次。
本发明要解决的第二个技术问题是提供一种大面积超高分子量聚乙烯超薄膜,其采用上述方法制得。
进一步,所述大面积超薄的厚度在70~200纳米之间。
进一步,所述大面积超薄的面积≥0.6平方米。
更进一步,所述大面积超薄的面积为0.6~1平方米。
本发明的有益效果:
1.本发明可制备大面积(平方米级)的超高分子量聚乙烯超薄膜,对于需要进行大范围能量交换和储存的电池,该微孔膜有望作为电池隔膜使用,从而具有高度的不可替代性。
2.本发明可制备厚度低于200nm的超薄微孔膜;该超薄膜的传质内阻很小,因为界面效应和纳米限域效应,拉伸过程中薄膜的取向度会比厚膜的情况下有效得多。并且经过无取向挤出,薄膜中没有不可控取向,然后双向异步拉伸,有效拉伸程度更大,结晶度更可控,所以薄膜在超薄的同时坚韧、稳定性高,用作电池隔膜时,可有效提高电池能量密度。
3.对拉伸工艺进行优化,制备出的超薄膜具有显著的稳定性,在双向异步拉伸的过程中,采用边拉伸边吸出溶剂的方法,可有效提高超薄膜的稳定性,从而使薄膜被均匀拉伸,减少拉伸过程中薄膜破裂的可能性。这是因为在拉伸后期,需要减少溶剂含量,增大UHMWPE分子间作用力,使其以超薄的形式稳定存在。
4.本发明采用多级异步拉伸的方法,可有效地提高拉伸比,降低薄膜厚度并且均匀拉伸。
5.本发明采用的方法有利于节省大量的人力物力,提高生产效率。目前制备超高分子聚乙烯超薄膜都是独立地拉伸两次,本发明则是采用双向异步多级拉伸,从加热到拉伸到冷却不超过5min,未来完全可以控制到三分钟以内;另外,本发明可避免人为因素引入的薄膜不均匀,各个批次不可控;最后,物料的大量浪费:首先是产率,可根据最终薄膜的面积与初始薄片面积之比进行判断,两次拉伸的方法薄片面积增加20倍,而双向异步拉伸可达到150倍;并且在单向拉伸时另一方向会发生收缩,导致薄膜有效拉伸比不高,与初始尺寸相比,最终只能实现及其有限的薄膜尺寸扩大幅度;其次是两次独立拉伸的薄膜收集率小于60%,因为夹具夹住薄膜的部分二次拉伸时要裁掉、薄膜中间收缩并且二次拉伸时只用中间的均匀拉伸部分,这些做法会损失大量物料;而本发明提供的异步双向拉伸方法可有效收集95%面积的薄膜。
6.与挤出的相比较,密炼+热压后的凝胶片拉伸后能制备更大面积和更薄的膜,如可制备面积大于0.9×0.9m 2的超薄膜,薄膜平均厚度仅为92nm。
附图说明:
图1为实施例1所得薄膜的实物照片。
图2为实施例1所得薄膜的厚度测试结果。
图3为实施例2所得膜的实物照片。
图4为对比例1所得膜的实物照片。
图5为对比例2所得膜的实物照片。
图6为对比例4所得膜的实物照片。
图7为实施例3所得膜的厚度测试结果。
图8为实施例3所得膜的实物照片。
具体实施方式
现有的方法为半连续生产,并且拉伸步骤中,常在横向和纵向独立地拉伸两次,该过程完全无法配合连续化生产,所以该方案采用双向多级异步拉伸的方法,不仅可以实现极高的拉伸倍数,而且该拉伸过程完全不需要人为操作,有利于连续化生产。并且该方案中,在拉伸时对薄膜中的溶剂含量进行动态调控,使制备的超薄膜更加稳定。
下面结合实施例对本发明的具体实施方式做进一步的描述,并不因此将本发明限制在所述的实例范围之中。
实施例1
(1)将475g溶剂凡士林与5g抗氧剂1010加热沸腾,120℃下缓慢加入25gUHMWPE粉末,均匀搅拌使原料熔融混合成均一的悬浮液;其中UHMWPE的含量为5wt%;
(2)将上述的悬浮液,在超高分子量聚乙烯熔融的热状态下,采用虹吸管将其从烧杯中转移到双螺杆挤出机加料口;其中虹吸管的内径为0.5~3mm,外径为1~6mm;经两次挤出制得均匀的凝胶片,所得凝胶片的厚度为2mm,面积为0.1×0.1平方米;第一次挤出中,挤出温度为120-160-180-220-220-200℃,第二次挤出温度为120-160-180-220-220-170℃;螺杆转速为10rpm,挤出速率3mm/s;
(3)将挤出后冷却得到均匀厚度(厚度为2mm)的凝胶片在双向拉伸机中先通过双向同步拉伸使凝胶片的厚度为22um,再经多级异步拉伸使拉伸得到超薄膜;其中:双向同步拉伸和多级异步拉伸过程中拉伸温度均为120℃,双向同步拉伸过程中的拉伸速率2%/s,拉伸比为9×9;双向多级异步拉伸过程为:将拉伸速率调至0.7%/s,对凝胶片先沿挤出方向的垂直方向异步拉伸至拉伸比为1.4,再沿挤出方向拉伸至拉伸比为1.4(即垂直挤出方向拉伸×挤出方向拉伸=1.4×1.4);然后对凝胶片沿挤出方向的垂直方向异步拉伸至拉伸比为1.3,再沿挤出方向异步拉伸至拉伸比为1.3;接着沿挤出方向的垂直方向异步拉伸至拉伸比为1.2,再沿挤出方向异步拉伸至拉伸比为1.2;最后沿挤出方向的垂直方向异步拉伸至拉伸比为1.1,再沿挤出方向拉伸至拉伸比为1.1;双向异步拉伸总倍率为467;
(4)拉伸后的超薄薄膜于125℃退火处理5min后,用1200mL正己烷萃取上述薄膜中的溶剂和抗氧剂,采用索氏萃取的方法,萃取时间为10h,循环3次,干燥后得到微孔膜;
(5)萃取后的超薄膜,裁样后在台阶仪上测试其厚度,结果如图2所示,该薄膜的平均厚度为121nm;所得薄膜的面积如图1所示,面积为0.65×0.65平方米,可见本发明所得薄膜的面积达到平方米级;即经过两次挤出和双向多级异步拉伸的工艺可以制备平方 米级的UHMWPE超薄膜。
实施例2
其他过程与实施例1相同,区别仅在于:本发明步骤2中采用一次挤出工艺,具体为:挤出温度为160℃,挤出速率3mm/s;一次挤出后的凝胶膜经同样的拉伸过程拉伸后,发生破裂现象(如图3所示);可见只经过一次挤出不能得到大面积超薄膜。
对比例1
其他制备过程同实施例1,区别在于步骤3中的拉伸过程不同:将凝胶片在双向拉伸机中通过双向同步拉伸使凝胶片的厚度为5um,再将拉伸后的凝胶片采用双向多级异步拉伸的方法,结果如图4所示:得到的超薄膜面积为20×20平方厘米;即无法得到平方米级的超薄膜。
对比例2
其他步骤与实施例1均相同,区别仅在于:步骤3)中两次拉伸均采用双向同步拉伸,第一次拉伸速率2%/s,第二次拉伸速率0.7%/s,拉伸比同样为467的情况下,薄膜会在拉伸过程中提前破裂,之后得到的超薄膜不完整(如图5所示)。可见同步拉伸会使薄膜中间出现薄弱区域,拉伸过程中使薄膜破裂,薄膜拉伸比最高只达到200倍,导致薄膜较厚。
对比例3
其他步骤与实施例1均相同,区别仅在于:步骤3)中将凝胶片进行两次单轴拉伸,第一次拉伸2000%后,第二次拉伸采用弹性体贴附侧边的方式,控制侧向收缩,继续拉伸2000%,但是所制得的薄膜面积均不超过100mm×400mm。即使切换更宽大的单轴拉伸机,两侧的弹性体无法完全避免侧向收缩,并且在拉伸时造成极大的应力集中,第二次拉伸往往在200%-400%即会完全撕裂性破裂。这是因为两次拉伸只能分别取向一个轴向上的高分子链段,第一次拉伸后垂直于取向方向的微观结构取向微弱,且十分脆弱,加工传递的应力无法在整个薄膜表面各向同性地传递分散,故而容易造成撕裂。该现象在制备小面积的超薄膜时会造成拉伸成功率降低,在制备大面积(>0.6平方米)时无一例外地会形成整个薄膜的体系失稳,造成沿着第一次拉伸方向上的撕裂性破裂,使得第二次拉伸在很低拉伸率下即失败并无法继续进行;并且因为彻底的撕裂,无法收集局部的薄膜样品。
对比例4
其他步骤与实施例1均相同,区别仅在于:步骤3)中采用双向异步拉伸,但是没有采用双向多级异步拉伸,即双向多级异步拉伸过程为:先在2%/s的拉伸速率下将双向同步拉伸后的凝胶片异步拉伸至拉伸比为9×9;然后将拉伸速率调至0.7%/s,异步拉伸至拉 伸比为2.4×2.4,所得膜如图6所示,由图6可知,薄膜会破裂,即无法得到大面积超薄膜。
实施例3
(1)将485g黄凡士林溶剂与5g抗氧剂1010加热沸腾,120℃下缓慢加入15gUHMWPE粉末,均匀搅拌使原料熔融预混合成均一的悬浮液,其中UHMWPE含量为3wt%;
(2)将上述预混后的物料加入到已预热完成并且正在搅拌的密炼机中,填料量80%,预热温度120℃,转速20rpm,在120℃下搅拌3min,之后依次以5min的时间升温至160℃、200℃和220℃,并在对应温度下分别以25rpm、30rpm和35rpm的转速搅拌3min、5min和3min,之后将温度在5min内降至200℃,搅拌速率降至25rpm,搅拌3min后停止搅拌;在缓慢降温的情况下,将物料从密炼机上取出;
(3)将密炼完成的物料均匀地放置于厚度为1mm的镂空夹具上,夹具内框30×30cm,盖上上夹具后冷却至60℃,将其放进热压机内,在180℃下进行多次上下往复的热压,并且压力递增,分别为:0.5、1、5、10以及15t,热压半小时后,保持压力停止加热,以2h的时间降温至UHMWPE熔点以下,之后将该凝胶片降至室温,所得凝胶片的厚度为2mm,面积为40×40平方厘米左右;
(4)将热压后冷却得到的凝胶片裁成厚度为1mm、面积为30×30平方厘米的凝胶片,在双向拉伸机中先通过双向同步拉伸使凝胶片的厚度为22um,再经多级异步拉伸使拉伸得到超薄膜;其中:双向同步拉伸和多级异步拉伸过程中拉伸温度均为120℃,双向同步拉伸过程中的拉伸速率2%/s,拉伸比为3×3;双向多级异步拉伸过程为:将拉伸速率调至0.7%/s,对凝胶片先沿挤出方向的垂直方向异步拉伸至拉伸比为1.8,再沿挤出方向拉伸至拉伸比为1.8(即垂直挤出方向拉伸×挤出方向拉伸=1.8×1.8;然后对凝胶片沿挤出方向的垂直方向异步拉伸至拉伸比为1.7,再沿挤出方向异步拉伸至拉伸比为1.7;接着沿挤出方向的垂直方向异步拉伸至拉伸比为1.6,再沿挤出方向异步拉伸至拉伸比为1.6;最后沿挤出方向的垂直方向异步拉伸至拉伸比为1.5,再沿挤出方向拉伸至拉伸比为1.5;双向异步拉伸总倍率为485;
(5)拉伸后的薄膜经退火处理后,用1200mL正己烷萃取上述薄膜中的溶剂和抗氧剂,采用索氏萃取的方法,萃取时间为10h,循环3次,干燥后得到微孔膜;
(6)萃取后的超薄膜,裁样后在台阶仪上测试其厚度,如图7所示,该薄膜的平均厚度为92nm;所得薄膜如图8所示,面积为0.9×0.9m 2,可见通过密炼+热压后的凝胶片通过双向异步多级拉伸可制备得到面积更大厚度更小的超薄膜。

Claims (10)

  1. 一种大面积超高分子量聚乙烯超薄膜的制备方法,其特征在于,所述制备方法包括下述步骤:
    1)将聚超高分子量聚乙烯、溶剂和抗氧化剂搅拌熔融共混形成均一的悬浮液;
    2)将悬浮液经挤出或密炼,然后压制成型得到凝胶膜;
    3)将所得凝胶膜经过拉伸、退火、萃取和干燥处理得大面积超高分子量聚乙烯膜;
    其中,所述拉伸方法为:先将凝胶膜通过双向同步或双向异步拉伸制得厚度为20um~50um的超高分子量聚乙烯膜;然后将所得超高分子量聚乙烯膜采用双向异步多级拉伸的方式拉伸制得大面积超高分子量聚乙烯膜,总拉伸倍率控制为400~500。
  2. 根据权利要求1所述的一种大面积超高分子量聚乙烯超薄膜的制备方法,其特征在于,步骤3)中,所述双向异步多级拉伸方法为:将所得超高分子量聚乙烯膜进行n次拉伸,第n次的拉伸比小于第(n-1)次的拉伸比;其中,n≥2,每一次拉伸过程为:先沿挤出方向的垂直方向拉伸至一定拉伸比,再沿挤出方向拉伸至一定拉伸比;每次拉伸过程中两个方向的拉伸比相同,每次拉伸过程中的拉伸比控制为1~2。
  3. 根据权利要求1或2所述的一种大面积超高分子量聚乙烯超薄膜的制备方法,其特征在于,步骤3)中,所述双向异步多级拉伸过程中拉伸速率控制为0.5~0.7%/s;
    进一步,步骤3)中,所述双向异步多级拉伸过程为:对超高分子量聚乙烯膜先沿挤出方向的垂直方向拉伸至拉伸比为1.1~2,再沿挤出方向拉伸至拉伸比为1.1~2;然后沿挤出方向的垂直方向拉伸至拉伸比为1.1~1.6,再沿挤出方向拉伸至拉伸比为1.1~1.6;接着沿挤出方向的垂直方向拉伸至拉伸比为1.1~1.4,再沿挤出方向拉伸至拉伸比为1.1~1.4;最后沿挤出方向的垂直方向拉伸至拉伸比为1.1~1.2,再沿挤出方向拉伸至拉伸比为1.1~1.2。
    进一步,步骤3)中,所述双向同步拉伸或双向异步拉伸制得厚度为20um~50um的超高分子量聚乙烯膜的过程为:在2~5%/s的拉伸速率下将凝胶片拉伸至拉伸比为3×3~10×10。
  4. 根据权利要求1~3任一项所述的一种大面积超高分子量聚乙烯超薄膜的制备方法,其特征在于,步骤1)中,超高分子量聚乙烯与溶剂的质量比为:1.5~9.5:98.5~90.5;抗氧化剂为超高分子量聚乙烯与溶剂总质量的0.5~1.5%;
    进一步,步骤1)中,熔融共混的温度为180~220℃。
    进一步,步骤1)中,所述溶剂选自:白油、矿脂、矿物油、凡士林或石蜡油中的至少一种;
    进一步,步骤1)中,所述抗氧化剂选自酚类抗氧化剂或磷酸盐类抗氧化剂;
    更进一步,所述抗氧化剂选自:抗氧剂1010、抗氧剂168或维他命E。
  5. 根据权利要求1~4任一项所述的一种大面积超高分子量聚乙烯超薄膜的制备方法,其特征在于,步骤2)中,所述挤出采用两次挤出;
    进一步,步骤2)中,悬浮液的挤出工艺中的加料方式为:在超高分子量聚乙烯处于熔融状态下,采用虹吸装置利用液面高度差的作用力,将悬浮液通过加料口加入挤出机中。
  6. 根据权利要求1~4任一项所述的一种大面积超高分子量聚乙烯超薄膜的制备方法,其特征在于,步骤2)中,所述密炼方法中,密炼温度为120~220℃,剪切速率20~35rpm,密炼时间0.5~1h。
  7. 根据权利要求1~6任一项所述的一种大面积超高分子量聚乙烯超薄膜的制备方法,其特征在于,步骤2)中,压制成型的温度160~180℃,压力为0.5~15t,压制时间1~2h。
  8. 根据权利要求1~7任一项所述的一种大面积超高分子量聚乙烯超薄膜的制备方法,其特征在于,步骤3)中,拉伸过程中边拉伸边吸出溶剂;
    进一步,步骤3)中,所述萃取方法为:采用正己烷或辛烷通过索氏萃取法萃取溶剂和抗氧化剂,萃取时间为9~12h,循环至少3次。
  9. 一种大面积超高分子量聚乙烯超薄膜,其特征在于,所述超高分子量聚乙烯超薄膜采用权利要求1~8任一项所述的方法制得。
  10. 根据权利要求9所述的一种大面积超高分子量聚乙烯超薄膜,其特征在于,所述大面积超薄的厚度在70~200纳米;
    进一步,所述大面积超薄的面积≥0.6平方米;
    更进一步,所述大面积超薄的面积为0.6~1平方米。
PCT/CN2022/086512 2021-05-25 2022-04-13 一种大面积超高分子量聚乙烯超薄膜及其制备方法 WO2022247505A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110570190.0A CN113263747B (zh) 2021-05-25 2021-05-25 一种大面积超高分子量聚乙烯超薄膜及其制备方法
CN202110570190.0 2021-05-25

Publications (1)

Publication Number Publication Date
WO2022247505A1 true WO2022247505A1 (zh) 2022-12-01

Family

ID=77232715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086512 WO2022247505A1 (zh) 2021-05-25 2022-04-13 一种大面积超高分子量聚乙烯超薄膜及其制备方法

Country Status (2)

Country Link
CN (1) CN113263747B (zh)
WO (1) WO2022247505A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113263747B (zh) * 2021-05-25 2022-02-01 四川大学 一种大面积超高分子量聚乙烯超薄膜及其制备方法
WO2024086988A1 (zh) * 2022-10-24 2024-05-02 四川大学 超薄高强质子交换膜及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101151308A (zh) * 2005-03-29 2008-03-26 东燃化学株式会社 聚烯烃微多孔膜的制造方法及该微多孔膜
US20100151310A1 (en) * 2005-08-04 2010-06-17 Tonen Chemical Corporation Microporous polyethylene membrane, its production method and battery separator
US20100316902A1 (en) * 2007-12-31 2010-12-16 Kotaro Takita Microporous Multilayer Membrane, System And Process For Producing Such Membrane, And The Use Of Such Membrane
JP2016121354A (ja) * 2014-12-24 2016-07-07 旭化成イーマテリアルズ株式会社 ポリオレフィン微多孔膜の製造方法
CN109834961A (zh) * 2019-02-22 2019-06-04 中国科学技术大学 一种高孔隙率、大比表面积聚烯烃多孔膜的制备方法
CN109997247A (zh) * 2016-11-17 2019-07-09 香港科技大学 纳米多孔超高分子量聚乙烯薄膜
CN113263747A (zh) * 2021-05-25 2021-08-17 四川大学 一种大面积超高分子量聚乙烯超薄膜及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2042746A1 (en) * 1970-08-28 1972-03-02 Brueckner Maschbau Biaxial stretching of plastic film - with lateral then longitudinal
US8951456B2 (en) * 2010-08-31 2015-02-10 National University Corporation Gunma University Method for producing ultra-high-molecular-weight polyethylene porous membrane, method for producing ultra-high-molecular-weight polytheylene film, and porous membrane and film obtained by these methods
CN102744885A (zh) * 2012-06-18 2012-10-24 上海百菲特环保科技有限公司 一种超高分子量聚乙烯平板膜的制备方法
CN103724758B (zh) * 2013-12-05 2015-08-26 王庆昭 超高分子量聚乙烯薄膜的熔融挤出、拉伸成膜生产工艺及其生产装置
CN109517210A (zh) * 2018-11-23 2019-03-26 瑞智新材(深圳)有限公司 超薄、高强度聚烯烃微多孔膜及其制备方法
CN110079001A (zh) * 2019-05-27 2019-08-02 佛山华韩卫生材料有限公司 一种亲肤极薄高透气零渗漏底膜

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101151308A (zh) * 2005-03-29 2008-03-26 东燃化学株式会社 聚烯烃微多孔膜的制造方法及该微多孔膜
US20100151310A1 (en) * 2005-08-04 2010-06-17 Tonen Chemical Corporation Microporous polyethylene membrane, its production method and battery separator
US20100316902A1 (en) * 2007-12-31 2010-12-16 Kotaro Takita Microporous Multilayer Membrane, System And Process For Producing Such Membrane, And The Use Of Such Membrane
JP2016121354A (ja) * 2014-12-24 2016-07-07 旭化成イーマテリアルズ株式会社 ポリオレフィン微多孔膜の製造方法
CN109997247A (zh) * 2016-11-17 2019-07-09 香港科技大学 纳米多孔超高分子量聚乙烯薄膜
CN109834961A (zh) * 2019-02-22 2019-06-04 中国科学技术大学 一种高孔隙率、大比表面积聚烯烃多孔膜的制备方法
CN113263747A (zh) * 2021-05-25 2021-08-17 四川大学 一种大面积超高分子量聚乙烯超薄膜及其制备方法

Also Published As

Publication number Publication date
CN113263747A (zh) 2021-08-17
CN113263747B (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
WO2022247505A1 (zh) 一种大面积超高分子量聚乙烯超薄膜及其制备方法
WO2018201264A1 (zh) 一种用于电池隔离的增强膜及其制备方法
CN111086181A (zh) 一种锂电池隔膜的制备方法
CN107316964B (zh) 一种改性均聚聚丙烯/高密度聚乙烯/改性均聚聚丙烯三层共挤锂电池隔膜及其制备方法
CN109560235B (zh) 一种新型锂离子电池芳纶隔膜制备方法
CN101623947B (zh) 一种超薄型bopet膜及其制造方法
CN102544416A (zh) 多层聚烯烃电池隔膜及其制备方法
CN102241142A (zh) 一种锂电池隔膜生产方法及横向拉伸机
WO2021164143A1 (zh) 一种聚烯烃多孔膜及其制备方法
WO2013078890A1 (zh) 一种动力锂电池隔膜的制备方法
CN111391267A (zh) 一种锂电池隔膜的干法单拉生产工艺
CN105235226A (zh) 一种聚烯烃微孔膜的高温挤出制备方法
CN110854341A (zh) 一种高性能锂电池隔膜的制备方法
CN102267229B (zh) 一种用于锂电池的聚烯烃微多孔膜及其制备方法
CN113258213A (zh) 一种用于锂离子电池的高厚度均匀性聚烯烃隔膜及其制备方法、锂离子电池
CN110854342B (zh) 一种高效高性能锂电池隔膜的制备方法
CN117352953A (zh) 聚烯烃薄膜及其制备方法、电池隔膜和电池
CN111129398B (zh) 锂离子电池隔膜的制备方法
CN116259924B (zh) 一种低闭孔温度隔膜及其制备方法
CN102315404B (zh) 一种动力锂离子电池隔膜的制备方法及系统
CN201369354Y (zh) 锂离子电池隔膜制备系统
CN106626457A (zh) 一种聚烯烃微孔膜的制备方法
CN102825805B (zh) 聚丙烯微孔膜制备方法
CN102208586A (zh) 一种动力锂离子电池隔膜的制备方法及系统
CN112490582A (zh) 高机械强度高韧性隔膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810238

Country of ref document: EP

Kind code of ref document: A1