WO2018152933A1 - 一种oled显示器件、其制备方法及oled显示器 - Google Patents

一种oled显示器件、其制备方法及oled显示器 Download PDF

Info

Publication number
WO2018152933A1
WO2018152933A1 PCT/CN2017/079435 CN2017079435W WO2018152933A1 WO 2018152933 A1 WO2018152933 A1 WO 2018152933A1 CN 2017079435 W CN2017079435 W CN 2017079435W WO 2018152933 A1 WO2018152933 A1 WO 2018152933A1
Authority
WO
WIPO (PCT)
Prior art keywords
blue light
organic
oled display
layer
conversion unit
Prior art date
Application number
PCT/CN2017/079435
Other languages
English (en)
French (fr)
Inventor
李先杰
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/520,348 priority Critical patent/US10367038B2/en
Publication of WO2018152933A1 publication Critical patent/WO2018152933A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/27Combination of fluorescent and phosphorescent emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer

Definitions

  • the present invention relates to the field of OLED device technologies, and in particular, to an OLED display device, a method for fabricating the same, and an OLED display.
  • OLED display has the characteristics of self-illumination, simple structure, light weight, fast response, wide viewing angle, low power consumption and flexible display. It is known as “dream display”. Due to its numerous potentials, OLED displays have been favored by major display manufacturers and become the third generation of displays following cathode ray displays (CRTs) and liquid crystal displays (LCDs).
  • CRTs cathode ray displays
  • LCDs liquid crystal displays
  • the OLED display device for display in an OLED display is one of its important components, and the color display of the OLED display device has a very large influence on the display quality of the OLED display.
  • the color display of the OLED display device mainly adopts the following two methods, one method is to prepare an OLED display device having three sub-pixels of red, green and blue through a Fine Metal Mask (FMM), thereby realizing Color display, but this method is limited by FMM, its resolution can not be improved, can not meet the requirements of high resolution.
  • FMM Fine Metal Mask
  • another method is to pass white light and RGB filters. This method does not require mask alignment, that is, it is not limited by the fine metal mask, but the color saturation is low and the color gamut is not wide enough.
  • the color gamut of OLED displays currently produced using white and RGB filters is only 86% of the standard color gamut of the National Television Standards Committee.
  • the present invention provides an OLED display device, a method of fabricating the same, and an OLED display, and the OLED display device of the present invention can improve the saturation and color gamut of its color display.
  • a technical solution proposed by the present invention is to provide a method for preparing an OLED display device, which comprises:
  • Preparing a color conversion layer on the substrate by wet film formation forming a thin film transistor array, an anode, a hole injection layer and a hole transport layer, a blue light emitting layer, an electron transport layer, and an electron input sequentially above the color conversion layer Layer and cathode;
  • the color conversion layer includes a red light conversion unit and a green light conversion unit which are arranged at intervals An opening unit; the red light converting unit and the green light converting unit are each a film layer formed of an organic metal halide perovskite material; the red light converting unit and the green light converting unit respectively absorb the light emitted by the blue light emitting layer In the blue light, the blue light is converted into red light and green light, respectively, and the opening unit transmits the blue light to realize color display.
  • Another technical solution proposed by the present invention is to provide an OLED display device, the display device comprising:
  • a substrate and a color conversion layer and a blue light emitting layer laminated on the substrate;
  • the color conversion layer comprises a red light conversion unit, a green light conversion unit and an opening unit which are arranged at intervals; the red light conversion unit and the green light conversion unit are both a film layer formed of an organic metal halide perovskite material.
  • the red light converting unit and the green light converting unit respectively absorb blue light emitted by the blue light emitting layer, convert the blue light into red light and green light, respectively, and the opening unit transmits the blue light to realize color display.
  • Another technical solution proposed by the present invention is to provide an OLED display, comprising an OLED display device and a driving control circuit, the driving control circuit being connected to the OLED display device to provide a driving signal for the OLED display device And control signals;
  • the OLED display device includes:
  • a substrate and a color conversion layer and a blue light emitting layer laminated on the substrate;
  • the color conversion layer comprises a red light conversion unit, a green light conversion unit and an opening unit which are arranged at intervals; the red light conversion unit and the green light conversion unit are both a film layer formed of an organic metal halide perovskite material.
  • the red light converting unit and the green light converting unit respectively absorb blue light emitted by the blue light emitting layer, convert the blue light into red light and green light, respectively, and the opening unit transmits the blue light to realize color display.
  • the OLED display device comprises a substrate and a color conversion layer and a blue light emitting layer stacked thereon;
  • the color conversion layer comprises a red light conversion unit, a green light conversion unit and an opening arranged at intervals The unit;
  • the red light conversion unit and the green light conversion unit are both film layers formed of an organometallic halide perovskite material.
  • the red light conversion unit and the green light conversion unit Since the material of the red light conversion unit and the green light conversion unit is an organometallic halide perovskite material and has high photoluminescence efficiency, the red light conversion unit and the green light conversion unit respectively absorb the blue light emitted by the blue light emitting layer, respectively Converted to high saturation red and green light, the open unit transmits the blue light emitted by the blue light emitting layer, so that the color conversion layer can output colored light with high saturation, realize color display, and improve the saturation of the color display and Color gamut.
  • FIG. 1 is a schematic structural view of a first embodiment of an OLED display device of the present invention
  • FIG. 2 is a spectrum diagram of red, green, and blue light obtained by the OLED display device shown in FIG. 1;
  • FIG. 3 is a schematic view showing the arrangement of color conversion layers in the OLED display device shown in FIG. 1;
  • FIG. 4 is a schematic structural view of a second embodiment of an OLED display device of the present invention.
  • FIG. 5 is a schematic structural view of a third embodiment of an OLED display device of the present invention.
  • FIG. 6a is a schematic structural view of a first embodiment of a white light converting unit in the OLED display device shown in FIG. 5;
  • 6b is a schematic structural view of a second embodiment of a white light conversion unit in the OLED display device shown in FIG. 5;
  • FIG. 7 is a schematic view showing an arrangement of an embodiment of a color conversion layer in the OLED display device shown in FIG. 5;
  • FIG. 8 is a schematic view showing the arrangement of a color conversion layer in the OLED display device shown in FIG. 5;
  • FIG. 9 is a schematic structural view of an application example of an OLED display device of the present invention.
  • FIG. 1 is a schematic structural view of a first embodiment of an OLED display device of the present invention.
  • the OLED display device 100 of the present embodiment includes a substrate 11 , and a color conversion layer 12 and a blue light emitting layer 15 stacked on the substrate 11 .
  • the color conversion layer 12 includes a red light conversion unit 121 disposed at intervals.
  • Both the red light conversion unit 121 and the green light conversion unit 122 are film layers formed of an organometallic halide perovskite material. It can be understood that the structure between the color conversion layer 12 and the blue light emitting layer 15 will be simplified to the first structure 14 in FIG. 1, and the structure above the blue light emitting layer 15 will be simplified to the second structure 16.
  • the organometallic halide perovskite material for preparing the red light converting unit 121 and the green light converting unit 122 is a type of semiconductor material having photoelectric properties, which has low bulk trap density and high photoluminescence efficiency, and can be changed by The components realize an adjustable wavelength of light. At the same time, these materials have inorganic half Photoelectric properties of the conductor and low temperature film forming properties of the organic material.
  • the blue light emitting layer 15 is used to emit blue light having high saturation, and the red light converting unit 121 and the green light converting unit 122 respectively absorb blue light emitted by the blue light emitting layer 15 to convert the blue light into red light and green light, respectively.
  • the opening unit 123 transmits the blue light.
  • the red light conversion unit 121, the green light conversion unit 122, and the opening unit 123 respectively correspond to one pixel, and the pixel includes a red sub-pixel, a green sub-pixel, and a blue sub-pixel.
  • the red light conversion unit 121 corresponds to the red sub-pixel and the green light conversion unit 122 corresponds to the green sub-pixel
  • the opening unit 123 corresponds to the blue sub-pixel.
  • the red sub-pixel, the green sub-pixel, and the blue sub-pixel respectively correspond to one TFT, so as to control the red light conversion unit 121, the green light conversion unit 122, and the opening unit 123 corresponding to each of the sub-pixels, thereby realizing display of three primary colors of light. , to achieve color display.
  • FIG. 2 is a spectrum diagram of red, green, and blue light obtained by the OLED display device shown in FIG. 1.
  • the coordinates of red, green, and blue light in the CIE standard spectrum are (0.697, 0.303), (0.170, 0.757), and (0.148, 0.041), respectively, and the color gamut energy thereof. Reached 120.2% of the (US) National Television Standards Committee standard color gamut.
  • FIG. 3 is a schematic diagram showing the arrangement of the color conversion layer 12 in the OLED display device 100 shown in FIG. 1. As shown in FIG. 3, each adjacent two rows of red light converting unit 121, green light converting unit 122, and opening unit 123 in the color conversion layer 12 are arranged in the same manner, and each row of red light converting unit 121 and green light converting unit 122 is arranged. And the opening units 123 are sequentially spaced from left to right in the horizontal direction.
  • both the red light conversion unit and the green light conversion unit absorb and perform corresponding conversion of the blue light emitted by the same blue light emitting layer, and do not need to fabricate the three primary color sub-pixels through the fine metal mask, that is, not subject to fine
  • the limitation of the metal mask can increase the resolution according to the requirements, and the preparation process is simple, and the preparation cost of the OLED display device can be reduced.
  • the red light conversion unit and the green light conversion unit absorb blue light, the absorbed blue light is wavelength-adjusted by the organic metal halide perovskite material, and the white light is filtered by the RGB filter to obtain red color. The way of green and blue light does not reduce the saturation of the outgoing light.
  • the OLED display device of the present embodiment can satisfy the resolution requirement while improving the saturation of the color display and increasing the color gamut of the color display.
  • the prepared OLED display device Based on the characteristics of the organometallic halide perovskite material, the prepared OLED display device has a thin device thickness and can be applied to a large-sized OLED display.
  • the organometallic halide perovskite material used to prepare the red light converting unit 121 and the green light converting unit 122 is a single material containing an organometallic halide perovskite material, or contains a plurality of organic metal halides. a hybrid material of perovskite materials. Further, the organometallic halide perovskite material has a structural formula of CH 3 NH 3 PbA 3 , wherein A is at least one of a chlorine element, a bromine element and an iodine element.
  • the red light converting unit 121 and the green light converting unit 122 may form a corresponding film layer on the substrate by wet film formation.
  • the film layer may have a thickness between 10 nanometers and 200 nanometers.
  • the thickness of the red light conversion unit 121 is the same as the thickness of the green light conversion unit 122.
  • the blue light emitting layer 15 includes an organic host material and a blue light emitting organic guest material, that is, the organic host material and the blue light emitting organic guest material are doped at a certain mass ratio.
  • the blue light-emitting layer 15 can emit high-luminance, high-saturation blue light or deep blue light by changing the doping ratio of the blue light-emitting organic guest material.
  • the blue light emitting organic guest material of the blue light emitting layer 15 may be an organic fluorescent material, and the organic host material is an anthracene derivative or a wide band gap organic material.
  • the blue light-emitting organic guest material may also be an organic phosphorescent material, in which case the organic host material is a wide band gap organic material.
  • the doping mass ratio of the organic host material and the blue light emitting organic guest material in the blue light emitting layer 15 affects the luminous efficiency and the saturation of the blue light.
  • the doping mass ratio of the organic host material and the blue light emitting organic guest material is 1:0.01 to 1:1. Among them, the greater the specific gravity of the doping mass ratio of the blue light emitting organic guest material, the higher the saturation of the blue light emitting layer 15 blue light.
  • FIG. 4 is a schematic structural view of a second embodiment of an OLED display device of the present invention.
  • the OLED display device 200 of the present embodiment also includes a substrate 11, and a color conversion layer 12 and a blue light-emitting layer 15 which are stacked on the substrate 11.
  • the blue light emitting layer 15 in this embodiment is the same as the blue light emitting layer 15 in the OLED display device 100 shown in FIG. 1 and will not be described herein.
  • the color conversion layer 12 in this embodiment includes a red light conversion unit 121, a green light conversion unit 122, and an opening unit 123 which are disposed at intervals.
  • the green light conversion unit 124 is further included above the red light conversion unit 121.
  • the red light converting unit 121, the green light converting unit 122, and the green light converting subunit 124 are each a film layer formed of an organic metal halide perovskite material.
  • the green light conversion sub-unit 124 above the red light conversion unit 121 absorbs the blue light emitted by the blue light-emitting layer 15 and converts the blue light into green light, and the green light passes through the red light conversion unit 121 to make the red conversion unit.
  • the red light is emitted;
  • the green light converting unit 122 absorbs the blue light emitted from the blue light emitting layer 15 and converts the blue light into green light;
  • the opening unit 123 transmits the blue light emitted from the blue light emitting layer 15, thereby enabling the OLED display device to realize color display.
  • red light conversion unit 121 the green light conversion unit 122, and the opening unit 123 are arranged in the same manner as the color conversion layer 12 shown in FIG. 3 in this embodiment.
  • the red light converting unit 121, the green light converting unit 122, and the green light converting subunit 124 can each form a corresponding film layer by wet film formation.
  • the thickness of the green light conversion unit 122 may be between 10 nanometers and 200 nanometers.
  • the red light conversion unit 121 and the green light conversion sub-unit 124 are stacked, and the sum of the thicknesses of the two is the same as the thickness of the green light conversion unit 122.
  • FIG. 5 is a schematic structural diagram of a third embodiment of the OLED display device of the present invention. This embodiment is improved on the basis of the first embodiment of the OLED display device 100 shown in FIG. 1.
  • the OLED display device 300 of the present embodiment includes a substrate 11, and a color conversion layer 12 and a blue light-emitting layer 15 which are stacked on the substrate 11.
  • the color conversion layer 12 includes a red light conversion unit 121, a green light conversion unit 122, and an opening unit 123 which are disposed at intervals. Further, the color conversion layer 12 further includes a white light conversion unit 125.
  • the blue light emitting layer 15 , the red light converting unit 121 , the green light converting unit 122 , and the opening unit 123 are respectively the same as those in the first embodiment of the OLED display device shown in FIG. 1 , and details are not described herein again.
  • the difference is that the white light conversion unit 125 is disposed adjacent to the red light conversion unit 121, the green light conversion unit 122, or the opening unit 123.
  • the white light converting unit 125 includes an opening sub-unit 1251, a red light converting sub-unit 1253, and a green light converting sub-unit 1252 which are disposed adjacently. Further, the aperture sub-unit 1251, the red-light conversion sub-unit 1253 and the green-light conversion sub-unit 1252 in the white-light conversion unit 125 are closely connected with no gap. At this time, the film thickness of the red light conversion sub-unit 1253 is the same as the film thickness of the green light conversion sub-unit 1252.
  • the red light conversion sub-unit 1253 and the green light conversion sub-unit 1252 respectively absorb the blue light emitted by the blue light-emitting layer, and respectively convert the blue light into red light and green light, and the opening sub-unit 1251 transmits the blue light emitted by the blue light-emitting layer; the opening sub-unit 1251, red
  • the light conversion sub-unit 1253 and the green light conversion sub-unit 1252 simultaneously work to convert the blue light emitted by the blue light-emitting layer into white light, thereby improving the light-emitting brightness of the OLED display device and improving the display quality.
  • the red light conversion sub-unit 1253 in the white light conversion unit 125 further includes a green light conversion sub-unit 1254.
  • the green light conversion sub-unit 1254 absorbs the blue light emitted by the blue light-emitting layer, converts the blue light into green light, and converts the green light into red light by the red light conversion sub-unit 1253.
  • FIG. 7 is a schematic diagram showing the arrangement of the color conversion layer 12 in the OLED display device 300 shown in FIG. 5. As shown in FIG. 7, each adjacent two rows of red light converting unit 121, green light converting unit 122, opening unit 123, and white light converting unit 125 in the color conversion layer 12 are arranged in the same manner, and each row of red light converting units 121, Green light conversion unit 122, opening single The element 123 and the white light converting unit 125 are sequentially disposed from left to right in the horizontal direction. In addition, referring to FIG.
  • the red light converting unit 121 , the green light converting unit 122 , the opening unit 123 , and the white light converting unit 125 may also be arranged in an array, that is, the red light converting unit 121 and the green light converting unit. 122.
  • the opening unit 123 and the white light converting unit 125 are sequentially disposed in the clockwise direction. Further, the red light converting unit 121, the green light converting unit 122, the opening unit 123, and the white light converting unit 125 may be sequentially disposed in the counterclockwise direction.
  • the display effect of the OLED display device of the present invention is applicable to the OLED display device of different pixel arrangement regardless of the arrangement of the respective conversion units in the color conversion layer.
  • FIG. 9 is a schematic structural diagram of an application example of an OLED display device of the present invention.
  • the first structure 14 includes a thin film transistor array 141, an anode 142, a hole injection layer 143 and holes which are sequentially stacked.
  • the second structure 16 includes an electron transport layer 161, an electron input layer 162, and a cathode 163 which are sequentially stacked.
  • the substrate is a transparent material, and may be a glass plate or a plastic.
  • the thin film transistor array 141 includes a semiconductor layer, an insulating layer, a source, a drain, and a gate.
  • the anode 142 is a transparent conductive metal oxide such as an indium tin oxide (ITO) or indium zinc oxide (IZO) conductive film.
  • the film thickness of the anode 142 may be 20 nanometers.
  • the hole injection layer 143 may be an organic small molecule hole injection material, a polymer hole injection material, or a metal oxide hole injection material.
  • the film thickness of the hole injection layer 143 is between 1 nm and 100 nm.
  • the hole transport layer 144 may be an organic small molecule hole transport material or a polymer hole transport material.
  • the film thickness of the hole transport layer 144 is between 10 nm and 100 nm.
  • the electron transport layer 161 may be a metal complex material or an imidazole electron transport material.
  • the film thickness of the electron transport layer 161 is between 10 nm and 100 nm.
  • the electron injecting layer may be a metal complex or an alkaline earth metal or a salt thereof.
  • the thickness of the electron injection layer is between 0.5 nm and 10 nm.
  • the cathode 163 material is a low work function metal material, such as lithium, magnesium, calcium, barium, strontium, krypton, bismuth, bismuth, aluminum, bismuth, antimony, silver or the like or an alloy of these metal materials; the above low work function metal
  • the materials may be used singly or in combination of two or more.
  • the film thickness of the cathode 163 is between 10 nm and 1000 nm.
  • the thin film transistor array 141, the anode 142, the hole injection layer 143, the hole transport layer 144, the electron transport layer 161, the electron injection layer, and the cathode 163 may be formed by sputtering, vacuum evaporation, or the like. Corresponding film layer.
  • the OLED display device further includes a package structure, and the package structure of the embodiment includes a cover plate 17 and an encapsulant 18.
  • the cover plate 17 is above the cathode 163 and the encapsulant 18 is around the OLED display element.
  • the OLED display element is packaged by the encapsulant 18 and the cover 17.
  • the cover plate 17 is a glass cover or a cover of flexible material.
  • the encapsulant 18 is an epoxy resin or an ultraviolet curing glue.
  • the package structure of the OLED display device of the present embodiment is only an application example, and is not limited to the package structure of the OLED display device; the package structure of the OLED display device may also be an alternately stacked barrier layer and Other package structures such as a package structure formed by a buffer layer.
  • the present invention also provides an OLED display.
  • the OLED display device in the OLED display may be any one of the OLED display devices of FIG. 1, FIG. 4 or FIG. 5, and details are not described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开了一种OLED显示器件、其制备方法及OLED显示器;该OLED显示器件包括基板及其上叠置的色彩转换层和蓝光发光层;色彩转换层包括间隔设置的红光转换单元、绿光转换单元以及开口单元;红光转换单元和绿光转换单元均为由有机金属卤化物钙钛矿材料形成的膜层。红光转换单元和绿光转换单元分别吸收蓝光发光层发出的蓝光,将蓝光分别转换为红光和绿光,开口单元透射蓝光发光层发出的蓝光,使得色彩转换层能够输出具有高饱和度的彩色光,进行实现彩色显示。

Description

一种OLED显示器件、其制备方法及OLED显示器 【技术领域】
本发明涉及OLED器件技术领域,具体而言涉及一种OLED显示器件、其制备方法及OLED显示器。
【背景技术】
OLED显示器具有自发光、结构简单、轻薄、响应速度快、视角宽、功耗低及可实现柔性显示等特性,被誉为“梦幻显示器”。由于其众多势,OLED显示器得到了各大显示器厂家的青睐,并成为继阴极射线显示器(Cathode Ray Tube,CRT)与液晶显示器(Liquid Crystal Display,LCD)之后的第三代显示器。
OLED显示器中用于显示的OLED显示器件是其重要元件之一,OLED显示器件的彩色显示对OLED显示器的显示质量具有非常大的影响。现有技术中,OLED显示器件的彩色显示主要通过以下两种方法,一种方法是通过精细金属掩膜板(Fine Metal Mask,FMM)制备具有红绿蓝三个子像素的OLED显示器件,进而实现彩色显示,但该方法受到FMM的限制,其分辨率无法提高,不能满足高分辨率的要求。此外,另一种方法是通过白光和RGB滤光片,这种方法不需要掩膜对位,即不受精细金属掩膜板的限制,但得到是色彩饱和度较低,色域不够广,目前采用白光和RGB滤光片制备得到的OLED显示器的色域仅为(美国)国家电视标准委员会标准色域的86%。
【发明内容】
有鉴于此,本发明提供一种OLED显示器件、其制备方法及OLED显示器,本发明的OLED显示器件能够提高其彩色显示的饱和度和色域。
为解决上述技术问题,本发明提出的一个技术方案是:提供一种OLED显示器件的制备方法,该制备方法包括:
利用湿法成膜的方式在基板上制备色彩转换层;在所述色彩转换层上方依次形成薄膜晶体管阵列、阳极、空穴注入层和空穴传输层、蓝光发光层、电子传输层、电子输入层和阴极;
其中,所述色彩转换层包括间隔设置的红光转换单元、绿光转换单元以及 开口单元;所述红光转换单元和绿光转换单元均为由有机金属卤化物钙钛矿材料形成的膜层;所述红光转换单元、绿光转换单元分别吸收所述蓝光发光层发出的蓝光,将所述蓝光分别转换为红光和绿光,所述开口单元透射所述蓝光,从而实现彩色显示。
本发明还提出的一个技术方案:提供一种OLED显示器件,该显示器件包括:
基板,以及在所述基板上层叠设置的色彩转换层和蓝光发光层;
其中,所述色彩转换层包括间隔设置的红光转换单元、绿光转换单元以及开口单元;所述红光转换单元和绿光转换单元均为由有机金属卤化物钙钛矿材料形成的膜层;所述红光转换单元、绿光转换单元分别吸收所述蓝光发光层发出的蓝光,将所述蓝光分别转换为红光和绿光,所述开口单元透射所述蓝光,从而实现彩色显示。
本发明还提出的另一个技术方案:提供一种OLED显示器,该OLED显示器包含OLED显示器件和驱动控制电路,所述驱动控制电路与所述OLED显示器件连接,为所述OLED显示器件提供驱动信号和控制信号;
所述OLED显示器件包括:
基板,以及在所述基板上层叠设置的色彩转换层和蓝光发光层;
其中,所述色彩转换层包括间隔设置的红光转换单元、绿光转换单元以及开口单元;所述红光转换单元和绿光转换单元均为由有机金属卤化物钙钛矿材料形成的膜层;所述红光转换单元、绿光转换单元分别吸收所述蓝光发光层发出的蓝光,将所述蓝光分别转换为红光和绿光,所述开口单元透射所述蓝光,从而实现彩色显示。
有益效果:区别于现有技术,本发明提供的OLED显示器件包括基板及其上叠置的色彩转换层和蓝光发光层;色彩转换层包括间隔设置的红光转换单元、绿光转换单元以及开口单元;红光转换单元和绿光转换单元均为由有机金属卤化物钙钛矿材料形成的膜层。由于红光转换单元和绿光转换单元的材料为有机金属卤化物钙钛矿材料,具有高光致发光效率,因此红光转换单元和绿光转换单元分别吸收蓝光发光层发出的蓝光,将蓝光分别转换为饱和度高的红光和绿光,开口单元透射蓝光发光层发出的蓝光,使得色彩转换层能够输出具有高饱和度的彩色光,进行实现彩色显示,且提高其彩色显示的饱和度和色域。
【附图说明】
图1是本发明OLED显示器件第一实施例的结构示意图;
图2是图1所示的OLED显示器件得到的红光、绿光和蓝光的光谱图;
图3是图1所示的OLED显示器件中色彩转换层的排列示意图;
图4是本发明OLED显示器件第二实施例的结构示意图;
图5是本发明OLED显示器件第三实施例的结构示意图;
图6a是图5所示的OLED显示器件中白光转换单元的第一实施例的结构示意图;
图6b是图5所示的OLED显示器件中白光转换单元的第二实施例的结构示意图;
图7是图5所示的OLED显示器件中色彩转换层一实施例的排列示意图;
图8是图5所示的OLED显示器件中色彩转换层,另一实施例的排列示意图;
图9是本发明OLED显示器件的一应用例的结构示意图。
【具体实施方式】
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施例对本发明所提供的一种OLED显示器件、其制备方法及OLED显示器做进一步详细描述。在附图中,相同的标号在整个说明书和附图中用来表示相同的结构和区域。
参阅图1,图1是本发明OLED显示器件第一实施例的结构示意图。如图1所示,本实施例的OLED显示器件100包括基板11,以及在基板11上层叠设置的色彩转换层12和蓝光发光层15,色彩转换层12包括间隔设置的红光转换单元121、绿光转换单元122以及开口单元123。红光转换单元121和绿光转换单元122均是由有机金属卤化物钙钛矿材料形成的膜层。可以理解的是,图1中将将色彩转换层12和蓝光发光层15之间的结构简化为第一结构14,将蓝光发光层15上方的结构简化为第二结构16。
用于制备红光转换单元121和绿光转换单元122的有机金属卤化物钙钛矿材料是一类具有光电性能的半导体材料,其具备低体陷阱密度和高光致发光效率,能够通过改变其中的组分实现发光波长可调。同时,这类材料具备无机半 导体的光电特性和有机材料的低温成膜特性。
本实施例中,利用蓝光发光层15发出饱和度较高的蓝光,红光转换单元121、绿光转换单元122分别吸收蓝光发光层15发出的蓝光,将该蓝光分别转换为红光和绿光,开口单元123透射该蓝光。其中,红光转换单元121、绿光转换单元122和开口单元123分别对应一像素,该像素包括红色子像素、绿色子像素和蓝色子像素。其中,红光转换单元121对应红色子像素、绿光转换单元122对应绿色子像素,开口单元123对应蓝色子像素。红色子像素、绿色子像素和蓝色子像素分别对应一个TFT,以控制每个子像素分别对应的红光转换单元121、绿光转换单元122和开口单元123,进而实现对三种基色光的显示,实现彩色显示。
参阅图2,图2是图1所示的OLED显示器件得到的红光、绿光和蓝光的光谱图。此外,本实施例的OLED显示器件中,红光、绿光和蓝光在CIE标准光谱图中的坐标分别为(0.697,0.303)、(0.170,0.757)和(0.148,0.041),其色域能达到(美国)国家电视标准委员会标准色域的120.2%。
参阅图3,图3是图1所示的OLED显示器件100中色彩转换层12的排列示意图。如图3所示,色彩转换层12中每相邻的两行红光转换单元121、绿光转换单元122和开口单元123的排列方式相同,每行红光转换单元121、绿光转换单元122和开口单元123沿水平方向从左至右依次间隔设置。
本发明中,红光转换单元和绿光转换单元均是对同一蓝光发光层发出的蓝光进行吸收并进行相应转换,不需要通过精细金属掩膜板制作三基色的子像素,即不会受到精细金属掩膜板的限制,能够根据需求提高其分辨率,且制备过程简单,能够降低OLED显示器件的制备成本。此外,由于红光转换单元和绿光转换单元是对蓝光进行吸收,通过有机金属卤化物钙钛矿材料对吸收的蓝光进行波长调节,不同于利用RGB滤光片对白光进行滤光得到红、绿、蓝三色光的方式,不会降低出射光的饱和度。因此本实施例的OLED显示器件能够满足分辨率需求的同时,提高彩色显示的饱和度和增大彩色显示的色域。基于有机金属卤化物钙钛矿材料的特性,制备得到的OLED显示器件具备较薄的器件厚度,且能够应用在大尺寸OLED显示器中。
具体的,用于制备红光转换单元121和绿光转换单元122的有机金属卤化物钙钛矿材料为含有一种有机金属卤化物钙钛矿材料的单一材料,或含有多种有机金属卤化物钙钛矿材料的混合材料。进一步的,有机金属卤化物钙钛矿材料的结构式为CH3NH3PbA3,其中,A为氯元素、溴元素和碘元素中的至少一种 元素。
红光转换单元121和绿光转换单元122可以利用湿法成膜的方式在基板上形成相应膜层。该膜层的厚度可以在10纳米至200纳米之间。红光转换单元121的厚度和绿光转换单元122的厚度相同。
蓝光发光层15包括有机主体材料和蓝光发光有机客体材料,即将有机主体材料和蓝光发光有机客体材料按一定质量比进行掺杂。可以通过改变蓝光发光有机客体材料的掺杂比例,使蓝光发光层15发出高亮度、高饱和度的蓝光或深蓝光。
进一步的,蓝光发光层15的蓝光发光有机客体材料可以为有机荧光材料,此时有机主体材料为蒽类衍生物或宽带隙有机材料。此外,蓝光发光有机客体材料还可以为有机磷光材料,此时有机主体材料为宽带隙有机材料。
蓝光发光层15中有机主体材料和蓝光发光有机客体材料的掺杂质量比会影响其发光效率以及发蓝光的饱和度,可选的,有机主体材料和蓝光发光有机客体材料的掺杂质量比为1∶0.01~1∶1。其中,蓝光发光有机客体材料掺杂质量比的比重越大,蓝光发光层15发蓝光的饱和度也会随之增加。
参阅图4,图4是本发明OLED显示器件第二实施例的结构示意图。如图4所示,本实施例的OLED显示器件200同样包括基板11,以及在基板11上层叠设置的色彩转换层12和蓝光发光层15。
本实施例中的蓝光发光层15与图1所示的OLED显示器件100中的蓝光发光层15相同,此处不再赘述。
本实施例中的色彩转换层12包括间隔设置的红光转换单元121、绿光转换单元122以及开口单元123。其中,红光转换单元121上方还包括绿光转换子单元124。红光转换单元121、绿光转换单元122和绿光转换子单元124均为由有机金属卤化物钙钛矿材料形成的膜层。
本实施例中,红光转换单元121上方的绿光转换子单元124吸收蓝光发光层15发出的蓝光,并将蓝光转换为绿光,该绿光再经过红光转换单元121,使红色转换单元出射红光;绿光转换单元122吸收蓝光发光层15发出的蓝光,并将蓝光转换为绿光;开口单元123透射蓝光发光层15发出的蓝光,从而使OLED显示器件实现彩色显示。
可以理解的是,本实施例中红光转换单元121、绿光转换单元122和开口单元123的排列方式与图3所示的色彩转换层12排列方式相同。
本实施例中,红光转换单元121、绿光转换单元122和绿光转换子单元124均可以利用湿法成膜的方式形成相应膜层。绿光转换单元122的厚度可以在10纳米至200纳米之间。红光转换单元121和绿光转换子单元124叠置,且两者的厚度之和与绿光转换单元122的厚度相同。
进一步的,参阅图5,图5是本发明OLED显示器件第三实施例的结构示意图。本实施例是在图1所示的OLED显示器件100的第一实施例的基础上改进得到。如图5所示,本实施例的OLED显示器件300包括基板11,以及在基板11上层叠设置的色彩转换层12和蓝光发光层15。色彩转换层12包括间隔设置的红光转换单元121、绿光转换单元122和开口单元123,此外,色彩转换层12还包括白光转换单元125。
本实施例中,蓝光发光层15、红光转换单元121、绿光转换单元122和开口单元123分别与图1所示的OLED显示器件第一实施例中的结构相同,此处不再赘述。不同之处在于,白光转换单元125与红光转换单元121、绿光转换单元122或开口单元123相邻设置。
如图6a所示,白光转换单元125包括相邻设置的开口子单元1251、红光转换子单元1253和绿光转换子单元1252。进一步的,白光转换单元125中的开口子单元1251、红光转换子单元1253和绿光转换子单元1252之间紧密相连,没有空隙。此时,红光转换子单元1253的膜层厚度与绿光转换子单元1252的膜层厚度相同。红光转换子单元1253和绿光转换子单元1252分别吸收蓝光发光层发出的蓝光,并分别将该蓝光转换红光和绿光,开口子单元1251透射蓝光发光层发出的蓝光;开口子单元1251、红光转换子单元1253和绿光转换子单元1252同时工作,即可将蓝光发光层发出的蓝光转换为白光,进而提高OLED显示器件的发光亮度,提高显示质量。
此外,如图6b所示,白光转换单元125中的红光转换子单元1253上方还包括绿光转换子单元1254。该绿光转换子单元1254吸收蓝光发光层发出的蓝光,将该蓝光转换为绿光,再通过红光转换子单元1253将该绿光转换为红光。
在上述OLED显示器件的第三实施例中,红光转换单元、绿光转换单元、开口单元和白光转光单元分别对应一像素。参阅图7,图7是图5所示的OLED显示器件300中色彩转换层12的排列示意图。如图7所示,色彩转换层12中每相邻的两行红光转换单元121、绿光转换单元122、开口单元123和白光转换单元125的排列方式相同,每行红光转换单元121、绿光转换单元122、开口单 元123和白光转换单元125沿水平方向从左至右依次间隔设置。此外,参阅图8,本实施例中,红光转换单元121、绿光转换单元122、开口单元123和白光转光单元125还可以呈阵列排布,即红光转换单元121、绿光转换单元122、开口单元123和白光转光单元125沿顺时针方向依次间隔设置。此外,红光转换单元121、绿光转换单元122、开口单元123和白光转光单元125还可以沿逆时针方向依次间隔设置。
由此说明,本发明的OLED显示器件的显示效果与色彩转换层中的各个转换单元的排布无关,可应用于不同像素排列方式的OLED显示器件。
参阅图9,图9是本发明OLED显示器件的一应用例的结构示意图,本实施例中第一结构14包括依序叠置的薄膜晶体管阵列141、阳极142、空穴注入层143和空穴传输层144。第二结构16包括依序叠置的电子传输层161、电子输入层162和阴极163。
具体的,基板为透明材质,可以为玻璃板或塑胶等。
薄膜晶体管阵列141包含半导体层、绝缘层、源极、漏极和栅极。
阳极142为透明导电金属氧化物,如铟锡氧化物(ITO)或铟锌氧化物(IZO)导电薄膜。阳极142的膜层厚度可以为20纳米。
空穴注入层143可以是有机小分子空穴注入材料、聚合物空穴注入材料或金属氧化物空穴注入材料。空穴注入层143的膜层厚度在1纳米至100纳米之间。
空穴传输层144可以是有机小分子空穴传输材料或聚合物空穴传输材料。空穴传输层144的膜层厚度在10纳米至100纳米之间。
电子传输层161可以是金属配合物材料或咪唑类电子传输材料。电子传输层161的膜层厚度在10纳米至100纳米之间。
电子注入层可以是金属配合物或者碱土金属及其盐类等。电子注入层的膜层厚度在0.5纳米到10纳米之间。
阴极163材料为低功函金属材料,如锂、镁、钙、锶、镧、铈、铕、镱、铝、铯、铷、银等金属材料或者这些金属材料的合金;上述的低功函金属材料可以单独使用,也可两种或者更多种组合使用。阴极163的膜厚在10纳米到1000纳米之间。
其中,薄膜晶体管阵列141、阳极142、空穴注入层143、空穴传输层144、电子传输层161、电子注入层以及阴极163均可使用溅射、真空蒸镀等方式形成 相应膜层。
此外,如图9所示,OLED显示器件还包括封装结构,本实施例的封装结构包括盖板17和封装胶材18。其中,盖板17在阴极163上方,封装胶材18在OLED显示元件四周。通过封装胶材18和盖板17对OLED显示元件进行封装。盖板17为玻璃盖板或柔性材料盖板。封装胶材18为环氧树脂胶或紫外固化胶。
可以理解的是,本实施例的OLED显示器件的封装结构仅是一种应用例,并不是对OLED显示器件的封装结构的限定;OLED显示器件的封装结构还可以为交替叠置的阻挡层和缓冲层形成的封装结构等其他封装结构。
本发明还提出一种OLED显示器,该OLED显示器中的OLED显示器件可以是图1、图4或图5中任意一种OLED显示器件,不再赘述。
以上仅为本发明的实施例,并非因此限制本发明的专利保护范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围。

Claims (20)

  1. 一种OLED显示器件的制备方法,其中,包括:
    利用湿法成膜的方式在基板上制备色彩转换层;在所述色彩转换层上方依次形成薄膜晶体管阵列、阳极、空穴注入层和空穴传输层、蓝光发光层、电子传输层、电子输入层和阴极;
    其中,所述色彩转换层包括间隔设置的红光转换单元、绿光转换单元以及开口单元;所述红光转换单元和绿光转换单元均为由有机金属卤化物钙钛矿材料形成的膜层;所述红光转换单元、绿光转换单元分别吸收所述蓝光发光层发出的蓝光,将所述蓝光分别转换为红光和绿光,所述开口单元透射所述蓝光,从而实现彩色显示。
  2. 根据权利要求1所述的制备方法,其中,所述膜层的厚度范围为[10nm,200nm]。
  3. 根据权利要求1所述的制备方法,其中,所述有机金属卤化物钙钛矿材料为含有一种有机金属卤化物钙钛矿材料的单一材料,或含有多种有机金属卤化物钙钛矿材料的混合材料;
    所述有机金属卤化物钙钛矿材料的结构式为CH3NH3PbA3,其中,A为氯元素、溴元素和碘元素中的至少一种元素。
  4. 根据权利要求1所述的制备方法,其中,所述蓝光发光层包括有机主体材料和蓝光发光有机客体材料,所述有机主体材料和所述蓝光发光有机客体材料的掺杂质量比为1∶0.01~1∶1。
  5. 根据权利要求1所述的制备方法,其中,所述蓝光发光有机客体材料为有机荧光材料,所述有机主体材料为蒽类衍生物或宽带隙有机材料;或
    所述蓝光发光有机客体材料为有机磷光材料,所述有机主体材料为宽带隙有机材料。
  6. 一种OLED显示器件,其中,包括:
    基板,以及在所述基板上层叠设置的色彩转换层和蓝光发光层;
    其中,所述色彩转换层包括间隔设置的红光转换单元、绿光转换单元以及开口单元;所述红光转换单元和绿光转换单元均为由有机金属卤化物钙钛矿材料形成的膜层;所述红光转换单元、绿光转换单元分别吸收所述蓝光发光层发出的蓝光,将所述蓝光分别转换为红光和绿光,所述开口单元透射所述蓝光, 从而实现彩色显示。
  7. 根据权利要求6所述的OLED器件,其中,还包括依序叠置在所述色彩转换层和所述蓝光发光层之间的薄膜晶体管阵列、阳极、空穴注入层和空穴传输层;以及依序叠置在所述蓝光发光层之上的电子传输层、电子输入层和阴极。
  8. 根据权利要求6所述的OLED显示器件,其中,所述膜层的厚度范围为[10nm,200nm]。
  9. 根据权利要求6所述的OLED显示器件,其中,所述红光转换单元上还设置有一绿光转换子单元。
  10. 根据权利要求6所述的OLED显示器件,其中,所述有机金属卤化物钙钛矿材料为含有一种有机金属卤化物钙钛矿材料的单一材料,或含有多种有机金属卤化物钙钛矿材料的混合材料;
    所述有机金属卤化物钙钛矿材料的结构式为CH3NH3PbA3,其中,A为氯元素、溴元素和碘元素中的至少一种元素。
  11. 根据权利要求6所述的OLED显示器件,其中,所述蓝光发光层包括有机主体材料和蓝光发光有机客体材料,所述有机主体材料和所述蓝光发光有机客体材料的掺杂质量比为1∶0.01~1∶1。
  12. 根据权利要求11所述的OLED显示器件,其中,所述蓝光发光有机客体材料为有机荧光材料,所述有机主体材料为蒽类衍生物或宽带隙有机材料;或
    所述蓝光发光有机客体材料为有机磷光材料,所述有机主体材料为宽带隙有机材料。
  13. 根据权利要求6所述的OLED显示器件,其中,所述色彩转换层还包括白光转换单元,所述白光转换单元包括相邻设置的开口子单元、红光转换子单元和绿光转换子单元;所述白光转换单元将所述蓝光发光层发出的蓝光转换为白光。
  14. 根据权利要求13所述的OLED显示器件,其中,所述色彩转换层中的所述红光转换单元、绿光转换单元、开口单元以及白光转换单元之间呈顺序排列或呈阵列排列。
  15. 一种OLED显示器,其中,包含OLED显示器件和驱动控制电路,所述驱动控制电路与所述OLED显示器件连接,为所述OLED显示器件提供驱动信号和控制信号;
    所述OLED显示器件包括:
    基板,以及在所述基板上层叠设置的色彩转换层和蓝光发光层;
    其中,所述色彩转换层包括间隔设置的红光转换单元、绿光转换单元以及开口单元;所述红光转换单元和绿光转换单元均为由有机金属卤化物钙钛矿材料形成的膜层;所述红光转换单元、绿光转换单元分别吸收所述蓝光发光层发出的蓝光,将所述蓝光分别转换为红光和绿光,所述开口单元透射所述蓝光,从而实现彩色显示。
  16. 根据权利要求15所述的OLED显示器,其中,所述膜层的厚度范围为[10nm,200nm]。
  17. 根据权利要求15所述的OLED显示器,其中,所述红光转换单元上还设置有一绿光转换子单元。
  18. 根据权利要求15所述的OLED显示器,其中,所述有机金属卤化物钙钛矿材料为含有一种有机金属卤化物钙钛矿材料的单一材料,或含有多种有机金属卤化物钙钛矿材料的混合材料;
    所述有机金属卤化物钙钛矿材料的结构式为CH3NH3PbA3,其中,A为氯元素、溴元素和碘元素中的至少一种元素。
  19. 根据权利要求15所述的OLED显示器,其中,所述蓝光发光层包括有机主体材料和蓝光发光有机客体材料,所述有机主体材料和所述蓝光发光有机客体材料的掺杂质量比为1∶0.01~1∶1。
  20. 根据权利要求15所述的OLED显示器,其中,所述蓝光发光有机客体材料为有机荧光材料,所述有机主体材料为蒽类衍生物或宽带隙有机材料;或
    所述蓝光发光有机客体材料为有机磷光材料,所述有机主体材料为宽带隙有机材料。
PCT/CN2017/079435 2017-02-24 2017-04-05 一种oled显示器件、其制备方法及oled显示器 WO2018152933A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/520,348 US10367038B2 (en) 2017-02-24 2017-04-05 Organic light-emitting diode display device and manufacturing method thereof, and organic light-emitting diode display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710102872.2 2017-02-24
CN201710102872.2A CN106876432B (zh) 2017-02-24 2017-02-24 一种oled显示器件及oled显示器

Publications (1)

Publication Number Publication Date
WO2018152933A1 true WO2018152933A1 (zh) 2018-08-30

Family

ID=59169328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079435 WO2018152933A1 (zh) 2017-02-24 2017-04-05 一种oled显示器件、其制备方法及oled显示器

Country Status (3)

Country Link
US (1) US10367038B2 (zh)
CN (1) CN106876432B (zh)
WO (1) WO2018152933A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111180495A (zh) 2020-01-06 2020-05-19 深圳市华星光电半导体显示技术有限公司 显示面板及其制造方法
CN111864107A (zh) * 2020-07-10 2020-10-30 武汉华星光电半导体显示技术有限公司 Tft阵列基板、显示装置和tft阵列基板的制备方法
CN112635532A (zh) * 2020-12-21 2021-04-09 深圳扑浪创新科技有限公司 一种量子点显示装置及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101481556A (zh) * 2008-01-11 2009-07-15 上海广电电子股份有限公司 电致发光显示器用紫外光固化荧光色彩转换膜及制备方法
CN102916138A (zh) * 2012-10-31 2013-02-06 昆山维信诺显示技术有限公司 一种全色显示方法及显示装置
CN104112766A (zh) * 2014-07-22 2014-10-22 深圳市华星光电技术有限公司 彩色显示器件结构
CN105870287A (zh) * 2016-05-31 2016-08-17 中国科学院半导体研究所 GaN基白光LED及制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8771030B2 (en) * 2009-08-19 2014-07-08 Sharp Kabushiki Kaisha Color conversion layer and manufacturing method for same
CN102835190B (zh) * 2010-04-14 2016-01-20 夏普株式会社 荧光体基板及其制造方法和显示装置
JP2014224836A (ja) 2011-09-16 2014-12-04 シャープ株式会社 発光デバイス、表示装置、照明装置および発電装置
CN103474451A (zh) 2013-09-12 2013-12-25 深圳市华星光电技术有限公司 彩色oled器件及其制作方法
WO2015137324A1 (ja) * 2014-03-14 2015-09-17 東京応化工業株式会社 結晶成長制御剤、p型半導体微粒子又はp型半導体微粒子膜の形成方法、正孔輸送層形成用組成物、及び太陽電池
CN103943658B (zh) * 2014-03-27 2016-05-04 京东方科技集团股份有限公司 一种oled显示器及其制备方法
KR20160076406A (ko) * 2014-12-22 2016-06-30 삼성디스플레이 주식회사 디스플레이 장치, 색변환 필름 및 그들의 제조방법
KR102626853B1 (ko) * 2015-10-30 2024-01-18 삼성디스플레이 주식회사 유기 발광 표시 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101481556A (zh) * 2008-01-11 2009-07-15 上海广电电子股份有限公司 电致发光显示器用紫外光固化荧光色彩转换膜及制备方法
CN102916138A (zh) * 2012-10-31 2013-02-06 昆山维信诺显示技术有限公司 一种全色显示方法及显示装置
CN104112766A (zh) * 2014-07-22 2014-10-22 深圳市华星光电技术有限公司 彩色显示器件结构
CN105870287A (zh) * 2016-05-31 2016-08-17 中国科学院半导体研究所 GaN基白光LED及制备方法

Also Published As

Publication number Publication date
US10367038B2 (en) 2019-07-30
US20180301514A1 (en) 2018-10-18
CN106876432A (zh) 2017-06-20
CN106876432B (zh) 2019-11-26

Similar Documents

Publication Publication Date Title
WO2018152934A1 (zh) 一种oled显示器件、其制备方法及oled显示器
US10535719B2 (en) Color film substrate for WOLED display and WOLED display
US9728587B2 (en) Organic light emitting diode device with a color calibration layer
KR102126350B1 (ko) 유기발광다이오드 표시장치
CN106783922A (zh) Oled显示器
US10446798B2 (en) Top-emitting WOLED display device
KR20130022594A (ko) 유기 발광 표시 장치 및 그 제조 방법
JP2015079758A (ja) 有機発光表示装置
US20180374904A1 (en) Oled display device and manufacturing method thereof
WO2016095335A1 (zh) Oled显示装置及其制造方法
WO2016045271A1 (zh) 显示基板及其制备方法、显示装置
CN109873085B (zh) 底发射白光有机发光二极管显示面板及其制作方法、显示装置
CN104576702A (zh) Oled彩色显示器件
US20150349029A1 (en) Display panel and method for manufacturing thereof
CN109830515B (zh) 一种显示面板及显示装置
WO2020077714A1 (zh) 显示面板及其制作方法、显示模组
WO2018152933A1 (zh) 一种oled显示器件、其制备方法及oled显示器
WO2020232911A1 (zh) 电致发光显示装置
WO2016090747A1 (zh) Oled显示装置及其制造方法
US10964755B2 (en) Organic light emitting diode panel including light emitting units and color filter layer, method for manufacturing the same, and display device
US10270063B2 (en) Organic light emitting display device with first to third emission parts
KR20160046202A (ko) 유기발광표시장치
KR102598924B1 (ko) 유기발광표시패널
KR20090054324A (ko) 유기전계발광표시장치의 구동방법
CN109216588B (zh) 倒装oled器件及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15520348

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897868

Country of ref document: EP

Kind code of ref document: A1