WO2022246876A1 - 显示面板及其制备方法、显示装置 - Google Patents

显示面板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2022246876A1
WO2022246876A1 PCT/CN2021/097475 CN2021097475W WO2022246876A1 WO 2022246876 A1 WO2022246876 A1 WO 2022246876A1 CN 2021097475 W CN2021097475 W CN 2021097475W WO 2022246876 A1 WO2022246876 A1 WO 2022246876A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting layer
display panel
red light
layer
doping concentration
Prior art date
Application number
PCT/CN2021/097475
Other languages
English (en)
French (fr)
Inventor
张婷婷
Original Assignee
武汉华星光电技术有限公司
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司, 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US17/598,860 priority Critical patent/US20230240090A1/en
Publication of WO2022246876A1 publication Critical patent/WO2022246876A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/80Composition varying spatially, e.g. having a spatial gradient
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • the present application relates to the field of display technology, in particular to a display panel, a manufacturing method thereof, and a display device.
  • OLED Organic Light Emitting Display
  • LCD Liquid Crystal Display
  • OLED display technology is becoming more and more mature, but there are still some defects that need to be improved.
  • the human eye can observe the phenomenon of blue and red around the screen, that is, there is a problem of color shift around the screen.
  • OLED screens mostly use RGB three-color light-emitting structures to achieve color display.
  • an encapsulation layer composed of organic materials and inorganic material layers is usually prepared on the light-emitting structure.
  • due to fluctuations in the manufacturing process of the packaging film layer there will be differences in the film thickness of the packaging film layer around the OLED screen and in the center, which will lead to the problem of color shift around the OLED screen.
  • the present application provides a display panel, its preparation method, and a display device, so as to alleviate the technical problem of color shift existing around the existing OLED screen.
  • An embodiment of the present application provides a display panel, which includes:
  • the light-emitting layer is arranged on the driving substrate and includes a red light-emitting layer.
  • the doping concentration of the red light-emitting layer at the center point of the display panel is different from the doping concentration of the red light-emitting layer in areas other than the center point of the display panel.
  • the purpose is to make the luminous efficiency of the red light-emitting layer at the center point of the display panel consistent with the luminous efficiency of the red light-emitting layer in areas other than the center point of the display panel.
  • the doping concentration of the red light emitting layer ranges from 0.5% to 4%.
  • the doping concentration of the red light-emitting layer gradually increases from a center point of the display panel to a region other than the center point.
  • the doping concentration of the red light-emitting layer gradually decreases from a center point of the display panel to a region other than the center point.
  • the display panel is divided into a plurality of subregions from the central point to regions other than the central point, and the doping concentration of the red light emitting layer in each subregion is different.
  • the doping concentration of the red light emitting layers in the same subregion is the same.
  • the display panel further includes a luminescent functional layer disposed on the driving substrate and an encapsulation layer disposed on the luminescent functional layer, wherein the luminescent functional layer includes the The light emitting layer, the encapsulation layer includes a first inorganic encapsulation layer, an organic encapsulation layer and a second inorganic encapsulation layer.
  • the film thickness difference range of the encapsulation layer is between -10% and 10%.
  • the embodiment of the present application also provides a method for manufacturing a display panel, which includes:
  • the light-emitting layer includes a red light-emitting layer, and the doping concentration of the red light-emitting layer at the center point of the driving substrate is different from that of the region other than the center point, so that The luminous efficiency of the red light-emitting layer at the center point of the driving substrate is consistent with the luminous efficiency of the red light-emitting layer in the area other than the center point of the driving substrate;
  • An encapsulation layer is prepared on the light emitting layer.
  • the doping concentration of the red light emitting layer ranges from 0.5% to 4%.
  • the doping concentration of the red light-emitting layer gradually increases from the center point of the display panel to regions other than the center point.
  • the doping concentration of the red light-emitting layer gradually decreases from a center point of the display panel to a region other than the center point.
  • the driving substrate is divided into a plurality of subregions from the central point to regions other than the central point, and the doping concentration of the red light emitting layer in each subregion is different. .
  • the doping concentration of the red light emitting layers in the same subregion is the same.
  • An embodiment of the present application further provides a display device, which includes the display panel of one of the foregoing embodiments.
  • the doping concentration of the red light-emitting layer in the display panel, its preparation method and display device provided by the present application gradually increases or decreases from the center point of the display panel to the area other than the center point, so that the red light-emitting layer at the center point of the display panel.
  • the luminous efficiency is consistent with the luminous efficiency of the red light-emitting layer in the area other than the center point of the display panel, which solves the problem of color shift around the display panel caused by the difference in film thickness of the encapsulation layer, and improves the chromaticity uniformity of the display panel.
  • FIG. 1 is a graph showing the change trend of the chromaticity difference of the existing OLED screen with the film thickness difference of the first inorganic encapsulation layer.
  • Fig. 2 is a graph showing the variation trend of the luminous efficiency of the luminous layer of the conventional OLED screen with the film thickness difference of the first inorganic encapsulation layer.
  • FIG. 3 is a schematic cross-sectional structure diagram of a display panel provided by an embodiment of the present application.
  • FIG. 4 is a schematic cross-sectional structure diagram of a driving substrate provided by an embodiment of the present application.
  • FIG. 5 is a graph showing the variation trend of the luminous efficiency of the red light-emitting layer with the doping concentration according to the embodiment of the present application.
  • FIG. 6 is a schematic cross-sectional structure diagram of a red light-emitting layer provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another cross-sectional structure of the red light-emitting layer provided in the embodiment of the present application.
  • FIG. 8 is a graph showing the variation trend of the chromaticity difference of the display panel with the film thickness difference of the first inorganic encapsulation layer according to the embodiment of the present application.
  • FIG. 9 is a graph showing the variation trend of the luminous efficiency of the luminous layer of the display panel with the film thickness difference of the first inorganic encapsulation layer according to the embodiment of the present application.
  • FIG. 10 is a schematic top view structural diagram of a display panel provided by an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a method for manufacturing a display panel provided in an embodiment of the present application.
  • the inventors of the present application found that the problem of color shift around the OLED screen is caused by the difference in film thickness of the encapsulation layer.
  • the encapsulation layer of an OLED screen can be formed by overlapping the first inorganic encapsulation layer, the organic encapsulation layer and the second inorganic encapsulation layer, which are used to protect the light-emitting layer of the OLED screen and prevent the light-emitting layer from being invaded by water and oxygen.
  • the encapsulation layer also It can be formed by overlapping more layers. According to the research of the inventors, the film thickness fluctuation of the first inorganic encapsulation layer in the encapsulation layer has the greatest influence on the color shift.
  • the central point mentioned in this application refers to a point or an area located in the middle of the OLED screen.
  • the change trend of the chromaticity difference ⁇ u with the film thickness difference of the first inorganic encapsulation layer is shown in Figure 1, in Figure 1, the abscissa represents the film thickness difference of the first inorganic encapsulation layer, the The film thickness difference range takes -10% to 10% as an example, the ordinate indicates the value of the chromaticity difference ⁇ u, and curve A shows the variation trend of the chromaticity difference ⁇ u with the film thickness difference of the first inorganic packaging layer, which can be clearly seen from Figure 1
  • the color difference ⁇ u varied from -0.004 to 0.001. When ⁇ u ⁇ 0, the area outside the center point of the OLED screen will appear blue compared to the center point, and when ⁇ u>0, the area outside the center point will appear reddish compared to the center point.
  • the light-emitting layer of the OLED screen may include a red light-emitting layer, a green light-emitting layer and a blue light-emitting layer, wherein the red light-emitting layer, the green light-emitting layer and the blue light-emitting layer are used to emit red light, green light and blue light respectively, so as to give
  • the OLED screen provides three primary colors of red, green and blue to realize color display.
  • the change trend of the luminous efficiency of the red light-emitting layer, the green light-emitting layer and the blue light-emitting layer with the film thickness difference of the first inorganic encapsulation layer is shown in Figure 2, in Figure 2, the abscissa represents the film thickness of the first inorganic encapsulation layer difference, the film thickness difference range is -10% to 10% as an example, the ordinate represents the value of luminous efficiency, curve B represents the change trend of the luminous efficiency of the red light-emitting layer with the film thickness difference of the first inorganic packaging layer, and curve C It represents the change trend of the luminous efficiency of the green light-emitting layer with the film thickness difference of the first inorganic encapsulation layer, and the curve D shows the change trend of the luminous efficiency of the blue light-emitting layer with the film thickness difference of the first inorganic encapsulation layer.
  • the law of the chromaticity difference ⁇ u fluctuating with the film thickness of the first inorganic encapsulation layer is consistent with the law of the luminous efficiency of the red light emitting layer fluctuating with the film thickness of the first inorganic encapsulation layer.
  • the red light efficiency of the area other than the central point is lower than the central point; when the area other than the central point of the OLED screen appears red, the red light efficiency of the area other than the central point is higher than the center point. Based on this, the problem of color shift in areas other than the central point can be improved by adjusting the luminous efficiency of the red light emitting layer.
  • the inventors of the present application proposed a display panel and a manufacturing method thereof to solve the problem of color shift.
  • Figure 3 is a schematic cross-sectional structure diagram of a display panel provided by an embodiment of this application
  • Figure 4 is a schematic cross-sectional structural diagram of a drive substrate provided by an embodiment of this application
  • Figure 5 is a schematic cross-sectional structure diagram provided by an embodiment of this application
  • the luminous efficiency of the red light-emitting layer varies with the doping concentration.
  • FIG. 6 and FIG. 7 are schematic cross-sectional structure diagrams of the red light-emitting layer provided in the embodiments of the present application.
  • the display panel 100 includes a driving substrate 10 , a light-emitting functional layer 20 and an encapsulation layer 30 .
  • the light-emitting functional layer 20 is disposed on the driving substrate 10, the encapsulation layer 30 is disposed on the light-emitting functional layer 20, and the light-emitting functional layer 20 includes a light-emitting layer 21 on the driving substrate 10 and a
  • the cathode 22 on the luminescent layer 21, the drive substrate 10 and the cathode 22 together drive the luminescent layer 21 to emit light
  • the encapsulation layer 30 is located on the cathode 22 to protect the luminescent layer 21, Avoid water and oxygen intrusion leading to failure of the light-emitting layer 21 .
  • the driving substrate 10 includes a substrate 11, a thin film transistor 12, a pixel electrode 13 and a pixel definition layer 14, etc., the thin film transistor 12 is located on the substrate 11, and the pixel electrode 13 is located on the The thin film transistor 12 is electrically connected to the thin film transistor 12 , and the pixel definition layer 14 is located on the pixel electrode 13 .
  • the substrate 11 can be a rigid substrate or a flexible substrate; when the substrate 11 is a rigid substrate, it can include a rigid substrate such as a glass substrate; when the substrate 11 is a flexible substrate, it can include polyimide Amine (Polyimide, PI) film, ultra-thin glass film and other flexible substrates.
  • a rigid substrate such as a glass substrate
  • a flexible substrate when the substrate 11 is a flexible substrate, it can include polyimide Amine (Polyimide, PI) film, ultra-thin glass film and other flexible substrates.
  • a buffer layer 15 is also provided between the substrate 11 and the thin film transistor 12, and the buffer layer 15 can prevent unwanted impurities or pollutants (such as moisture, oxygen, etc.)
  • the bottom 11 diffuses into the device which may be damaged by these impurities or contaminants, while also providing a planar top surface.
  • the thin film transistor 12 may include an active layer 121, a gate insulating layer 122, a gate 123, an interlayer insulating layer 124, a source 125, and a drain 126 stacked on the buffer layer 15 in sequence. .
  • the planarization layer 127 may be included in the structure of the thin film transistor 12 in the embodiment of the present application.
  • the active layer 121 is disposed on the buffer layer 15 , and the active layer 121 includes a channel region and doped source regions and doped drain regions located on two sides of the channel region.
  • the gate insulating layer 122 covers the active layer 121 and the buffer layer 15, the gate 123 is disposed on the gate insulating layer 122, and the gate 123 and the active The channel region of layer 121 is provided correspondingly.
  • the interlayer insulating layer 124 covers the gate 123 and the gate insulating layer 122, the source 125 and the drain 126 are disposed on the interlayer insulating layer 124, and the source The electrode 125 and the drain 126 are respectively connected to the source doped region and the drain doped region.
  • the planarization layer 127 covers the source electrode 125, the drain electrode 126 and the interlayer insulating layer 124, the pixel electrode 13 is disposed on the planarization layer 127, and the pixel electrode 13 connected to the source 125 or the drain 126 of the thin film transistor 12 .
  • the pixel definition layer 14 covers the pixel electrode 13 and the planarization layer 127, the pixel definition layer 14 is provided with a pixel opening 141, and the pixel opening 141 exposes a part of the pixel electrode 13, so as to The setting area of the light emitting layer 21 is defined.
  • the light emitting layer 21 includes a red light emitting layer 211, a green light emitting layer 212 and a blue light emitting layer 213, and the red light emitting layer 211, the green light emitting layer 212 and the blue light emitting layer 213 are respectively arranged on different inside the pixel opening 141, and the red light emitting layer 211, the green light emitting layer 212 and the blue light emitting layer 213 respectively emit red light, green light, blue light to realize the color display of the display panel 100 .
  • the cathode 22 can use a transparent electrode or a reflective electrode, depending on the light emitting direction of the display panel 100. For example, when the display panel 100 adopts top emission, the cathode 22 uses a transparent electrode to increase the transmittance of light. ; When the display panel 100 adopts bottom emission, the cathode 22 adopts a reflective electrode to improve the utilization rate of light.
  • the light-emitting functional layer 20 may also include a hole injection layer 23 (HIL) and a hole transport layer 24 (HTL) disposed between the light-emitting layer 21 and the pixel electrode 13; An electron injection layer 25 (EIL) and an electron transport layer 26 (ETL) between the light emitting layer 21 and the cathode 22 .
  • HIL hole injection layer 23
  • HTL hole transport layer 24
  • EIL electron injection layer 25
  • ETL electron transport layer 26
  • the encapsulation layer 30 is arranged on the cathode 22 of the light-emitting functional layer 20, and the encapsulation layer 30 adopts thin film encapsulation, and the thin film encapsulation may be composed of a first inorganic encapsulation layer 31, an organic encapsulation layer 32, and a second inorganic encapsulation layer.
  • Layer 33 is a stacked structure formed by stacking three thin films in sequence or a multi-layered stacked structure, which is used to protect the light-emitting layer 21 of the light-emitting functional layer 20 and prevent the light-emitting layer 21 from failing due to water and oxygen intrusion.
  • the film thickness of the encapsulation layer 30 in the center point of the display panel 100 and the area outside the center point is likely to be different, and the film thickness of the encapsulation layer 30 is The difference range is generally between -10% and 10%.
  • the inventors of the present application have found in research that the difference in film thickness of the encapsulation layer 30 will lead to color shift in the display panel 100 , especially the effect of the film thickness difference of the first inorganic encapsulation layer 31 on color shift has the greatest impact. Moreover, the change trend of the chromaticity difference ⁇ u of the display panel 100 with the first inorganic encapsulation layer 31 is consistent with the change trend of the luminous efficiency of the red light emitting layer 211 with the first inorganic encapsulation layer 31 .
  • the doping concentration of the red light emitting layer 211 at the center point of the display panel 100 in the embodiment of the present application is different from the doping concentration of the red light emitting layer 211 in the area other than the center point of the display panel 100, so as to make the
  • the luminous efficiency of the red light emitting layer 211 at the central point of the display panel 100 is consistent with the luminous efficiency of the red light emitting layer 211 at the area other than the central point of the display panel 100 .
  • the light-emitting layer 21 is usually formed by doping light-emitting materials of different colors as guest materials into the host material, for example, the host material can be Alq3, CBP, BAlq, etc.
  • the light emitting efficiency of the light emitting layer 21 can be changed by changing the doping concentration of the guest material. For example, when the doping concentration of the red light emitting layer 211 ranges from 0.5% to 4%, by reducing the doping concentration of the red light emitting layer 211, the luminous efficiency of the red light emitting layer 211 can be improved; by increasing the doping concentration of the red light emitting layer 211 , can reduce the luminous efficiency of the red light emitting layer 211, as shown in FIG. 5 . In FIG.
  • the abscissa represents the doping concentration of the red light emitting layer 211
  • the ordinate represents the luminous efficiency of the red light emitting layer 211
  • the curve E represents the variation trend of the luminous efficiency of the red light emitting layer 211 with the doping concentration.
  • the doping concentration of the red light emitting layer 211 refers to the doping concentration of the red light emitting material in the red light emitting layer 211 .
  • the doping concentration of the red light emitting layer 211 when the doping concentration of the red light emitting layer 211 is gradually increased from the center point of the display panel 100 to regions other than the center point, the luminous efficiency of the red light emitting layer 211 decreases from The central point begins to gradually decrease to the area outside the central point, so that when the red light emitting layer 211 fluctuates with the film thickness of the first inorganic encapsulation layer 31, the luminous efficiency of the red light emitting layer 211 at the central point and the area outside the central point consistent, so as to reduce the chromaticity difference between the central point and the area other than the central point, and avoid the phenomenon of bluishness around the display panel 100 .
  • the doping concentration of the red light emitting layer 211 ranges from 0.5% to 4%.
  • the doping concentration of the red light emitting layer 211 when the doping concentration of the red light emitting layer 211 is gradually reduced from the center point of the display panel 100 to the area other than the center point, the luminous efficiency of the red light emitting layer 211 starts from the center point. Gradually increase to the area other than the central point, so that when the red light emitting layer 211 fluctuates with the film thickness of the first inorganic encapsulation layer 31, the luminous efficiency of the red light emitting layer 211 at the central point and the area other than the central point are consistent, so that The chromaticity difference between the central point and the area other than the central point is reduced to avoid redness around the display panel 100 . Wherein the doping concentration of the red light emitting layer 211 ranges from 0.5% to 4%.
  • the display panel 100 After adjusting the doping concentration of the red light emitting layer 211, the display panel 100 The variation trend of the chromaticity difference ⁇ u of the chromaticity difference ⁇ u with the film thickness difference of the first inorganic encapsulation layer 31 is shown in the curve A' shown in FIG.
  • the variation range of the chromaticity difference ⁇ u of the display panel 100 is reduced from -0.004 to 0.001 to -0.001 to -0.001. 0.001, significantly improving the problem of color shift caused by the difference in film thickness of the encapsulation layer 30 .
  • the luminous efficiency of the red light-emitting layer 211 varies with the film thickness difference of the first inorganic encapsulation layer 31 after adjusting the doping concentration of the red light-emitting layer 211 in the present application.
  • the luminous efficiency of the red light emitting layer 211 basically remains unchanged.
  • FIG. 10 is a schematic top view of a display panel provided by an embodiment of the present application.
  • the display panel 101 is divided into a plurality of subregions 50 from the central point 40 to areas other than the central point 40, and the doping concentration of the red light emitting layer in each subregion 50 is different.
  • the doping concentrations of the red light emitting layers in the same subregion 50 are the same, so that when preparing red light emitting layers with different doping concentrations, the process can be simplified to save costs.
  • a display panel preparation method is provided, the display panel preparation method is used to prepare the display panel of one of the above embodiments, please refer to Figure 11, Figure 11 is the preparation of the display panel provided by the embodiment of the present application
  • a schematic flow chart of the method, the display panel preparation method includes the following steps:
  • the driving substrate 10 includes a substrate 11, a thin film transistor 12, a pixel electrode 13 and a pixel definition layer 14, etc., the thin film transistor 12 is located on the substrate 11, and the pixel electrode 13 Located on the thin film transistor 12 and electrically connected to the thin film transistor 12 , the pixel definition layer 14 is located on the pixel electrode 13 .
  • a pixel opening 141 is disposed on the pixel definition layer 14 , and a part of the pixel electrode 13 is exposed by the pixel opening 141 .
  • the light-emitting layer 21 includes a red light-emitting layer 211, and the doping concentration of the red light-emitting layer 211 at the center point of the driving substrate 10 is the same as that of the area outside the center point. different doping concentrations, so that the luminous efficiency of the red light emitting layer 211 at the central point of the driving substrate 10 is consistent with the luminous efficiency of the red light emitting layer 211 in the area other than the central point of the driving substrate 10;
  • a luminescent functional layer 20 is prepared on the drive substrate 10, and the luminescent functional layer 20 includes a luminescent layer 21 located on the drive substrate 10 and a luminescent layer 21 located on the luminescent layer 21.
  • the cathode 22 of the drive substrate 10 and the cathode 22 together drive the light emitting layer 21 to emit light.
  • the light emitting layer 21 includes a red light emitting layer 211, a green light emitting layer 212 and a blue light emitting layer 213, and the red light emitting layer 211, the green light emitting layer 212 and the blue light emitting layer 213 are respectively arranged on different inside the pixel opening 141, and the red light emitting layer 211, the green light emitting layer 212 and the blue light emitting layer 213 respectively emit red light, green light, blue light to realize the color display of the display panel 100 .
  • the drive substrate 10 is divided into a plurality of subregions from the central point to regions other than the central point, and the doping concentration of the red light emitting layer 211 in each of the subregions is different, and the red light emitting layer 211 in the same subregion is The doping concentration of 211 is the same.
  • the doping concentration of the red light emitting layer 211 in each subregion gradually increases from the center point of the driving substrate 10 to the subregions other than the center point, the luminous efficiency of the red light emitting layer 211 in each subregion increases from the center point to The point starts to gradually decrease to the area other than the central point, so that when the red light emitting layer 211 fluctuates with the film thickness of the first inorganic encapsulation layer 31, the luminous efficiency of the red light emitting layer 211 in the central point and the area outside the central point is consistent. , so as to reduce the chromaticity difference between the central point and the areas other than the central point, and avoid the phenomenon of bluishness around the display panel.
  • the doping concentration of the red light emitting layer 211 ranges from 0.5% to 4%.
  • the doping concentration of the red light emitting layer 211 in each subregion is gradually reduced from the center point of the driving substrate 10 to the area other than the center point, the luminous efficiency of the red light emitting layer 211 in each subregion starts from the center point Gradually increase to the area outside the central point, so that when the red light emitting layer 211 fluctuates with the film thickness of the first inorganic encapsulation layer 31, the luminous efficiency of the red light emitting layer 211 at the central point and the areas outside the central point are consistent, so that Reduce the chromaticity difference between the center point and the areas outside the center point, and avoid redness around the display panel.
  • the doping concentration of the red light emitting layer 211 ranges from 0.5% to 4%.
  • the luminous efficiency of the red light emitting layer 211 can be improved; by increasing the doping concentration of the red light emitting layer 211, the luminous efficiency of the red light emitting layer 211 can be reduced.
  • an evaporation mask can be used to evaporate the light-emitting material to form the light-emitting layer 21 , but the present application is not limited thereto.
  • the evaporation mask is used to prepare the red light-emitting layer 211 with different doping concentrations, it can be realized by changing the confinement angle of the evaporation mask.
  • the encapsulation layer 30 is disposed on the cathode 22 of the light-emitting functional layer 20, and the encapsulation layer 30 adopts thin film encapsulation, and the thin film encapsulation may be composed of a first inorganic encapsulation layer 31, an organic
  • the encapsulation layer 32 and the second inorganic encapsulation layer 33 are stacked in sequence to form a laminated structure or a laminated structure of more layers, which is used to protect the light-emitting layer 21 of the light-emitting functional layer 20, and prevent water and oxygen from invading the light-emitting layer from causing damage to the light-emitting layer. 21 lapse.
  • An embodiment of the present application further provides a display device, which includes the display panel of one of the foregoing embodiments, components such as a circuit board bound to the display panel, and a cover covering the display panel.
  • the present application provides a display panel and its preparation method as well as a display device.
  • the display panel includes a light-emitting layer disposed on a driving substrate, the light-emitting layer includes a red light-emitting layer, and the doping concentration of the red light-emitting layer starts from the center point of the display panel Gradually increase or decrease to the area outside the center point, so that the luminous efficiency of the red light-emitting layer at the center point of the display panel is consistent with the luminous efficiency of the red light-emitting layer in the area other than the center point of the display panel, which solves the problem caused by the difference in thickness of the packaging layer
  • the resulting problem of color shift around the display panel improves the chromaticity uniformity of the display panel.

Abstract

本申请提供一种显示面板及其制备方法、显示装置;该显示面板包括设置于驱动基板上的发光层,发光层的红色发光层的掺杂浓度从显示面板的中心点开始向中心点以外区域逐渐增大或减小,以使得显示面板中心点的红色发光层的发光效率与显示面板中心点以外区域的红色发光层的发光效率一致,以缓解现有OLED屏四周存在颜色偏移的问题。

Description

显示面板及其制备方法、显示装置 技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板及其制备方法、显示装置。
背景技术
有机发光二极管显示(Organic Light Emitting Display,OLED)相较于液晶显示(Liquid Crystal Display,LCD),具备高色域、高对比度、可柔性及可穿戴等优点,逐渐成为显示行业的发展趋势。随着科技的进步,OLED显示技术日益成熟,但仍存在一些需要完善的缺陷,如人眼可观察到屏幕四周发青发红现象,即屏幕四周存在颜色偏移问题。
目前,OLED屏多采用RGB三色发光结构实现彩色显示,而为了保护OLED屏的发光结构免受水氧侵蚀,通常会在发光结构上面制备由有机材料和无机材料膜层组成的封装层。但因封装膜层制程波动,会导致OLED屏四周和中心的封装膜层的膜厚存在差异,从而导致OLED屏四周出现颜色偏移的问题。
因此,现有OLED屏四周存在的颜色偏移的技术问题需要解决。
技术问题
本申请提供一种显示面板及其制备方法、显示装置,以缓解现有OLED屏四周存在的颜色偏移的技术问题。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请实施例提供一种显示面板,其包括:
驱动基板;
发光层,设置于所述驱动基板上,包括红色发光层,所述显示面板中心点的红色发光层的掺杂浓度与所述显示面板中心点以外区域的红色发光层的掺杂浓度不同,用于使所述显示面板中心点的红色发光层的发光效率与所述显示面板中心点以外区域的红色发光层的发光效率一致。
在本申请实施例提供的显示面板中,所述红色发光层的掺杂浓度范围为0.5%至4%。
在本申请实施例提供的显示面板中,所述红色发光层的掺杂浓度从所述显示面板的中心点开始向所述中心点以外区域逐渐增大。
在本申请实施例提供的显示面板中,所述红色发光层的掺杂浓度从所述显示面板的中心点开始向所述中心点以外区域逐渐减小。
在本申请实施例提供的显示面板中,所述显示面板从所述中心点向所述中心点以外区域划分为多个分区,各所述分区的所述红色发光层的掺杂浓度不同。
在本申请实施例提供的显示面板中,同一所述分区内所述红色发光层的掺杂浓度相同。
在本申请实施例提供的显示面板中,所述显示面板还包括设置于所述驱动基板上的发光功能层以及设置于所述发光功能层上的封装层,其中所述发光功能层包括所述发光层,所述封装层包括第一无机封装层、有机封装层和第二无机封装层。
在本申请实施例提供的显示面板中,所述封装层的膜厚差异范围在-10%至10%之间。
本申请实施例还提供一种显示面板制备方法,其包括:
提供驱动基板;
在所述驱动基板上制备发光层,所述发光层包括红色发光层,所述红色发光层在所述驱动基板中心点的掺杂浓度与所述中心点以外区域的掺杂浓度不同,以使得所述驱动基板中心点的红色发光层的发光效率与所述驱动基板中心点以外区域的红色发光层的发光效率一致;
在所述发光层上制备封装层。
在本申请实施例提供的显示面板制备方法中,所述红色发光层的掺杂浓度范围为0.5%至4%。
在本申请实施例提供的显示面板制备方法中,所述红色发光层的掺杂浓度从所述显示面板的中心点开始向所述中心点以外区域逐渐增大。
在本申请实施例提供的显示面板制备方法中,所述红色发光层的掺杂浓度从所述显示面板的中心点开始向所述中心点以外区域逐渐减小。
在本申请实施例提供的显示面板制备方法中,所述驱动基板从所述中心点向所述中心点以外区域划分为多个分区,各所述分区的所述红色发光层的掺杂浓度不同。
在本申请实施例提供的显示面板制备方法中,同一所述分区内所述红色发光层的掺杂浓度相同。
本申请实施例还提供一种显示装置,其包括前述实施例其中之一的显示面板。
有益效果
本申请提供的显示面板及其制备方法以及显示装置中红色发光层的掺杂浓度从显示面板的中心点开始向中心点以外区域逐渐增大或减小,以使得显示面板中心点的红色发光层的发光效率与显示面板中心点以外区域的红色发光层的发光效率一致,解决了因封装层膜层厚度差异导致的显示面板四周颜色偏移的问题,提高了显示面板的色度均一性。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有OLED屏的色度差随第一无机封装层膜厚差异的变化趋势图。
图2为现有OLED屏的发光层的发光效率随第一无机封装层膜厚差异的变化趋势图。
图3为本申请实施例提供的显示面板的剖面结构示意图。
图4为本申请实施例提供的驱动基板的剖面结构示意图。
图5为本申请实施例提供的红色发光层的发光效率随掺杂浓度的变化趋势图。
图6为本申请实施例提供的红色发光层的一种剖面结构示意图。
图7为本申请实施例提供的红色发光层的另一种剖面结构示意图。
图8为本申请实施例提供的显示面板的色度差随第一无机封装层膜厚差异的变化趋势图。
图9为本申请实施例提供的显示面板的发光层的发光效率随第一无机封装层膜厚差异的变化趋势图。
图10为本申请实施例提供的显示面板的俯视结构示意图。
图11为本申请实施例提供的显示面板制备方法的流程示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。在附图中,为了清晰理解和便于描述,夸大了一些层和区域的厚度。即附图中示出的每个组件的尺寸和厚度是任意示出的,但是本申请不限于此。
针对现有OLED屏四周存在的颜色偏移的问题,本申请的发明人在研究中发现OLED屏四周的颜色偏移问题是由封装层的膜厚差异导致的。通常OLED屏的封装层可由第一无机封装层、有机封装层和第二无机封装层交叠而形成,用于保护OLED屏的发光层,避免发光层被水氧入侵,当然地,封装层还可由更多层交叠形成。根据发明人研究显示,封装层中第一无机封装层的膜厚波动对颜色偏移影响最大。
具体地,定义OLED屏中心点的白光色度坐标为(u0,v0),中心点以外区域的白光色度坐标为(u1,v1),则中心点与中心点以外区域的色度差为Δu=u1-u0,Δv=v1-v0。其中本申请中提及的中心点是指位于OLED屏中间位置的一个点或一个区域。以色度差Δu为例,色度差Δu随第一无机封装层的膜厚差异的变化趋势如图1所示,在图1中,横坐标表示第一无机封装层的膜厚差异,该膜厚差异范围以-10%至10%为例,纵坐标表示色度差Δu的值,曲线A表示色度差Δu随第一无机封装层的膜厚差异的变化趋势,从图1清楚看出色度差Δu的变化范围为-0.004至0.001。而当Δu<0时,OLED屏中心点以外区域相较于中心点会出现发青现象,当Δu>0时,中心点以外区域相较于中心点会出现发红现象。
进一步地,OLED屏的发光层可包括红色发光层、绿色发光层和蓝色发光层,其中红色发光层、绿色发光层和蓝色发光层分别用于发出红光、绿光和蓝光,以给OLED屏提供红绿蓝三基色,实现彩色显示。红色发光层、绿色发光层和蓝色发光层的发光效率随第一无机封装层的膜厚差异的变化趋势如图2所示,在图2中,横坐标表示第一无机封装层的膜厚差异,该膜厚差异范围以-10%至10%为例,纵坐标表示发光效率的值,曲线B表示红色发光层的发光效率随第一无机封装层的膜厚差异的变化趋势,曲线C表示绿色发光层的发光效率随第一无机封装层的膜厚差异的变化趋势,曲线D表示蓝色发光层的发光效率随第一无机封装层的膜厚差异的变化趋势。
结合参照图1和图2,能够清楚看出色度差Δu随第一无机封装层的膜厚波动的规律和红色发光层的发光效率随第一无机封装层的膜厚波动的规律一致。当OLED屏的中心点以外区域出现发青现象时,中心点以外区域红光效率低于中心点;当OLED屏的中心点以外区域出现发红现象时,中心点以外区域红光效率高于中心点。基于此,可通过调整红色发光层的发光效率来改善中心点以外区域的颜色偏移问题。
故本申请的发明人基于上述的研究,提出了一种显示面板及其制备方法以解决颜色偏移的问题。
请结合参照图3至图7,图3为本申请实施例提供的显示面板的剖面结构示意图,图4为本申请实施例提供的驱动基板的剖面结构示意图,图5为本申请实施例提供的红色发光层的发光效率随掺杂浓度的变化趋势图,图6和图7为本申请实施例提供的红色发光层的剖面结构示意图。所述显示面板100包括驱动基板10、发光功能层20和封装层30。所述发光功能层20设置于所述驱动基板10上,所述封装层30设置于所述发光功能层20上,所述发光功能层20包括位于所述驱动基板10上的发光层21以及位于所述发光层21上的阴极22,所述驱动基板10和所述阴极22一块驱动所述发光层21发光,所述封装层30位于所述阴极22上,用于保护所述发光层21,避免水氧入侵导致发光层21失效。
如图4所示,所述驱动基板10包括衬底11、薄膜晶体管12、像素电极13和像素定义层14等,所述薄膜晶体管12位于所述衬底11上,所述像素电极13位于所述薄膜晶体管12上,且与所述薄膜晶体管12电连接,所述像素定义层14位于所述像素电极13上。
可选地,所述衬底11可以为刚性基板或柔性基板;所述衬底11为刚性基板时,可包括玻璃基板等硬性基板;所述衬底11为柔性基板时,可包括聚酰亚胺(Polyimide,PI)薄膜、超薄玻璃薄膜等柔性基板。
可选地,所述衬底11与所述薄膜晶体管12之间还设置有缓冲层15,所述缓冲层15可以防止不期望的杂质或污染物(例如湿气、氧气等)从所述衬底11扩散至可能因这些杂质或污染物而受损的器件中,同时还可以提供平坦的顶表面。
可选地,所述薄膜晶体管12可包括依次层叠设置在所述缓冲层15上的有源层121、栅极绝缘层122、栅极123、层间绝缘层124、源极125和漏极126、平坦化层127,当然地,本申请实施例的所述薄膜晶体管12的结构只为示意,本申请不限于此。
所述有源层121设置在所述缓冲层15上,所述有源层121包括沟道区以及位于所述沟道区两侧的源极掺杂区和漏极掺杂区。所述栅极绝缘层122覆于所述有源层121以及所述缓冲层15上,所述栅极123设置在所述栅极绝缘层122上,且所述栅极123与所述有源层121的沟道区对应设置。所述层间绝缘层124覆于所述栅极123和所述栅极绝缘层122上,所述源极125和所述漏极126设置在所述层间绝缘层124上,且所述源极125和所述漏极126分别与所述源极掺杂区和所述漏极掺杂区连接。
所述平坦化层127覆于所述源极125、所述漏极126以及所述层间绝缘层124上,所述像素电极13设置于所述平坦化层127上,且所述像素电极13与所述薄膜晶体管12的所述源极125或所述漏极126连接。所述像素定义层14覆于所述像素电极13和所述平坦化层127上,所述像素定义层14上设置有像素开口141,所述像素开口141裸露出部分所述像素电极13,以定义出发光层21的设置区域。
所述发光层21包括红色发光层211、绿色发光层212和蓝色发光层213,所述红色发光层211、所述绿色发光层212和所述蓝色发光层213分别设置在不同的所述像素开口141内,且所述红色发光层211、所述绿色发光层212和所述蓝色发光层213在所述像素电极13和所述阴极22的共同作用下分别发出红光、绿光、蓝光,以实现所述显示面板100的彩色显示。
所述阴极22可采用透明电极或反射电极,具体取决于所述显示面板100的出光方向,比如所述显示面板100采用顶发射时,所述阴极22采用透明电极,以提高光线的透过率;当所述显示面板100采用底发射时,所述阴极22采用反射电极,以提高光线的利用率。
当然地,所述发光功能层20还可包括设置于所述发光层21与所述像素电极13之间的空穴注入层23(HIL)、空穴传输层24(HTL);以及设置于所述发光层21与所述阴极22之间的电子注入层25(EIL)、电子传输层26(ETL)。
所述封装层30设置于所述发光功能层20的阴极22上,所述封装层30采用薄膜封装,所述薄膜封装可以为由第一无机封装层31、有机封装层32、第二无机封装层33三层薄膜依次层叠形成的叠层结构或更多层的叠层结构,用于保护所述发光功能层20的发光层21,避免水氧入侵导致发光层21失效。而在制备所述封装层30时,由于制程波动等因素的影响容易造成所述显示面板100中心点和中心点之外区域的所述封装层30膜厚的差异,所述封装层30膜厚的差异范围一般在-10%至10%之间。
本申请的发明人在研究中发现,所述封装层30膜厚的差异会导致所述显示面板100出现颜色偏移现象,尤其是所述第一无机封装层31的膜厚差异对颜色偏移的影响最大。而且所述显示面板100的色度差Δu随所述第一无机封装层31的变化趋势与所述红色发光层211的发光效率随所述第一无机封装层31的变化趋势相一致。
为此,本申请实施例的所述显示面板100中心点的红色发光层211的掺杂浓度与所述显示面板100中心点以外区域的红色发光层211的掺杂浓度不同,用于使所述显示面板100中心点的红色发光层211的发光效率与所述显示面板100中心点以外区域的红色发光层211的发光效率一致。
需要说明的是,所述发光层21通常是把不同颜色的发光材料作为客体材料掺杂在主体材料中形成,例如主体材料可以为Alq3、CBP、BAlq等。而通过改变客体材料的掺杂浓度能够改变所述发光层21的发光效率。例如红色发光层211的掺杂浓度范围在0.5%至4%时,通过降低红色发光层211的掺杂浓度,可以提升红色发光层211的发光效率;通过增大红色发光层211的掺杂浓度,可以降低红色发光层211的发光效率,如图5所示。在图5中,横坐标表示红色发光层211的掺杂浓度,纵坐标表示红色发光层211的发光效率,曲线E表示红色发光层211的发光效率随着掺杂浓度的变化趋势。其中红色发光层211的掺杂浓度是指红色发光层211中红色发光材料的掺杂浓度。
因此,如图6所示,当使所述红色发光层211的掺杂浓度从所述显示面板100的中心点开始向所述中心点以外区域逐渐增大时,红色发光层211的发光效率从中心点开始向中心点以外区域逐渐降低,如此使得所述红色发光层211伴随着所述第一无机封装层31的膜厚波动时,中心点和中心点以外区域的红色发光层211的发光效率一致,以减小中心点与中心点以外区域的色度差,避免所述显示面板100四周出现发青现象。其中所述红色发光层211的掺杂浓度范围为0.5%至4%。
如图7所示,当使所述红色发光层211的掺杂浓度从所述显示面板100的中心点开始向所述中心点以外区域逐渐减小时,红色发光层211的发光效率从中心点开始向中心点以外区域逐渐提升,如此使得所述红色发光层211伴随着所述第一无机封装层31的膜厚波动时,中心点和中心点以外区域的红色发光层211的发光效率一致,以减小中心点与中心点以外区域的色度差,避免所述显示面板100四周出现发红现象。其中所述红色发光层211的掺杂浓度范围为0.5%至4%。
本申请通过调整红色发光层211的掺杂浓度,能够改善现有OLED屏因封装层30膜厚差异导致的颜色偏移问题,通过调整红色发光层211的掺杂浓度后,所述显示面板100的色度差Δu随所述第一无机封装层31膜厚差异的变化趋势如图8所示的曲线A’,所述发光层21的发光效率随所述第一无机封装层31膜厚差异的变化趋势如图9所示的曲线B’、C’、D’,其中曲线B’表示所述红色发光层211的发光效率随所述第一无机封装层31膜厚差异的变化趋势,曲线C’表示所述绿色发光层212的发光效率随所述第一无机封装层31膜厚差异的变化趋势,曲线D’表示所述蓝色发光层213的发光效率随所述第一无机封装层31膜厚差异的变化趋势。
结合参照图8和图1,能够清楚看出本申请通过调整红色发光层211的掺杂浓度后,所述显示面板100的色度差Δu变化范围有原来的-0.004至0.001缩小为-0.001至0.001,显著地改善了因封装层30膜厚差异导致的颜色偏移问题。结合参照图9和图2,能够清楚看出本申请通过调整红色发光层211的掺杂浓度后,所述红色发光层211的发光效率随所述第一无机封装层31膜厚差异的变化趋势明显减缓,也即随着所述第一无机封装层31膜厚差异的变化,所述红色发光层211的发光效率基本不变。
在一种实施例中,请参照图10,图10为本申请实施例提供的显示面板的俯视结构示意图。与上述实施例不同的是,所述显示面板101从所述中心点40向所述中心点40以外区域划分为多个分区50,各所述分区50的所述红色发光层的掺杂浓度不同,且同一所述分区50内所述红色发光层的掺杂浓度相同,如此在制备不同掺杂浓度的红色发光层时,能够简化工序,以节约成本。其他说明请参照上述实施例,在此不再赘述。
在一种实施例中,提供一种显示面板制备方法,该显示面板制备方法用于制备上述实施例其中之一的显示面板,请参照图11,图11为本申请实施例提供的显示面板制备方法的流程示意图,所述显示面板制备方法包括以下步骤:
S301、提供驱动基板;
具体地,请参照图4,所述驱动基板10包括衬底11、薄膜晶体管12、像素电极13和像素定义层14等,所述薄膜晶体管12位于所述衬底11上,所述像素电极13位于所述薄膜晶体管12上,且与所述薄膜晶体管12电连接,所述像素定义层14位于所述像素电极13上。所述像素定义层14上设置有像素开口141,所述像素开口141裸露出部分所述像素电极13。
S302、在所述驱动基板10上制备发光层21,所述发光层21包括红色发光层211,所述红色发光层211在所述驱动基板10中心点的掺杂浓度与所述中心点以外区域的掺杂浓度不同,以使得所述驱动基板10中心点的红色发光层211的发光效率与所述驱动基板10中心点以外区域的红色发光层211的发光效率一致;
具体地,结合参照图3和图4,在所述驱动基板10上制备发光功能层20,所述发光功能层20包括位于所述驱动基板10上的发光层21以及位于所述发光层21上的阴极22,所述驱动基板10和所述阴极22一块驱动所述发光层21发光。所述发光层21包括红色发光层211、绿色发光层212和蓝色发光层213,所述红色发光层211、所述绿色发光层212和所述蓝色发光层213分别设置在不同的所述像素开口141内,且所述红色发光层211、所述绿色发光层212和所述蓝色发光层213在所述像素电极13和所述阴极22的共同作用下分别发出红光、绿光、蓝光,以实现所述显示面板100的彩色显示。
所述驱动基板10从所述中心点向所述中心点以外区域划分为多个分区,各所述分区的所述红色发光层211的掺杂浓度不同,同一所述分区内所述红色发光层211的掺杂浓度相同。当使各个分区的所述红色发光层211的掺杂浓度从所述驱动基板10的中心点开始向所述中心点以外的分区逐渐增大时,各个分区的红色发光层211的发光效率从中心点开始向中心点以外区域逐渐降低,如此使得所述红色发光层211伴随着所述第一无机封装层31的膜厚波动时,中心点和中心点以外分区的红色发光层211的发光效率一致,以减小中心点与中心点以外分区的色度差,避免显示面板四周出现发青现象。其中所述红色发光层211的掺杂浓度范围为0.5%至4%。
当使各个分区的所述红色发光层211的掺杂浓度从所述驱动基板10的中心点开始向所述中心点以外区域逐渐减小时,各个分区的红色发光层211的发光效率从中心点开始向中心点以外区域逐渐提升,如此使得所述红色发光层211伴随着所述第一无机封装层31的膜厚波动时,中心点和中心点以外分区的红色发光层211的发光效率一致,以减小中心点与中心点以外分区的色度差,避免显示面板四周出现发红现象。其中所述红色发光层211的掺杂浓度范围为0.5%至4%。
因此,通过降低红色发光层211的掺杂浓度,可以提升红色发光层211的发光效率;通过增大红色发光层211的掺杂浓度,可以降低红色发光层211的发光效率。改变中心点以外分区的红色发光层211掺杂浓度,从中心点向中心点以外分区逐渐提高或降低红色发光层211的发光效率,使得中心点和中心点以外分区的红色发光层211的发光效率一致,从而消除现有OLED屏的颜色偏移问题。
需要说明的是,在制备发光层21时,通常可采用蒸镀掩膜板来蒸镀发光材料形成发光层21,但本申请不限于此。当采用蒸镀掩膜板在制备不同掺杂浓度的红色发光层211时,可通过改变蒸镀掩膜板限制角的方式来实现。
S303、在所述发光层21上制备封装层30。
具体地,请参照图3,所述封装层30设置于所述发光功能层20的阴极22上,所述封装层30采用薄膜封装,所述薄膜封装可以为由第一无机封装层31、有机封装层32、第二无机封装层33三层薄膜依次层叠形成的叠层结构或更多层的叠层结构,用于保护所述发光功能层20的发光层21,避免水氧入侵导致发光层21失效。
本申请实施例还提供一种显示装置,其包括前述实施例其中之一的显示面板、绑定于所述显示面板的电路板等器件以及覆于所述显示面板上的盖板等。
根据上述实施例可知:
本申请提供一种显示面板及其制备方法以及显示装置,所述显示面板包括设置于驱动基板上的发光层,发光层包括红色发光层,红色发光层的掺杂浓度从显示面板的中心点开始向中心点以外区域逐渐增大或减小,以使得显示面板中心点的红色发光层的发光效率与显示面板中心点以外区域的红色发光层的发光效率一致,解决了因封装层膜层厚度差异导致的显示面板四周颜色偏移的问题,提高了显示面板的色度均一性。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (20)

  1. 一种显示面板,其包括:
    驱动基板;以及
    发光层,设置于所述驱动基板上,包括红色发光层,所述显示面板中心点的红色发光层的掺杂浓度与所述显示面板中心点以外区域的红色发光层的掺杂浓度不同,用于使所述显示面板中心点的红色发光层的发光效率与所述显示面板中心点以外区域的红色发光层的发光效率一致。
  2. 根据权利要求1所述的显示面板,其中,所述红色发光层的掺杂浓度范围为0.5%至4%。
  3. 根据权利要求2所述的显示面板,其中,所述红色发光层的掺杂浓度从所述显示面板的中心点开始向所述中心点以外区域逐渐增大。
  4. 根据权利要求2所述的显示面板,其中,所述红色发光层的掺杂浓度从所述显示面板的中心点开始向所述中心点以外区域逐渐减小。
  5. 根据权利要求1所述的显示面板,其中,所述显示面板从所述中心点向所述中心点以外区域划分为多个分区,各所述分区的所述红色发光层的掺杂浓度不同。
  6. 根据权利要求5所述的显示面板,其中,同一所述分区内所述红色发光层的掺杂浓度相同。
  7. 根据权利要求1所述的显示面板,其中,所述显示面板还包括设置于所述驱动基板上的发光功能层以及设置于所述发光功能层上的封装层,其中所述发光功能层包括所述发光层,所述封装层包括第一无机封装层、有机封装层和第二无机封装层。
  8. 根据权利要求7所述的显示面板,其中,所述封装层的膜厚差异范围在-10%至10%之间。
  9. 一种显示面板制备方法,其包括:
    提供驱动基板;
    在所述驱动基板上制备发光层,所述发光层包括红色发光层,所述红色发光层在所述驱动基板中心点的掺杂浓度与所述中心点以外区域的掺杂浓度不同,以使得所述驱动基板中心点的红色发光层的发光效率与所述驱动基板中心点以外区域的红色发光层的发光效率一致;
    在所述发光层上制备封装层。
  10. 根据权利要求9所述的显示面板制备方法,其中,所述红色发光层的掺杂浓度范围为0.5%至4%。
  11. 根据权利要求10所述的显示面板制备方法,其中,所述红色发光层的掺杂浓度从所述显示面板的中心点开始向所述中心点以外区域逐渐增大。
  12. 根据权利要求10所述的显示面板制备方法,其中,所述红色发光层的掺杂浓度从所述显示面板的中心点开始向所述中心点以外区域逐渐减小。
  13. 根据权利要求10所述的显示面板制备方法,其中,所述驱动基板从所述中心点向所述中心点以外区域划分为多个分区,各所述分区的所述红色发光层的掺杂浓度不同。
  14. 根据权利要求13所述的显示面板制备方法,其中,同一所述分区内所述红色发光层的掺杂浓度相同。
  15. 一种显示装置,其包括显示面板,所述显示面板包括:
    驱动基板;以及
    发光层,设置于所述驱动基板上,包括红色发光层,所述显示面板中心点的红色发光层的掺杂浓度与所述显示面板中心点以外区域的红色发光层的掺杂浓度不同,用于使所述显示面板中心点的红色发光层的发光效率与所述显示面板中心点以外区域的红色发光层的发光效率一致。
  16. 根据权利要求15所述的显示装置,其中,所述红色发光层的掺杂浓度范围为0.5%至4%。
  17. 根据权利要求16所述的显示装置,其中,所述红色发光层的掺杂浓度从所述显示面板的中心点开始向所述中心点以外区域逐渐增大。
  18. 根据权利要求16所述的显示装置,其中,所述红色发光层的掺杂浓度从所述显示面板的中心点开始向所述中心点以外区域逐渐减小。
  19. 根据权利要求16所述的显示装置,其中,所述显示面板从所述中心点向所述中心点以外区域划分为多个分区,各所述分区的所述红色发光层的掺杂浓度不同。
  20. 根据权利要求19所述的显示装置,其中,同一所述分区内所述红色发光层的掺杂浓度相同。
PCT/CN2021/097475 2021-05-25 2021-05-31 显示面板及其制备方法、显示装置 WO2022246876A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/598,860 US20230240090A1 (en) 2021-05-25 2021-05-31 Display panel, fabrication thereof and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110570599.2 2021-05-25
CN202110570599.2A CN113328044B (zh) 2021-05-25 2021-05-25 显示面板及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2022246876A1 true WO2022246876A1 (zh) 2022-12-01

Family

ID=77416707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097475 WO2022246876A1 (zh) 2021-05-25 2021-05-31 显示面板及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US20230240090A1 (zh)
CN (1) CN113328044B (zh)
WO (1) WO2022246876A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102738410A (zh) * 2003-03-17 2012-10-17 株式会社半导体能源研究所 发光元件以及发光器件
CN104241331A (zh) * 2014-09-19 2014-12-24 青岛海信电器股份有限公司 一种oled显示面板及制作方法
CN110379934A (zh) * 2019-07-12 2019-10-25 昆山国显光电有限公司 一种显示面板及显示装置
CN110634444A (zh) * 2019-09-24 2019-12-31 昆山国显光电有限公司 一种显示面板的补偿方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100470877C (zh) * 2004-02-27 2009-03-18 清华大学 一种有机电致磷光器件及其制备方法
JP2011061016A (ja) * 2009-09-10 2011-03-24 Sharp Corp 有機エレクトロルミネッセンス素子
US9935291B2 (en) * 2010-12-28 2018-04-03 Hitachi, Ltd. Organic light-emitting device, light source device using same, organic light-emitting layer material, coating liquid for forming organic light-emitting layer, and method for producing organic light-emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102738410A (zh) * 2003-03-17 2012-10-17 株式会社半导体能源研究所 发光元件以及发光器件
CN104241331A (zh) * 2014-09-19 2014-12-24 青岛海信电器股份有限公司 一种oled显示面板及制作方法
CN110379934A (zh) * 2019-07-12 2019-10-25 昆山国显光电有限公司 一种显示面板及显示装置
CN110634444A (zh) * 2019-09-24 2019-12-31 昆山国显光电有限公司 一种显示面板的补偿方法

Also Published As

Publication number Publication date
CN113328044B (zh) 2023-04-18
CN113328044A (zh) 2021-08-31
US20230240090A1 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
TWI422272B (zh) 顯示裝置
WO2020199445A1 (zh) 一种oled显示器件及其制备方法
US9728587B2 (en) Organic light emitting diode device with a color calibration layer
WO2020206810A1 (zh) 双面显示面板及其制备方法
WO2015096367A1 (zh) 有机电致发光显示器件、其制备方法及显示装置
US9406733B2 (en) Pixel structure
US9786722B1 (en) Double-side OLED display
WO2020037770A1 (zh) 基板及显示装置
US10347696B2 (en) OLED display device, manufacturing method thereof and OLED display
WO2020082636A1 (zh) 一种显示面板及其制作方法、显示模组
WO2020224143A1 (zh) 显示面板及其制作方法
WO2015096378A1 (zh) 阵列基板及其制备方法、显示装置
WO2017012316A1 (zh) 显示基板及其制备方法以及显示装置
WO2022170660A1 (zh) 显示面板及显示装置
CN112038383A (zh) 一种显示面板、制备方法及显示装置
WO2016119306A1 (zh) Oled像素结构
WO2019192421A1 (zh) Oled基板及其制备方法、显示装置
KR20150078396A (ko) 유기전계발광 표시장치
KR20110063227A (ko) 유기전계발광표시장치
WO2018152933A1 (zh) 一种oled显示器件、其制备方法及oled显示器
WO2022246876A1 (zh) 显示面板及其制备方法、显示装置
WO2020147204A1 (zh) Oled 显示面板及其制作方法
WO2023050304A1 (zh) 显示基板、显示装置及显示基板的制备方法
WO2021218665A1 (zh) 发光器件、显示基板及显示装置
WO2019153401A1 (zh) 一种oled显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE