WO2022239322A1 - 面発光レーザ素子、電子機器及び面発光レーザ素子の製造方法 - Google Patents

面発光レーザ素子、電子機器及び面発光レーザ素子の製造方法 Download PDF

Info

Publication number
WO2022239322A1
WO2022239322A1 PCT/JP2022/003911 JP2022003911W WO2022239322A1 WO 2022239322 A1 WO2022239322 A1 WO 2022239322A1 JP 2022003911 W JP2022003911 W JP 2022003911W WO 2022239322 A1 WO2022239322 A1 WO 2022239322A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting laser
mesa
region
recess
laser element
Prior art date
Application number
PCT/JP2022/003911
Other languages
English (en)
French (fr)
Inventor
重吾 御友
耕太 徳田
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to EP22807029.8A priority Critical patent/EP4336685A1/en
Priority to US18/558,246 priority patent/US20240235167A1/en
Priority to CN202280033709.4A priority patent/CN117280554A/zh
Priority to JP2023520775A priority patent/JPWO2022239322A1/ja
Publication of WO2022239322A1 publication Critical patent/WO2022239322A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2081Methods of obtaining the confinement using special etching techniques
    • H01S5/2086Methods of obtaining the confinement using special etching techniques lateral etch control, e.g. mask induced
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0207Substrates having a special shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
    • H01S5/18313Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation by oxidizing at least one of the DBR layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • H01S5/18347Mesa comprising active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs

Definitions

  • a technology according to the present disclosure (hereinafter also referred to as "this technology”) relates to a surface emitting laser element, an electronic device, and a method for manufacturing a surface emitting laser element.
  • Patent Document 1 a surface-emitting laser device that includes a first region in which a plurality of light-emitting portions having mesas are arranged and a second region around the first region.
  • the present technology provides a surface-emitting laser element capable of reducing variations in emission intensity between a light-emitting portion adjacent to the second region and a light-emitting portion other than the light-emitting portion.
  • This technology consists of a substrate, an electrode provided on one surface of the substrate; a first region provided on the side opposite to the electrode side of the one surface, in which a plurality of light-emitting portions having mesas are arranged; a second region arranged around the first region on the side opposite to the electrode side of the one surface; with The mesa adjacent to the second region among the plurality of mesas of the light emitting portion and the second mesa adjacent to the second region are larger than the depth dimension of the first recess defined by two mesas adjacent to each other among the mesas of the plurality of light emitting portions.
  • a surface emitting laser device in which the depth dimension of a second recess defined by a region is larger.
  • the electrode may be a common electrode that is commonly provided for the plurality of light emitting units.
  • the second region may include a dummy mesa adjacent to the mesa adjacent to the second region, and the second recess may be defined by the mesa adjacent to the second region and the dummy mesa.
  • the bottom surface of the second recess may be positioned closer to the one surface than the bottom surface of the first recess in the direction perpendicular to the substrate.
  • the open ends of the first and second recesses may be substantially flush.
  • the bottom surfaces of the first and second recesses may both be located on the other surface of the substrate opposite to the one surface side.
  • the bottom surface of the first recess may be located on the other surface of the substrate opposite to the one surface side, and the bottom surface of the second recess may be located within the substrate. Both bottom surfaces of the first and second recesses may be located within the substrate.
  • the first and second regions are provided at different positions in the in-plane direction of a laminated structure including the substrate.
  • the layer and the second multilayer film reflector may be laminated in this order.
  • the bottom surfaces of the first and second concave portions may both be positioned within the first multilayer reflector.
  • the bottom surface of the first concave portion may be positioned within the second multilayer reflector, and the bottom surface of the second concave portion may be positioned within the first multilayer reflector.
  • a bottom surface of the first recess may be located within the first multilayer reflector, and a bottom surface of the second recess may be located within the substrate.
  • a bottom surface of the first recess may be located within the second multilayer reflector, and a bottom surface of the second recess may be located within the substrate.
  • the bottom surfaces of the first and second concave portions may both be positioned within the second multilayer reflector.
  • the width of the second recess may be larger than the width of the first recess in a cross section obtained by cutting together the two mesas adjacent to each other and the second region.
  • a distance between centers of the two mesas adjacent to each other may be 10 ⁇ m or more and 50 ⁇ m or less.
  • the present technology also provides an electronic device including the surface-emitting laser element.
  • the present technology includes steps of forming a laminate by laminating a first multilayer film reflector, an active layer, and a second multilayer film reflector on a substrate in this order; a step of etching the laminate to form a first region in which a plurality of mesas are arranged and a second region around the first region; forming an electrode on the surface of the substrate opposite to the surface facing the first multilayer film reflector; including In the step of forming the first and second regions, the depth of the mesas of the plurality of light emitting portions is larger than the depth dimension of the first recess defined by two mesas adjacent to each other among the mesas of the plurality of light emitting portions.
  • a method for manufacturing a surface emitting laser element is also provided, wherein the laminate is etched so that the depth dimension of the second recess defined by the mesa adjacent to the second region and the second region is greater.
  • the electrodes may be formed in regions corresponding to at least the first and second regions on a surface of the substrate opposite to the surface facing the first multilayer film reflector. .
  • FIG. 1 is a cross-sectional view (part 1) of a surface-emitting laser element according to an embodiment of the present technology
  • FIG. 2 is a cross-sectional view (Part 2) of a surface-emitting laser element according to an embodiment of the present technology
  • FIG. 1 is a plan view of a surface-emitting laser device according to an embodiment of the present technology
  • FIG. 1 is a flowchart for explaining a first example of a method for manufacturing a surface-emitting laser element according to an embodiment of the present technology
  • FIG. 5 is a cross-sectional view showing the first step of FIG. 4
  • 5 is a cross-sectional view showing a first sub-step of the second step of FIG. 4;
  • FIG. 5 is a cross-sectional view showing a second sub-step of the second step of FIG. 4;
  • FIG. 5 is a cross-sectional view showing a third sub-step of the second step of FIG. 4;
  • FIG. 5 is a cross-sectional view showing the first sub-step of the third step of FIG. 4;
  • FIG. FIG. 5 is a cross-sectional view showing a second sub-step of the third step of FIG. 4;
  • 5 is a cross-sectional view showing a third sub-step of the third step of FIG. 4;
  • FIG. FIG. 5 is a cross-sectional view showing a fourth step of FIG. 4;
  • FIG. 5 is a cross-sectional view showing a fifth step of FIG. 4;
  • FIG. 5 is a cross-sectional view showing a sixth step of FIG. 4;
  • FIG. 5 is a cross-sectional view showing a seventh step of FIG. 4;
  • FIG. 5 is a cross-sectional view showing an eighth step of FIG. 4;
  • 6 is a flow chart for explaining a second example of a method for manufacturing a surface emitting laser device according to an embodiment of the present technology;
  • FIG. 18 is a cross-sectional view showing a first sub-step of the third step of FIG. 17;
  • FIG. 18 is a cross-sectional view showing a second sub-step of the third step of FIG. 17;
  • FIG. 18 is a cross-sectional view showing a third sub-step of the third step of FIG. 17;
  • FIG. 18 is a cross-sectional view showing a first sub-step of the fourth step of FIG. 17;
  • FIG. 18 is a cross-sectional view showing a second sub-step of the fourth step of FIG. 17;
  • 6 is a flowchart for explaining a third example of a method for manufacturing a surface emitting laser device according to an embodiment of the present technology;
  • FIG. 24 is a cross-sectional view showing a first sub-step of the third step of FIG. 23;
  • FIG. 24 is a cross-sectional view showing a second sub-step of the third step of FIG. 23;
  • FIG. 24 is a cross-sectional view showing a third sub-step of the third step of FIG. 23;
  • FIG. 24 is a cross-sectional view showing a first sub-step of the fourth step of FIG. 23;
  • FIG. 24 is a cross-sectional view showing a second sub-step of the fourth step of FIG. 23;
  • It is a figure for demonstrating the effect
  • It is a figure for demonstrating the effect
  • It is a cross-sectional view of a surface-emitting laser element according to Modification 1 of an embodiment of the present technology.
  • It is a cross-sectional view of a surface-emitting laser element according to Modification 2 of an embodiment of the present technology.
  • FIG. 13 is a cross-sectional view of a surface-emitting laser element according to Modification 4 of an embodiment of the present technology
  • FIG. 11 is a cross-sectional view of a surface-emitting laser element according to Modification 5 of an embodiment of the present technology
  • FIG. 12 is a cross-sectional view of a surface-emitting laser element according to Modification 6 of an embodiment of the present technology
  • FIG. 12 is a cross-sectional view (Part 1) of a surface-emitting laser element according to Modification 7 of an embodiment of the present technology
  • FIG. 20 is a cross-sectional view (Part 2) of a surface-emitting laser element according to Modification 7 of an embodiment of the present technology
  • FIG. 13 is a plan view of a surface-emitting laser element according to Modification 7 of an embodiment of the present technology
  • FIG. 20 is a plan view of a surface-emitting laser element according to Modification 8 of an embodiment of the present technology
  • FIG. 20 is a plan view of a surface-emitting laser element according to Modification 9 of an embodiment of the present technology
  • It is a figure showing an example of application to a distance measuring device of a surface emitting laser element concerning one embodiment of this art.
  • 1 is a block diagram showing an example of a schematic configuration of a vehicle control system
  • FIG. FIG. 4 is an explanatory diagram showing an example of the installation position of the distance measuring device;
  • FIG. 1 is a cross-sectional view (Part 1) of a surface-emitting laser device according to an embodiment of the present technology.
  • FIG. 2 is a cross-sectional view (part 2) of a surface-emitting laser element according to an embodiment of the present technology;
  • FIG. 3 is a plan view of a surface-emitting laser device according to an embodiment of the present technology;
  • the XYZ three-dimensional orthogonal coordinate system shown in FIGS. 1 to 3 will be used as appropriate.
  • a surface-emitting laser device 10 includes a substrate 100, a cathode electrode 111 provided on one surface 100a (hereinafter also referred to as “back surface”) of the substrate 100, and A first region A1 provided on the side opposite to the cathode electrode 111 side of the one surface 100a and having a plurality of light emitting portions LEP having mesas M arranged thereon; and a second area A2 arranged around the area A1.
  • the one surface 100a side of the substrate 100 is referred to as the lower side ( ⁇ Z side), and the top side of each mesa M is referred to as the upper side (+Z side).
  • second regions A2 are arranged on both sides of the first region A1 in the Y-axis direction in plan view. ing.
  • a plurality of light emitting parts LEP having mesas M are two-dimensionally arranged.
  • Each light emitting part LEP is a vertical cavity surface emitting laser (VCSEL).
  • VCSEL vertical cavity surface emitting laser
  • the plurality of light emitting units LEP are arranged in a matrix (square lattice) at regular intervals in both the X-axis direction and the Y-axis direction. May be arranged in a layout.
  • each mesa M has a substantially cylindrical shape as an example, but other shapes such as a substantially truncated cone shape, a substantially elliptical truncated cone shape, a substantially polygonal truncated pyramid shape, etc. may have The upper surface of each mesa M is substantially flush.
  • the pitch of the two mesas M adjacent to each other in the X-axis direction or the Y-axis direction in the first region A1 is, for example, 10 ⁇ m or more and 50 ⁇ m or less (preferably about 20 ⁇ m). is set to
  • the second area A2 has a protrusion PP in which the top surface of each mesa M is substantially flush with the top surface.
  • the protrusion PP extends in the X-axis direction.
  • the first and second regions A1 and A2 are provided at different positions in the in-plane direction of the laminated structure including the substrate 100, as an example.
  • the first multilayer reflector 102, the active layer 105 and the second multilayer reflector are arranged on the side (+Z side) opposite to the cathode electrode 111 side (-Z side) of the one surface 100a of the substrate 100. 107 are stacked in this order.
  • the lamination direction in the laminated structure coincides with the Z-axis direction.
  • a spacer layer 101 is arranged between the substrate 100 and the first multilayer film reflector 102 .
  • the oxidized constricting layer 103 is arranged inside the first multilayer reflector 102 .
  • first and second clad layers 104 and 105 are arranged between the first and second multilayer reflectors 102 and 107 on both sides of the active layer 105 in the Z-axis direction. ing.
  • the second clad layer 106 is positioned above (+Z side) the first clad layer 104 .
  • the contact layer 108 is arranged on the upper surface (+Z side surface) of the second multilayer film reflector 107 .
  • Each light-emitting part LEP includes, for example, a first multilayer reflector 102, an active layer 105, and a second multilayer reflector 107. More specifically, each light emitting part LEP includes, for example, a first multilayer film reflector 102, an oxidized constricting layer 103, a first clad layer 104, an active layer 105, a second clad layer 106, a second multilayer film reflector 107, and a and a contact layer 108 .
  • the mesa M of each light emitting part LEP includes the upper portion of the first multilayer reflector 102, the active layer 105, and the second multilayer reflector 107. More specifically, the mesa M of each light emitting part LEP includes, for example, the upper portion of the first multilayer reflector 102, the oxidized constricting layer 103, the first cladding layer 104, the active layer 105, the second cladding layer 106, the second It includes a multilayer film reflector 107 and a contact layer 108 .
  • the second region A2 has, for example, the same layer configuration as the light emitting part LEP.
  • the ridge portion PP of the second region A2 has, as an example, a layer configuration substantially similar to that of the mesa M.
  • the first area A1 and the second area A2 are covered with an insulating film 109.
  • a contact hole CH is provided in a portion of the insulating film 109 covering the top of each mesa M. As shown in FIG.
  • An anode electrode 110 is provided on the insulating film 109 .
  • the anode electrode 110 is arranged so as to come into contact with the contact layer 108 through a contact hole CH provided on the top of each mesa M.
  • the anode electrode 110 is in contact with the contact layer 108 through the peripheral portion of the contact hole CH of each mesa M.
  • the inner side of the anode electrode 110 (the central portion of the contact hole CH) on each mesa M serves as the emission port of the light emitting part LEP having the mesa M.
  • the emission direction of each light emitting part LEP is the +Z direction.
  • the substrate 100 is, for example, a GaAs substrate of the first conductivity type (for example, n-type).
  • the cathode electrode 111 (n-side electrode) is, for example, a common electrode commonly provided for a plurality of light emitting portions (here, all light emitting portions). As an example, the cathode electrode 111 is provided in a solid manner over substantially the entire back surface of the substrate 100 .
  • the cathode electrode 111 may have a single layer structure or a laminated structure.
  • the cathode electrode 111 is made of, for example, at least one metal (including alloy) selected from the group consisting of Au, Ag, Pd, Pt, Ni, Ti, V, W, Cr, Al, Cu, Zn, Sn and In.
  • the cathode electrode 111 has a laminated structure, for example, Ti/Au, Ti/Al, Ti/Al/Au, Ti/Pt/Au, Ni/Au, Ni/Au/Pt, Ni/Pt, Pd/Pt, It is composed of materials such as Ag/Pd.
  • the cathode electrode 111 is electrically connected to the cathode side (negative side) of the laser driver including the driver IC.
  • the spacer layer 101 is made of, for example, a first conductivity type (for example, n-type) AlGaAs-based compound semiconductor. Spacer layer 101 is also called a "buffer layer”.
  • the first multilayer reflector 102 is, for example, a semiconductor multilayer reflector.
  • a multilayer reflector is also called a distributed Bragg reflector.
  • a semiconductor multilayer reflector which is a type of multilayer reflector (distributed Bragg reflector), absorbs little light and has high reflectance and conductivity.
  • the first multilayer reflector 102 is also called a lower DBR.
  • the first multilayer film reflector 102 is, for example, a semiconductor multilayer film reflector of a first conductivity type, in which a plurality of types (for example, two types) of semiconductor layers (refractive index layers) having mutually different refractive indices (refractive index layers) are composed of an oscillation wavelength ⁇ It has an alternately laminated structure with an optical thickness of 1/4 ( ⁇ /4) of .
  • Each refractive index layer of the first multilayer film reflector 102 is made of a first conductivity type (for example, n-type) AlGaAs-based compound semiconductor.
  • the oxidized constricting layer 103 has, for example, a non-oxidized region 103a made of AlAs and an oxidized region 103b made of AlAs oxide (for example, Al 2 O 3 ) surrounding the outer circumference of the non-oxidized region 103a.
  • the first cladding layer 104 is made of a first conductivity type (for example, n-type) AlGaAs-based compound semiconductor.
  • the active layer 105 has a quantum well structure including barrier layers and quantum well layers made of, for example, an AlGaAs-based compound semiconductor.
  • This quantum well structure may be a single quantum well structure (QW structure) or a multiple quantum well structure (MQW structure).
  • the second cladding layer 106 is made of a second conductivity type (for example, p-type) AlGaAs-based compound semiconductor.
  • a resonator is configured including the active layer 105 and the first and second clad layers 104 and 106 .
  • the second multilayer reflector 107 is, for example, a semiconductor multilayer reflector of the second conductivity type, in which a plurality of types (for example, two types) of semiconductor layers (refractive index layers) having mutually different refractive indices (refractive index layers) are arranged at an oscillation wavelength of 1 It has an alternately stacked structure with an optical thickness of /4 wavelengths.
  • Each refractive index layer of the second multilayer film reflector 107 is made of a second conductivity type (for example, p-type) AlGaAs-based compound semiconductor.
  • the contact layer 108 is made of a GaAs-based compound semiconductor of the second conductivity type (for example, p-type).
  • the insulating film 109 is made of dielectric material such as SiO 2 , SiN, and SiON.
  • the anode electrode 110 (p-side electrode) is, as shown in FIGS. It is an electrode provided in common.
  • the anode electrode 110 is, as an example, a common electrode common to the mesas M of all the light emitting parts LEP.
  • the anode electrode 110 may be provided in common for each of a plurality of mesa rows arranged in the X-axis direction, each of which is composed of a plurality of mesas M arranged in the Y-axis direction in FIG. It may be provided in common for every at least two mesa rows among the rows.
  • the anode electrode 110 is provided so as to partially cover the mesas M of the plurality of light emitting portions LEP (excluding the central portion of the top of the mesa M) and the ridges PP.
  • the anode electrode 110 may have a single layer structure or a laminated structure.
  • the anode electrode 110 is made of, for example, at least one metal (including alloy) selected from the group consisting of Au, Ag, Pd, Pt, Ni, Ti, V, W, Cr, Al, Cu, Zn, Sn and In.
  • the anode electrode 110 has a laminated structure, for example, Ti/Au, Ti/Al, Ti/Al/Au, Ti/Pt/Au, Ni/Au, Ni/Au/Pt, Ni/Pt, Pd/Pt, It is composed of materials such as Ag/Pd.
  • the anode electrode 110 has a portion covering the second region A2 electrically connected to the anode side (positive electrode side) of the laser driver including the driver IC.
  • a first concave portion R1 is defined by two mesas M adjacent to each other among the mesas M of the plurality of light emitting portions LEP (see FIGS. 1 and 2).
  • the mesa M adjacent to the -Y side second region A2 among the plurality of mesas M of the light emitting parts LEP (the mesa M closest to the -Y side) and the -Y side second region A2 form a -Y side second concave portion.
  • R2 is defined (see Figures 1 and 3).
  • the mesa M adjacent to the second region A2 on the +Y side (the mesa M closest to the +Y side) and the second region A2 on the +Y side form the second concave portion R2 on the +Y side.
  • the mesas M adjacent to the second region A2 (for example, the mesa M closest to the -Y side and the mesa M closest to the +Y side) are collectively referred to as "outermost mesa".
  • Each of the first and second recesses R1 and R2 has, for example, a mortar shape (a shape that becomes deeper as it approaches the center).
  • the depth dimension H2 of the second recess R2 is larger than the depth dimension H1 of the first recess R1.
  • the depth dimension H1 of the first recess R1 is defined by the portion (for example, central portion) of the bottom surface of the first recess R1 that is closest to the one surface 100a of the substrate 100 (most ⁇ Z side) and the upper surface of each mesa M (+Z side). surface).
  • the bottom surface of the first recess R1 is located on the opposite side (+Z side) of the other surface 100b (+Z side surface) of the substrate 100 to the one surface 100a side ( ⁇ Z side). More specifically, the bottom surface of the first concave portion R1 is positioned inside the first multilayer film reflector 102 .
  • the depth dimension H2 of the second recess R2 is defined by the portion (for example, central portion) of the bottom surface of the second recess R2 that is closest to the one surface 100a of the substrate 100 (most ⁇ Z side) and the upper surface of each mesa M (+Z side). surface).
  • the bottom surface of the second recess R2 is located on the opposite side (+Z side) to the one surface 100a side ( ⁇ Z side) of the other surface 100b (+Z side surface) of the substrate 100 . More specifically, the bottom surface of the second recess R2 is positioned below (-Z side) the bottom surface of the first recess R1 in the first multilayer film reflector .
  • each mesa M and the upper surface of each protrusion PP are substantially flush. That is, the opening ends of the first and second recesses R1 and R2 are substantially flush (located on the same plane).
  • the width of the second recess R2 is greater than the width of the first recess R1.
  • width is larger.
  • the widths of the first and second recesses R1 and R2 may be the same, or the width of the first recess R1 may be larger than the width of the second recess R2.
  • the widths of the first and second recesses R1 and R2 are, for example, several ⁇ m to several tens of ⁇ m.
  • the mesas M other than the outermost mesa excluding the mesas M closest to the +X side and the closest to the -X side, are +X side, -X side, +Y side and -Y side.
  • the current flowing from the anode electrode 110 flows toward the cathode electrode 111 along the height direction (Z-axis direction) due to the influence of the adjacent mesas M. .
  • mesa M other than the outermost mesa mesa M closest to +X side or -X side has separation groove ST on +X side or -X side and has +Y side and -Y side and +X side or +X side.
  • There are adjacent mesas M on three sides with the ⁇ X side there are adjacent mesas M on three sides and the separation trench ST on one side).
  • the current flowing from the anode electrode 110 flows toward the cathode electrode 111 along the height direction (Z-axis direction).
  • the outermost mesa does not have an adjacent mesa M on the side of the adjacent second region A2.
  • the current flowing from the anode electrode 110 spreads from the height direction (Z-axis direction) to the second region A2 side along the in-plane direction (XY plane). Therefore, the electrical resistance may be lower than that of the mesa M other than the outermost mesa (see FIG. 30).
  • the electric current concentrates in the outermost mesa, and there is a concern that the variation in emission intensity between the outermost mesa and the other mesas M increases.
  • the current path to the second region A2 side is narrowed.
  • the current flowing through the outermost mesa is suppressed from spreading toward the second region A2 (see FIG. 29).
  • the electrical resistance of the outermost mesa is suppressed from decreasing, so that the concentration of current in the outermost mesa is suppressed, and the variation in the light emission intensity between the outermost peripheral mesa and the other mesas M is reduced. can be reduced. More specifically, it is possible to prevent the emission intensity of the outermost mesa from becoming higher than the emission intensity of the mesas M other than that.
  • the degree of reduction of the difference in electrical resistance (resistance difference) between the outermost mesa and the mesa M other than the outermost mesa is set by the difference in depth dimension between the first and second recesses R1 and R2 (H2-H1). can do. Basically, the greater H2-H1, the greater the degree of reduction in the resistance difference. Conversely, the smaller the value of H2-H1, the smaller the degree of reduction in the resistance difference. Therefore, when the resistance difference becomes small, for example, when the mesa pitch is relatively large (for example, 30 to 50 ⁇ m), it is preferable to set H2 ⁇ H1 relatively small, and when the resistance difference becomes large. For example, when the mesa pitch is relatively small (eg, 10 to 30 ⁇ m), it is preferable to set it relatively large.
  • the difference H2-H1 between the depth dimensions of the first and second recesses R1 and R2 may be set based on the distance (mesa pitch) between the centers of two mesas M adjacent to each other. In this case, it is preferable that the difference H2-H1 between the depth dimensions of the first and second recesses R1 and R2 is set larger as the distance between the centers of the two adjacent mesas M is narrower.
  • Separation trenches ST for element isolation are formed at the end of each second region A2 opposite to the first region A1 side and the +X side and -X side end portions of the first region A1 (Fig. 1 and FIG. 3).
  • the bottom surface of the separation trench ST is located inside the first multilayer film reflector 102 .
  • each light emitting part LEP of the surface emitting laser element 10 current is injected from the anode side of the laser driver into the active layer 105 via the anode electrode 110, the contact layer 108, the second multilayer film reflector 107 and the second clad layer 106. Then, the active layer 105 emits light, and the light travels back and forth between the first and second multilayer film reflectors 102 and 107 while being amplified by the active layer 105 and confined by the oxidized constricting layer 103, thereby satisfying the oscillation conditions. Sometimes, the light is emitted to the rear surface side of the substrate 100 as laser light.
  • the current injected into the active layer 105 flows out to the cathode side of the laser driver through the first cladding layer 104, the oxidized constricting layer 103, the first multilayer reflector 102 and the cathode electrode 111.
  • FIG. 1 The current injected into the active layer 105 flows out to the cathode side of the laser driver through the first cladding layer 104, the oxidized constricting layer 103, the first multilayer reflector 102 and the cathode electrode 111.
  • a first example of a method for manufacturing the surface-emitting laser element 10 according to one embodiment will be described below with reference to the flow chart of FIG. 4 and the cross-sectional views of FIGS.
  • a semiconductor manufacturing method using a semiconductor manufacturing apparatus a plurality of surface emitting laser elements 10 are simultaneously produced on one wafer that is the base material of the substrate 100 .
  • a series of integrated surface emitting laser elements 10 are separated from each other by dicing to obtain a plurality of chip-shaped surface emitting laser elements 10 .
  • a laminate L is generated.
  • CVD chemical vapor deposition
  • MOCVD metal organic chemical vapor deposition
  • a first multilayer reflector 102 including a layer 103S, a first cladding layer 104, an active layer 105, a second cladding layer 106, a second multilayer reflector 107, and a contact layer 108 are laminated in this order. to generate a laminate L.
  • a mesa structure MS is formed to serve as a mesa M other than the outermost mesa.
  • a resist pattern RP1 is formed on the contact layer 108 of the laminate L to form the mesa structure MS that will be the mesa M other than the outermost mesa (see FIG. 6).
  • the laminate L is etched by dry etching or wet etching to form a mesa structure MS (see FIG. 7).
  • the etching is performed until at least the side surface of the selectively oxidized layer 103S is exposed (until the etched bottom surface, which is the bottom surface of the first recess R1, is positioned below the selectively oxidized layer 103S in the first multilayer reflector 102). I do.
  • a first recess R1 having a depth dimension H1 is formed by forming two mesa structures MS adjacent to each other.
  • the resist pattern RP1 is etched and removed by dry etching or wet etching (see FIG. 8).
  • a mesa structure MS that will be the outermost mesa and a ridge structure PS that will be the ridge portion PP are formed.
  • a resist pattern RP2 for forming the mesa structure MS that will be the outermost mesa and the ridge structure PS that will be the ridge portion PP is formed on the laminate on which the mesa structure MS is formed (FIG. 9).
  • the laminate is etched by dry etching or wet etching to form a mesa structure MS that will be the outermost mesa and a ridge structure PS that will be the ridge portion PP (see FIG. 10). .
  • the etching is performed until the etched bottom surface, which is the bottom surface of the second concave portion R2, is located below the bottom surface of the first concave portion R1 in the first multilayer film reflector 102.
  • the mesa structure MS as the outermost mesa
  • the protrusion structure PS as the protrusion PP
  • the second recess R2 and the separation trench ST having the depth dimension H2 are formed.
  • the resist pattern RP2 is etched and removed by dry etching or wet etching (see FIG. 11).
  • an oxidized constricting layer 103 is formed. Specifically, the peripheral portion of the selectively oxidized layer 103S of the mesa structure MS (see FIG. 11) is oxidized to form the oxidized constricting layer 103 (see FIG. 12). More specifically, the mesa structure MS is exposed to a water vapor atmosphere to oxidize the selectively oxidized layer 103S from the side surface (selectively oxidize Al in AlAs) to form an oxidized constricting layer in which the non-oxidized region 103a is surrounded by the oxidized region 103b. 103 is formed. At this time, the selectively oxidized layer 103S of the protrusion structure PS is also oxidized. As a result, the mesa structure MS becomes the mesa M to form the first region A1, and the ridge structure PS becomes the ridge portion PP to form the second region A2.
  • an insulating film 109 is formed (see FIG. 13). Specifically, the insulating film 109 is formed by a vapor deposition method, a sputtering method, or the like on the stacked body in which the first and second regions A1 and A2 are formed.
  • contact holes CH are formed (see FIG. 14). Specifically, the insulating film 109 covering the top of the mesa M is removed by dry etching or wet etching. As a result, a contact hole CH is formed and the top of the mesa M (contact layer 108) is exposed.
  • the anode electrode 110 is formed. Specifically, an electrode material for the anode electrode 110 is formed into a film by a vapor deposition method, a sputtering method, or the like on the insulating film 109 having the contact hole CH, and patterning is performed by, for example, a lift-off method (see FIG. 15).
  • the cathode electrode 111 is formed (see FIG. 16). Specifically, after the back surface of the substrate 100 is polished to form a thin film, an electrode material for the cathode electrode 111 is formed solidly over substantially the entire back surface of the substrate 100 by a vapor deposition method or a sputtering method.
  • processing such as annealing is performed, and a plurality of surface emitting laser elements 10 are formed on one wafer. After that, by dicing along the separation grooves ST, the plurality of surface emitting laser elements 10 are separated into individual elements to obtain a plurality of chip-shaped surface emitting laser elements 10 .
  • a second example of the method for manufacturing the surface-emitting laser device 10 according to one embodiment will be described below with reference to the flowchart of FIG. 17 and the cross-sectional views of FIGS. explain.
  • a semiconductor manufacturing method using a semiconductor manufacturing apparatus a plurality of surface emitting laser elements 10 are simultaneously produced on one wafer that is the base material of the substrate 100 .
  • a series of integrated surface emitting laser elements 10 are separated from each other by dicing to obtain a plurality of chip-shaped surface emitting laser elements 10 .
  • a laminate L is generated.
  • CVD chemical vapor deposition
  • MOCVD metal organic chemical vapor deposition
  • a first multilayer reflector 102 including a layer 103S, a first cladding layer 104, an active layer 105, a second cladding layer 106, a second multilayer reflector 107, and a contact layer 108 are laminated in this order. to generate a laminate L.
  • a mesa structure MS is formed to be a mesa M other than the outermost mesa.
  • a resist pattern RP1 is formed on the contact layer 108 of the laminate L to form the mesa structure MS that will be the mesa M other than the outermost mesa (see FIG. 6).
  • the laminate L is etched by dry etching or wet etching to form a mesa structure MS (see FIG. 7).
  • the etching is performed until at least the side surface of the selectively oxidized layer 103S is exposed (until the etched bottom surface, which is the bottom surface of the first recess R1, is positioned below the selectively oxidized layer 103S in the first multilayer reflector 102). I do.
  • a first recess R1 having a depth dimension H1 is formed by forming two mesa structures MS adjacent to each other.
  • the resist pattern RP1 is etched and removed by dry etching or wet etching (see FIG. 8).
  • a mesa structure MS that will be the outermost mesa is formed.
  • a resist pattern RP3 is formed for forming the mesa structure MS that will be the outermost mesa on the layered structure on which the mesa structure MS is formed (see FIG. 18).
  • the laminate is etched by dry etching or wet etching to form a mesa structure MS that will be the outermost mesa (see FIG. 19).
  • the etching is performed until the etched bottom surface, which is the bottom surface of the second concave portion R2, is located below the bottom surface of the first concave portion R1 in the first multilayer film reflector 102.
  • the second recess R2 having the depth dimension H2 is formed.
  • the resist pattern RP3 is removed by dry etching or wet etching (see FIG. 20).
  • a ridge structure PS to be the ridge portion PP is formed. Specifically, first, a resist pattern RP4 is formed for forming the ridge structure PS that will become the ridge portion PP on the laminate on which the mesa structure MS is formed (see FIG. 21). Next, using the resist pattern RP4 as a mask, the laminate is etched by dry etching or wet etching to form a ridge structure PS that will become the ridge portion PP (see FIG. 22). Here, the etching is performed until the etching bottom surface, which is the bottom surface of the separation trench ST, is positioned below the selectively oxidized layer 103S in the first multilayer film reflector 102 . Separation grooves ST are formed by forming the ridge structures PS that become the ridge portions PP. Finally, the resist pattern RP4 is removed by dry etching or wet etching (see FIG. 11).
  • an oxidized constricting layer 103 is formed. Specifically, the peripheral portion of the selectively oxidized layer 103S of the mesa structure MS (see 11) is oxidized to form the oxidized constricting layer 103 (see FIG. 12). More specifically, the mesa structure MS is exposed to a water vapor atmosphere to oxidize the selectively oxidized layer 103S from the side surface (selectively oxidize Al in AlAs) to form an oxidized constricting layer in which the non-oxidized region 103a is surrounded by the oxidized region 103b. 103 is formed. At this time, the selectively oxidized layer 103S of the protrusion structure PS is also oxidized. As a result, the mesa structure MS becomes the mesa M to form the first region A1, and the ridge structure PS becomes the ridge portion PP to form the second region A2.
  • an insulating film 109 is formed (see FIG. 13). Specifically, the insulating film 109 is formed by a vapor deposition method, a sputtering method, or the like on the stacked body in which the first and second regions A1 and A2 are formed.
  • contact holes CH are formed (see FIG. 14). Specifically, the insulating film 109 covering the top of the mesa M is removed by dry etching or wet etching. As a result, a contact hole CH is formed and the top of the mesa M (contact layer 108) is exposed.
  • the anode electrode 110 is formed. Specifically, an electrode material for the anode electrode 110 is formed into a film by a vapor deposition method, a sputtering method, or the like on the insulating film 109 having the contact hole CH, and patterning is performed by, for example, a lift-off method (see FIG. 15).
  • the cathode electrode 111 is formed (see FIG. 16). Specifically, after the back surface of the substrate 100 is polished to form a thin film, an electrode material for the cathode electrode 111 is formed solidly over substantially the entire back surface of the substrate 100 by a vapor deposition method or a sputtering method.
  • processing such as annealing is performed, and a plurality of surface emitting laser elements 10 are formed on one wafer. After that, by dicing along the separation grooves ST, the plurality of surface emitting laser elements 10 are separated into individual elements to obtain a plurality of chip-shaped surface emitting laser elements 10 .
  • a third example of the method for manufacturing the surface-emitting laser element 10 according to one embodiment will be described below with reference to the flow chart of FIG. 23 and the cross-sectional views of FIGS. explain.
  • a semiconductor manufacturing method using a semiconductor manufacturing apparatus a plurality of surface emitting laser elements 10 are simultaneously produced on one wafer that is the base material of the substrate 100 .
  • a series of integrated surface emitting laser elements 10 are separated from each other by dicing to obtain a plurality of chip-shaped surface emitting laser elements 10 .
  • a laminate L is generated.
  • CVD chemical vapor deposition
  • MOCVD metal organic chemical vapor deposition
  • a first multilayer reflector 102 including a layer 103S, a first cladding layer 104, an active layer 105, a second cladding layer 106, a second multilayer reflector 107, and a contact layer 108 are laminated in this order. to generate a laminate L.
  • a mesa structure MS is formed to be a mesa M other than the outermost mesa.
  • a resist pattern RP1 is formed on the contact layer 108 of the laminate L to form the mesa structure MS that will be the mesa M other than the outermost mesa (see FIG. 6).
  • the laminate L is etched by dry etching or wet etching to form a mesa structure MS (see FIG. 7).
  • the etching is performed until at least the side surface of the selectively oxidized layer 103S is exposed (until the etched bottom surface, which is the bottom surface of the first recess R1, is positioned below the selectively oxidized layer 103S in the first multilayer reflector 102). I do.
  • a first recess R1 having a depth dimension H1 is formed by forming two mesa structures MS adjacent to each other.
  • the resist pattern RP1 is etched and removed by dry etching or wet etching (see FIG. 8).
  • separation trenches ST are formed. Specifically, first, a resist pattern RP5 for forming separation trenches ST is formed on the laminate having the mesa structure MS formed thereon (see FIG. 24). Next, using the resist pattern RP5 as a mask, the laminate is etched by dry etching or wet etching to form a separation trench ST (see FIG. 25). Here, the etching is performed until the etching bottom surface, which is the bottom surface of the separation trench ST, is positioned below the selectively oxidized layer 103S in the first multilayer film reflector 102 . Finally, the resist pattern RP5 is removed by dry etching or wet etching (see FIG. 26).
  • a mesa structure MS that will be the outermost mesa and a ridge structure PS that will be the ridge portion PP are formed.
  • a resist pattern RP6 for forming the mesa structure MS that will be the outermost mesa and the ridge structure PS that will be the ridge portion PP is first formed on the laminate in which the mesa structure MS and the separation trench ST are formed. forming (see FIG. 27).
  • the laminate is etched by dry etching or wet etching to form a mesa structure MS that will be the outermost mesa and a ridge structure PS that will be the ridge portion PP (see FIG. 28). .
  • etching is performed until the etched bottom surface, which is the bottom surface of the second concave portion R2, is positioned below the bottom surface of the first concave portion R1 in the first multilayer film reflector 102.
  • the resist pattern RP6 is removed by dry etching or wet etching (see FIG. 11).
  • an oxidized constricting layer 103 is formed. Specifically, the peripheral portion of the selectively oxidized layer 103S of the mesa structure MS (see FIG. 11) is oxidized to form the oxidized constricting layer 103 (see FIG. 12). More specifically, the mesa structure MS is exposed to a water vapor atmosphere to oxidize the selectively oxidized layer 103S from the side surface (selectively oxidize Al in AlAs) to form an oxidized constricting layer in which the non-oxidized region 103a is surrounded by the oxidized region 103b. 103 is formed. At this time, the selectively oxidized layer 103S of the protrusion structure PS is also oxidized. As a result, the mesa structure MS becomes the mesa M to form the first region A1, and the ridge structure PS becomes the ridge portion PP to form the second region A2.
  • an insulating film 109 is formed (see FIG. 13). Specifically, the insulating film 109 is formed by a vapor deposition method, a sputtering method, or the like on the stacked body in which the first and second regions A1 and A2 are formed.
  • contact holes CH are formed (see FIG. 14). Specifically, the insulating film 109 covering the top of the mesa M is removed by dry etching or wet etching. As a result, a contact hole CH is formed and the top of the mesa M (contact layer 108) is exposed.
  • the anode electrode 110 is formed. Specifically, an electrode material for the anode electrode 110 is formed into a film by a vapor deposition method, a sputtering method, or the like on the insulating film 109 having the contact hole CH, and patterning is performed by, for example, a lift-off method (see FIG. 15).
  • the cathode electrode 111 is formed (see FIG. 16). Specifically, after the back surface of the substrate 100 is polished to form a thin film, an electrode material for the cathode electrode 111 is formed solidly over substantially the entire back surface of the substrate 100 by a vapor deposition method or a sputtering method.
  • processing such as annealing is performed, and a plurality of surface emitting laser elements 10 are formed on one wafer. After that, by dicing along the separation grooves ST, the plurality of surface emitting laser elements 10 are separated into individual elements to obtain a plurality of chip-shaped surface emitting laser elements 10 .
  • the ridge structure which becomes the ridge portion PP is formed.
  • the PS, the second concave portion R2, and the separation groove ST are formed by etching
  • the present invention is not limited to this.
  • the mesa structure MS that becomes the mesa M other than the outermost mesa, the ridge structure PS that becomes the ridge portion PP, the second recess R2, and the separation groove ST may be formed simultaneously by etching.
  • the first recess R1, the second recess R2, and the separation trench ST are formed by separate etching as much as possible (preferably, all of them), the accuracy of each etching depth (the positional accuracy of the bottom surface) can be improved.
  • the surface-emitting laser device 10 includes a substrate 100, a cathode electrode 111 provided on one surface 100a (rear surface) of the substrate 100, and provided on the opposite side of the one surface 100a from the cathode electrode 111 side, A first area A1 in which a plurality of light emitting parts LEP having mesas M are arranged, and a second area A2 arranged around the first area A1 on the side opposite to the cathode electrode 111 side of the one surface 100a, It is adjacent to the second region A2 of the plurality of mesas M of the light emitting part LEP more than the depth dimension H1 of the first recess R1 defined by two mesas M adjacent to each other among the mesas M of the plurality of light emitting parts LEP.
  • a depth dimension H2 of the second recess R2 defined by the mesa M (outermost mesa) and the second region A2 is larger.
  • the current flowing through the outermost mesa is suppressed from spreading toward the second region A2, so that the electrical resistance of the outermost mesa is suppressed from decreasing, and the current concentration at the outermost mesa is suppressed. (See FIG. 29).
  • the surface emitting laser element 10 it is possible to reduce variations in emission intensity between the light emitting portion LEP adjacent to the second region A2 and the light emitting portion LEP other than the light emitting portion LEP.
  • the mesa M (outermost peripheral mesa) adjacent to the ridge portion PP and the depth dimension H of the recess R defined by the ridge portion PP are the same.
  • the current that has flowed through the outermost mesa cannot be prevented from spreading toward the ridge portion PP, and the electrical resistance of the outermost mesa decreases, causing the current to concentrate in the outermost mesa.
  • the cathode electrode 111 is a common electrode commonly provided for the plurality of light emitting parts LEP. In this case, the current flowing through each mesa M flows to the cathode electrode 111 side (the back side of the substrate 100), so the above configuration of the surface emitting laser device 10 is particularly effective.
  • the bottom surface of the second recess R2 is positioned closer to the surface 100a of the substrate 100 than the bottom surface of the first recess R1 in the direction perpendicular to the substrate 100 (the Z-axis direction). As a result, the variation in emission intensity can be reliably reduced. Furthermore, the opening ends of the first and second recesses R1 and R2 are substantially flush. Accordingly, the first and second recesses R1 and R2 can be formed by etching the laminate L produced by one crystal growth (e.g., epitaxial growth).
  • the surface emitting laser device 10 further includes an anode electrode 110 provided in contact with the top of at least one mesa M adjacent to the second area A2 and the top of at least two mesas M not adjacent to the second area A2.
  • the light emitting portions LEP including each mesa M are driven at the same voltage at the same time.
  • the distance between the centers of two mesas M adjacent to each other is preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • the difference in resistance between the outermost mesa and the other mesas tends to be relatively large, and the configuration of the surface emitting laser device 10 is particularly effective.
  • the first multilayer film reflector 102, the active layer and the second multilayer film reflector are laminated in this order on the substrate 100 to generate the laminate L.
  • the laminate is etched such that the depth dimension of the second recess R2 defined by and is greater.
  • the surface-emitting laser element 10 can reduce variations in emission intensity between the light-emitting portion LEP adjacent to the second region A2 and the light-emitting portion LEP other than the light-emitting portion LEP.
  • a laser device can be manufactured.
  • the cathode electrode 111 is formed, for example, in regions corresponding to at least the first and second regions A1 and A2 on the surface of the substrate 100 opposite to the first multilayer film reflector 102 side. Form into a solid shape. This makes it possible to easily form the common cathode electrode 111 for the plurality of light emitting parts LEP.
  • FIG. 31 is a cross-sectional view (corresponding to the cross-sectional view taken along the line VV in FIG. 3 (FIG. 1)) of the surface emitting laser device 10-1 of Modification 1.
  • FIG. 1 In the surface-emitting laser element 10-1 according to Modification 1, as shown in FIG. It has the same configuration as the surface-emitting laser element 10 of one embodiment except that it is positioned within 100 .
  • the surface emitting laser element 10-1 substantially the same effect as the surface emitting laser element 10 of one embodiment can be obtained.
  • the first and second multilayer film reflectors 102 and 107 are designed to have a higher specific resistance than the substrate 100 in order to reduce free carrier loss. Therefore, in the surface-emitting laser device 10-1, under the condition that the difference in depth dimension (H2-H1) between the first and second recesses R1 and R2 is the same, the surface-emitting laser device 10-1 is compared to the surface-emitting laser device 10 of the embodiment. , the degree of reduction in the difference in electrical resistance (resistance difference) between the outermost mesa and the mesa M other than the outermost mesa is small. However, since the bottom surface of the second recess R2 is positioned within the substrate 100 (because the second recess R2 is deep), it is highly effective in suppressing the current from spreading toward the second region A2.
  • the surface emitting laser element 10-1 can also be manufactured by a manufacturing method similar to the manufacturing method of the surface emitting laser element 10.
  • FIG. 32 is a cross-sectional view (corresponding to the cross-sectional view taken along the line VV in FIG. 3 (FIG. 1)) of the surface emitting laser element 10-2 of Modification 2. As shown in FIG. In the surface-emitting laser device 10-2 according to Modification 2, as shown in FIG. It has the same configuration as the surface-emitting laser element 10 in the form.
  • the surface emitting laser element 10-2 substantially the same effect as that of the surface emitting laser element 10 of one embodiment can be obtained, but under the same condition of H2-H1, the resistance difference is larger than that of the surface emitting laser element 10. Small reduction.
  • the bottom surface of the second recess R2 is positioned within the substrate 100 (because the second recess R2 is deep), it is highly effective in suppressing the current from spreading toward the second region A2.
  • the surface emitting laser element 10-2 can also be manufactured by a manufacturing method similar to the manufacturing method of the surface emitting laser element 10.
  • FIG. 33 is a cross-sectional view (corresponding to the cross-sectional view taken along the line VV in FIG. 3 (FIG. 1)) of the surface emitting laser device 10-3 of Modification 3. As shown in FIG. In the surface-emitting laser device 10-3 according to Modification 3, as shown in FIG. Except for this, the configuration is substantially the same as that of the surface emitting laser device 10 of one embodiment.
  • the oxidized constricting layer 103 is provided inside the second multilayer film reflector 107. As shown in FIG. In the surface-emitting laser element 10-3, each mesa M and protrusion PP does not have an active layer 105. FIG.
  • the surface emitting laser element 10-3 can also be manufactured by a manufacturing method similar to the manufacturing method of the surface emitting laser element 10. FIG.
  • FIG. 34 is a cross-sectional view (corresponding to the cross-sectional view taken along the line VV in FIG. 3 (FIG. 1)) of the surface emitting laser element 10-4 of Modification 4.
  • FIG. 34 both the bottom surface of the first recess R1 and the bottom surface of the second recess R2 are positioned within the first multilayer reflector 107, as shown in FIG. .
  • H2-H1 is smaller than that of the surface emitting laser element 10 of one embodiment.
  • the surface emitting laser element 10-4 substantially the same effects as those of the surface emitting laser element 10 of the embodiment can be obtained. This is particularly effective when the difference in electrical resistance between the outermost mesa and the other mesas M is small (for example, when the mesa pitch is relatively large).
  • the surface emitting laser element 10-4 can also be manufactured by a manufacturing method similar to the manufacturing method of the surface emitting laser element 10. FIG.
  • FIG. 35 is a cross-sectional view (corresponding to the cross-sectional view taken along the line VV in FIG. 3 (FIG. 1)) of the surface emitting laser element 10-5 of Modification 5.
  • the surface emitting laser element 10-5 according to Modification 5 has the same configuration as the surface emitting laser element 10-1 according to Modification 1 except for the size of H2-H1.
  • H2-H1 is larger than that of the surface emitting laser element 10-1 of Modification 1.
  • the surface-emitting laser element 10-5 substantially the same effects as those of the surface-emitting laser element 10 of the first embodiment are obtained, but compared to the surface-emitting laser element 10-1 of the modified example 1, the degree of reduction in resistance difference is higher. Therefore, it is particularly effective when the difference in electrical resistance between the outermost mesa and the other mesas M is large (for example, when the mesa pitch is relatively small).
  • the surface emitting laser element 10-5 can also be manufactured by a manufacturing method similar to the manufacturing method of the surface emitting laser element 10 of one embodiment.
  • FIG. 36 is a cross-sectional view (corresponding to the cross-sectional view taken along the line VV in FIG. 3 (FIG. 1)) of the surface emitting laser element 10-6 of Modification 6. As shown in FIG. In the surface-emitting laser device 10-6 according to Modification 6, as shown in FIG. It has the same configuration as the surface emitting laser device 10 of the embodiment except that it is located at .
  • an oxidized constricting layer 103 is provided in the second multilayer film reflector 107. As shown in FIG. Each mesa M does not have an active layer 105 in the surface emitting laser element 10-6.
  • the surface emitting laser element 10-6 substantially the same effects as those of the surface emitting laser element 10 of the embodiment are obtained. Since the degree of reduction is large and the bottom surface of the second recess R2 is positioned within the substrate 100, the effect of suppressing the spread of the current from the outermost peripheral mesa to the second region A2 side is high. That is, the surface-emitting laser element 10-6 is particularly effective when the mesa pitch is small and the resistance difference between the outermost mesa and the other mesas M is large.
  • the surface emitting laser element 10-6 can also be manufactured by a manufacturing method similar to the manufacturing method of the surface emitting laser element 10 of one embodiment.
  • FIG. 37 is a sectional view (Part 1) of a surface emitting laser device 10-7 of Modification 7.
  • FIG. 38 is a sectional view (Part 2) of the surface emitting laser element 10-7 of Modification 7.
  • FIG. 39 is a plan view of a surface emitting laser device 10-7 of Modification 7.
  • FIG. 37 is a cross-sectional view (YZ cross-sectional view) taken along line V7-V7 of FIG. 39.
  • FIG. 38 is a cross-sectional view (XZ cross-sectional view) taken along line W7-W7 of FIG. 39.
  • the surface-emitting laser device 10-7 has the same configuration as the surface emitting laser element 10 of the embodiment, except that it includes an adjacent dummy mesa DM, and the second recess R2 is defined by the mesa M adjacent to the second region A2 and the dummy mesa DM.
  • the dummy mesa DM is a mesa of a non-light-emitting portion that does not have a contact hole CH and an anode electrode 110 and is not energized.
  • each second region A2 includes a dummy mesa DM provided between the ridge portion PP and the first region A1, and the ridge portion PP. ing.
  • the second recess R2 is defined by the outermost peripheral mesa of the first region A1 and the dummy mesa DM of the second region A2.
  • the surface emitting laser element 10-7 According to the surface emitting laser element 10-7, the current flowing through the mesa M (the outermost peripheral mesa of the first region A1) adjacent to the dummy mesa DM is suppressed from spreading toward the dummy mesa DM. As a result, the electric resistance of the outermost mesa is suppressed from decreasing, the concentration of current in the outermost mesa is suppressed, and the variation in the emission intensity between the outermost mesa and the mesa M other than the outermost mesa is suppressed. can be reduced.
  • the surface emitting laser element 10-7 can also be manufactured by a manufacturing method substantially similar to the manufacturing method of the surface emitting laser element 10 of one embodiment.
  • FIG. 38 is a plan view of a surface-emitting laser element 10-8 of Modification 8.
  • FIG. 38 is a plan view of a surface-emitting laser element 10-8 of Modification 8.
  • the second region A2 has a frame-like shape in plan view (the region surrounded by the two-dot chain line in FIG. 40).
  • the YZ cross section obtained by cutting the second region A2 and the plurality of mesas M together and the XZ cross section obtained by cutting the second region A2 and the plurality of mesas M together are the same.
  • the YZ cross section and the XZ cross section of the surface emitting laser element 10-8 are the same as the YZ cross section of any one of the surface emitting laser elements 10, 10-1 to 10-6 of the embodiment and Modifications 1 to 6.
  • the surface-emitting laser device 10-8 has substantially the same effect as the surface-emitting laser device 10 of the embodiment.
  • the surface emitting laser element 10-8 can also be manufactured by a manufacturing method similar to the manufacturing method of the surface emitting laser element 10 of one embodiment.
  • FIG. 41 is a plan view of a surface-emitting laser element 10-9 of Modification 9.
  • FIG. 41 is a plan view of a surface-emitting laser element 10-9 of Modification 9.
  • the second region A2 has a frame-like shape in plan view (the region surrounded by the two-dot chain line in FIG. 41).
  • the YZ cross section obtained by cutting the second region A2 and the plurality of mesas M together and the XZ cross section obtained by cutting the second region A2 and the plurality of mesas M together are the same.
  • the YZ cross section and the XZ cross section of the surface emitting laser element 10-9 are the same as the YZ cross section of the surface emitting laser element 10-7 of the seventh modification.
  • the surface emitting laser element 10-9 has substantially the same effect as the surface emitting laser element 10-7 of the seventh modification.
  • the surface emitting laser element 10-9 can also be manufactured by a manufacturing method similar to the manufacturing method of the surface emitting laser element 10 of one embodiment.
  • the surface-emitting laser device according to the present technology is not limited to the configurations described in the above embodiment and modifications, and can be modified as appropriate.
  • the surface emitting laser element of the present technology is a surface emitting type in which the light emitting portion emits light from the top side of the mesa. It can also be applied to a back emission type in which light is emitted to the back side of the substrate. In this case, it is necessary to provide openings, which serve as emission ports, in the electrodes provided on the back surface of the substrate at locations corresponding to the respective light emitting portions.
  • the anode electrode is provided on the top side of the mesa M and the cathode electrode is provided on the back side of the substrate 100, but the cathode electrode is provided on the top side of the mesa M and , an anode electrode may be provided on the back side of the substrate 100 .
  • the conductivity types p-type and n-type also need to be exchanged.
  • both the first and second multilayer reflectors 102 and 107 are semiconductor multilayer reflectors, but the present invention is not limited to this.
  • the first multilayer reflector 102 may be a semiconductor multilayer reflector
  • the second multilayer reflector 107 may be a dielectric multilayer reflector.
  • a dielectric multilayer reflector is also a kind of distributed Bragg reflector.
  • the first multilayer reflector 102 may be a dielectric multilayer reflector
  • the second multilayer reflector 107 may be a semiconductor multilayer reflector.
  • both the first and second multilayer reflectors 102 and 107 may be dielectric multilayer reflectors.
  • the spacer layer 101 does not necessarily have to be provided in the surface emitting laser elements of the above embodiments and modifications.
  • the oxidized constricting layer 103 may be provided inside either the first and second clad layers 104 and 106 .
  • the contact layer 108 does not necessarily have to be provided in the surface emitting laser elements of the above embodiments and modifications.
  • a part of the configurations of the surface emitting laser elements of the above embodiment and each modified example may be combined within a mutually consistent range.
  • the bottom surface of the first recess R1 is positioned inside the second multilayer reflector 107
  • the bottom surface of the second recess R2 is positioned inside the first multilayer reflector 102. may be located in
  • each component constituting the surface emitting laser element functions as a surface emitting laser element. It can be changed as appropriate within the range.
  • the technology (the present technology) according to the present disclosure can be applied to various products (electronic devices).
  • the technology according to the present disclosure can be realized as an element mounted on any type of moving object such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, and robots. may
  • the surface-emitting laser device can be applied, for example, as a light source for devices that form or display images using laser light (for example, laser printers, laser copiers, projectors, head-mounted displays, head-up displays, etc.). .
  • FIG. 42 illustrates an example of a schematic configuration of a distance measuring device 1000 including the surface emitting laser element 10 as an example of electronic equipment according to the present technology.
  • the distance measuring device 1000 measures the distance to the subject S by a TOF (Time Of Flight) method.
  • a distance measuring device 1000 includes a surface emitting laser element 10 as a light source.
  • the distance measuring device 1000 includes, for example, a surface emitting laser element 10, a light receiving device 125, lenses 115 and 135, a signal processing section 140, a control section 150, a display section 160 and a storage section 170.
  • the light receiving device 125 detects the light reflected by the subject S.
  • the lens 115 is a lens for collimating the light emitted from the surface emitting laser element 10, and is a collimating lens.
  • the lens 135 is a lens for condensing the light reflected by the subject S and guiding it to the light receiving device 125, and is a condensing lens.
  • the signal processing section 140 is a circuit for generating a signal corresponding to the difference between the signal input from the light receiving device 125 and the reference signal input from the control section 150 .
  • the control unit 150 includes, for example, a Time to Digital Converter (TDC).
  • the reference signal may be a signal input from the control section 150 or may be an output signal from a detection section that directly detects the output of the surface emitting laser element 10 .
  • the control unit 150 is, for example, a processor that controls the surface emitting laser element 10, the light receiving device 125, the signal processing unit 140, the display unit 160, and the storage unit 170.
  • the control unit 150 is a circuit that measures the distance to the subject S based on the signal generated by the signal processing unit 140 .
  • the control unit 150 generates a video signal for displaying information about the distance to the subject S and outputs it to the display unit 160 .
  • the display unit 160 displays information about the distance to the subject S based on the video signal input from the control unit 150 .
  • the control unit 150 stores information about the distance to the subject S in the storage unit 170 .
  • the surface emitting laser elements 10-1, 10-2, 10-3, 10-4, 10-5, 10-6, 10-7, and 10-8 , 10-9 can also be applied to the distance measuring device 1000.
  • FIG. 11 Example of mounting a distance measuring device on a moving body>
  • FIG. 43 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • a vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • vehicle control system 12000 includes drive system control unit 12010 , body system control unit 12020 , vehicle exterior information detection unit 12030 , vehicle interior information detection unit 12040 , and integrated control unit 12050 .
  • integrated control unit 12050 As the functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio/image output unit 12052, and an in-vehicle network I/F (interface) 12053 are illustrated.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the driving system control unit 12010 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices equipped on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps.
  • the body system control unit 12020 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • the body system control unit 12020 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
  • the vehicle exterior information detection unit 12030 detects information outside the vehicle in which the vehicle control system 12000 is installed.
  • a distance measuring device 12031 is connected to the vehicle exterior information detection unit 12030 .
  • Distance measuring device 12031 includes distance measuring device 1000 described above.
  • the vehicle exterior information detection unit 12030 causes the distance measuring device 12031 to measure the distance to an object (subject S) outside the vehicle, and acquires the distance data thus obtained.
  • the vehicle exterior information detection unit 12030 may perform object detection processing such as people, vehicles, obstacles, and signs based on the acquired distance data.
  • the in-vehicle information detection unit 12040 detects in-vehicle information.
  • the in-vehicle information detection unit 12040 is connected to, for example, a driver state detection section 12041 that detects the state of the driver.
  • the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing off.
  • the microcomputer 12051 calculates control target values for the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and controls the drive system control unit.
  • a control command can be output to 12010 .
  • the microcomputer 12051 is intended to realize functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation of vehicles, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane departure warning, and the like. cooperative control can be performed.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, etc. based on the information about the vehicle surroundings acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's Cooperative control can be performed for the purpose of autonomous driving, etc., in which vehicles autonomously travel without depending on operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the information detection unit 12030 outside the vehicle.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control aimed at anti-glare such as switching from high beam to low beam. It can be carried out.
  • the audio/image output unit 12052 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062 and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include at least one of an on-board display and a head-up display, for example.
  • FIG. 44 is a diagram showing an example of the installation position of the distance measuring device 12031.
  • the vehicle 12100 has distance measuring devices 12101, 12102, 12103, 12104, and 12105 as the distance measuring device 12031.
  • the distance measuring devices 12101, 12102, 12103, 12104, and 12105 are provided at positions such as the front nose, side mirrors, rear bumper, back door, and windshield of the vehicle 12100, for example.
  • a distance measuring device 12101 provided on the front nose and a distance measuring device 12105 provided on the upper part of the windshield inside the vehicle mainly acquire data in front of the vehicle 12100 .
  • Distance measuring devices 12102 and 12103 provided in the side mirrors mainly acquire side data of the vehicle 12100 .
  • a distance measuring device 12104 provided on the rear bumper or back door mainly acquires data behind the vehicle 12100 .
  • the forward data obtained by the distance measuring devices 12101 and 12105 are mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, and the like.
  • FIG. 44 shows an example of the detection range of the distance measuring devices 12101 to 12104.
  • a detection range 12111 indicates the detection range of the distance measuring device 12101 provided on the front nose
  • detection ranges 12112 and 12113 indicate the detection ranges of the distance measuring devices 12102 and 12103 provided on the side mirrors, respectively
  • a detection range 12114 indicates the detection range of the distance measuring device 12104 provided on the rear bumper or back door.
  • the microcomputer 12051 calculates the distance to each three-dimensional object within the detection ranges 12111 to 12114 and changes in this distance over time (relative velocity to the vehicle 12100). ), the closest three-dimensional object on the traveling path of the vehicle 12100, which runs at a predetermined speed (for example, 0 km/h or more) in substantially the same direction as the vehicle 12100, is extracted as the preceding vehicle. can be done. Furthermore, the microcomputer 12051 can set the inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including following stop control) and automatic acceleration control (including following start control). In this way, cooperative control can be performed for the purpose of automatic driving in which the vehicle runs autonomously without relying on the operation of the driver.
  • automatic brake control including following stop control
  • automatic acceleration control including following start control
  • the microcomputer 12051 based on the distance data obtained from the distance measuring devices 12101 to 12104, converts three-dimensional object data to other three-dimensional objects such as two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, utility poles, etc. can be used for automatic avoidance of obstacles.
  • the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into those that are visible to the driver of the vehicle 12100 and those that are difficult to see. Then, the microcomputer 12051 judges the collision risk indicating the degree of danger of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, an audio speaker 12061 and a display unit 12062 are displayed.
  • driving support for collision avoidance can be performed.
  • this technique can also take the following structures.
  • a substrate an electrode provided on one surface of the substrate; a first region provided on the side opposite to the electrode side of the one surface, in which a plurality of light-emitting portions having mesas are arranged; a second region arranged around the first region on the side opposite to the electrode side of the one surface; with The mesa adjacent to the second region among the plurality of mesas of the light emitting portion and the second mesa adjacent to the second region are larger than the depth dimension of the first recess defined by two mesas adjacent to each other among the mesas of the plurality of light emitting portions. a surface-emitting laser element in which the depth dimension of the second recess defined by the region is larger.
  • the electrode is a common electrode provided in common to the plurality of light-emitting portions.
  • the second region includes a dummy mesa adjacent to the mesa adjacent to the second region, and the second recess is defined by the mesa adjacent to the second region and the dummy mesa;
  • the bottom surface of the second recess is positioned closer to the one surface than the bottom surface of the first recess in the direction perpendicular to the substrate. surface-emitting laser element.
  • the surface emitting laser device according to any one of (1) to (4), wherein the open ends of the first and second concave portions are substantially flush.
  • the surface emitting device according to any one of (1) to (5), wherein the bottom surfaces of the first and second recesses are both located on the other surface of the substrate opposite to the one surface side. laser element.
  • the bottom surface of the first recess is located on the other surface of the substrate opposite to the one surface side, and the bottom surface of the second recess is located within the substrate, (1) to (6)
  • the surface emitting laser device according to any one of .
  • (8) The surface emitting laser device according to any one of (1) to (7), wherein the bottom surfaces of the first and second recesses are both located within the substrate.
  • the first and second regions are provided at different positions in an in-plane direction of a multilayer structure including the substrate, and in the multilayer structure, the first multilayer film reflection is formed on the side opposite to the electrode side of the one surface.
  • the surface emitting laser device according to any one of (1) to (8), wherein the mirror, active layer and second multilayer film reflector are laminated in this order.
  • the surface-emitting laser device according to (9), wherein the bottom surfaces of the first and second recesses are both positioned within the first multilayer film reflector.
  • (11) The surface according to (9), wherein the bottom surface of the first recess is located inside the second multilayer reflector, and the bottom surface of the second recess is located inside the first multilayer reflector. Light-emitting laser element.
  • the width of the second recess is greater than the width of the first recess in a cross section obtained by cutting together the two mesas adjacent to each other and the second region, (1) to (14)
  • the surface emitting laser device according to any one of (1) to (16) wherein the distance between the centers of the two mesas adjacent to each other is 10 ⁇ m or more and 50 ⁇ m or less.
  • a method of manufacturing a surface-emitting laser element wherein the laminate is etched so that a depth dimension of a second recess defined by the mesa adjacent to the second region and the second region is larger.
  • the electrodes are formed at least in regions corresponding to the first and second regions on the surface of the substrate opposite to the surface facing the first multilayer film reflector. 22.
  • the laminate is etched to form one of the first and second regions, and then the laminate having the one formed thereon is etched.
  • 10, 10-1 to 10-9 surface emitting laser element
  • 100 substrate
  • 100a one surface of substrate
  • 100b other surface of substrate
  • 102 first multilayer film reflector
  • 103 oxidized constricting layer
  • 105 active Layer
  • 107 Second multilayer film reflector
  • 110 Anode electrode (another electrode)
  • 111 Cathode electrode (electrode)
  • 1000 Distance measuring device (electronic device)
  • LEP Light emitting part
  • M mesa
  • DM dummy mesa
  • R1 first concave portion
  • R2 second concave portion
  • H1 depth dimension of first concave portion
  • H2 depth dimension of second concave portion.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本技術は、第2領域に隣接する発光部と、該発光部以外の発光部との間での発光強度のばらつきを低減することができる面発光レーザ素子を提供する。 本技術に係る面発光レーザ素子は、基板と、前記基板の一面に設けられた電極と、前記一面の前記電極側とは反対側に設けられ、メサを有する発光部が複数配置された第1領域と、前記一面の前記電極側とは反対側における前記第1領域の周辺に配置された第2領域と、を備え、前記複数の発光部のメサのうち互いに隣接する2つのメサにより規定される第1凹部の深さ寸法よりも、前記複数の発光部のメサのうち前記第2領域に隣接するメサと前記第2領域とにより規定される第2凹部の深さ寸法の方が大きい。

Description

面発光レーザ素子、電子機器及び面発光レーザ素子の製造方法
 本開示に係る技術(以下「本技術」とも呼ぶ)は、面発光レーザ素子、電子機器及び面発光レーザ素子の製造方法に関する。
 従来、メサを有する発光部が複数配置された第1領域と該第1領域の周辺の第2領域とを備える面発光レーザ素子が知られている(例えば特許文献1参照)。
特開2014-132692号公報
 しかしながら、従来の面発光レーザ素子では、第2領域に隣接する発光部と、該発光部以外の発光部との間での発光強度のばらつきを低減することに関して改善の余地があった。
 そこで、本技術は、第2領域に隣接する発光部と、該発光部以外の発光部との間での発光強度のばらつきを低減することができる面発光レーザ素子を提供する。
 本技術は、基板と、
 前記基板の一面に設けられた電極と、
 前記一面の前記電極側とは反対側に設けられ、メサを有する発光部が複数配置された第1領域と、
 前記一面の前記電極側とは反対側における前記第1領域の周辺に配置された第2領域と、
 を備え、
 前記複数の発光部のメサのうち互いに隣接する2つのメサにより規定される第1凹部の深さ寸法よりも、前記複数の発光部のメサのうち前記第2領域に隣接するメサと前記第2領域とにより規定される第2凹部の深さ寸法の方が大きい、面発光レーザ素子を提供する。
 前記電極は、前記複数の発光部に対して共通に設けられた共通電極であってもよい。
 前記第2領域は、前記第2領域に隣接するメサに隣接するダミーメサを含み、前記第2領域に隣接するメサと前記ダミーメサとにより前記第2凹部が規定されてもよい。
 前記第2凹部の底面は、前記基板に垂直な方向に関して、前記第1凹部の底面よりも前記一面に近い位置に位置していてもよい。
 前記第1及び第2凹部の開口端は、略面一であってもよい。
 前記第1及び第2凹部の底面は、いずれも前記基板の他面の前記一面側とは反対側に位置してもよい。
 前記第1凹部の底面は、前記基板の他面の前記一面側とは反対側に位置し、前記第2凹部の底面は、前記基板内に位置していてもよい。
 前記第1及び第2凹部の底面は、いずれも前記基板内に位置していてもよい。
 前記第1及び第2領域は、前記基板を含む積層構造の面内方向の異なる位置に設けられ、前記積層構造では、前記一面の前記電極側とは反対側に第1多層膜反射鏡、活性層及び第2多層膜反射鏡がこの順に積層されていてもよい。
 前記第1及び第2凹部の底面は、いずれも前記第1多層膜反射鏡内に位置していてもよい。
 前記第1凹部の底面は、前記第2多層膜反射鏡内に位置し、前記第2凹部の底面は、前記第1多層膜反射鏡内に位置していてもよい。
 前記第1凹部の底面は、前記第1多層膜反射鏡内に位置し、前記第2凹部の底面は、前記基板内に位置していてもよい。
 前記第1凹部の底面は、前記第2多層膜反射鏡内に位置し、前記第2凹部の底面は、前記基板内に位置していてもよい。
 前記第1及び第2凹部の底面は、いずれも前記第2多層膜反射鏡内に位置していてもよい。
 前記互いに隣接する2つのメサ及び前記第2領域を一緒に切断した断面内において、前記第1凹部の幅よりも前記第2凹部の幅の方が大きくてもよい。
 前記第2領域に隣接する少なくとも1つの前記メサの頂部及び前記第2領域に隣接しない少なくとも2つの前記メサの頂部に共通の別の電極が設けられていてもよい。
 前記互いに隣接する2つのメサの中心間の間隔は、10μm以上50μm以下であってもよい。
 本技術は、前記面発光レーザ素子を備える、電子機器も提供する。
 本技術は、基板上に第1多層膜反射鏡、活性層及び第2多層膜反射鏡をこの順に積層して積層体を生成する工程と、
 前記積層体をエッチングしてメサが複数配置された第1領域及び該第1領域の周辺の第2領域を形成する工程と、
 前記基板の前記第1多層膜反射鏡側の面とは反対側の面に電極を形成する工程と、
 を含み、
 前記第1及び第2領域を形成する工程では、前記複数の発光部のメサのうち互いに隣接する2つのメサにより規定される第1凹部の深さ寸法よりも、前記複数の発光部のメサのうち前記第2領域に隣接するメサと前記第2領域とにより規定される第2凹部の深さ寸法の方が大きくなるように前記積層体をエッチングする、面発光レーザ素子の製造方法も提供する。
 前記電極を形成する工程では、前記基板の前記第1多層膜反射鏡側の面とは反対側の面の、少なくとも前記第1及び第2領域に対応する領域に前記電極を形成してもよい。
本技術の一実施形態に係る面発光レーザ素子の断面図(その1)である。 本技術の一実施形態に係る面発光レーザ素子の断面図(その2)である。 本技術の一実施形態に係る面発光レーザ素子の平面図である。 本技術の一実施形態に係る面発光レーザ素子の製造方法の第1例を説明するためのフローチャートである。 図4の第1工程を示す断面図である。 図4の第2工程の第1サブ工程を示す断面図である。 図4の第2工程の第2サブ工程を示す断面図である。 図4の第2工程の第3サブ工程を示す断面図である。 図4の第3工程の第1サブ工程を示す断面図である。 図4の第3工程の第2サブ工程を示す断面図である。 図4の第3工程の第3サブ工程を示す断面図である。 図4の第4工程を示す断面図である。 図4の第5工程を示す断面図である。 図4の第6工程を示す断面図である。 図4の第7工程を示す断面図である。 図4の第8工程を示す断面図である。 本技術の一実施形態に係る面発光レーザ素子の製造方法の第2例を説明するためのフローチャートである。 図17の第3工程の第1サブ工程を示す断面図である。 図17の第3工程の第2サブ工程を示す断面図である。 図17の第3工程の第3サブ工程を示す断面図である。 図17の第4工程の第1サブ工程を示す断面図である。 図17の第4工程の第2サブ工程を示す断面図である。 本技術の一実施形態に係る面発光レーザ素子の製造方法の第3例を説明するためのフローチャートである。 図23の第3工程の第1サブ工程を示す断面図である。 図23の第3工程の第2サブ工程を示す断面図である。 図23の第3工程の第3サブ工程を示す断面図である。 図23の第4工程の第1サブ工程を示す断面図である。 図23の第4工程の第2サブ工程を示す断面図である。 本技術の一実施形態に係る面発光レーザ素子の作用を説明するための図である。 比較例の面発光レーザ素子の作用を説明するための図である。 本技術の一実施形態の変形例1に係る面発光レーザ素子の断面図である。 本技術の一実施形態の変形例2に係る面発光レーザ素子の断面図である。 本技術の一実施形態の変形例3に係る面発光レーザ素子の断面図である。 本技術の一実施形態の変形例4に係る面発光レーザ素子の断面図である。 本技術の一実施形態の変形例5に係る面発光レーザ素子の断面図である。 本技術の一実施形態の変形例6に係る面発光レーザ素子の断面図である。 本技術の一実施形態の変形例7に係る面発光レーザ素子の断面図(その1)である。 本技術の一実施形態の変形例7に係る面発光レーザ素子の断面図(その2)である。 本技術の一実施形態の変形例7に係る面発光レーザ素子の平面図である。 本技術の一実施形態の変形例8に係る面発光レーザ素子の平面図である。 本技術の一実施形態の変形例9に係る面発光レーザ素子の平面図である。 本技術の一実施形態に係る面発光レーザ素子の距離測定装置への適用例を示す図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 距離測定装置の設置位置の一例を示す説明図である。
 以下に添付図面を参照しながら、本技術の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。以下に説明する実施形態は、本技術の代表的な実施形態を示したものであり、これにより本技術の範囲が狭く解釈されることはない。本明細書において、本技術に係る面発光レーザ素子、電子機器及び面発光レーザ素子の製造方法の各々が複数の効果を奏することが記載される場合でも、本技術に係る面発光レーザ素子、電子機器及び面発光レーザ素子の製造方法の各々は、少なくとも1つの効果を奏すればよい。本明細書に記載された効果はあくまで例示であって限定されるものではなく、また他の効果があってもよい。
 また、以下の順序で説明を行う。
1.本技術の一実施形態に係る面発光レーザ素子の構成
2.本技術の一実施形態に係る面発光レーザ素子の動作
3.本技術の一実施形態に係る面発光レーザ素子の製造方法の第1例
4.本技術の一実施形態に係る面発光レーザ素子の製造方法の第2例
5.本技術の一実施形態に係る面発光レーザ素子の製造方法の第3例
6.本技術の一実施形態に係る面発光レーザ素子の効果及びその製造方法の効果
7.本技術の一実施形態の変形例1~9に係る面発光レーザ素子
8.本技術の一実施形態の他の変形例
9.電子機器への応用例
10.面発光レーザ素子を距離測定装置に適用した例
11.距離測定装置を移動体に搭載した例
1.<本技術の一実施形態に係る面発光レーザ素子の構成>
(全体構成)
 図1は、本技術の一実施形態に係る面発光レーザ素子の断面図(その1)である。図2は、本技術の一実施形態に係る面発光レーザ素子の断面図(その2)である。図3は、本技術の一実施形態に係る面発光レーザ素子の平面図である。
 以下、図1~図3に示すXYZ3次元直交座標系を適宜用いて説明する。
 図1は、図3のV-V線断面図(YZ断面図)である。図2は、図3のW-W線断面図(XZ断面図)である。
 一実施形態に係る面発光レーザ素子10は、一例として、図1に示すように、基板100と、該基板100の一面100a(以下「裏面」とも呼ぶ)に設けられたカソード電極111と、該一面100aのカソード電極側111とは反対側に設けられ、メサMを有する発光部LEPが複数配置された第1領域A1と、基板100の一面100aのカソード電極111側とは反対側における第1領域A1の周辺に配置された第2領域A2と、を備える。
 以下では、適宜、基板100の一面100a側を下側(-Z側)、各メサMの頂部側を上側(+Z側)として説明する。
 面発光レーザ素子10では、一例として、図3に示すように、平面視で、第1領域A1をY軸方向に挟む両側に第2領域A2(2点鎖線で囲まれた領域)が配置されている。
 第1領域A1には、一例として、メサMを有する複数の発光部LEPが2次元配置されている。各発光部LEPは、垂直共振器型面発光レーザ(VCSEL)である。
 ここでは、複数の発光部LEPは、一例としてX軸方向及びY軸方向のいずれにも等間隔でマトリクス状(正方格子状)に配置されているが、例えば千鳥状、ランダム状等の他のレイアウトで配置されてもよい。
 各メサMは、図1~図3を総合すると分かるように、一例として略円柱形状を有しているが、略円錐台形状、略楕円錐台形状、略多角錐台形状等の他の形状を有していてもよい。
 各メサMの上面は、略面一である。
 ここでは、第1領域A1においてX軸方向又はY軸方向に互いに隣接する2つのメサMのピッチ(該2つのメサMの中心間の間隔)は、例えば10μm以上50μm以下(好ましくは20μm程度)に設定されている。
 第2領域A2は、一例として、図1及び図3に示すように、各メサMの上面と上面が略面一の突条部PPを有する。突条部PPは、X軸方向に延びている。
 図1に戻り、第1及び第2領域A1、A2は、一例として、基板100を含む積層構造の面内方向の異なる位置に設けられている。当該積層構造では、一例として、基板100の一面100aのカソード電極111側(-Z側)とは反対側(+Z側)に第1多層膜反射鏡102、活性層105及び第2多層膜反射鏡107がこの順に積層されている。当該積層構造における積層方向は、Z軸方向に一致する。
 さらに、当該積層構造では、一例として、基板100と第1多層膜反射鏡102との間にスペーサ層101が配置されている。
 さらに、当該積層構造では、一例として、第1多層膜反射鏡102内に酸化狭窄層103が配置されている。
 さらに、当該積層構造では、一例として、第1及び第2多層膜反射鏡102、107の間において、活性層105をZ軸方向に挟む両側に第1及び第2クラッド層104、105が配置されている。第2クラッド層106は、第1クラッド層104の上側(+Z側)に位置する。
 さらに、当該積層構造では、一例として、第2多層膜反射鏡107の上面(+Z側の面)にコンタクト層108が配置されている。
 各発光部LEPは、一例として、第1多層膜反射鏡102、活性層105及び第2多層膜反射鏡107を含んで構成される。より詳細には、各発光部LEPは、一例として、第1多層膜反射鏡102、酸化狭窄層103、第1クラッド層104、活性層105、第2クラッド層106、第2多層膜反射鏡107及びコンタクト層108を含んで構成される。
 各発光部LEPのメサMは、一例として、第1多層膜反射鏡102の上部、活性層105及び第2多層膜反射鏡107を含んで構成される。より詳細には、各発光部LEPのメサMは、一例として、第1多層膜反射鏡102の上部、酸化狭窄層103、第1クラッド層104、活性層105、第2クラッド層106、第2多層膜反射鏡107及びコンタクト層108を含んで構成される。
 第2領域A2は、一例として、発光部LEPと同一の層構成を有する。第2領域A2の突条部PPは、一例として、メサMと概ね同様の層構成を有する。
 第1領域A1及び第2領域A2は、絶縁膜109で覆われている。絶縁膜109の各メサMの頂部を覆う部分には、コンタクトホールCHが設けられている。
 絶縁膜109上には、アノード電極110が設けられている。アノード電極110は、各メサMの頂部上に設けられたコンタクトホールCHを介してコンタクト層108に接触するように配置されている。
 詳述すると、アノード電極110は、各メサMのコンタクトホールCHの周辺部を介してコンタクト層108に接触している。各メサM上におけるアノード電極110の内側(コンタクトホールCHの中央部)が、該メサMを有する発光部LEPの出射口となっている。各発光部LEPの出射方向は、+Z方向である。
(基板)
 基板100は、一例として、第1導電型(例えばn型)のGaAs基板である。
(カソード電極)
 カソード電極111(n側電極)は、一例として、複数の発光部(ここでは全発光部)に対して共通に設けられた共通電極である。カソード電極111は、一例として、基板100の裏面の略全域にベタ状に設けられている。
 カソード電極111は、単層構造であってもよいし、積層構造であってもよい。
 カソード電極111は、例えばAu、Ag、Pd、Pt、Ni、Ti、V、W、Cr、Al、Cu、Zn、Sn及びInからなる群から選択された少なくとも1種類の金属(合金を含む)によって構成されている。
 カソード電極111が積層構造である場合は、例えばTi/Au、Ti/Al、Ti/Al/Au、Ti/Pt/Au、Ni/Au、Ni/Au/Pt、Ni/Pt、Pd/Pt、Ag/Pd等の材料で構成される。
 カソード電極111は、ドライバICを含むレーザドライバの陰極側(負極側)に電気的に接続されている。
(スペーサ層)
 スペーサ層101は、一例として、第1導電型(例えばn型)のAlGaAs系化合物半導体からなる。スペーサ層101は「バッファ層」とも呼ばれる。
(第1多層膜反射鏡)
 第1多層膜反射鏡102は、一例として、半導体多層膜反射鏡である。多層膜反射鏡は、分布型ブラッグ反射鏡(Distributed Bragg Reflector)とも呼ばれる。多層膜反射鏡(分布型ブラッグ反射鏡)の一種である半導体多層膜反射鏡は、光吸収が少なく、高反射率及び導電性を有する。第1多層膜反射鏡102は、下部DBRとも呼ばれる。
 第1の多層膜反射鏡102は、一例として、第1導電型の半導体多層膜反射鏡であり、屈折率が互いに異なる複数種類(例えば2種類)の半導体層(屈折率層)が発振波長λの1/4(λ/4)の光学厚さで交互に積層された構造を有する。第1の多層膜反射鏡102の各屈折率層は、第1導電型(例えばn型)のAlGaAs系化合物半導体からなる。
(酸化狭窄層)
 酸化狭窄層103は、一例として、AlAsからなる非酸化領域103aと、該非酸化領域103aの外周を取り囲む、AlAsの酸化物(例えばAl)からなる酸化領域103bとを有する。
(第1クラッド層)
 第1クラッド層104は、第1導電型(例えばn型)のAlGaAs系化合物半導体からなる。
(活性層)
 活性層105は、例えばAlGaAs系化合物半導体からなる障壁層及び量子井戸層を含む量子井戸構造を有する。この量子井戸構造は、単一量子井戸構造(QW構造)であってもよいし、多重量子井戸構造(MQW構造)であってもよい。
(第2クラッド層)
 第2クラッド層106は、第2導電型(例えばp型)のAlGaAs系化合物半導体からなる。
 活性層105と、第1及び第2クラッド層104、106とを含んで、共振器が構成される。
(第2多層膜反射鏡)
 第2多層膜反射鏡107は、一例として、第2導電型の半導体多層膜反射鏡であり、屈折率が互いに異なる複数種類(例えば2種類)の半導体層(屈折率層)が発振波長の1/4波長の光学厚さで交互に積層された構造を有する。第2の多層膜反射鏡107の各屈折率層は、第2導電型(例えばp型)のAlGaAs系化合物半導体からなる。
(コンタクト層)
 コンタクト層108は、第2導電型(例えばp型)のGaAs系化合物半導体からなる。
(絶縁膜)
 絶縁膜109は、例えばSiO、SiN、SiON等の誘電体からなる。
(アノード電極)
 アノード電極110(p側電極)は、図1及び図2に示すように、第2領域A2に隣接する少なくとも1つのメサMの頂部及び第2領域A2に隣接しない少なくとも2つのメサMの頂部に共通に設けられた電極である。ここでは、アノード電極110は、一例として、全発光部LEPのメサMに共通の共通電極である。なお、アノード電極110は、例えば、図3においてY軸方向に並ぶ複数のメサMから各々が成る、X軸方向に並ぶ複数のメサ列毎に共通に設けられてもよいし、該複数のメサ列のうち少なくとも2つのメサ列毎に共通に設けられてもよい。
 アノード電極110は、複数の発光部LEPのメサM(但し該メサMの頂部の中央部を除く)及び突条部PPの一部を覆うように設けられている。
 アノード電極110は、単層構造であってもよいし、積層構造であってもよい。
 アノード電極110は、例えばAu、Ag、Pd、Pt、Ni、Ti、V、W、Cr、Al、Cu、Zn、Sn及びInからなる群から選択された少なくとも1種類の金属(合金を含む)によって構成されている。
 アノード電極110が積層構造である場合は、例えばTi/Au、Ti/Al、Ti/Al/Au、Ti/Pt/Au、Ni/Au、Ni/Au/Pt、Ni/Pt、Pd/Pt、Ag/Pd等の材料で構成される。
 アノード電極110は、一例として、第2領域A2を覆う部分が、ドライバICを含むレーザドライバの陽極側(正極側)に電気的に接続されている。
(第1及び第2凹部)
 複数の発光部LEPのメサMのうち互いに隣接する2つのメサMにより第1凹部R1が規定されている(図1及び図2参照)。
 複数の発光部LEPのメサMのうち-Y側の第2領域A2に隣接するメサM(最も-Y側のメサM)と-Y側の第2領域A2とにより-Y側の第2凹部R2が規定されている(図1及び図3参照)。
 同様に、複数の発光部LEPのメサMのうち+Y側の第2領域A2に隣接するメサM(最も+Y側のメサM)と+Y側の第2領域A2とにより+Y側の第2凹部R2が規定されている(図3参照)。
 以下、第2領域A2に隣接するメサM(例えば最も-Y側のメサM及び最も+Y側のメサM)を「最外周メサ」と総称する。
 第1及び第2凹部R1、R2の各々は、一例として、すり鉢状(中央部に近づくほど深くなる形状)を有している。
 第1凹部R1の深さ寸法H1よりも、第2凹部R2の深さ寸法H2の方が大きい。
 第1凹部R1の深さ寸法H1は、該第1凹部R1の底面の最も基板100の一面100aに近い(最も-Z側の)部分(例えば中央部)と各メサMの上面(+Z側の面)までの距離である。
 第1凹部R1の底面は、基板100の他面100b(+Z側の面)の一面100a側(-Z側)とは反対側(+Z側)に位置している。
 詳述すると、第1凹部R1の底面は、第1多層膜反射鏡102内に位置している。
 第2凹部R2の深さ寸法H2は、該第2凹部R2の底面の最も基板100の一面100aに近い(最も-Z側の)部分(例えば中央部)と各メサMの上面(+Z側の面)までの距離である。
 第2凹部R2の底面は、基板100の他面100b(+Z側の面)の一面100a側(-Z側)とは反対側(+Z側)に位置している。
 詳述すると、第2凹部R2の底面は、第1多層膜反射鏡102内における第1凹部R1の底面よりも下側(-Z側)の位置に位置している。
 各メサMの上面及び各突条部PPの上面は、略面一である。すなわち、第1及び第2凹部R1、R2の開口端は、略面一である(同一平面上に位置する)。
 ここでは、第1領域A1において互いに隣接する2つのメサM及び第2領域A2を一緒に切断した断面(例えば図1に示すYZ断面)内において、第1凹部R1の幅よりも第2凹部R2の幅の方が大きい。なお、当該断面内において、第1及び第2凹部R1、R2の幅は同じであってもよいし、第1凹部R1の幅が第2凹部R2の幅よりも大きくてもよい。
 第1及び第2凹部R1、R2の幅は、一例として、数~数十μmとされている。
 ここで、図3に示すように、最外周メサ以外のメサMであって、最も+X側及び最も-X側のメサMを除くメサMは、+X側、-X側、+Y側及び-Y側のいずれの側にも隣接するメサMが存在する(四方に隣接するメサMが存在する)。この場合に、当該最外周メサ以外のメサMでは、アノード電極110から流入された電流は、隣接するメサMの影響により、高さ方向(Z軸方向)に沿ってカソード電極111へ向けて流れる。
 最外周メサ以外のメサMであって、最も+X側又は最も-X側のメサMは、+X側又は-X側に分離溝STが存在し、且つ、+Y側及び-Y側と+X側又-X側との3つの側に隣接するメサMが存在する(三方に隣接するメサMが存在し、一方に分離溝STが存在する)。この場合に、当該最外周メサ以外のメサMでは、アノード電極110から流入された電流は、高さ方向(Z軸方向)に沿ってカソード電極111へ向けて流れる。
 最外周メサは、隣接する第2領域A2側に隣接するメサMが存在しない。この場合に、最外周メサでは、アノード電極110から流入された電流は、高さ方向(Z軸方向)に沿う方向から面内方向(XY平面)に沿って第2領域A2側へ広がろうとするため、最外周メサ以外のメサMよりも電気抵抗が下がるおそれがある(図30参照)。この場合には、最外周メサに電流が集中し、最外周メサとそれ以外のメサMとの間での発光強度のばらつきが増大する懸念がある。
 そこで、本実施形態では、上述のように、第2凹部R2の深さ寸法を第1凹部R1の深さ寸法よりも大きくすることにより、第2領域A2側への電流の経路を狭くして、最外周メサに流れた電流が第2領域A2側へ広がることを抑制することとしている(図29参照)。これにより、最外周メサの電気抵抗が下がることが抑制されるので最外周メサに電流が集中することが抑制され、ひいては最外周メサとそれ以外のメサMとの間での発光強度のばらつきを低減することができる。より詳細には、最外周メサの発光強度がそれ以外のメサMの発光強度に比べて高くなることを抑制できる。
 なお、第1及び第2凹部R1、R2の深さ寸法の差(H2-H1)により、最外周メサと最外周メサ以外のメサMとの電気抵抗の差(抵抗差)の低減度を設定することができる。
 基本的には、H2-H1が大きいほど、該抵抗差の低減度が大きくなる。逆に言うと、H2-H1が小さいほど、該抵抗差の低減度が小さくなる。
 そこで、H2-H1を、該抵抗差が小さくなるような場合、例えばメサピッチが比較的大きい場合(例えば30~50μm)には比較的小さく設定することが好ましく、該抵抗差が大きくなるような場合、例えばメサピッチが比較的小さい場合(例えば10~30μm)には比較的大きく設定することが好ましい。
 そこで、第1及び第2凹部R1、R2の深さ寸法の差H2-H1が、互いに隣接する2つのメサMの中心間の間隔(メサピッチ)に基づいて設定されていてもよい。
 この場合、第1及び第2凹部R1、R2の深さ寸法の差H2-H1は、互いに隣接する2つのメサMの中心間の間隔が狭いほど大きく設定されることが好ましい。
(分離溝)
 各第2領域A2の第1領域A1側とは反対側の端部及び第1領域A1の+X側及び-X側の端部には、素子分離用の分離溝STが形成されている(図1及び図3参照)。
 分離溝STの底面は、一例として、第1多層膜反射鏡102内に位置している。
2.<本技術の一実施形態に係る面発光レーザ素子の動作>
 面発光レーザ素子10の各発光部LEPでは、レーザドライバの陽極側からアノード電極110、コンタクト層108、第2多層膜反射鏡107及び第2クラッド層106を介して活性層105に電流が注入されると、該活性層105が発光し、その光が第1及び第2多層膜反射鏡102、107間を活性層105で増幅され酸化狭窄層103で狭窄されつつ往復し、発振条件を満たしたときに、基板100の裏面側へレーザ光として出射される。活性層105に注入された電流は、第1クラッド層104、酸化狭窄層103及び第1多層膜反射鏡102及びカソード電極111を介してレーザドライバの陰極側へ流出される。
3.<本技術の一実施形態に係る面発光レーザ素子の製造方法の第1例>
 以下、一実施形態に係る面発光レーザ素子10の製造方法の第1例について、図4のフローチャート、図5~図16の断面図を参照して説明する。
 ここでは、一例として、半導体製造装置を用いた半導体製造方法により、基板100の基材である1枚のウェハ上に複数の面発光レーザ素子10を同時に生成する。次いで、一連一体の複数の面発光レーザ素子10をダイシングにより互いに分離して、チップ状の複数の面発光レーザ素子10を得る。
 最初のステップS1では、積層体Lを生成する。具体的には、化学気層成長(CVD)法、例えば有機金属気層成長(MOCVD)法を用いて、図5に示すように、基板100上にスペーサ層101と、AlAsからなる被選択酸化層103Sを含む第1多層膜反射鏡102と、第1クラッド層104と、活性層105と、第2クラッド層106と、第2多層膜反射鏡107と、コンタクト層108とをこの順に積層して積層体Lを生成する。
 次のステップS2では、最外周メサ以外のメサMとなるメサ構造MSを形成する。
 具体的には、先ず、積層体Lのコンタクト層108上に最外周メサ以外のメサMとなるメサ構造MSを形成するためのレジストパターンRP1を生成する(図6参照)。
 次いで、このレジストパターンRP1をマスクとして積層体Lをドライエッチング又はウェットエッチングによりエッチングして、メサ構造MSを形成する(図7参照)。ここでは、少なくとも被選択酸化層103Sの側面が露出するまで(第1凹部R1の底面となるエッチング底面が第1多層膜反射鏡102内における被選択酸化層103Sの下側に位置するまで)エッチングを行う。互いに隣接する2つのメサ構造MSが形成されることにより、深さ寸法H1の第1凹部R1が形成される。
 最後に、ドライエッチング又はウェットエッチングによりレジストパターンRP1をエッチングして除去する(図8参照)。
 次のステップS3では、最外周メサとなるメサ構造MS及び突条部PPとなる突条構造PSを形成する。
 具体的には、先ず、メサ構造MSが形成された積層体上に最外周メサとなるメサ構造MS及び突条部PPとなる突条構造PSを形成するためのレジストパターンRP2を形成する(図9参照)。
 次いで、このレジストパターンRP2をマスクとして該積層体をドライエッチング又はウェットエッチングによりエッチングして、最外周メサとなるメサ構造MS及び突条部PPとなる突条構造PSを形成する(図10参照)。ここでは、第2凹部R2の底面となるエッチング底面が第1多層膜反射鏡102内における第1凹部R1の底面よりも下側に位置するまでエッチングを行う。最外周メサとなるメサ構造MS及び突条部PPとなる突条構造PSが形成されることにより、深さ寸法H2の第2凹部R2及び分離溝STが形成される。
 最後に、ドライエッチング又はウェットエッチングによりレジストパターンRP2をエッチングして除去する(図11参照)
 次のステップS4では、酸化狭窄層103を形成する。具体的には、メサ構造MS(図11参照)の被選択酸化層103Sの周囲部を酸化して酸化狭窄層103を生成する(図12参照)。詳述すると、メサ構造MSを水蒸気雰囲気中にさらし、被選択酸化層103Sを側面から酸化(AlAs中のAlを選択酸化)して、非酸化領域103aが酸化領域103bに取り囲まれた酸化狭窄層103を形成する。この際、突条構造PSの被選択酸化層103Sも同様に酸化される。この結果、メサ構造MSがメサMとなって第1領域A1が形成されるとともに突条構造PSが突条部PPとなって第2領域A2が形成される。
 次のステップS5では、絶縁膜109を形成する(図13参照)。具体的には、第1及び第2領域A1、A2が形成された積層体上に蒸着法、スパッタ法等により絶縁膜109を形成する。
 次のステップS6では、コンタクトホールCHを形成する(図14参照)。具体的には、メサMの頂部を覆う絶縁膜109をドライエッチング又はウェットエッチングによりエッチングして除去する。この結果、コンタクトホールCHが形成され、メサMの頂部(コンタクト層108)が露出する。
 次のステップS7では、アノード電極110を形成する。具体的には、コンタクトホールCHが開口する絶縁膜109上にアノード電極110の電極材料を蒸着法やスパッタ法等により成膜し、例えばリフトオフ法によりパターンニングを行う(図15参照)。
 最後のステップS8では、カソード電極111を形成する(図16参照)。具体的には、基板100の裏面を研磨して薄膜化した後、蒸着法やスパッタ法により基板100の裏面の略全域にカソード電極111の電極材料をベタ状に成膜する。
 この後、アニール等の処理がなされ、1枚のウェハ上に複数の面発光レーザ素子10が形成される。その後、分離溝STに沿ってダイシングすることにより、複数の面発光レーザ素子10を素子毎に分離し、チップ状の複数の面発光レーザ素子10を得る。
4.<本技術の一実施形態に係る面発光レーザ素子の製造方法の第2例>
 以下、一実施形態に係る面発光レーザ素子10の製造方法の第2例について、図17のフローチャート、図5~図8、図11~図16、図18~図22の断面図を参照して説明する。
 ここでは、一例として、半導体製造装置を用いた半導体製造方法により、基板100の基材である1枚のウェハ上に複数の面発光レーザ素子10を同時に生成する。次いで、一連一体の複数の面発光レーザ素子10をダイシングにより互いに分離して、チップ状の複数の面発光レーザ素子10を得る。
 最初のステップS11では、積層体Lを生成する。具体的には、化学気層成長(CVD)法、例えば有機金属気層成長(MOCVD)法を用いて、図5に示すように、基板100上にスペーサ層101と、AlAsからなる被選択酸化層103Sを含む第1多層膜反射鏡102と、第1クラッド層104と、活性層105と、第2クラッド層106と、第2多層膜反射鏡107と、コンタクト層108とをこの順に積層して積層体Lを生成する。
 次のステップS12では、最外周メサ以外のメサMとなるメサ構造MSを形成する。
 具体的には、先ず、積層体Lのコンタクト層108上に最外周メサ以外のメサMとなるメサ構造MSを形成するためのレジストパターンRP1を生成する(図6参照)。
 次いで、このレジストパターンRP1をマスクとして積層体Lをドライエッチング又はウェットエッチングによりエッチングして、メサ構造MSを形成する(図7参照)。ここでは、少なくとも被選択酸化層103Sの側面が露出するまで(第1凹部R1の底面となるエッチング底面が第1多層膜反射鏡102内における被選択酸化層103Sの下側に位置するまで)エッチングを行う。互いに隣接する2つのメサ構造MSが形成されることにより、深さ寸法H1の第1凹部R1が形成される。
 最後に、ドライエッチング又はウェットエッチングによりレジストパターンRP1をエッチングして除去する(図8参照)。
 次のステップS13では、最外周メサとなるメサ構造MSを形成する。
 具体的には、先ず、メサ構造MSが形成された積層体上に最外周メサとなるメサ構造MSを形成するためのレジストパターンRP3を形成する(図18参照)。
 次いで、このレジストパターンRP3をマスクとして該積層体をドライエッチング又はウェットエッチングによりエッチングして、最外周メサとなるメサ構造MSを形成する(図19参照)。ここでは、第2凹部R2の底面となるエッチング底面が第1多層膜反射鏡102内における第1凹部R1の底面よりも下側に位置するまでエッチングを行う。最外周メサとなるメサ構造MSが形成されることにより、深さ寸法H2の第2凹部R2が形成される。
 最後に、ドライエッチング又はウェットエッチングによりレジストパターンRP3をエッチングして除去する(図20参照)。
 次のステップS14では、突条部PPとなる突条構造PSを形成する。
 具体的には、先ず、メサ構造MSが形成された積層体上に突条部PPとなる突条構造PSを形成するためのレジストパターンRP4を形成する(図21参照)。
 次いで、このレジストパターンRP4をマスクとして該積層体をドライエッチング又はウェットエッチングによりエッチングして、突条部PPとなる突条構造PSを形成する(図22参照)。ここでは、分離溝STの底面となるエッチング底面が第1多層膜反射鏡102内における被選択酸化層103Sの下側に位置するまでエッチングを行う。突条部PPとなる突条構造PSが形成されることにより、分離溝STが形成される。
 最後に、ドライエッチング又はウェットエッチングによりレジストパターンRP4をエッチングして除去する(図11参照)。
 次のステップS15では、酸化狭窄層103を形成する。具体的には、メサ構造MS(11参照)の被選択酸化層103Sの周囲部を酸化して酸化狭窄層103を生成する(図12参照)。詳述すると、メサ構造MSを水蒸気雰囲気中にさらし、被選択酸化層103Sを側面から酸化(AlAs中のAlを選択酸化)して、非酸化領域103aが酸化領域103bに取り囲まれた酸化狭窄層103を形成する。この際、突条構造PSの被選択酸化層103Sも同様に酸化される。この結果、メサ構造MSがメサMとなって第1領域A1が形成されるとともに突条構造PSが突条部PPとなって第2領域A2が形成される。
 次のステップS16では、絶縁膜109を形成する(図13参照)。具体的には、第1及び第2領域A1、A2が形成された積層体上に蒸着法、スパッタ法等により絶縁膜109を形成する。
 次のステップS17では、コンタクトホールCHを形成する(図14参照)。具体的には、メサMの頂部を覆う絶縁膜109をドライエッチング又はウェットエッチングによりエッチングして除去する。この結果、コンタクトホールCHが形成され、メサMの頂部(コンタクト層108)が露出する。
 次のステップS18では、アノード電極110を形成する。具体的には、コンタクトホールCHが開口する絶縁膜109上にアノード電極110の電極材料を蒸着法やスパッタ法等により成膜し、例えばリフトオフ法によりパターンニングを行う(図15参照)。
 最後のステップS19では、カソード電極111を形成する(図16参照)。具体的には、基板100の裏面を研磨して薄膜化した後、蒸着法やスパッタ法により基板100の裏面の略全域にカソード電極111の電極材料をベタ状に成膜する。
 この後、アニール等の処理がなされ、1枚のウェハ上に複数の面発光レーザ素子10が形成される。その後、分離溝STに沿ってダイシングすることにより、複数の面発光レーザ素子10を素子毎に分離し、チップ状の複数の面発光レーザ素子10を得る。
5.<本技術の一実施形態に係る面発光レーザ素子の製造方法の第3例>
 以下、一実施形態に係る面発光レーザ素子10の製造方法の第3例について、図23のフローチャート、図5~図8、図11~図16、図24~図28の断面図を参照して説明する。
 ここでは、一例として、半導体製造装置を用いた半導体製造方法により、基板100の基材である1枚のウェハ上に複数の面発光レーザ素子10を同時に生成する。次いで、一連一体の複数の面発光レーザ素子10をダイシングにより互いに分離して、チップ状の複数の面発光レーザ素子10を得る。
 最初のステップS21では、積層体Lを生成する。具体的には、化学気層成長(CVD)法、例えば有機金属気層成長(MOCVD)法を用いて、図5に示すように、基板100上にスペーサ層101と、AlAsからなる被選択酸化層103Sを含む第1多層膜反射鏡102と、第1クラッド層104と、活性層105と、第2クラッド層106と、第2多層膜反射鏡107と、コンタクト層108とをこの順に積層して積層体Lを生成する。
 次のステップS22では、最外周メサ以外のメサMとなるメサ構造MSを形成する。
 具体的には、先ず、積層体Lのコンタクト層108上に最外周メサ以外のメサMとなるメサ構造MSを形成するためのレジストパターンRP1を生成する(図6参照)。
 次いで、このレジストパターンRP1をマスクとして積層体Lをドライエッチング又はウェットエッチングによりエッチングして、メサ構造MSを形成する(図7参照)。ここでは、少なくとも被選択酸化層103Sの側面が露出するまで(第1凹部R1の底面となるエッチング底面が第1多層膜反射鏡102内における被選択酸化層103Sの下側に位置するまで)エッチングを行う。互いに隣接する2つのメサ構造MSが形成されることにより、深さ寸法H1の第1凹部R1が形成される。
 最後に、ドライエッチング又はウェットエッチングによりレジストパターンRP1をエッチングして除去する(図8参照)。
 次のステップS23では、分離溝STを形成する。
 具体的には、先ず、メサ構造MSが形成された積層体上に分離溝STを形成するためのレジストパターンRP5を形成する(図24参照)。
 次いで、このレジストパターンRP5をマスクとして該積層体をドライエッチング又はウェットエッチングによりエッチングして、分離溝STを形成する(図25参照)。ここでは、分離溝STの底面となるエッチング底面が第1多層膜反射鏡102内における被選択酸化層103Sの下側に位置するまでエッチングを行う。
 最後に、ドライエッチング又はウェットエッチングによりレジストパターンRP5をエッチングして除去する(図26参照)。
 次のステップS24では、最外周メサとなるメサ構造MS及び突条部PPとなる突条構造PSを形成する。
 具体的には、先ず、メサ構造MS及び分離溝STが形成された積層体上に最外周メサとなるメサ構造MS及び突条部PPとなる突条構造PSを形成するためのレジストパターンRP6を形成する(図27参照)。
 次いで、このレジストパターンRP6をマスクとして該積層体をドライエッチング又はウェットエッチングによりエッチングして、最外周メサとなるメサ構造MS及び突条部PPとなる突条構造PSを形成する(図28参照)。ここでは、第2凹部R2の底面となるエッチング底面が第1多層膜反射鏡102内における第1凹部R1の底面の下側に位置するまでエッチングを行う。
 最後に、ドライエッチング又はウェットエッチングによりレジストパターンRP6をエッチングして除去する(図11参照)。
 次のステップS25では、酸化狭窄層103を形成する。具体的には、メサ構造MS(図11参照)の被選択酸化層103Sの周囲部を酸化して酸化狭窄層103を生成する(図12参照)。詳述すると、メサ構造MSを水蒸気雰囲気中にさらし、被選択酸化層103Sを側面から酸化(AlAs中のAlを選択酸化)して、非酸化領域103aが酸化領域103bに取り囲まれた酸化狭窄層103を形成する。この際、突条構造PSの被選択酸化層103Sも同様に酸化される。この結果、メサ構造MSがメサMとなって第1領域A1が形成されるとともに突条構造PSが突条部PPとなって第2領域A2が形成される。
 次のステップS26では、絶縁膜109を形成する(図13参照)。具体的には、第1及び第2領域A1、A2が形成された積層体上に蒸着法、スパッタ法等により絶縁膜109を形成する。
 次のステップS27では、コンタクトホールCHを形成する(図14参照)。具体的には、メサMの頂部を覆う絶縁膜109をドライエッチング又はウェットエッチングによりエッチングして除去する。この結果、コンタクトホールCHが形成され、メサMの頂部(コンタクト層108)が露出する。
 次のステップS28では、アノード電極110を形成する。具体的には、コンタクトホールCHが開口する絶縁膜109上にアノード電極110の電極材料を蒸着法やスパッタ法等により成膜し、例えばリフトオフ法によりパターンニングを行う(図15参照)。
 最後のステップS29では、カソード電極111を形成する(図16参照)。具体的には、基板100の裏面を研磨して薄膜化した後、蒸着法やスパッタ法により基板100の裏面の略全域にカソード電極111の電極材料をベタ状に成膜する。
 この後、アニール等の処理がなされ、1枚のウェハ上に複数の面発光レーザ素子10が形成される。その後、分離溝STに沿ってダイシングすることにより、複数の面発光レーザ素子10を素子毎に分離し、チップ状の複数の面発光レーザ素子10を得る。
 以上説明した面発光レーザ素子10の製造方法の第1~第3例では、いずれも最外周メサ以外のメサMとなるメサ構造MSをエッチングにより形成した後に、突条部PPとなる突条構造PSや第2凹部R2や分離溝STをエッチングにより形成しているが、これに限られない。例えば最外周メサ以外のメサMとなるメサ構造MSと突条部PPとなる突条構造PSや第2凹部R2や分離溝STをエッチングにより同時に形成してもよい。但し、第1凹部R1、第2凹部R2、分離溝STをできるだけ(好ましくは全てを)別々のエッチングにより形成した方が各々のエッチング深さの精度(底面の位置精度)を高めることができる。
6.<本技術の一実施形態に係る面発光レーザ素子及びその製造方法の効果>
 以下に、本技術の一実施形態に係る面発光レーザ素子10及びその製造方法の効果について説明する。
 一実施形態に係る面発光レーザ素子10は、基板100と、該基板100の一面100a(裏面)に設けられたカソード電極111と、該一面100aのカソード電極111側とは反対側に設けられ、メサMを有する発光部LEPが複数配置された第1領域A1と、該一面100aのカソード電極111側とは反対側における第1領域A1の周辺に配置された第2領域A2と、を備え、複数の発光部LEPのメサMのうち互いに隣接する2つのメサMにより規定される第1凹部R1の深さ寸法H1よりも、複数の発光部LEPのメサMのうち第2領域A2に隣接するメサM(最外周メサ)と第2領域A2とにより規定される第2凹部R2の深さ寸法H2の方が大きい。
 この場合、最外周メサを流れた電流が第2領域A2側に広がることが抑制されるので最外周メサの電気抵抗が低下することが抑制され、ひいては最外周メサに電流が集中することが抑制される(図29参照)。
 結果として、面発光レーザ素子10によれば、第2領域A2に隣接する発光部LEPのと、該発光部LEP以外の発光部LEPとの間での発光強度のばらつきを低減することができる。
 一方、図30に示す比較例の面発光レーザ素子10Cでは、複数の発光部のメサMのうち互いに隣接する2つのメサMにより規定される凹部Rの深さ寸法Hと、複数の発光部のメサMのうち突条部PPに隣接するメサM(最外周メサ)と突条部PPとにより規定される凹部Rの深さ寸法Hが同一である。この場合には、最外周メサを流れた電流が突条部PP側に広がることを抑制できず、最外周メサの電気抵抗が低下し、最外周メサに電流が集中する。この結果、突条部PPに隣接するメサを有する発光部と、該発光部以外の発光部との間での発光強度のばらつきを低減することができない。これは、特許文献1に記載の面発光レーザ素子についても当てはまる。
 カソード電極111は、複数の発光部LEPに対して共通に設けられた共通電極である。この場合、各メサMを流れた電流は、カソード電極111側(基板100の裏面側)へ流れるため、面発光レーザ素子10の上記構成が特に有効となる。
 第2凹部R2の底面は、基板100に垂直な方向(Z軸方向)に関して、第1凹部R1の底面よりも基板100の一面100aに近い位置に位置している。これにより、上記発光強度のばらつきを確実に低減することができる。
 さらに、第1及び第2凹部R1、R2の開口端は、略面一である。これにより、1回の結晶成長(例えばエピタキシャル成長)によって生成された積層体Lをエッチングすることにより、第1及び第2凹部R1、R2を形成することができる。
 面発光レーザ素子10は、第2領域A2に隣接する少なくとも1つのメサMの頂部及び第2領域A2に隣接しない少なくとも2つのメサMの頂部に接触して設けられたアノード電極110を更に備える。この場合、各メサMを含む発光部LEPが同時に同一電圧で駆動されるが、その場合でも、上記発光強度のばらつきを抑制できる。
 互いに隣接する2つのメサMの中心間の間隔(メサピッチ)は、10μm以上50μm以下であることが好ましい。この場合、メサピッチが比較的小さいので、最外周メサとその他のメサとの間の抵抗差が比較的大きくなりやすく、面発光レーザ素子10の構成が特に有効となる。
 面発光レーザ素子10の製造方法(第1~第3例)は、基板100上に第1多層膜反射鏡102、活性層及び第2多層膜反射鏡をこの順に積層して積層体Lを生成する工程と、該積層体LをエッチングしてメサMを含む発光部LEPが複数配置された第1領域A1及び該第1領域A1の周辺の第2領域A2を形成する工程と、基板100の第1多層膜反射鏡102側の面とは反対側の面にカソード電極111を形成する工程と、を含み、第1及び第2領域A1、A2を形成する工程では、複数の発光部LEPのメサMのうち互いに隣接する2つのメサMにより規定される第1凹部R1の深さ寸法よりも、複数の発光部LEPのメサMのうち第2領域A2に隣接するメサMと第2領域A2とにより規定される第2凹部R2の深さ寸法の方が大きくなるように積層体をエッチングする。
 面発光レーザ素子10の製造方法によれば、第2領域A2に隣接する発光部LEPと、該発光部LEP以外の発光部LEPとの間での発光強度のばらつきを低減することができる面発光レーザ素子を製造できる。
 カソード電極111を形成する工程では、基板100の第1多層膜反射鏡102側の面とは反対側の面の、少なくとも第1及び第2領域A1、A2に対応する領域にカソード電極111を例えばベタ状に形成する。これにより、複数の発光部LEPに共通のカソード電極111を簡単に形成することができる。
7.<本技術の一実施形態の変形例1~9に係る面発光レーザ素子>
 以下、本技術の一実施形態の変形例1~9に係る面発光レーザ素子10-1~10-9について、図面を参照して説明する。
(変形例1に係る面発光レーザ素子)
 図31は、変形例1の面発光レーザ素子10-1の断面図(図3のV-V線断面図(図1)に対応する断面図)である。
 変形例1に係る面発光レーザ素子10-1では、図31に示すように、第1凹部R1の底面が第1多層膜反射鏡102内に位置し、且つ、第2凹部R2の底面が基板100内に位置する点を除いて、一実施形態の面発光レーザ素子10と同様の構成を有する。
 面発光レーザ素子10-1によれば、一実施形態の面発光レーザ素子10と概ね同様の効果を奏する。
 ここで、第1及び第2多層膜反射鏡102、107は、フリーキャリアロスを低減するために、基板100よりも比抵抗が高くなるように設計されている。よって、面発光レーザ素子10-1では、第1及び第2凹部R1、R2の深さ寸法の差(H2-H1)が同一の条件下において、一実施形態の面発光レーザ素子10に比べて、最外周メサと該最外周メサ以外のメサMとの間での電気抵抗の差(抵抗差)の低減度が小さい。但し、第2凹部R2の底面が基板100内に位置するので(第2凹部R2が深いので)、第2領域A2側へ電流が広がろうとするのを抑制する効果は高い。
 面発光レーザ素子10-1も、面発光レーザ素子10の製造方法と同様の製造方法により製造できる。
(変形例2に係る面発光レーザ素子)
 図32は、変形例2の面発光レーザ素子10-2の断面図(図3のV-V線断面図(図1)に対応する断面図)である。
 変形例2に係る面発光レーザ素子10-2では、図32に示すように、第1凹部R1の底面及び第2凹部R2の底面のいずれも基板100内に位置する点を除いて、一実施形態の面発光レーザ素子10と同様の構成を有する。
 面発光レーザ素子10-2によれば、一実施形態の面発光レーザ素子10と概ね同様の効果を奏するが、H2-H1が同一の条件下において、面発光レーザ素子10に比べて抵抗差の低減度が小さい。但し、第2凹部R2の底面が基板100内に位置するので(第2凹部R2が深いので)、第2領域A2側へ電流が広がろうとするのを抑制する効果は高い。
 面発光レーザ素子10-2も、面発光レーザ素子10の製造方法と同様の製造方法により製造できる。
(変形例3に係る面発光レーザ素子)
 図33は、変形例3の面発光レーザ素子10-3の断面図(図3のV-V線断面図(図1)に対応する断面図)である。
 変形例3に係る面発光レーザ素子10-3では、図33に示すように、第1凹部R1の底面及び第2凹部R2の底面のいずれも第2多層膜反射鏡107内に位置する点を除いて、一実施形態の面発光レーザ素子10と概ね同様の構成を有する。
 面発光レーザ素子10-3では、酸化狭窄層103が第2多層膜反射鏡107内に設けられている。
 面発光レーザ素子10―3では、各メサM及び突条部PPが活性層105を有していない。
 面発光レーザ素子10-3によれば、一実施形態の面発光レーザ素子10と概ね同様の効果を奏する。
 面発光レーザ素子10-3も、面発光レーザ素子10の製造方法と同様の製造方法により製造できる。
(変形例4に係る面発光レーザ素子)
 図34は、変形例4の面発光レーザ素子10-4の断面図(図3のV-V線断面図(図1)に対応する断面図)である。
 変形例4に係る面発光レーザ素子10-4では、図34に示すように、第1凹部R1の底面及び第2凹部R2の底面のいずれも第1多層膜反射鏡107内に位置している。
 面発光レーザ素子10-4では、H2-H1が、一実施形態の面発光レーザ素子10よりも小さくなっている。
 面発光レーザ素子10-4によれば、一実施形態の面発光レーザ素子10と概ね同様の効果を奏するが、一実施形態の面発光レーザ素子10に比べて抵抗差の低減度が低いので、最外周メサとそれ以外のメサMとの間の電気抵抗の差が小さくなる場合(例えばメサピッチが比較的大きい場合等)に特に有効である。
 面発光レーザ素子10-4も、面発光レーザ素子10の製造方法と同様の製造方法により製造できる。
(変形例5に係る面発光レーザ素子)
 図35は、変形例5の面発光レーザ素子10-5の断面図(図3のV-V線断面図(図1)に対応する断面図)である。
 変形例5に係る面発光レーザ素子10-5では、図35に示すように、H2-H1の大きさを除いて、変形例1の面発光レーザ素子10-1と同様の構成を有する。
 面発光レーザ素子10-5では、変形例1の面発光レーザ素子10-1に比べて、H2-H1が大きい。
 面発光レーザ素子10-5によれば、一実施形態の面発光レーザ素子10と概ね同様の効果を奏するが、変形例1の面発光レーザ素子10-1に比べて抵抗差の低減度が高いので、最外周メサとそれ以外のメサMとの間の電気抵抗の差が大きくなる場合(例えばメサピッチが比較的小さい場合等)に特に有効である。
 面発光レーザ素子10-5も、一実施形態の面発光レーザ素子10の製造方法と同様の製造方法により製造できる。
(変形例6に係る面発光レーザ素子)
 図36は、変形例6の面発光レーザ素子10-6の断面図(図3のV-V線断面図(図1)に対応する断面図)である。
 変形例6に係る面発光レーザ素子10-6では、図36に示すように、第1凹部R1の底面が第2多層膜反射鏡107内に位置し、第2凹部R2の底面が基板100内に位置する点を除いて、一実施形態の面発光レーザ素子10と同様の構成を有する。
 面発光レーザ素子10-6では、第2多層膜反射鏡107内に酸化狭窄層103が設けられていている。
 面発光レーザ素子10-6では、各メサMは、活性層105を有していない。
 面発光レーザ素子10-6によれば、一実施形態の面発光レーザ素子10と概ね同様の効果を奏するが、一実施形態の面発光レーザ素子10に比べてH2-H1が大きいので抵抗差の低減度が大きく、且つ、第2凹部R2の底面が基板100内に位置するので最外周メサから第2領域A2側への電流の広がりを抑制する効果が高い。
 すなわち、面発光レーザ素子10-6は、特に、メサピッチが小さく、最外周メサとそれ以外のメサMとの間での抵抗差が大きくなる場合に有効である。
 面発光レーザ素子10-6も、一実施形態の面発光レーザ素子10の製造方法と同様の製造方法により製造できる。
(変形例7に係る面発光レーザ素子)
 図37は、変形例7の面発光レーザ素子10-7の断面図(その1)である。図38は、変形例7の面発光レーザ素子10-7の断面図(その2)である。図39は、変形例7の面発光レーザ素子10-7の平面図である。図37は、図39のV7-V7線断面図(YZ断面図)である。図38は、図39のW7-W7線断面図(XZ断面図)である。
 変形例7に係る面発光レーザ素子10-7では、図37~図39に示すように、第2領域A2が、第2領域A2に隣接するメサM(第1領域A1の最外周メサ)に隣接するダミーメサDMを含み、第2領域A2に隣接するメサMとダミーメサDMとにより第2凹部R2が規定される点を除いて、一実施形態の面発光レーザ素子10と同様の構成を有する。
 ダミーメサDMは、コンタクトホールCH及びアノード電極110が設けられておらず、通電されない非発光部が有するメサである。
 詳述すると、面発光レーザ素子10-7では、各第2領域A2が、突条部PPと第1領域A1との間に設けられたダミーメサDMと、突条部PPとを含んで構成されている。
 面発光レーザ素子10-7では、第1領域A1の最外周メサと第2領域A2のダミーメサDMとにより第2凹部R2が規定されている。
 面発光レーザ素子10-7によれば、ダミーメサDMに隣接するメサM(第1領域A1の最外周メサ)に流れた電流がダミーメサDM側に広がることが抑制される。この結果、最外周メサの電気抵抗が下がることが抑制され、最外周メサに電流が集中することが抑制され、ひいては最外周メサと最外周メサ以外のメサMとの間の発光強度のばらつきを低減することができる。
 面発光レーザ素子10-7も、一実施形態の面発光レーザ素子10の製造方法と概ね同様の製造方法により製造できる。
(変形例8に係る面発光レーザ素子)
 図38は、変形例8の面発光レーザ素子10-8の平面図である。
 変形例8に係る面発光レーザ素子10-8では、図40に示すように、第2領域A2が、平面視枠状の形状(図40の二点鎖線で囲まれた領域)を有している。
 面発光レーザ素子10-8では、第2領域A2及び複数のメサMを一緒に切断したYZ断面及び第2領域A2及び複数のメサMを一緒に切断したXZ断面が同様となる。面発光レーザ素子10-8のYZ断面及びXZ断面は、一実施形態及び変形例1~6の面発光レーザ素子10、10-1~10-6のいずれかのYZ断面と同様である。
 面発光レーザ素子10-8によれば、一実施形態の面発光レーザ素子10と概ね同様の効果を奏する。
 面発光レーザ素子10-8も、一実施形態の面発光レーザ素子10の製造方法と同様の製造方法により製造できる。
(変形例9に係る面発光レーザ素子)
 図41は、変形例9の面発光レーザ素子10-9の平面図である。
 変形例9に係る面発光レーザ素子10-9では、図41に示すように、第2領域A2が、平面視枠状の形状(図41の二点鎖線で囲まれた領域)を有している。
 面発光レーザ素子10-9では、第2領域A2及び複数のメサMを一緒に切断したYZ断面及び第2領域A2及び複数のメサMを一緒に切断したXZ断面が同様となる。面発光レーザ素子10-9のYZ断面及びXZ断面は、変形例7の面発光レーザ素子10-7のYZ断面と同様である。
 面発光レーザ素子10-9によれば、変形例7の面発光レーザ素子10-7と概ね同様の効果を奏する。
 面発光レーザ素子10-9も、一実施形態の面発光レーザ素子10の製造方法と同様の製造方法により製造できる。
8.<本技術の一実施形態の他の変形例>
 本技術に係る面発光レーザ素子は、上記実施形態及び各変形例で説明した構成に限らず、適宜変更可能である。
 上記実施形態及び各変形例では、本技術の面発光レーザ素子として発光部がメサの頂部側から光を出射する表面出射型を例にとって説明したが、本技術の面発光レーザ素子は発光部が基板の裏面側へ光を出射する裏面出射型にも適用可能である。この場合、基板の裏面に設けられた電極の、各発光部に対応する箇所に出射口となる開口を設ける必要がある。
 上記実施形態及び各変形例では、メサMの頂部側にアノード電極が設けられ、且つ、基板100の裏面側にカソード電極が設けられているが、メサMの頂部側にカソード電極を設け、且つ、基板100の裏面側にアノード電極を設けてもよい。この場合には、導電型(p型及びn型)も入れ替える必要がある。
 上記実施形態及び各変形例では、第1及び第2の多層膜反射鏡102、107のいずれも半導体多層膜反射鏡であるが、これに限らない。
 例えば、第1の多層膜反射鏡102が半導体多層膜反射鏡であり、且つ、第2の多層膜反射鏡107が誘電体多層膜反射鏡であってもよい。誘電体多層膜反射鏡も、分布型ブラッグ反射鏡の一種である。
 例えば、第1の多層膜反射鏡102が誘電体多層膜反射鏡であり、且つ、第2の多層膜反射鏡107が半導体多層膜反射鏡であってもよい。
 例えば、第1及び第2の多層膜反射鏡102、107のいずれも誘電体多層膜反射鏡であってもよい。
 上記実施形態及び各変形例の面発光レーザ素子において、スペーサ層101は、必ずしも設けられていなくてもよい。
 上記実施形態及び各変形例の面発光レーザ素子において、酸化狭窄層103は、第1及び第2クラッド層104、106のいずれかの内部に設けられてもよい。
 上記実施形態及び各変形例の面発光レーザ素子において、コンタクト層108は、必ずしも設けられていなくてもよい。
 上記実施形態及び各変形例の面発光レーザ素子の構成の一部を相互に矛盾しない範囲内で組み合わせてもよい。例えば、変形例10の面発光レーザ素子のように、第1凹部R1の底面が第2多層膜反射鏡107内に位置し、且つ、第2凹部R2の底面が第1多層膜反射鏡102内に位置していてもよい。
 以上説明した実施形態及び各変形例において、面発光レーザ素子を構成する各構成要素の材質、導電型、厚み、幅、長さ、形状、大きさ、配置等は、面発光レーザ素子として機能する範囲内で適宜変更可能である。
9.電子機器への応用例
 本開示に係る技術(本技術)は、様々な製品(電子機器)へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される素子として実現されてもよい。
 本技術に係る面発光レーザ素子は、例えば、レーザ光により画像を形成又は表示する機器(例えばレーザプリンタ、レーザ複写機、プロジェクタ、ヘッドマウントディスプレイ、ヘッドアップディスプレイ等)の光源としても応用可能である。
10.<面発光レーザ素子を距離測定装置に適用した例>
 以下に、上記実施形態及び各変形例に係る面発光レーザ素子の適用例について説明する。
 図42は、本技術に係る電子機器の一例としての、面発光レーザ素子10を備えた距離測定装置1000の概略構成の一例を表したものである。距離測定装置1000は、TOF(Time Of Flight)方式により被検体Sまでの距離を測定するものである。距離測定装置1000は、光源として面発光レーザ素子10を備えている。距離測定装置1000は、例えば、面発光レーザ素子10、受光装置125、レンズ115、135、信号処理部140、制御部150、表示部160および記憶部170を備えている。
 受光装置125は、被検体Sで反射された光を検出する。レンズ115は、面発光レーザ素子10から出射された光を平行光化するためのレンズであり、コリメートレンズである。レンズ135は、被検体Sで反射された光を集光し、受光装置125に導くためのレンズであり、集光レンズである。
信号処理部140は、受光装置125から入力された信号と、制御部150から入力された参照信号との差分に対応する信号を生成するための回路である。制御部150は、例えば、Time to Digital Converter (TDC)を含んで構成されている。参照信号は、制御部150から入力される信号であってもよいし、面発光レーザ素子10の出力を直接検出する検出部の出力信号であってもよい。制御部150は、例えば、面発光レーザ素子10、受光装置125、信号処理部140、表示部160および記憶部170を制御するプロセッサである。制御部150は、信号処理部140で生成された信号に基づいて、被検体Sまでの距離を計測する回路である。制御部150は、被検体Sまでの距離についての情報を表示するための映像信号を生成し、表示部160に出力する。表示部160は、制御部150から入力された映像信号に基づいて、被検体Sまでの距離についての情報を表示する。制御部150は、被検体Sまでの距離についての情報を記憶部170に格納する。
 本適用例において、面発光レーザ素子10に代えて、上記面発光レーザ素子10-1、10-2、10-3、10-4、10-5、10-6、10-7、10-8、10-9のいずれかを距離測定装置1000に適用することもできる。
11.<距離測定装置を移動体に搭載した例>
 図43は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図43に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、距離測定装置12031が接続される。距離測定装置12031には、上述の距離測定装置1000が含まれる。車外情報検出ユニット12030は、距離測定装置12031に車外の物体(被検体S)との距離を計測させ、それにより得られた距離データを取得する。車外情報検出ユニット12030は、取得した距離データに基づいて、人、車、障害物、標識等の物体検出処理を行ってもよい。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(AdvancedDriverAssistanceSystem)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図43の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図44は、距離測定装置12031の設置位置の例を示す図である。
 図44では、車両12100は、距離測定装置12031として、距離測定装置12101,12102,12103,12104,12105を有する。
 距離測定装置12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる距離測定装置12101及び車室内のフロントガラスの上部に備えられる距離測定装置12105は、主として車両12100の前方のデータを取得する。サイドミラーに備えられる距離測定装置12102,12103は、主として車両12100の側方のデータを取得する。リアバンパ又はバックドアに備えられる距離測定装置12104は、主として車両12100の後方のデータを取得する。距離測定装置12101及び12105で取得される前方のデータは、主として先行車両又は、歩行者、障害物、信号機、交通標識等の検出に用いられる。
 なお、図44には、距離測定装置12101ないし12104の検出範囲の一例が示されている。検出範囲12111は、フロントノーズに設けられた距離測定装置12101の検出範囲を示し、検出範囲12112,12113は、それぞれサイドミラーに設けられた距離測定装置12102,12103の検出範囲を示し、検出範囲12114は、リアバンパ又はバックドアに設けられた距離測定装置12104の検出範囲を示す。
 例えば、マイクロコンピュータ12051は、距離測定装置12101ないし12104から得られた距離データを基に、検出範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、距離測定装置12101ないし12104から得られた距離データを元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 以上、本開示に係る技術が適用され得る移動体制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、距離測定装置12031に適用され得る。
 また、本技術は、以下のような構成をとることもできる。
(1)基板と、
 前記基板の一面に設けられた電極と、
 前記一面の前記電極側とは反対側に設けられ、メサを有する発光部が複数配置された第1領域と、
 前記一面の前記電極側とは反対側における前記第1領域の周辺に配置された第2領域と、
 を備え、
 前記複数の発光部のメサのうち互いに隣接する2つのメサにより規定される第1凹部の深さ寸法よりも、前記複数の発光部のメサのうち前記第2領域に隣接するメサと前記第2領域とにより規定される第2凹部の深さ寸法の方が大きい、面発光レーザ素子。
(2)前記電極は、前記複数の発光部に対して共通に設けられた共通電極である、(1)に記載の面発光レーザ素子。
(3)前記第2領域は、前記第2領域に隣接するメサに隣接するダミーメサを含み、前記第2領域に隣接するメサと前記ダミーメサとにより前記第2凹部が規定される、(1)又は(2)に記載の面発光レーザ素子。
(4)前記第2凹部の底面は、前記基板に垂直な方向に関して、前記第1凹部の底面よりも前記一面に近い位置に位置する、(1)~(3)のいずれか1つに記載の面発光レーザ素子。
(5)前記第1及び第2凹部の開口端は、略面一である、(1)~(4)のいずれか1つに記載の面発光レーザ素子。
(6)前記第1及び第2凹部の底面は、いずれも前記基板の他面の前記一面側とは反対側に位置する、(1)~(5)のいずれか1つに記載の面発光レーザ素子。
(7)前記第1凹部の底面は、前記基板の他面の前記一面側とは反対側に位置し、前記第2凹部の底面は、前記基板内に位置する、(1)~(6)のいずれか1つに記載の面発光レーザ素子。
(8)前記第1及び第2凹部の底面は、いずれも前記基板内に位置する、(1)~(7)のいずれか1つに記載の面発光レーザ素子。
(9)前記第1及び第2領域は、前記基板を含む積層構造の面内方向の異なる位置に設けられ、前記積層構造では、前記一面の前記電極側とは反対側に第1多層膜反射鏡、活性層及び第2多層膜反射鏡がこの順に積層されている、(1)~(8)のいずれか1つに記載の面発光レーザ素子。
(10)前記第1及び第2凹部の底面は、いずれも前記第1多層膜反射鏡内に位置する、(9)に記載の面発光レーザ素子。
(11)前記第1凹部の底面は、前記第2多層膜反射鏡内に位置し、前記第2凹部の底面は、前記第1多層膜反射鏡内に位置する、(9)に記載の面発光レーザ素子。
(12)前記第1凹部の底面は、前記第1多層膜反射鏡内に位置し、前記第2凹部の底面は、前記基板内に位置する、(9)に記載の面発光レーザ素子。
(13)前記第1凹部の底面は、前記第2多層膜反射鏡内に位置し、前記第2凹部の底面は、前記基板内に位置する、(9)に記載の面発光レーザ素子。
(14)前記第1及び第2凹部の底面は、いずれも前記第2多層膜反射鏡内に位置する、(9)に記載の面発光レーザ素子。
(15)前記互いに隣接する2つのメサ及び前記第2領域を一緒に切断した断面内において、前記第1凹部の幅よりも前記第2凹部の幅の方が大きい、(1)~(14)のいずれか1つに記載の面発光レーザ素子。
(16)前記第2領域に隣接する少なくとも1つの前記メサの頂部及び前記第2領域に隣接しない少なくとも2つの前記メサの頂部に共通の別の電極が設けられる、(1)~(15)のいずれか1つに記載の面発光レーザ素子。
(17)前記互いに隣接する2つのメサの中心間の間隔は、10μm以上50μm以下である、(1)~(16)のいずれか1つに面発光レーザ素子。
(18)前記第1及び第2凹部の深さ寸法の差が、前記互いに隣接する2つのメサの中心間の間隔に基づいて設定されている、(1)~(17)のいずれか1つに記載の面発光レーザ素子。
(19)前記第1及び第2凹部の深さ寸法の差は、前記互いに隣接する2つのメサの中心間の間隔が狭いほど大きく設定される、(1)~(18)のいずれか1つに記載の面発光レーザ素子。
(20)(1)~(19)のいずれか1つに記載の面発光レーザ素子を備える、電子機器。
(21)基板上に第1多層膜反射鏡、活性層及び第2多層膜反射鏡をこの順に積層して積層体を生成する工程と、
 前記積層体をエッチングしてメサを含む発光部が複数配置された第1領域及び該第1領域の周辺の第2領域を形成する工程と、
 前記基板の前記第1多層膜反射鏡側の面とは反対側の面に電極を形成する工程と、
 を含み、
 前記第1及び第2領域を形成する工程では、前記複数の発光部のメサのうち互いに隣接する2つのメサにより規定される第1凹部の深さ寸法よりも、前記複数の発光部のメサのうち前記第2領域に隣接するメサと前記第2領域とにより規定される第2凹部の深さ寸法の方が大きくなるように前記積層体をエッチングする、面発光レーザ素子の製造方法。
(22)前記電極を形成する工程では、前記基板の前記第1多層膜反射鏡側の面とは反対側の面の、少なくとも前記第1及び第2領域に対応する領域に前記電極を形成する、請求項21に記載の面発光レーザ素子の製造方法。
(23)前記第1及び第2領域を形成する工程では、前記積層体をエッチングして前記第1及び第2領域の一方を形成した後、前記一方が形成された前記積層体をエッチングして前記第1及び第2領域の他方を形成する、(21)又は(22)に記載の面発光レーザ素子の製造方法。
 10、10-1~10-9:面発光レーザ素子、100:基板、100a:基板の一面、100b:基板の他面、102:第1多層膜反射鏡、103:酸化狭窄層、105:活性層、107:第2多層膜反射鏡、110:アノード電極(別の電極)、111:カソード電極(電極)、1000:距離測定装置(電子機器)、LEP:発光部、A1:第1領域、A2:第2領域、M:メサ、DM:ダミーメサ、R1:第1凹部、R2:第2凹部、H1:第1凹部の深さ寸法、H2:第2凹部の深さ寸法。

Claims (20)

  1.  基板と、
     前記基板の一面に設けられた電極と、
     前記一面の前記電極側とは反対側に設けられ、メサを有する発光部が複数配置された第1領域と、
     前記一面の前記電極側とは反対側における前記第1領域の周辺に配置された第2領域と、
     を備え、
     前記複数の発光部のメサのうち互いに隣接する2つのメサにより規定される第1凹部の深さ寸法よりも、前記複数の発光部のメサのうち前記第2領域に隣接するメサと前記第2領域とにより規定される第2凹部の深さ寸法の方が大きい、面発光レーザ素子。
  2.  前記電極は、前記複数の発光部に対して共通に設けられた共通電極である、請求項1に記載の面発光レーザ素子。
  3.  前記第2領域は、前記第2領域に隣接するメサに隣接するダミーメサを含み、
     前記第2領域に隣接するメサと前記ダミーメサとにより前記第2凹部が規定される、請求項1に記載の面発光レーザ素子。
  4.  前記第2凹部の底面は、前記基板に垂直な方向に関して、前記第1凹部の底面よりも前記一面に近い位置に位置する、請求項1に記載の面発光レーザ素子。
  5.  前記第1及び第2凹部の開口端は、略面一である、請求項1に記載の面発光レーザ素子。
  6.  前記第1及び第2凹部の底面は、いずれも前記基板の他面の前記一面側とは反対側に位置する、請求項1に記載の面発光レーザ素子。
  7.  前記第1凹部の底面は、前記基板の他面の前記一面側とは反対側に位置し、
     前記第2凹部の底面は、前記基板内に位置する、請求項1に記載の面発光レーザ素子。
  8.  前記第1及び第2凹部の底面は、いずれも前記基板内に位置する、請求項1に記載の面発光レーザ素子。
  9.  前記第1及び第2領域は、前記基板を含む積層構造の面内方向の異なる位置に設けられ、
     前記積層構造では、前記一面の前記電極側とは反対側に第1多層膜反射鏡、活性層及び第2多層膜反射鏡がこの順に積層されている、請求項1に記載の面発光レーザ素子。
  10.  前記第1及び第2凹部の底面は、いずれも前記第1多層膜反射鏡内に位置する、請求項9に記載の面発光レーザ素子。
  11.  前記第1凹部の底面は、前記第2多層膜反射鏡内に位置し、
     前記第2凹部の底面は、前記第1多層膜反射鏡内に位置する、請求項9に記載の面発光レーザ素子。
  12.  前記第1凹部の底面は、前記第1多層膜反射鏡内に位置し、
     前記第2凹部の底面は、前記基板内に位置する、請求項9に記載の面発光レーザ素子。
  13.  前記第1凹部の底面は、前記第2多層膜反射鏡内に位置し、
     前記第2凹部の底面は、前記基板内に位置する、請求項9に記載の面発光レーザ素子。
  14.  前記第1及び第2凹部の底面は、いずれも前記第2多層膜反射鏡内に位置する、請求項9に記載の面発光レーザ素子。
  15.  前記互いに隣接する2つのメサ及び前記第2領域を一緒に切断した断面内において、前記第1凹部の幅よりも前記第2凹部の幅の方が大きい、請求項1に記載の面発光レーザ素子。
  16.  前記第2領域に隣接する少なくとも1つの前記メサの頂部及び前記第2領域に隣接しない少なくとも2つの前記メサの頂部に接触するように設けられた別の電極を更に備える、請求項1に記載の面発光レーザ素子。
  17.  前記互いに隣接する2つのメサの中心間の間隔は、10μm以上50μm以下である、請求項1に面発光レーザ素子。
  18.  請求項1に記載の面発光レーザ素子を備える、電子機器。
  19.  基板上に第1多層膜反射鏡、活性層及び第2多層膜反射鏡をこの順に積層して積層体を生成する工程と、
     前記積層体をエッチングしてメサを含む発光部が複数配置された第1領域及び該第1領域の周辺の第2領域を形成する工程と、
     前記基板の前記第1多層膜反射鏡側の面とは反対側の面に電極を形成する工程と、
     を含み、
     前記第1及び第2領域を形成する工程では、前記複数の発光部のメサのうち互いに隣接する2つのメサにより規定される第1凹部の深さ寸法よりも、前記複数の発光部のメサのうち前記第2領域に隣接するメサと前記第2領域とにより規定される第2凹部の深さ寸法の方が大きくなるように前記積層体をエッチングする、面発光レーザ素子の製造方法。
  20.  前記電極を形成する工程では、前記基板の前記第1多層膜反射鏡側の面とは反対側の面の、少なくとも前記第1及び第2領域に対応する領域に前記電極を形成する、請求項19に記載の面発光レーザ素子の製造方法。
PCT/JP2022/003911 2021-05-14 2022-02-02 面発光レーザ素子、電子機器及び面発光レーザ素子の製造方法 WO2022239322A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22807029.8A EP4336685A1 (en) 2021-05-14 2022-02-02 Surface emitting laser element, electronic device, and method for producing surface emitting laser element
US18/558,246 US20240235167A1 (en) 2021-05-14 2022-02-02 Surface emitting laser element, electronic device, and method for manufacturing surface emitting laser element
CN202280033709.4A CN117280554A (zh) 2021-05-14 2022-02-02 表面发射激光元件、电子设备及表面发射激光元件的制造方法
JP2023520775A JPWO2022239322A1 (ja) 2021-05-14 2022-02-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021082519 2021-05-14
JP2021-082519 2021-05-14

Publications (1)

Publication Number Publication Date
WO2022239322A1 true WO2022239322A1 (ja) 2022-11-17

Family

ID=84029047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003911 WO2022239322A1 (ja) 2021-05-14 2022-02-02 面発光レーザ素子、電子機器及び面発光レーザ素子の製造方法

Country Status (5)

Country Link
US (1) US20240235167A1 (ja)
EP (1) EP4336685A1 (ja)
JP (1) JPWO2022239322A1 (ja)
CN (1) CN117280554A (ja)
WO (1) WO2022239322A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024185305A1 (ja) * 2023-03-09 2024-09-12 ソニーセミコンダクタソリューションズ株式会社 面発光レーザアレイ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030138017A1 (en) * 1999-09-20 2003-07-24 Hsing-Chung Lee Index guided vertical cavity surface emitting lasers
JP2009164466A (ja) * 2008-01-09 2009-07-23 Sony Corp 面発光型半導体レーザおよびその製造方法
JP2013065692A (ja) * 2011-09-16 2013-04-11 Fuji Xerox Co Ltd 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置
JP2014132692A (ja) 2008-11-20 2014-07-17 Ricoh Co Ltd 製造方法
JP2016021516A (ja) * 2014-07-15 2016-02-04 株式会社リコー 半導体装置、面発光レーザ、面発光レーザアレイ、光走査装置及び画像形成装置。
JP2017168715A (ja) * 2016-03-17 2017-09-21 株式会社リコー 面発光レーザアレイ、及びレーザ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030138017A1 (en) * 1999-09-20 2003-07-24 Hsing-Chung Lee Index guided vertical cavity surface emitting lasers
JP2009164466A (ja) * 2008-01-09 2009-07-23 Sony Corp 面発光型半導体レーザおよびその製造方法
JP2014132692A (ja) 2008-11-20 2014-07-17 Ricoh Co Ltd 製造方法
JP2013065692A (ja) * 2011-09-16 2013-04-11 Fuji Xerox Co Ltd 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置
JP2016021516A (ja) * 2014-07-15 2016-02-04 株式会社リコー 半導体装置、面発光レーザ、面発光レーザアレイ、光走査装置及び画像形成装置。
JP2017168715A (ja) * 2016-03-17 2017-09-21 株式会社リコー 面発光レーザアレイ、及びレーザ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024185305A1 (ja) * 2023-03-09 2024-09-12 ソニーセミコンダクタソリューションズ株式会社 面発光レーザアレイ

Also Published As

Publication number Publication date
US20240235167A1 (en) 2024-07-11
CN117280554A (zh) 2023-12-22
JPWO2022239322A1 (ja) 2022-11-17
EP4336685A1 (en) 2024-03-13

Similar Documents

Publication Publication Date Title
WO2022158301A1 (ja) 面発光レーザ、電子機器及び面発光レーザの製造方法
WO2022239322A1 (ja) 面発光レーザ素子、電子機器及び面発光レーザ素子の製造方法
JP7531511B2 (ja) 面発光レーザ装置
US20230283048A1 (en) Surface emitting laser apparatus, electronic device, and method for manufacturing surface emitting laser apparatus
WO2022054411A1 (ja) 面発光レーザ装置、電子機器及び面発光レーザ装置の製造方法
WO2021220879A1 (ja) 発光素子アレイ及び発光素子アレイの製造方法
WO2023067890A1 (ja) 面発光レーザ及び面発光レーザの製造方法
WO2022201772A1 (ja) 面発光レーザ、光源装置、電子機器及び面発光レーザの製造方法
WO2023042420A1 (ja) 面発光レーザ素子及び光源装置
WO2023162488A1 (ja) 面発光レーザ、光源装置及び測距装置
WO2022158312A1 (ja) 面発光レーザ
WO2022201813A1 (ja) 半導体レーザ、電子機器及び半導体レーザの製造方法
WO2023037581A1 (ja) 面発光レーザ
EP4266356A1 (en) Surface-emitting laser device
WO2023132139A1 (ja) 面発光レーザ
WO2023233818A1 (ja) 面発光素子
WO2023149087A1 (ja) 面発光レーザ、面発光レーザアレイ及び光源装置
WO2023233850A1 (ja) 面発光素子
WO2023181658A1 (ja) 面発光レーザ、光源装置及び電子機器
WO2023171148A1 (ja) 面発光レーザ、面発光レーザアレイ及び面発光レーザの製造方法
WO2024014140A1 (ja) 面発光レーザ及び面発光レーザの製造方法
WO2023162463A1 (ja) 発光デバイスおよびVoS(VCSEL on Silicon)デバイス
WO2023238621A1 (ja) 面発光レーザ
WO2022176483A1 (ja) 面発光素子、光学特性検知方法及び光学特性調整方法
WO2023145148A1 (ja) 面発光レーザ及び面発光レーザの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807029

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023520775

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18558246

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280033709.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022807029

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022807029

Country of ref document: EP

Effective date: 20231205

NENP Non-entry into the national phase

Ref country code: DE