WO2022239322A1 - 面発光レーザ素子、電子機器及び面発光レーザ素子の製造方法 - Google Patents
面発光レーザ素子、電子機器及び面発光レーザ素子の製造方法 Download PDFInfo
- Publication number
- WO2022239322A1 WO2022239322A1 PCT/JP2022/003911 JP2022003911W WO2022239322A1 WO 2022239322 A1 WO2022239322 A1 WO 2022239322A1 JP 2022003911 W JP2022003911 W JP 2022003911W WO 2022239322 A1 WO2022239322 A1 WO 2022239322A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- emitting laser
- mesa
- region
- recess
- laser element
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 52
- 239000000758 substrate Substances 0.000 claims abstract description 86
- 238000000034 method Methods 0.000 claims description 35
- 238000005530 etching Methods 0.000 claims description 20
- 238000005520 cutting process Methods 0.000 claims description 8
- 238000010030 laminating Methods 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 abstract description 57
- 239000010410 layer Substances 0.000 description 127
- 239000010408 film Substances 0.000 description 59
- 230000004048 modification Effects 0.000 description 55
- 238000012986 modification Methods 0.000 description 55
- 238000001514 detection method Methods 0.000 description 29
- 239000004065 semiconductor Substances 0.000 description 22
- 238000001312 dry etching Methods 0.000 description 19
- 238000000926 separation method Methods 0.000 description 19
- 238000001039 wet etching Methods 0.000 description 19
- 230000000694 effects Effects 0.000 description 18
- 238000005253 cladding Methods 0.000 description 11
- 229910052737 gold Inorganic materials 0.000 description 10
- 238000005229 chemical vapour deposition Methods 0.000 description 9
- 230000002093 peripheral effect Effects 0.000 description 9
- 238000004544 sputter deposition Methods 0.000 description 9
- 238000007740 vapor deposition Methods 0.000 description 9
- 229910052759 nickel Inorganic materials 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 125000006850 spacer group Chemical group 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 6
- 239000007772 electrode material Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- 238000003892 spreading Methods 0.000 description 6
- 230000007480 spreading Effects 0.000 description 6
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910004541 SiN Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/42—Arrays of surface emitting lasers
- H01S5/423—Arrays of surface emitting lasers having a vertical cavity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4814—Constructional features, e.g. arrangements of optical elements of transmitters alone
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/042—Electrical excitation ; Circuits therefor
- H01S5/0425—Electrodes, e.g. characterised by the structure
- H01S5/04256—Electrodes, e.g. characterised by the structure characterised by the configuration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/2054—Methods of obtaining the confinement
- H01S5/2081—Methods of obtaining the confinement using special etching techniques
- H01S5/2086—Methods of obtaining the confinement using special etching techniques lateral etch control, e.g. mask induced
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
- G01S17/931—Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S2301/00—Functional characteristics
- H01S2301/17—Semiconductor lasers comprising special layers
- H01S2301/176—Specific passivation layers on surfaces other than the emission facet
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/0206—Substrates, e.g. growth, shape, material, removal or bonding
- H01S5/0207—Substrates having a special shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/026—Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18308—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
- H01S5/18311—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
- H01S5/18313—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation by oxidizing at least one of the DBR layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18344—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
- H01S5/18347—Mesa comprising active layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34313—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
Definitions
- a technology according to the present disclosure (hereinafter also referred to as "this technology”) relates to a surface emitting laser element, an electronic device, and a method for manufacturing a surface emitting laser element.
- Patent Document 1 a surface-emitting laser device that includes a first region in which a plurality of light-emitting portions having mesas are arranged and a second region around the first region.
- the present technology provides a surface-emitting laser element capable of reducing variations in emission intensity between a light-emitting portion adjacent to the second region and a light-emitting portion other than the light-emitting portion.
- This technology consists of a substrate, an electrode provided on one surface of the substrate; a first region provided on the side opposite to the electrode side of the one surface, in which a plurality of light-emitting portions having mesas are arranged; a second region arranged around the first region on the side opposite to the electrode side of the one surface; with The mesa adjacent to the second region among the plurality of mesas of the light emitting portion and the second mesa adjacent to the second region are larger than the depth dimension of the first recess defined by two mesas adjacent to each other among the mesas of the plurality of light emitting portions.
- a surface emitting laser device in which the depth dimension of a second recess defined by a region is larger.
- the electrode may be a common electrode that is commonly provided for the plurality of light emitting units.
- the second region may include a dummy mesa adjacent to the mesa adjacent to the second region, and the second recess may be defined by the mesa adjacent to the second region and the dummy mesa.
- the bottom surface of the second recess may be positioned closer to the one surface than the bottom surface of the first recess in the direction perpendicular to the substrate.
- the open ends of the first and second recesses may be substantially flush.
- the bottom surfaces of the first and second recesses may both be located on the other surface of the substrate opposite to the one surface side.
- the bottom surface of the first recess may be located on the other surface of the substrate opposite to the one surface side, and the bottom surface of the second recess may be located within the substrate. Both bottom surfaces of the first and second recesses may be located within the substrate.
- the first and second regions are provided at different positions in the in-plane direction of a laminated structure including the substrate.
- the layer and the second multilayer film reflector may be laminated in this order.
- the bottom surfaces of the first and second concave portions may both be positioned within the first multilayer reflector.
- the bottom surface of the first concave portion may be positioned within the second multilayer reflector, and the bottom surface of the second concave portion may be positioned within the first multilayer reflector.
- a bottom surface of the first recess may be located within the first multilayer reflector, and a bottom surface of the second recess may be located within the substrate.
- a bottom surface of the first recess may be located within the second multilayer reflector, and a bottom surface of the second recess may be located within the substrate.
- the bottom surfaces of the first and second concave portions may both be positioned within the second multilayer reflector.
- the width of the second recess may be larger than the width of the first recess in a cross section obtained by cutting together the two mesas adjacent to each other and the second region.
- a distance between centers of the two mesas adjacent to each other may be 10 ⁇ m or more and 50 ⁇ m or less.
- the present technology also provides an electronic device including the surface-emitting laser element.
- the present technology includes steps of forming a laminate by laminating a first multilayer film reflector, an active layer, and a second multilayer film reflector on a substrate in this order; a step of etching the laminate to form a first region in which a plurality of mesas are arranged and a second region around the first region; forming an electrode on the surface of the substrate opposite to the surface facing the first multilayer film reflector; including In the step of forming the first and second regions, the depth of the mesas of the plurality of light emitting portions is larger than the depth dimension of the first recess defined by two mesas adjacent to each other among the mesas of the plurality of light emitting portions.
- a method for manufacturing a surface emitting laser element is also provided, wherein the laminate is etched so that the depth dimension of the second recess defined by the mesa adjacent to the second region and the second region is greater.
- the electrodes may be formed in regions corresponding to at least the first and second regions on a surface of the substrate opposite to the surface facing the first multilayer film reflector. .
- FIG. 1 is a cross-sectional view (part 1) of a surface-emitting laser element according to an embodiment of the present technology
- FIG. 2 is a cross-sectional view (Part 2) of a surface-emitting laser element according to an embodiment of the present technology
- FIG. 1 is a plan view of a surface-emitting laser device according to an embodiment of the present technology
- FIG. 1 is a flowchart for explaining a first example of a method for manufacturing a surface-emitting laser element according to an embodiment of the present technology
- FIG. 5 is a cross-sectional view showing the first step of FIG. 4
- 5 is a cross-sectional view showing a first sub-step of the second step of FIG. 4;
- FIG. 5 is a cross-sectional view showing a second sub-step of the second step of FIG. 4;
- FIG. 5 is a cross-sectional view showing a third sub-step of the second step of FIG. 4;
- FIG. 5 is a cross-sectional view showing the first sub-step of the third step of FIG. 4;
- FIG. FIG. 5 is a cross-sectional view showing a second sub-step of the third step of FIG. 4;
- 5 is a cross-sectional view showing a third sub-step of the third step of FIG. 4;
- FIG. FIG. 5 is a cross-sectional view showing a fourth step of FIG. 4;
- FIG. 5 is a cross-sectional view showing a fifth step of FIG. 4;
- FIG. 5 is a cross-sectional view showing a sixth step of FIG. 4;
- FIG. 5 is a cross-sectional view showing a seventh step of FIG. 4;
- FIG. 5 is a cross-sectional view showing an eighth step of FIG. 4;
- 6 is a flow chart for explaining a second example of a method for manufacturing a surface emitting laser device according to an embodiment of the present technology;
- FIG. 18 is a cross-sectional view showing a first sub-step of the third step of FIG. 17;
- FIG. 18 is a cross-sectional view showing a second sub-step of the third step of FIG. 17;
- FIG. 18 is a cross-sectional view showing a third sub-step of the third step of FIG. 17;
- FIG. 18 is a cross-sectional view showing a first sub-step of the fourth step of FIG. 17;
- FIG. 18 is a cross-sectional view showing a second sub-step of the fourth step of FIG. 17;
- 6 is a flowchart for explaining a third example of a method for manufacturing a surface emitting laser device according to an embodiment of the present technology;
- FIG. 24 is a cross-sectional view showing a first sub-step of the third step of FIG. 23;
- FIG. 24 is a cross-sectional view showing a second sub-step of the third step of FIG. 23;
- FIG. 24 is a cross-sectional view showing a third sub-step of the third step of FIG. 23;
- FIG. 24 is a cross-sectional view showing a first sub-step of the fourth step of FIG. 23;
- FIG. 24 is a cross-sectional view showing a second sub-step of the fourth step of FIG. 23;
- It is a figure for demonstrating the effect
- It is a figure for demonstrating the effect
- It is a cross-sectional view of a surface-emitting laser element according to Modification 1 of an embodiment of the present technology.
- It is a cross-sectional view of a surface-emitting laser element according to Modification 2 of an embodiment of the present technology.
- FIG. 13 is a cross-sectional view of a surface-emitting laser element according to Modification 4 of an embodiment of the present technology
- FIG. 11 is a cross-sectional view of a surface-emitting laser element according to Modification 5 of an embodiment of the present technology
- FIG. 12 is a cross-sectional view of a surface-emitting laser element according to Modification 6 of an embodiment of the present technology
- FIG. 12 is a cross-sectional view (Part 1) of a surface-emitting laser element according to Modification 7 of an embodiment of the present technology
- FIG. 20 is a cross-sectional view (Part 2) of a surface-emitting laser element according to Modification 7 of an embodiment of the present technology
- FIG. 13 is a plan view of a surface-emitting laser element according to Modification 7 of an embodiment of the present technology
- FIG. 20 is a plan view of a surface-emitting laser element according to Modification 8 of an embodiment of the present technology
- FIG. 20 is a plan view of a surface-emitting laser element according to Modification 9 of an embodiment of the present technology
- It is a figure showing an example of application to a distance measuring device of a surface emitting laser element concerning one embodiment of this art.
- 1 is a block diagram showing an example of a schematic configuration of a vehicle control system
- FIG. FIG. 4 is an explanatory diagram showing an example of the installation position of the distance measuring device;
- FIG. 1 is a cross-sectional view (Part 1) of a surface-emitting laser device according to an embodiment of the present technology.
- FIG. 2 is a cross-sectional view (part 2) of a surface-emitting laser element according to an embodiment of the present technology;
- FIG. 3 is a plan view of a surface-emitting laser device according to an embodiment of the present technology;
- the XYZ three-dimensional orthogonal coordinate system shown in FIGS. 1 to 3 will be used as appropriate.
- a surface-emitting laser device 10 includes a substrate 100, a cathode electrode 111 provided on one surface 100a (hereinafter also referred to as “back surface”) of the substrate 100, and A first region A1 provided on the side opposite to the cathode electrode 111 side of the one surface 100a and having a plurality of light emitting portions LEP having mesas M arranged thereon; and a second area A2 arranged around the area A1.
- the one surface 100a side of the substrate 100 is referred to as the lower side ( ⁇ Z side), and the top side of each mesa M is referred to as the upper side (+Z side).
- second regions A2 are arranged on both sides of the first region A1 in the Y-axis direction in plan view. ing.
- a plurality of light emitting parts LEP having mesas M are two-dimensionally arranged.
- Each light emitting part LEP is a vertical cavity surface emitting laser (VCSEL).
- VCSEL vertical cavity surface emitting laser
- the plurality of light emitting units LEP are arranged in a matrix (square lattice) at regular intervals in both the X-axis direction and the Y-axis direction. May be arranged in a layout.
- each mesa M has a substantially cylindrical shape as an example, but other shapes such as a substantially truncated cone shape, a substantially elliptical truncated cone shape, a substantially polygonal truncated pyramid shape, etc. may have The upper surface of each mesa M is substantially flush.
- the pitch of the two mesas M adjacent to each other in the X-axis direction or the Y-axis direction in the first region A1 is, for example, 10 ⁇ m or more and 50 ⁇ m or less (preferably about 20 ⁇ m). is set to
- the second area A2 has a protrusion PP in which the top surface of each mesa M is substantially flush with the top surface.
- the protrusion PP extends in the X-axis direction.
- the first and second regions A1 and A2 are provided at different positions in the in-plane direction of the laminated structure including the substrate 100, as an example.
- the first multilayer reflector 102, the active layer 105 and the second multilayer reflector are arranged on the side (+Z side) opposite to the cathode electrode 111 side (-Z side) of the one surface 100a of the substrate 100. 107 are stacked in this order.
- the lamination direction in the laminated structure coincides with the Z-axis direction.
- a spacer layer 101 is arranged between the substrate 100 and the first multilayer film reflector 102 .
- the oxidized constricting layer 103 is arranged inside the first multilayer reflector 102 .
- first and second clad layers 104 and 105 are arranged between the first and second multilayer reflectors 102 and 107 on both sides of the active layer 105 in the Z-axis direction. ing.
- the second clad layer 106 is positioned above (+Z side) the first clad layer 104 .
- the contact layer 108 is arranged on the upper surface (+Z side surface) of the second multilayer film reflector 107 .
- Each light-emitting part LEP includes, for example, a first multilayer reflector 102, an active layer 105, and a second multilayer reflector 107. More specifically, each light emitting part LEP includes, for example, a first multilayer film reflector 102, an oxidized constricting layer 103, a first clad layer 104, an active layer 105, a second clad layer 106, a second multilayer film reflector 107, and a and a contact layer 108 .
- the mesa M of each light emitting part LEP includes the upper portion of the first multilayer reflector 102, the active layer 105, and the second multilayer reflector 107. More specifically, the mesa M of each light emitting part LEP includes, for example, the upper portion of the first multilayer reflector 102, the oxidized constricting layer 103, the first cladding layer 104, the active layer 105, the second cladding layer 106, the second It includes a multilayer film reflector 107 and a contact layer 108 .
- the second region A2 has, for example, the same layer configuration as the light emitting part LEP.
- the ridge portion PP of the second region A2 has, as an example, a layer configuration substantially similar to that of the mesa M.
- the first area A1 and the second area A2 are covered with an insulating film 109.
- a contact hole CH is provided in a portion of the insulating film 109 covering the top of each mesa M. As shown in FIG.
- An anode electrode 110 is provided on the insulating film 109 .
- the anode electrode 110 is arranged so as to come into contact with the contact layer 108 through a contact hole CH provided on the top of each mesa M.
- the anode electrode 110 is in contact with the contact layer 108 through the peripheral portion of the contact hole CH of each mesa M.
- the inner side of the anode electrode 110 (the central portion of the contact hole CH) on each mesa M serves as the emission port of the light emitting part LEP having the mesa M.
- the emission direction of each light emitting part LEP is the +Z direction.
- the substrate 100 is, for example, a GaAs substrate of the first conductivity type (for example, n-type).
- the cathode electrode 111 (n-side electrode) is, for example, a common electrode commonly provided for a plurality of light emitting portions (here, all light emitting portions). As an example, the cathode electrode 111 is provided in a solid manner over substantially the entire back surface of the substrate 100 .
- the cathode electrode 111 may have a single layer structure or a laminated structure.
- the cathode electrode 111 is made of, for example, at least one metal (including alloy) selected from the group consisting of Au, Ag, Pd, Pt, Ni, Ti, V, W, Cr, Al, Cu, Zn, Sn and In.
- the cathode electrode 111 has a laminated structure, for example, Ti/Au, Ti/Al, Ti/Al/Au, Ti/Pt/Au, Ni/Au, Ni/Au/Pt, Ni/Pt, Pd/Pt, It is composed of materials such as Ag/Pd.
- the cathode electrode 111 is electrically connected to the cathode side (negative side) of the laser driver including the driver IC.
- the spacer layer 101 is made of, for example, a first conductivity type (for example, n-type) AlGaAs-based compound semiconductor. Spacer layer 101 is also called a "buffer layer”.
- the first multilayer reflector 102 is, for example, a semiconductor multilayer reflector.
- a multilayer reflector is also called a distributed Bragg reflector.
- a semiconductor multilayer reflector which is a type of multilayer reflector (distributed Bragg reflector), absorbs little light and has high reflectance and conductivity.
- the first multilayer reflector 102 is also called a lower DBR.
- the first multilayer film reflector 102 is, for example, a semiconductor multilayer film reflector of a first conductivity type, in which a plurality of types (for example, two types) of semiconductor layers (refractive index layers) having mutually different refractive indices (refractive index layers) are composed of an oscillation wavelength ⁇ It has an alternately laminated structure with an optical thickness of 1/4 ( ⁇ /4) of .
- Each refractive index layer of the first multilayer film reflector 102 is made of a first conductivity type (for example, n-type) AlGaAs-based compound semiconductor.
- the oxidized constricting layer 103 has, for example, a non-oxidized region 103a made of AlAs and an oxidized region 103b made of AlAs oxide (for example, Al 2 O 3 ) surrounding the outer circumference of the non-oxidized region 103a.
- the first cladding layer 104 is made of a first conductivity type (for example, n-type) AlGaAs-based compound semiconductor.
- the active layer 105 has a quantum well structure including barrier layers and quantum well layers made of, for example, an AlGaAs-based compound semiconductor.
- This quantum well structure may be a single quantum well structure (QW structure) or a multiple quantum well structure (MQW structure).
- the second cladding layer 106 is made of a second conductivity type (for example, p-type) AlGaAs-based compound semiconductor.
- a resonator is configured including the active layer 105 and the first and second clad layers 104 and 106 .
- the second multilayer reflector 107 is, for example, a semiconductor multilayer reflector of the second conductivity type, in which a plurality of types (for example, two types) of semiconductor layers (refractive index layers) having mutually different refractive indices (refractive index layers) are arranged at an oscillation wavelength of 1 It has an alternately stacked structure with an optical thickness of /4 wavelengths.
- Each refractive index layer of the second multilayer film reflector 107 is made of a second conductivity type (for example, p-type) AlGaAs-based compound semiconductor.
- the contact layer 108 is made of a GaAs-based compound semiconductor of the second conductivity type (for example, p-type).
- the insulating film 109 is made of dielectric material such as SiO 2 , SiN, and SiON.
- the anode electrode 110 (p-side electrode) is, as shown in FIGS. It is an electrode provided in common.
- the anode electrode 110 is, as an example, a common electrode common to the mesas M of all the light emitting parts LEP.
- the anode electrode 110 may be provided in common for each of a plurality of mesa rows arranged in the X-axis direction, each of which is composed of a plurality of mesas M arranged in the Y-axis direction in FIG. It may be provided in common for every at least two mesa rows among the rows.
- the anode electrode 110 is provided so as to partially cover the mesas M of the plurality of light emitting portions LEP (excluding the central portion of the top of the mesa M) and the ridges PP.
- the anode electrode 110 may have a single layer structure or a laminated structure.
- the anode electrode 110 is made of, for example, at least one metal (including alloy) selected from the group consisting of Au, Ag, Pd, Pt, Ni, Ti, V, W, Cr, Al, Cu, Zn, Sn and In.
- the anode electrode 110 has a laminated structure, for example, Ti/Au, Ti/Al, Ti/Al/Au, Ti/Pt/Au, Ni/Au, Ni/Au/Pt, Ni/Pt, Pd/Pt, It is composed of materials such as Ag/Pd.
- the anode electrode 110 has a portion covering the second region A2 electrically connected to the anode side (positive electrode side) of the laser driver including the driver IC.
- a first concave portion R1 is defined by two mesas M adjacent to each other among the mesas M of the plurality of light emitting portions LEP (see FIGS. 1 and 2).
- the mesa M adjacent to the -Y side second region A2 among the plurality of mesas M of the light emitting parts LEP (the mesa M closest to the -Y side) and the -Y side second region A2 form a -Y side second concave portion.
- R2 is defined (see Figures 1 and 3).
- the mesa M adjacent to the second region A2 on the +Y side (the mesa M closest to the +Y side) and the second region A2 on the +Y side form the second concave portion R2 on the +Y side.
- the mesas M adjacent to the second region A2 (for example, the mesa M closest to the -Y side and the mesa M closest to the +Y side) are collectively referred to as "outermost mesa".
- Each of the first and second recesses R1 and R2 has, for example, a mortar shape (a shape that becomes deeper as it approaches the center).
- the depth dimension H2 of the second recess R2 is larger than the depth dimension H1 of the first recess R1.
- the depth dimension H1 of the first recess R1 is defined by the portion (for example, central portion) of the bottom surface of the first recess R1 that is closest to the one surface 100a of the substrate 100 (most ⁇ Z side) and the upper surface of each mesa M (+Z side). surface).
- the bottom surface of the first recess R1 is located on the opposite side (+Z side) of the other surface 100b (+Z side surface) of the substrate 100 to the one surface 100a side ( ⁇ Z side). More specifically, the bottom surface of the first concave portion R1 is positioned inside the first multilayer film reflector 102 .
- the depth dimension H2 of the second recess R2 is defined by the portion (for example, central portion) of the bottom surface of the second recess R2 that is closest to the one surface 100a of the substrate 100 (most ⁇ Z side) and the upper surface of each mesa M (+Z side). surface).
- the bottom surface of the second recess R2 is located on the opposite side (+Z side) to the one surface 100a side ( ⁇ Z side) of the other surface 100b (+Z side surface) of the substrate 100 . More specifically, the bottom surface of the second recess R2 is positioned below (-Z side) the bottom surface of the first recess R1 in the first multilayer film reflector .
- each mesa M and the upper surface of each protrusion PP are substantially flush. That is, the opening ends of the first and second recesses R1 and R2 are substantially flush (located on the same plane).
- the width of the second recess R2 is greater than the width of the first recess R1.
- width is larger.
- the widths of the first and second recesses R1 and R2 may be the same, or the width of the first recess R1 may be larger than the width of the second recess R2.
- the widths of the first and second recesses R1 and R2 are, for example, several ⁇ m to several tens of ⁇ m.
- the mesas M other than the outermost mesa excluding the mesas M closest to the +X side and the closest to the -X side, are +X side, -X side, +Y side and -Y side.
- the current flowing from the anode electrode 110 flows toward the cathode electrode 111 along the height direction (Z-axis direction) due to the influence of the adjacent mesas M. .
- mesa M other than the outermost mesa mesa M closest to +X side or -X side has separation groove ST on +X side or -X side and has +Y side and -Y side and +X side or +X side.
- There are adjacent mesas M on three sides with the ⁇ X side there are adjacent mesas M on three sides and the separation trench ST on one side).
- the current flowing from the anode electrode 110 flows toward the cathode electrode 111 along the height direction (Z-axis direction).
- the outermost mesa does not have an adjacent mesa M on the side of the adjacent second region A2.
- the current flowing from the anode electrode 110 spreads from the height direction (Z-axis direction) to the second region A2 side along the in-plane direction (XY plane). Therefore, the electrical resistance may be lower than that of the mesa M other than the outermost mesa (see FIG. 30).
- the electric current concentrates in the outermost mesa, and there is a concern that the variation in emission intensity between the outermost mesa and the other mesas M increases.
- the current path to the second region A2 side is narrowed.
- the current flowing through the outermost mesa is suppressed from spreading toward the second region A2 (see FIG. 29).
- the electrical resistance of the outermost mesa is suppressed from decreasing, so that the concentration of current in the outermost mesa is suppressed, and the variation in the light emission intensity between the outermost peripheral mesa and the other mesas M is reduced. can be reduced. More specifically, it is possible to prevent the emission intensity of the outermost mesa from becoming higher than the emission intensity of the mesas M other than that.
- the degree of reduction of the difference in electrical resistance (resistance difference) between the outermost mesa and the mesa M other than the outermost mesa is set by the difference in depth dimension between the first and second recesses R1 and R2 (H2-H1). can do. Basically, the greater H2-H1, the greater the degree of reduction in the resistance difference. Conversely, the smaller the value of H2-H1, the smaller the degree of reduction in the resistance difference. Therefore, when the resistance difference becomes small, for example, when the mesa pitch is relatively large (for example, 30 to 50 ⁇ m), it is preferable to set H2 ⁇ H1 relatively small, and when the resistance difference becomes large. For example, when the mesa pitch is relatively small (eg, 10 to 30 ⁇ m), it is preferable to set it relatively large.
- the difference H2-H1 between the depth dimensions of the first and second recesses R1 and R2 may be set based on the distance (mesa pitch) between the centers of two mesas M adjacent to each other. In this case, it is preferable that the difference H2-H1 between the depth dimensions of the first and second recesses R1 and R2 is set larger as the distance between the centers of the two adjacent mesas M is narrower.
- Separation trenches ST for element isolation are formed at the end of each second region A2 opposite to the first region A1 side and the +X side and -X side end portions of the first region A1 (Fig. 1 and FIG. 3).
- the bottom surface of the separation trench ST is located inside the first multilayer film reflector 102 .
- each light emitting part LEP of the surface emitting laser element 10 current is injected from the anode side of the laser driver into the active layer 105 via the anode electrode 110, the contact layer 108, the second multilayer film reflector 107 and the second clad layer 106. Then, the active layer 105 emits light, and the light travels back and forth between the first and second multilayer film reflectors 102 and 107 while being amplified by the active layer 105 and confined by the oxidized constricting layer 103, thereby satisfying the oscillation conditions. Sometimes, the light is emitted to the rear surface side of the substrate 100 as laser light.
- the current injected into the active layer 105 flows out to the cathode side of the laser driver through the first cladding layer 104, the oxidized constricting layer 103, the first multilayer reflector 102 and the cathode electrode 111.
- FIG. 1 The current injected into the active layer 105 flows out to the cathode side of the laser driver through the first cladding layer 104, the oxidized constricting layer 103, the first multilayer reflector 102 and the cathode electrode 111.
- a first example of a method for manufacturing the surface-emitting laser element 10 according to one embodiment will be described below with reference to the flow chart of FIG. 4 and the cross-sectional views of FIGS.
- a semiconductor manufacturing method using a semiconductor manufacturing apparatus a plurality of surface emitting laser elements 10 are simultaneously produced on one wafer that is the base material of the substrate 100 .
- a series of integrated surface emitting laser elements 10 are separated from each other by dicing to obtain a plurality of chip-shaped surface emitting laser elements 10 .
- a laminate L is generated.
- CVD chemical vapor deposition
- MOCVD metal organic chemical vapor deposition
- a first multilayer reflector 102 including a layer 103S, a first cladding layer 104, an active layer 105, a second cladding layer 106, a second multilayer reflector 107, and a contact layer 108 are laminated in this order. to generate a laminate L.
- a mesa structure MS is formed to serve as a mesa M other than the outermost mesa.
- a resist pattern RP1 is formed on the contact layer 108 of the laminate L to form the mesa structure MS that will be the mesa M other than the outermost mesa (see FIG. 6).
- the laminate L is etched by dry etching or wet etching to form a mesa structure MS (see FIG. 7).
- the etching is performed until at least the side surface of the selectively oxidized layer 103S is exposed (until the etched bottom surface, which is the bottom surface of the first recess R1, is positioned below the selectively oxidized layer 103S in the first multilayer reflector 102). I do.
- a first recess R1 having a depth dimension H1 is formed by forming two mesa structures MS adjacent to each other.
- the resist pattern RP1 is etched and removed by dry etching or wet etching (see FIG. 8).
- a mesa structure MS that will be the outermost mesa and a ridge structure PS that will be the ridge portion PP are formed.
- a resist pattern RP2 for forming the mesa structure MS that will be the outermost mesa and the ridge structure PS that will be the ridge portion PP is formed on the laminate on which the mesa structure MS is formed (FIG. 9).
- the laminate is etched by dry etching or wet etching to form a mesa structure MS that will be the outermost mesa and a ridge structure PS that will be the ridge portion PP (see FIG. 10). .
- the etching is performed until the etched bottom surface, which is the bottom surface of the second concave portion R2, is located below the bottom surface of the first concave portion R1 in the first multilayer film reflector 102.
- the mesa structure MS as the outermost mesa
- the protrusion structure PS as the protrusion PP
- the second recess R2 and the separation trench ST having the depth dimension H2 are formed.
- the resist pattern RP2 is etched and removed by dry etching or wet etching (see FIG. 11).
- an oxidized constricting layer 103 is formed. Specifically, the peripheral portion of the selectively oxidized layer 103S of the mesa structure MS (see FIG. 11) is oxidized to form the oxidized constricting layer 103 (see FIG. 12). More specifically, the mesa structure MS is exposed to a water vapor atmosphere to oxidize the selectively oxidized layer 103S from the side surface (selectively oxidize Al in AlAs) to form an oxidized constricting layer in which the non-oxidized region 103a is surrounded by the oxidized region 103b. 103 is formed. At this time, the selectively oxidized layer 103S of the protrusion structure PS is also oxidized. As a result, the mesa structure MS becomes the mesa M to form the first region A1, and the ridge structure PS becomes the ridge portion PP to form the second region A2.
- an insulating film 109 is formed (see FIG. 13). Specifically, the insulating film 109 is formed by a vapor deposition method, a sputtering method, or the like on the stacked body in which the first and second regions A1 and A2 are formed.
- contact holes CH are formed (see FIG. 14). Specifically, the insulating film 109 covering the top of the mesa M is removed by dry etching or wet etching. As a result, a contact hole CH is formed and the top of the mesa M (contact layer 108) is exposed.
- the anode electrode 110 is formed. Specifically, an electrode material for the anode electrode 110 is formed into a film by a vapor deposition method, a sputtering method, or the like on the insulating film 109 having the contact hole CH, and patterning is performed by, for example, a lift-off method (see FIG. 15).
- the cathode electrode 111 is formed (see FIG. 16). Specifically, after the back surface of the substrate 100 is polished to form a thin film, an electrode material for the cathode electrode 111 is formed solidly over substantially the entire back surface of the substrate 100 by a vapor deposition method or a sputtering method.
- processing such as annealing is performed, and a plurality of surface emitting laser elements 10 are formed on one wafer. After that, by dicing along the separation grooves ST, the plurality of surface emitting laser elements 10 are separated into individual elements to obtain a plurality of chip-shaped surface emitting laser elements 10 .
- a second example of the method for manufacturing the surface-emitting laser device 10 according to one embodiment will be described below with reference to the flowchart of FIG. 17 and the cross-sectional views of FIGS. explain.
- a semiconductor manufacturing method using a semiconductor manufacturing apparatus a plurality of surface emitting laser elements 10 are simultaneously produced on one wafer that is the base material of the substrate 100 .
- a series of integrated surface emitting laser elements 10 are separated from each other by dicing to obtain a plurality of chip-shaped surface emitting laser elements 10 .
- a laminate L is generated.
- CVD chemical vapor deposition
- MOCVD metal organic chemical vapor deposition
- a first multilayer reflector 102 including a layer 103S, a first cladding layer 104, an active layer 105, a second cladding layer 106, a second multilayer reflector 107, and a contact layer 108 are laminated in this order. to generate a laminate L.
- a mesa structure MS is formed to be a mesa M other than the outermost mesa.
- a resist pattern RP1 is formed on the contact layer 108 of the laminate L to form the mesa structure MS that will be the mesa M other than the outermost mesa (see FIG. 6).
- the laminate L is etched by dry etching or wet etching to form a mesa structure MS (see FIG. 7).
- the etching is performed until at least the side surface of the selectively oxidized layer 103S is exposed (until the etched bottom surface, which is the bottom surface of the first recess R1, is positioned below the selectively oxidized layer 103S in the first multilayer reflector 102). I do.
- a first recess R1 having a depth dimension H1 is formed by forming two mesa structures MS adjacent to each other.
- the resist pattern RP1 is etched and removed by dry etching or wet etching (see FIG. 8).
- a mesa structure MS that will be the outermost mesa is formed.
- a resist pattern RP3 is formed for forming the mesa structure MS that will be the outermost mesa on the layered structure on which the mesa structure MS is formed (see FIG. 18).
- the laminate is etched by dry etching or wet etching to form a mesa structure MS that will be the outermost mesa (see FIG. 19).
- the etching is performed until the etched bottom surface, which is the bottom surface of the second concave portion R2, is located below the bottom surface of the first concave portion R1 in the first multilayer film reflector 102.
- the second recess R2 having the depth dimension H2 is formed.
- the resist pattern RP3 is removed by dry etching or wet etching (see FIG. 20).
- a ridge structure PS to be the ridge portion PP is formed. Specifically, first, a resist pattern RP4 is formed for forming the ridge structure PS that will become the ridge portion PP on the laminate on which the mesa structure MS is formed (see FIG. 21). Next, using the resist pattern RP4 as a mask, the laminate is etched by dry etching or wet etching to form a ridge structure PS that will become the ridge portion PP (see FIG. 22). Here, the etching is performed until the etching bottom surface, which is the bottom surface of the separation trench ST, is positioned below the selectively oxidized layer 103S in the first multilayer film reflector 102 . Separation grooves ST are formed by forming the ridge structures PS that become the ridge portions PP. Finally, the resist pattern RP4 is removed by dry etching or wet etching (see FIG. 11).
- an oxidized constricting layer 103 is formed. Specifically, the peripheral portion of the selectively oxidized layer 103S of the mesa structure MS (see 11) is oxidized to form the oxidized constricting layer 103 (see FIG. 12). More specifically, the mesa structure MS is exposed to a water vapor atmosphere to oxidize the selectively oxidized layer 103S from the side surface (selectively oxidize Al in AlAs) to form an oxidized constricting layer in which the non-oxidized region 103a is surrounded by the oxidized region 103b. 103 is formed. At this time, the selectively oxidized layer 103S of the protrusion structure PS is also oxidized. As a result, the mesa structure MS becomes the mesa M to form the first region A1, and the ridge structure PS becomes the ridge portion PP to form the second region A2.
- an insulating film 109 is formed (see FIG. 13). Specifically, the insulating film 109 is formed by a vapor deposition method, a sputtering method, or the like on the stacked body in which the first and second regions A1 and A2 are formed.
- contact holes CH are formed (see FIG. 14). Specifically, the insulating film 109 covering the top of the mesa M is removed by dry etching or wet etching. As a result, a contact hole CH is formed and the top of the mesa M (contact layer 108) is exposed.
- the anode electrode 110 is formed. Specifically, an electrode material for the anode electrode 110 is formed into a film by a vapor deposition method, a sputtering method, or the like on the insulating film 109 having the contact hole CH, and patterning is performed by, for example, a lift-off method (see FIG. 15).
- the cathode electrode 111 is formed (see FIG. 16). Specifically, after the back surface of the substrate 100 is polished to form a thin film, an electrode material for the cathode electrode 111 is formed solidly over substantially the entire back surface of the substrate 100 by a vapor deposition method or a sputtering method.
- processing such as annealing is performed, and a plurality of surface emitting laser elements 10 are formed on one wafer. After that, by dicing along the separation grooves ST, the plurality of surface emitting laser elements 10 are separated into individual elements to obtain a plurality of chip-shaped surface emitting laser elements 10 .
- a third example of the method for manufacturing the surface-emitting laser element 10 according to one embodiment will be described below with reference to the flow chart of FIG. 23 and the cross-sectional views of FIGS. explain.
- a semiconductor manufacturing method using a semiconductor manufacturing apparatus a plurality of surface emitting laser elements 10 are simultaneously produced on one wafer that is the base material of the substrate 100 .
- a series of integrated surface emitting laser elements 10 are separated from each other by dicing to obtain a plurality of chip-shaped surface emitting laser elements 10 .
- a laminate L is generated.
- CVD chemical vapor deposition
- MOCVD metal organic chemical vapor deposition
- a first multilayer reflector 102 including a layer 103S, a first cladding layer 104, an active layer 105, a second cladding layer 106, a second multilayer reflector 107, and a contact layer 108 are laminated in this order. to generate a laminate L.
- a mesa structure MS is formed to be a mesa M other than the outermost mesa.
- a resist pattern RP1 is formed on the contact layer 108 of the laminate L to form the mesa structure MS that will be the mesa M other than the outermost mesa (see FIG. 6).
- the laminate L is etched by dry etching or wet etching to form a mesa structure MS (see FIG. 7).
- the etching is performed until at least the side surface of the selectively oxidized layer 103S is exposed (until the etched bottom surface, which is the bottom surface of the first recess R1, is positioned below the selectively oxidized layer 103S in the first multilayer reflector 102). I do.
- a first recess R1 having a depth dimension H1 is formed by forming two mesa structures MS adjacent to each other.
- the resist pattern RP1 is etched and removed by dry etching or wet etching (see FIG. 8).
- separation trenches ST are formed. Specifically, first, a resist pattern RP5 for forming separation trenches ST is formed on the laminate having the mesa structure MS formed thereon (see FIG. 24). Next, using the resist pattern RP5 as a mask, the laminate is etched by dry etching or wet etching to form a separation trench ST (see FIG. 25). Here, the etching is performed until the etching bottom surface, which is the bottom surface of the separation trench ST, is positioned below the selectively oxidized layer 103S in the first multilayer film reflector 102 . Finally, the resist pattern RP5 is removed by dry etching or wet etching (see FIG. 26).
- a mesa structure MS that will be the outermost mesa and a ridge structure PS that will be the ridge portion PP are formed.
- a resist pattern RP6 for forming the mesa structure MS that will be the outermost mesa and the ridge structure PS that will be the ridge portion PP is first formed on the laminate in which the mesa structure MS and the separation trench ST are formed. forming (see FIG. 27).
- the laminate is etched by dry etching or wet etching to form a mesa structure MS that will be the outermost mesa and a ridge structure PS that will be the ridge portion PP (see FIG. 28). .
- etching is performed until the etched bottom surface, which is the bottom surface of the second concave portion R2, is positioned below the bottom surface of the first concave portion R1 in the first multilayer film reflector 102.
- the resist pattern RP6 is removed by dry etching or wet etching (see FIG. 11).
- an oxidized constricting layer 103 is formed. Specifically, the peripheral portion of the selectively oxidized layer 103S of the mesa structure MS (see FIG. 11) is oxidized to form the oxidized constricting layer 103 (see FIG. 12). More specifically, the mesa structure MS is exposed to a water vapor atmosphere to oxidize the selectively oxidized layer 103S from the side surface (selectively oxidize Al in AlAs) to form an oxidized constricting layer in which the non-oxidized region 103a is surrounded by the oxidized region 103b. 103 is formed. At this time, the selectively oxidized layer 103S of the protrusion structure PS is also oxidized. As a result, the mesa structure MS becomes the mesa M to form the first region A1, and the ridge structure PS becomes the ridge portion PP to form the second region A2.
- an insulating film 109 is formed (see FIG. 13). Specifically, the insulating film 109 is formed by a vapor deposition method, a sputtering method, or the like on the stacked body in which the first and second regions A1 and A2 are formed.
- contact holes CH are formed (see FIG. 14). Specifically, the insulating film 109 covering the top of the mesa M is removed by dry etching or wet etching. As a result, a contact hole CH is formed and the top of the mesa M (contact layer 108) is exposed.
- the anode electrode 110 is formed. Specifically, an electrode material for the anode electrode 110 is formed into a film by a vapor deposition method, a sputtering method, or the like on the insulating film 109 having the contact hole CH, and patterning is performed by, for example, a lift-off method (see FIG. 15).
- the cathode electrode 111 is formed (see FIG. 16). Specifically, after the back surface of the substrate 100 is polished to form a thin film, an electrode material for the cathode electrode 111 is formed solidly over substantially the entire back surface of the substrate 100 by a vapor deposition method or a sputtering method.
- processing such as annealing is performed, and a plurality of surface emitting laser elements 10 are formed on one wafer. After that, by dicing along the separation grooves ST, the plurality of surface emitting laser elements 10 are separated into individual elements to obtain a plurality of chip-shaped surface emitting laser elements 10 .
- the ridge structure which becomes the ridge portion PP is formed.
- the PS, the second concave portion R2, and the separation groove ST are formed by etching
- the present invention is not limited to this.
- the mesa structure MS that becomes the mesa M other than the outermost mesa, the ridge structure PS that becomes the ridge portion PP, the second recess R2, and the separation groove ST may be formed simultaneously by etching.
- the first recess R1, the second recess R2, and the separation trench ST are formed by separate etching as much as possible (preferably, all of them), the accuracy of each etching depth (the positional accuracy of the bottom surface) can be improved.
- the surface-emitting laser device 10 includes a substrate 100, a cathode electrode 111 provided on one surface 100a (rear surface) of the substrate 100, and provided on the opposite side of the one surface 100a from the cathode electrode 111 side, A first area A1 in which a plurality of light emitting parts LEP having mesas M are arranged, and a second area A2 arranged around the first area A1 on the side opposite to the cathode electrode 111 side of the one surface 100a, It is adjacent to the second region A2 of the plurality of mesas M of the light emitting part LEP more than the depth dimension H1 of the first recess R1 defined by two mesas M adjacent to each other among the mesas M of the plurality of light emitting parts LEP.
- a depth dimension H2 of the second recess R2 defined by the mesa M (outermost mesa) and the second region A2 is larger.
- the current flowing through the outermost mesa is suppressed from spreading toward the second region A2, so that the electrical resistance of the outermost mesa is suppressed from decreasing, and the current concentration at the outermost mesa is suppressed. (See FIG. 29).
- the surface emitting laser element 10 it is possible to reduce variations in emission intensity between the light emitting portion LEP adjacent to the second region A2 and the light emitting portion LEP other than the light emitting portion LEP.
- the mesa M (outermost peripheral mesa) adjacent to the ridge portion PP and the depth dimension H of the recess R defined by the ridge portion PP are the same.
- the current that has flowed through the outermost mesa cannot be prevented from spreading toward the ridge portion PP, and the electrical resistance of the outermost mesa decreases, causing the current to concentrate in the outermost mesa.
- the cathode electrode 111 is a common electrode commonly provided for the plurality of light emitting parts LEP. In this case, the current flowing through each mesa M flows to the cathode electrode 111 side (the back side of the substrate 100), so the above configuration of the surface emitting laser device 10 is particularly effective.
- the bottom surface of the second recess R2 is positioned closer to the surface 100a of the substrate 100 than the bottom surface of the first recess R1 in the direction perpendicular to the substrate 100 (the Z-axis direction). As a result, the variation in emission intensity can be reliably reduced. Furthermore, the opening ends of the first and second recesses R1 and R2 are substantially flush. Accordingly, the first and second recesses R1 and R2 can be formed by etching the laminate L produced by one crystal growth (e.g., epitaxial growth).
- the surface emitting laser device 10 further includes an anode electrode 110 provided in contact with the top of at least one mesa M adjacent to the second area A2 and the top of at least two mesas M not adjacent to the second area A2.
- the light emitting portions LEP including each mesa M are driven at the same voltage at the same time.
- the distance between the centers of two mesas M adjacent to each other is preferably 10 ⁇ m or more and 50 ⁇ m or less.
- the difference in resistance between the outermost mesa and the other mesas tends to be relatively large, and the configuration of the surface emitting laser device 10 is particularly effective.
- the first multilayer film reflector 102, the active layer and the second multilayer film reflector are laminated in this order on the substrate 100 to generate the laminate L.
- the laminate is etched such that the depth dimension of the second recess R2 defined by and is greater.
- the surface-emitting laser element 10 can reduce variations in emission intensity between the light-emitting portion LEP adjacent to the second region A2 and the light-emitting portion LEP other than the light-emitting portion LEP.
- a laser device can be manufactured.
- the cathode electrode 111 is formed, for example, in regions corresponding to at least the first and second regions A1 and A2 on the surface of the substrate 100 opposite to the first multilayer film reflector 102 side. Form into a solid shape. This makes it possible to easily form the common cathode electrode 111 for the plurality of light emitting parts LEP.
- FIG. 31 is a cross-sectional view (corresponding to the cross-sectional view taken along the line VV in FIG. 3 (FIG. 1)) of the surface emitting laser device 10-1 of Modification 1.
- FIG. 1 In the surface-emitting laser element 10-1 according to Modification 1, as shown in FIG. It has the same configuration as the surface-emitting laser element 10 of one embodiment except that it is positioned within 100 .
- the surface emitting laser element 10-1 substantially the same effect as the surface emitting laser element 10 of one embodiment can be obtained.
- the first and second multilayer film reflectors 102 and 107 are designed to have a higher specific resistance than the substrate 100 in order to reduce free carrier loss. Therefore, in the surface-emitting laser device 10-1, under the condition that the difference in depth dimension (H2-H1) between the first and second recesses R1 and R2 is the same, the surface-emitting laser device 10-1 is compared to the surface-emitting laser device 10 of the embodiment. , the degree of reduction in the difference in electrical resistance (resistance difference) between the outermost mesa and the mesa M other than the outermost mesa is small. However, since the bottom surface of the second recess R2 is positioned within the substrate 100 (because the second recess R2 is deep), it is highly effective in suppressing the current from spreading toward the second region A2.
- the surface emitting laser element 10-1 can also be manufactured by a manufacturing method similar to the manufacturing method of the surface emitting laser element 10.
- FIG. 32 is a cross-sectional view (corresponding to the cross-sectional view taken along the line VV in FIG. 3 (FIG. 1)) of the surface emitting laser element 10-2 of Modification 2. As shown in FIG. In the surface-emitting laser device 10-2 according to Modification 2, as shown in FIG. It has the same configuration as the surface-emitting laser element 10 in the form.
- the surface emitting laser element 10-2 substantially the same effect as that of the surface emitting laser element 10 of one embodiment can be obtained, but under the same condition of H2-H1, the resistance difference is larger than that of the surface emitting laser element 10. Small reduction.
- the bottom surface of the second recess R2 is positioned within the substrate 100 (because the second recess R2 is deep), it is highly effective in suppressing the current from spreading toward the second region A2.
- the surface emitting laser element 10-2 can also be manufactured by a manufacturing method similar to the manufacturing method of the surface emitting laser element 10.
- FIG. 33 is a cross-sectional view (corresponding to the cross-sectional view taken along the line VV in FIG. 3 (FIG. 1)) of the surface emitting laser device 10-3 of Modification 3. As shown in FIG. In the surface-emitting laser device 10-3 according to Modification 3, as shown in FIG. Except for this, the configuration is substantially the same as that of the surface emitting laser device 10 of one embodiment.
- the oxidized constricting layer 103 is provided inside the second multilayer film reflector 107. As shown in FIG. In the surface-emitting laser element 10-3, each mesa M and protrusion PP does not have an active layer 105. FIG.
- the surface emitting laser element 10-3 can also be manufactured by a manufacturing method similar to the manufacturing method of the surface emitting laser element 10. FIG.
- FIG. 34 is a cross-sectional view (corresponding to the cross-sectional view taken along the line VV in FIG. 3 (FIG. 1)) of the surface emitting laser element 10-4 of Modification 4.
- FIG. 34 both the bottom surface of the first recess R1 and the bottom surface of the second recess R2 are positioned within the first multilayer reflector 107, as shown in FIG. .
- H2-H1 is smaller than that of the surface emitting laser element 10 of one embodiment.
- the surface emitting laser element 10-4 substantially the same effects as those of the surface emitting laser element 10 of the embodiment can be obtained. This is particularly effective when the difference in electrical resistance between the outermost mesa and the other mesas M is small (for example, when the mesa pitch is relatively large).
- the surface emitting laser element 10-4 can also be manufactured by a manufacturing method similar to the manufacturing method of the surface emitting laser element 10. FIG.
- FIG. 35 is a cross-sectional view (corresponding to the cross-sectional view taken along the line VV in FIG. 3 (FIG. 1)) of the surface emitting laser element 10-5 of Modification 5.
- the surface emitting laser element 10-5 according to Modification 5 has the same configuration as the surface emitting laser element 10-1 according to Modification 1 except for the size of H2-H1.
- H2-H1 is larger than that of the surface emitting laser element 10-1 of Modification 1.
- the surface-emitting laser element 10-5 substantially the same effects as those of the surface-emitting laser element 10 of the first embodiment are obtained, but compared to the surface-emitting laser element 10-1 of the modified example 1, the degree of reduction in resistance difference is higher. Therefore, it is particularly effective when the difference in electrical resistance between the outermost mesa and the other mesas M is large (for example, when the mesa pitch is relatively small).
- the surface emitting laser element 10-5 can also be manufactured by a manufacturing method similar to the manufacturing method of the surface emitting laser element 10 of one embodiment.
- FIG. 36 is a cross-sectional view (corresponding to the cross-sectional view taken along the line VV in FIG. 3 (FIG. 1)) of the surface emitting laser element 10-6 of Modification 6. As shown in FIG. In the surface-emitting laser device 10-6 according to Modification 6, as shown in FIG. It has the same configuration as the surface emitting laser device 10 of the embodiment except that it is located at .
- an oxidized constricting layer 103 is provided in the second multilayer film reflector 107. As shown in FIG. Each mesa M does not have an active layer 105 in the surface emitting laser element 10-6.
- the surface emitting laser element 10-6 substantially the same effects as those of the surface emitting laser element 10 of the embodiment are obtained. Since the degree of reduction is large and the bottom surface of the second recess R2 is positioned within the substrate 100, the effect of suppressing the spread of the current from the outermost peripheral mesa to the second region A2 side is high. That is, the surface-emitting laser element 10-6 is particularly effective when the mesa pitch is small and the resistance difference between the outermost mesa and the other mesas M is large.
- the surface emitting laser element 10-6 can also be manufactured by a manufacturing method similar to the manufacturing method of the surface emitting laser element 10 of one embodiment.
- FIG. 37 is a sectional view (Part 1) of a surface emitting laser device 10-7 of Modification 7.
- FIG. 38 is a sectional view (Part 2) of the surface emitting laser element 10-7 of Modification 7.
- FIG. 39 is a plan view of a surface emitting laser device 10-7 of Modification 7.
- FIG. 37 is a cross-sectional view (YZ cross-sectional view) taken along line V7-V7 of FIG. 39.
- FIG. 38 is a cross-sectional view (XZ cross-sectional view) taken along line W7-W7 of FIG. 39.
- the surface-emitting laser device 10-7 has the same configuration as the surface emitting laser element 10 of the embodiment, except that it includes an adjacent dummy mesa DM, and the second recess R2 is defined by the mesa M adjacent to the second region A2 and the dummy mesa DM.
- the dummy mesa DM is a mesa of a non-light-emitting portion that does not have a contact hole CH and an anode electrode 110 and is not energized.
- each second region A2 includes a dummy mesa DM provided between the ridge portion PP and the first region A1, and the ridge portion PP. ing.
- the second recess R2 is defined by the outermost peripheral mesa of the first region A1 and the dummy mesa DM of the second region A2.
- the surface emitting laser element 10-7 According to the surface emitting laser element 10-7, the current flowing through the mesa M (the outermost peripheral mesa of the first region A1) adjacent to the dummy mesa DM is suppressed from spreading toward the dummy mesa DM. As a result, the electric resistance of the outermost mesa is suppressed from decreasing, the concentration of current in the outermost mesa is suppressed, and the variation in the emission intensity between the outermost mesa and the mesa M other than the outermost mesa is suppressed. can be reduced.
- the surface emitting laser element 10-7 can also be manufactured by a manufacturing method substantially similar to the manufacturing method of the surface emitting laser element 10 of one embodiment.
- FIG. 38 is a plan view of a surface-emitting laser element 10-8 of Modification 8.
- FIG. 38 is a plan view of a surface-emitting laser element 10-8 of Modification 8.
- the second region A2 has a frame-like shape in plan view (the region surrounded by the two-dot chain line in FIG. 40).
- the YZ cross section obtained by cutting the second region A2 and the plurality of mesas M together and the XZ cross section obtained by cutting the second region A2 and the plurality of mesas M together are the same.
- the YZ cross section and the XZ cross section of the surface emitting laser element 10-8 are the same as the YZ cross section of any one of the surface emitting laser elements 10, 10-1 to 10-6 of the embodiment and Modifications 1 to 6.
- the surface-emitting laser device 10-8 has substantially the same effect as the surface-emitting laser device 10 of the embodiment.
- the surface emitting laser element 10-8 can also be manufactured by a manufacturing method similar to the manufacturing method of the surface emitting laser element 10 of one embodiment.
- FIG. 41 is a plan view of a surface-emitting laser element 10-9 of Modification 9.
- FIG. 41 is a plan view of a surface-emitting laser element 10-9 of Modification 9.
- the second region A2 has a frame-like shape in plan view (the region surrounded by the two-dot chain line in FIG. 41).
- the YZ cross section obtained by cutting the second region A2 and the plurality of mesas M together and the XZ cross section obtained by cutting the second region A2 and the plurality of mesas M together are the same.
- the YZ cross section and the XZ cross section of the surface emitting laser element 10-9 are the same as the YZ cross section of the surface emitting laser element 10-7 of the seventh modification.
- the surface emitting laser element 10-9 has substantially the same effect as the surface emitting laser element 10-7 of the seventh modification.
- the surface emitting laser element 10-9 can also be manufactured by a manufacturing method similar to the manufacturing method of the surface emitting laser element 10 of one embodiment.
- the surface-emitting laser device according to the present technology is not limited to the configurations described in the above embodiment and modifications, and can be modified as appropriate.
- the surface emitting laser element of the present technology is a surface emitting type in which the light emitting portion emits light from the top side of the mesa. It can also be applied to a back emission type in which light is emitted to the back side of the substrate. In this case, it is necessary to provide openings, which serve as emission ports, in the electrodes provided on the back surface of the substrate at locations corresponding to the respective light emitting portions.
- the anode electrode is provided on the top side of the mesa M and the cathode electrode is provided on the back side of the substrate 100, but the cathode electrode is provided on the top side of the mesa M and , an anode electrode may be provided on the back side of the substrate 100 .
- the conductivity types p-type and n-type also need to be exchanged.
- both the first and second multilayer reflectors 102 and 107 are semiconductor multilayer reflectors, but the present invention is not limited to this.
- the first multilayer reflector 102 may be a semiconductor multilayer reflector
- the second multilayer reflector 107 may be a dielectric multilayer reflector.
- a dielectric multilayer reflector is also a kind of distributed Bragg reflector.
- the first multilayer reflector 102 may be a dielectric multilayer reflector
- the second multilayer reflector 107 may be a semiconductor multilayer reflector.
- both the first and second multilayer reflectors 102 and 107 may be dielectric multilayer reflectors.
- the spacer layer 101 does not necessarily have to be provided in the surface emitting laser elements of the above embodiments and modifications.
- the oxidized constricting layer 103 may be provided inside either the first and second clad layers 104 and 106 .
- the contact layer 108 does not necessarily have to be provided in the surface emitting laser elements of the above embodiments and modifications.
- a part of the configurations of the surface emitting laser elements of the above embodiment and each modified example may be combined within a mutually consistent range.
- the bottom surface of the first recess R1 is positioned inside the second multilayer reflector 107
- the bottom surface of the second recess R2 is positioned inside the first multilayer reflector 102. may be located in
- each component constituting the surface emitting laser element functions as a surface emitting laser element. It can be changed as appropriate within the range.
- the technology (the present technology) according to the present disclosure can be applied to various products (electronic devices).
- the technology according to the present disclosure can be realized as an element mounted on any type of moving object such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, and robots. may
- the surface-emitting laser device can be applied, for example, as a light source for devices that form or display images using laser light (for example, laser printers, laser copiers, projectors, head-mounted displays, head-up displays, etc.). .
- FIG. 42 illustrates an example of a schematic configuration of a distance measuring device 1000 including the surface emitting laser element 10 as an example of electronic equipment according to the present technology.
- the distance measuring device 1000 measures the distance to the subject S by a TOF (Time Of Flight) method.
- a distance measuring device 1000 includes a surface emitting laser element 10 as a light source.
- the distance measuring device 1000 includes, for example, a surface emitting laser element 10, a light receiving device 125, lenses 115 and 135, a signal processing section 140, a control section 150, a display section 160 and a storage section 170.
- the light receiving device 125 detects the light reflected by the subject S.
- the lens 115 is a lens for collimating the light emitted from the surface emitting laser element 10, and is a collimating lens.
- the lens 135 is a lens for condensing the light reflected by the subject S and guiding it to the light receiving device 125, and is a condensing lens.
- the signal processing section 140 is a circuit for generating a signal corresponding to the difference between the signal input from the light receiving device 125 and the reference signal input from the control section 150 .
- the control unit 150 includes, for example, a Time to Digital Converter (TDC).
- the reference signal may be a signal input from the control section 150 or may be an output signal from a detection section that directly detects the output of the surface emitting laser element 10 .
- the control unit 150 is, for example, a processor that controls the surface emitting laser element 10, the light receiving device 125, the signal processing unit 140, the display unit 160, and the storage unit 170.
- the control unit 150 is a circuit that measures the distance to the subject S based on the signal generated by the signal processing unit 140 .
- the control unit 150 generates a video signal for displaying information about the distance to the subject S and outputs it to the display unit 160 .
- the display unit 160 displays information about the distance to the subject S based on the video signal input from the control unit 150 .
- the control unit 150 stores information about the distance to the subject S in the storage unit 170 .
- the surface emitting laser elements 10-1, 10-2, 10-3, 10-4, 10-5, 10-6, 10-7, and 10-8 , 10-9 can also be applied to the distance measuring device 1000.
- FIG. 11 Example of mounting a distance measuring device on a moving body>
- FIG. 43 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
- a vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
- vehicle control system 12000 includes drive system control unit 12010 , body system control unit 12020 , vehicle exterior information detection unit 12030 , vehicle interior information detection unit 12040 , and integrated control unit 12050 .
- integrated control unit 12050 As the functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio/image output unit 12052, and an in-vehicle network I/F (interface) 12053 are illustrated.
- the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
- the driving system control unit 12010 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
- the body system control unit 12020 controls the operation of various devices equipped on the vehicle body according to various programs.
- the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps.
- the body system control unit 12020 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
- the body system control unit 12020 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
- the vehicle exterior information detection unit 12030 detects information outside the vehicle in which the vehicle control system 12000 is installed.
- a distance measuring device 12031 is connected to the vehicle exterior information detection unit 12030 .
- Distance measuring device 12031 includes distance measuring device 1000 described above.
- the vehicle exterior information detection unit 12030 causes the distance measuring device 12031 to measure the distance to an object (subject S) outside the vehicle, and acquires the distance data thus obtained.
- the vehicle exterior information detection unit 12030 may perform object detection processing such as people, vehicles, obstacles, and signs based on the acquired distance data.
- the in-vehicle information detection unit 12040 detects in-vehicle information.
- the in-vehicle information detection unit 12040 is connected to, for example, a driver state detection section 12041 that detects the state of the driver.
- the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing off.
- the microcomputer 12051 calculates control target values for the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and controls the drive system control unit.
- a control command can be output to 12010 .
- the microcomputer 12051 is intended to realize functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation of vehicles, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane departure warning, and the like. cooperative control can be performed.
- ADAS Advanced Driver Assistance System
- the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, etc. based on the information about the vehicle surroundings acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's Cooperative control can be performed for the purpose of autonomous driving, etc., in which vehicles autonomously travel without depending on operation.
- the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the information detection unit 12030 outside the vehicle.
- the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control aimed at anti-glare such as switching from high beam to low beam. It can be carried out.
- the audio/image output unit 12052 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle.
- an audio speaker 12061, a display unit 12062 and an instrument panel 12063 are illustrated as output devices.
- the display unit 12062 may include at least one of an on-board display and a head-up display, for example.
- FIG. 44 is a diagram showing an example of the installation position of the distance measuring device 12031.
- the vehicle 12100 has distance measuring devices 12101, 12102, 12103, 12104, and 12105 as the distance measuring device 12031.
- the distance measuring devices 12101, 12102, 12103, 12104, and 12105 are provided at positions such as the front nose, side mirrors, rear bumper, back door, and windshield of the vehicle 12100, for example.
- a distance measuring device 12101 provided on the front nose and a distance measuring device 12105 provided on the upper part of the windshield inside the vehicle mainly acquire data in front of the vehicle 12100 .
- Distance measuring devices 12102 and 12103 provided in the side mirrors mainly acquire side data of the vehicle 12100 .
- a distance measuring device 12104 provided on the rear bumper or back door mainly acquires data behind the vehicle 12100 .
- the forward data obtained by the distance measuring devices 12101 and 12105 are mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, and the like.
- FIG. 44 shows an example of the detection range of the distance measuring devices 12101 to 12104.
- a detection range 12111 indicates the detection range of the distance measuring device 12101 provided on the front nose
- detection ranges 12112 and 12113 indicate the detection ranges of the distance measuring devices 12102 and 12103 provided on the side mirrors, respectively
- a detection range 12114 indicates the detection range of the distance measuring device 12104 provided on the rear bumper or back door.
- the microcomputer 12051 calculates the distance to each three-dimensional object within the detection ranges 12111 to 12114 and changes in this distance over time (relative velocity to the vehicle 12100). ), the closest three-dimensional object on the traveling path of the vehicle 12100, which runs at a predetermined speed (for example, 0 km/h or more) in substantially the same direction as the vehicle 12100, is extracted as the preceding vehicle. can be done. Furthermore, the microcomputer 12051 can set the inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including following stop control) and automatic acceleration control (including following start control). In this way, cooperative control can be performed for the purpose of automatic driving in which the vehicle runs autonomously without relying on the operation of the driver.
- automatic brake control including following stop control
- automatic acceleration control including following start control
- the microcomputer 12051 based on the distance data obtained from the distance measuring devices 12101 to 12104, converts three-dimensional object data to other three-dimensional objects such as two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, utility poles, etc. can be used for automatic avoidance of obstacles.
- the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into those that are visible to the driver of the vehicle 12100 and those that are difficult to see. Then, the microcomputer 12051 judges the collision risk indicating the degree of danger of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, an audio speaker 12061 and a display unit 12062 are displayed.
- driving support for collision avoidance can be performed.
- this technique can also take the following structures.
- a substrate an electrode provided on one surface of the substrate; a first region provided on the side opposite to the electrode side of the one surface, in which a plurality of light-emitting portions having mesas are arranged; a second region arranged around the first region on the side opposite to the electrode side of the one surface; with The mesa adjacent to the second region among the plurality of mesas of the light emitting portion and the second mesa adjacent to the second region are larger than the depth dimension of the first recess defined by two mesas adjacent to each other among the mesas of the plurality of light emitting portions. a surface-emitting laser element in which the depth dimension of the second recess defined by the region is larger.
- the electrode is a common electrode provided in common to the plurality of light-emitting portions.
- the second region includes a dummy mesa adjacent to the mesa adjacent to the second region, and the second recess is defined by the mesa adjacent to the second region and the dummy mesa;
- the bottom surface of the second recess is positioned closer to the one surface than the bottom surface of the first recess in the direction perpendicular to the substrate. surface-emitting laser element.
- the surface emitting laser device according to any one of (1) to (4), wherein the open ends of the first and second concave portions are substantially flush.
- the surface emitting device according to any one of (1) to (5), wherein the bottom surfaces of the first and second recesses are both located on the other surface of the substrate opposite to the one surface side. laser element.
- the bottom surface of the first recess is located on the other surface of the substrate opposite to the one surface side, and the bottom surface of the second recess is located within the substrate, (1) to (6)
- the surface emitting laser device according to any one of .
- (8) The surface emitting laser device according to any one of (1) to (7), wherein the bottom surfaces of the first and second recesses are both located within the substrate.
- the first and second regions are provided at different positions in an in-plane direction of a multilayer structure including the substrate, and in the multilayer structure, the first multilayer film reflection is formed on the side opposite to the electrode side of the one surface.
- the surface emitting laser device according to any one of (1) to (8), wherein the mirror, active layer and second multilayer film reflector are laminated in this order.
- the surface-emitting laser device according to (9), wherein the bottom surfaces of the first and second recesses are both positioned within the first multilayer film reflector.
- (11) The surface according to (9), wherein the bottom surface of the first recess is located inside the second multilayer reflector, and the bottom surface of the second recess is located inside the first multilayer reflector. Light-emitting laser element.
- the width of the second recess is greater than the width of the first recess in a cross section obtained by cutting together the two mesas adjacent to each other and the second region, (1) to (14)
- the surface emitting laser device according to any one of (1) to (16) wherein the distance between the centers of the two mesas adjacent to each other is 10 ⁇ m or more and 50 ⁇ m or less.
- a method of manufacturing a surface-emitting laser element wherein the laminate is etched so that a depth dimension of a second recess defined by the mesa adjacent to the second region and the second region is larger.
- the electrodes are formed at least in regions corresponding to the first and second regions on the surface of the substrate opposite to the surface facing the first multilayer film reflector. 22.
- the laminate is etched to form one of the first and second regions, and then the laminate having the one formed thereon is etched.
- 10, 10-1 to 10-9 surface emitting laser element
- 100 substrate
- 100a one surface of substrate
- 100b other surface of substrate
- 102 first multilayer film reflector
- 103 oxidized constricting layer
- 105 active Layer
- 107 Second multilayer film reflector
- 110 Anode electrode (another electrode)
- 111 Cathode electrode (electrode)
- 1000 Distance measuring device (electronic device)
- LEP Light emitting part
- M mesa
- DM dummy mesa
- R1 first concave portion
- R2 second concave portion
- H1 depth dimension of first concave portion
- H2 depth dimension of second concave portion.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Geometry (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
前記基板の一面に設けられた電極と、
前記一面の前記電極側とは反対側に設けられ、メサを有する発光部が複数配置された第1領域と、
前記一面の前記電極側とは反対側における前記第1領域の周辺に配置された第2領域と、
を備え、
前記複数の発光部のメサのうち互いに隣接する2つのメサにより規定される第1凹部の深さ寸法よりも、前記複数の発光部のメサのうち前記第2領域に隣接するメサと前記第2領域とにより規定される第2凹部の深さ寸法の方が大きい、面発光レーザ素子を提供する。
前記電極は、前記複数の発光部に対して共通に設けられた共通電極であってもよい。
前記第2領域は、前記第2領域に隣接するメサに隣接するダミーメサを含み、前記第2領域に隣接するメサと前記ダミーメサとにより前記第2凹部が規定されてもよい。
前記第2凹部の底面は、前記基板に垂直な方向に関して、前記第1凹部の底面よりも前記一面に近い位置に位置していてもよい。
前記第1及び第2凹部の開口端は、略面一であってもよい。
前記第1及び第2凹部の底面は、いずれも前記基板の他面の前記一面側とは反対側に位置してもよい。
前記第1凹部の底面は、前記基板の他面の前記一面側とは反対側に位置し、前記第2凹部の底面は、前記基板内に位置していてもよい。
前記第1及び第2凹部の底面は、いずれも前記基板内に位置していてもよい。
前記第1及び第2領域は、前記基板を含む積層構造の面内方向の異なる位置に設けられ、前記積層構造では、前記一面の前記電極側とは反対側に第1多層膜反射鏡、活性層及び第2多層膜反射鏡がこの順に積層されていてもよい。
前記第1及び第2凹部の底面は、いずれも前記第1多層膜反射鏡内に位置していてもよい。
前記第1凹部の底面は、前記第2多層膜反射鏡内に位置し、前記第2凹部の底面は、前記第1多層膜反射鏡内に位置していてもよい。
前記第1凹部の底面は、前記第1多層膜反射鏡内に位置し、前記第2凹部の底面は、前記基板内に位置していてもよい。
前記第1凹部の底面は、前記第2多層膜反射鏡内に位置し、前記第2凹部の底面は、前記基板内に位置していてもよい。
前記第1及び第2凹部の底面は、いずれも前記第2多層膜反射鏡内に位置していてもよい。
前記互いに隣接する2つのメサ及び前記第2領域を一緒に切断した断面内において、前記第1凹部の幅よりも前記第2凹部の幅の方が大きくてもよい。
前記第2領域に隣接する少なくとも1つの前記メサの頂部及び前記第2領域に隣接しない少なくとも2つの前記メサの頂部に共通の別の電極が設けられていてもよい。
前記互いに隣接する2つのメサの中心間の間隔は、10μm以上50μm以下であってもよい。
本技術は、前記面発光レーザ素子を備える、電子機器も提供する。
本技術は、基板上に第1多層膜反射鏡、活性層及び第2多層膜反射鏡をこの順に積層して積層体を生成する工程と、
前記積層体をエッチングしてメサが複数配置された第1領域及び該第1領域の周辺の第2領域を形成する工程と、
前記基板の前記第1多層膜反射鏡側の面とは反対側の面に電極を形成する工程と、
を含み、
前記第1及び第2領域を形成する工程では、前記複数の発光部のメサのうち互いに隣接する2つのメサにより規定される第1凹部の深さ寸法よりも、前記複数の発光部のメサのうち前記第2領域に隣接するメサと前記第2領域とにより規定される第2凹部の深さ寸法の方が大きくなるように前記積層体をエッチングする、面発光レーザ素子の製造方法も提供する。
前記電極を形成する工程では、前記基板の前記第1多層膜反射鏡側の面とは反対側の面の、少なくとも前記第1及び第2領域に対応する領域に前記電極を形成してもよい。
1.本技術の一実施形態に係る面発光レーザ素子の構成
2.本技術の一実施形態に係る面発光レーザ素子の動作
3.本技術の一実施形態に係る面発光レーザ素子の製造方法の第1例
4.本技術の一実施形態に係る面発光レーザ素子の製造方法の第2例
5.本技術の一実施形態に係る面発光レーザ素子の製造方法の第3例
6.本技術の一実施形態に係る面発光レーザ素子の効果及びその製造方法の効果
7.本技術の一実施形態の変形例1~9に係る面発光レーザ素子
8.本技術の一実施形態の他の変形例
9.電子機器への応用例
10.面発光レーザ素子を距離測定装置に適用した例
11.距離測定装置を移動体に搭載した例
(全体構成)
図1は、本技術の一実施形態に係る面発光レーザ素子の断面図(その1)である。図2は、本技術の一実施形態に係る面発光レーザ素子の断面図(その2)である。図3は、本技術の一実施形態に係る面発光レーザ素子の平面図である。
以下、図1~図3に示すXYZ3次元直交座標系を適宜用いて説明する。
図1は、図3のV-V線断面図(YZ断面図)である。図2は、図3のW-W線断面図(XZ断面図)である。
以下では、適宜、基板100の一面100a側を下側(-Z側)、各メサMの頂部側を上側(+Z側)として説明する。
第1領域A1には、一例として、メサMを有する複数の発光部LEPが2次元配置されている。各発光部LEPは、垂直共振器型面発光レーザ(VCSEL)である。
ここでは、複数の発光部LEPは、一例としてX軸方向及びY軸方向のいずれにも等間隔でマトリクス状(正方格子状)に配置されているが、例えば千鳥状、ランダム状等の他のレイアウトで配置されてもよい。
各メサMの上面は、略面一である。
ここでは、第1領域A1においてX軸方向又はY軸方向に互いに隣接する2つのメサMのピッチ(該2つのメサMの中心間の間隔)は、例えば10μm以上50μm以下(好ましくは20μm程度)に設定されている。
詳述すると、アノード電極110は、各メサMのコンタクトホールCHの周辺部を介してコンタクト層108に接触している。各メサM上におけるアノード電極110の内側(コンタクトホールCHの中央部)が、該メサMを有する発光部LEPの出射口となっている。各発光部LEPの出射方向は、+Z方向である。
基板100は、一例として、第1導電型(例えばn型)のGaAs基板である。
カソード電極111(n側電極)は、一例として、複数の発光部(ここでは全発光部)に対して共通に設けられた共通電極である。カソード電極111は、一例として、基板100の裏面の略全域にベタ状に設けられている。
カソード電極111は、単層構造であってもよいし、積層構造であってもよい。
カソード電極111は、例えばAu、Ag、Pd、Pt、Ni、Ti、V、W、Cr、Al、Cu、Zn、Sn及びInからなる群から選択された少なくとも1種類の金属(合金を含む)によって構成されている。
カソード電極111が積層構造である場合は、例えばTi/Au、Ti/Al、Ti/Al/Au、Ti/Pt/Au、Ni/Au、Ni/Au/Pt、Ni/Pt、Pd/Pt、Ag/Pd等の材料で構成される。
カソード電極111は、ドライバICを含むレーザドライバの陰極側(負極側)に電気的に接続されている。
スペーサ層101は、一例として、第1導電型(例えばn型)のAlGaAs系化合物半導体からなる。スペーサ層101は「バッファ層」とも呼ばれる。
第1多層膜反射鏡102は、一例として、半導体多層膜反射鏡である。多層膜反射鏡は、分布型ブラッグ反射鏡(Distributed Bragg Reflector)とも呼ばれる。多層膜反射鏡(分布型ブラッグ反射鏡)の一種である半導体多層膜反射鏡は、光吸収が少なく、高反射率及び導電性を有する。第1多層膜反射鏡102は、下部DBRとも呼ばれる。
第1の多層膜反射鏡102は、一例として、第1導電型の半導体多層膜反射鏡であり、屈折率が互いに異なる複数種類(例えば2種類)の半導体層(屈折率層)が発振波長λの1/4(λ/4)の光学厚さで交互に積層された構造を有する。第1の多層膜反射鏡102の各屈折率層は、第1導電型(例えばn型)のAlGaAs系化合物半導体からなる。
酸化狭窄層103は、一例として、AlAsからなる非酸化領域103aと、該非酸化領域103aの外周を取り囲む、AlAsの酸化物(例えばAl2O3)からなる酸化領域103bとを有する。
第1クラッド層104は、第1導電型(例えばn型)のAlGaAs系化合物半導体からなる。
活性層105は、例えばAlGaAs系化合物半導体からなる障壁層及び量子井戸層を含む量子井戸構造を有する。この量子井戸構造は、単一量子井戸構造(QW構造)であってもよいし、多重量子井戸構造(MQW構造)であってもよい。
第2クラッド層106は、第2導電型(例えばp型)のAlGaAs系化合物半導体からなる。
第2多層膜反射鏡107は、一例として、第2導電型の半導体多層膜反射鏡であり、屈折率が互いに異なる複数種類(例えば2種類)の半導体層(屈折率層)が発振波長の1/4波長の光学厚さで交互に積層された構造を有する。第2の多層膜反射鏡107の各屈折率層は、第2導電型(例えばp型)のAlGaAs系化合物半導体からなる。
コンタクト層108は、第2導電型(例えばp型)のGaAs系化合物半導体からなる。
絶縁膜109は、例えばSiO2、SiN、SiON等の誘電体からなる。
アノード電極110(p側電極)は、図1及び図2に示すように、第2領域A2に隣接する少なくとも1つのメサMの頂部及び第2領域A2に隣接しない少なくとも2つのメサMの頂部に共通に設けられた電極である。ここでは、アノード電極110は、一例として、全発光部LEPのメサMに共通の共通電極である。なお、アノード電極110は、例えば、図3においてY軸方向に並ぶ複数のメサMから各々が成る、X軸方向に並ぶ複数のメサ列毎に共通に設けられてもよいし、該複数のメサ列のうち少なくとも2つのメサ列毎に共通に設けられてもよい。
アノード電極110は、複数の発光部LEPのメサM(但し該メサMの頂部の中央部を除く)及び突条部PPの一部を覆うように設けられている。
アノード電極110は、単層構造であってもよいし、積層構造であってもよい。
アノード電極110は、例えばAu、Ag、Pd、Pt、Ni、Ti、V、W、Cr、Al、Cu、Zn、Sn及びInからなる群から選択された少なくとも1種類の金属(合金を含む)によって構成されている。
アノード電極110が積層構造である場合は、例えばTi/Au、Ti/Al、Ti/Al/Au、Ti/Pt/Au、Ni/Au、Ni/Au/Pt、Ni/Pt、Pd/Pt、Ag/Pd等の材料で構成される。
アノード電極110は、一例として、第2領域A2を覆う部分が、ドライバICを含むレーザドライバの陽極側(正極側)に電気的に接続されている。
複数の発光部LEPのメサMのうち互いに隣接する2つのメサMにより第1凹部R1が規定されている(図1及び図2参照)。
複数の発光部LEPのメサMのうち-Y側の第2領域A2に隣接するメサM(最も-Y側のメサM)と-Y側の第2領域A2とにより-Y側の第2凹部R2が規定されている(図1及び図3参照)。
同様に、複数の発光部LEPのメサMのうち+Y側の第2領域A2に隣接するメサM(最も+Y側のメサM)と+Y側の第2領域A2とにより+Y側の第2凹部R2が規定されている(図3参照)。
以下、第2領域A2に隣接するメサM(例えば最も-Y側のメサM及び最も+Y側のメサM)を「最外周メサ」と総称する。
第1凹部R1の底面は、基板100の他面100b(+Z側の面)の一面100a側(-Z側)とは反対側(+Z側)に位置している。
詳述すると、第1凹部R1の底面は、第1多層膜反射鏡102内に位置している。
第2凹部R2の底面は、基板100の他面100b(+Z側の面)の一面100a側(-Z側)とは反対側(+Z側)に位置している。
詳述すると、第2凹部R2の底面は、第1多層膜反射鏡102内における第1凹部R1の底面よりも下側(-Z側)の位置に位置している。
第1及び第2凹部R1、R2の幅は、一例として、数~数十μmとされている。
基本的には、H2-H1が大きいほど、該抵抗差の低減度が大きくなる。逆に言うと、H2-H1が小さいほど、該抵抗差の低減度が小さくなる。
そこで、H2-H1を、該抵抗差が小さくなるような場合、例えばメサピッチが比較的大きい場合(例えば30~50μm)には比較的小さく設定することが好ましく、該抵抗差が大きくなるような場合、例えばメサピッチが比較的小さい場合(例えば10~30μm)には比較的大きく設定することが好ましい。
この場合、第1及び第2凹部R1、R2の深さ寸法の差H2-H1は、互いに隣接する2つのメサMの中心間の間隔が狭いほど大きく設定されることが好ましい。
各第2領域A2の第1領域A1側とは反対側の端部及び第1領域A1の+X側及び-X側の端部には、素子分離用の分離溝STが形成されている(図1及び図3参照)。
分離溝STの底面は、一例として、第1多層膜反射鏡102内に位置している。
面発光レーザ素子10の各発光部LEPでは、レーザドライバの陽極側からアノード電極110、コンタクト層108、第2多層膜反射鏡107及び第2クラッド層106を介して活性層105に電流が注入されると、該活性層105が発光し、その光が第1及び第2多層膜反射鏡102、107間を活性層105で増幅され酸化狭窄層103で狭窄されつつ往復し、発振条件を満たしたときに、基板100の裏面側へレーザ光として出射される。活性層105に注入された電流は、第1クラッド層104、酸化狭窄層103及び第1多層膜反射鏡102及びカソード電極111を介してレーザドライバの陰極側へ流出される。
以下、一実施形態に係る面発光レーザ素子10の製造方法の第1例について、図4のフローチャート、図5~図16の断面図を参照して説明する。
ここでは、一例として、半導体製造装置を用いた半導体製造方法により、基板100の基材である1枚のウェハ上に複数の面発光レーザ素子10を同時に生成する。次いで、一連一体の複数の面発光レーザ素子10をダイシングにより互いに分離して、チップ状の複数の面発光レーザ素子10を得る。
具体的には、先ず、積層体Lのコンタクト層108上に最外周メサ以外のメサMとなるメサ構造MSを形成するためのレジストパターンRP1を生成する(図6参照)。
次いで、このレジストパターンRP1をマスクとして積層体Lをドライエッチング又はウェットエッチングによりエッチングして、メサ構造MSを形成する(図7参照)。ここでは、少なくとも被選択酸化層103Sの側面が露出するまで(第1凹部R1の底面となるエッチング底面が第1多層膜反射鏡102内における被選択酸化層103Sの下側に位置するまで)エッチングを行う。互いに隣接する2つのメサ構造MSが形成されることにより、深さ寸法H1の第1凹部R1が形成される。
最後に、ドライエッチング又はウェットエッチングによりレジストパターンRP1をエッチングして除去する(図8参照)。
具体的には、先ず、メサ構造MSが形成された積層体上に最外周メサとなるメサ構造MS及び突条部PPとなる突条構造PSを形成するためのレジストパターンRP2を形成する(図9参照)。
次いで、このレジストパターンRP2をマスクとして該積層体をドライエッチング又はウェットエッチングによりエッチングして、最外周メサとなるメサ構造MS及び突条部PPとなる突条構造PSを形成する(図10参照)。ここでは、第2凹部R2の底面となるエッチング底面が第1多層膜反射鏡102内における第1凹部R1の底面よりも下側に位置するまでエッチングを行う。最外周メサとなるメサ構造MS及び突条部PPとなる突条構造PSが形成されることにより、深さ寸法H2の第2凹部R2及び分離溝STが形成される。
最後に、ドライエッチング又はウェットエッチングによりレジストパターンRP2をエッチングして除去する(図11参照)
以下、一実施形態に係る面発光レーザ素子10の製造方法の第2例について、図17のフローチャート、図5~図8、図11~図16、図18~図22の断面図を参照して説明する。
ここでは、一例として、半導体製造装置を用いた半導体製造方法により、基板100の基材である1枚のウェハ上に複数の面発光レーザ素子10を同時に生成する。次いで、一連一体の複数の面発光レーザ素子10をダイシングにより互いに分離して、チップ状の複数の面発光レーザ素子10を得る。
具体的には、先ず、積層体Lのコンタクト層108上に最外周メサ以外のメサMとなるメサ構造MSを形成するためのレジストパターンRP1を生成する(図6参照)。
次いで、このレジストパターンRP1をマスクとして積層体Lをドライエッチング又はウェットエッチングによりエッチングして、メサ構造MSを形成する(図7参照)。ここでは、少なくとも被選択酸化層103Sの側面が露出するまで(第1凹部R1の底面となるエッチング底面が第1多層膜反射鏡102内における被選択酸化層103Sの下側に位置するまで)エッチングを行う。互いに隣接する2つのメサ構造MSが形成されることにより、深さ寸法H1の第1凹部R1が形成される。
最後に、ドライエッチング又はウェットエッチングによりレジストパターンRP1をエッチングして除去する(図8参照)。
具体的には、先ず、メサ構造MSが形成された積層体上に最外周メサとなるメサ構造MSを形成するためのレジストパターンRP3を形成する(図18参照)。
次いで、このレジストパターンRP3をマスクとして該積層体をドライエッチング又はウェットエッチングによりエッチングして、最外周メサとなるメサ構造MSを形成する(図19参照)。ここでは、第2凹部R2の底面となるエッチング底面が第1多層膜反射鏡102内における第1凹部R1の底面よりも下側に位置するまでエッチングを行う。最外周メサとなるメサ構造MSが形成されることにより、深さ寸法H2の第2凹部R2が形成される。
最後に、ドライエッチング又はウェットエッチングによりレジストパターンRP3をエッチングして除去する(図20参照)。
具体的には、先ず、メサ構造MSが形成された積層体上に突条部PPとなる突条構造PSを形成するためのレジストパターンRP4を形成する(図21参照)。
次いで、このレジストパターンRP4をマスクとして該積層体をドライエッチング又はウェットエッチングによりエッチングして、突条部PPとなる突条構造PSを形成する(図22参照)。ここでは、分離溝STの底面となるエッチング底面が第1多層膜反射鏡102内における被選択酸化層103Sの下側に位置するまでエッチングを行う。突条部PPとなる突条構造PSが形成されることにより、分離溝STが形成される。
最後に、ドライエッチング又はウェットエッチングによりレジストパターンRP4をエッチングして除去する(図11参照)。
以下、一実施形態に係る面発光レーザ素子10の製造方法の第3例について、図23のフローチャート、図5~図8、図11~図16、図24~図28の断面図を参照して説明する。
ここでは、一例として、半導体製造装置を用いた半導体製造方法により、基板100の基材である1枚のウェハ上に複数の面発光レーザ素子10を同時に生成する。次いで、一連一体の複数の面発光レーザ素子10をダイシングにより互いに分離して、チップ状の複数の面発光レーザ素子10を得る。
具体的には、先ず、積層体Lのコンタクト層108上に最外周メサ以外のメサMとなるメサ構造MSを形成するためのレジストパターンRP1を生成する(図6参照)。
次いで、このレジストパターンRP1をマスクとして積層体Lをドライエッチング又はウェットエッチングによりエッチングして、メサ構造MSを形成する(図7参照)。ここでは、少なくとも被選択酸化層103Sの側面が露出するまで(第1凹部R1の底面となるエッチング底面が第1多層膜反射鏡102内における被選択酸化層103Sの下側に位置するまで)エッチングを行う。互いに隣接する2つのメサ構造MSが形成されることにより、深さ寸法H1の第1凹部R1が形成される。
最後に、ドライエッチング又はウェットエッチングによりレジストパターンRP1をエッチングして除去する(図8参照)。
具体的には、先ず、メサ構造MSが形成された積層体上に分離溝STを形成するためのレジストパターンRP5を形成する(図24参照)。
次いで、このレジストパターンRP5をマスクとして該積層体をドライエッチング又はウェットエッチングによりエッチングして、分離溝STを形成する(図25参照)。ここでは、分離溝STの底面となるエッチング底面が第1多層膜反射鏡102内における被選択酸化層103Sの下側に位置するまでエッチングを行う。
最後に、ドライエッチング又はウェットエッチングによりレジストパターンRP5をエッチングして除去する(図26参照)。
具体的には、先ず、メサ構造MS及び分離溝STが形成された積層体上に最外周メサとなるメサ構造MS及び突条部PPとなる突条構造PSを形成するためのレジストパターンRP6を形成する(図27参照)。
次いで、このレジストパターンRP6をマスクとして該積層体をドライエッチング又はウェットエッチングによりエッチングして、最外周メサとなるメサ構造MS及び突条部PPとなる突条構造PSを形成する(図28参照)。ここでは、第2凹部R2の底面となるエッチング底面が第1多層膜反射鏡102内における第1凹部R1の底面の下側に位置するまでエッチングを行う。
最後に、ドライエッチング又はウェットエッチングによりレジストパターンRP6をエッチングして除去する(図11参照)。
以下に、本技術の一実施形態に係る面発光レーザ素子10及びその製造方法の効果について説明する。
この場合、最外周メサを流れた電流が第2領域A2側に広がることが抑制されるので最外周メサの電気抵抗が低下することが抑制され、ひいては最外周メサに電流が集中することが抑制される(図29参照)。
結果として、面発光レーザ素子10によれば、第2領域A2に隣接する発光部LEPのと、該発光部LEP以外の発光部LEPとの間での発光強度のばらつきを低減することができる。
さらに、第1及び第2凹部R1、R2の開口端は、略面一である。これにより、1回の結晶成長(例えばエピタキシャル成長)によって生成された積層体Lをエッチングすることにより、第1及び第2凹部R1、R2を形成することができる。
面発光レーザ素子10の製造方法によれば、第2領域A2に隣接する発光部LEPと、該発光部LEP以外の発光部LEPとの間での発光強度のばらつきを低減することができる面発光レーザ素子を製造できる。
以下、本技術の一実施形態の変形例1~9に係る面発光レーザ素子10-1~10-9について、図面を参照して説明する。
図31は、変形例1の面発光レーザ素子10-1の断面図(図3のV-V線断面図(図1)に対応する断面図)である。
変形例1に係る面発光レーザ素子10-1では、図31に示すように、第1凹部R1の底面が第1多層膜反射鏡102内に位置し、且つ、第2凹部R2の底面が基板100内に位置する点を除いて、一実施形態の面発光レーザ素子10と同様の構成を有する。
図32は、変形例2の面発光レーザ素子10-2の断面図(図3のV-V線断面図(図1)に対応する断面図)である。
変形例2に係る面発光レーザ素子10-2では、図32に示すように、第1凹部R1の底面及び第2凹部R2の底面のいずれも基板100内に位置する点を除いて、一実施形態の面発光レーザ素子10と同様の構成を有する。
図33は、変形例3の面発光レーザ素子10-3の断面図(図3のV-V線断面図(図1)に対応する断面図)である。
変形例3に係る面発光レーザ素子10-3では、図33に示すように、第1凹部R1の底面及び第2凹部R2の底面のいずれも第2多層膜反射鏡107内に位置する点を除いて、一実施形態の面発光レーザ素子10と概ね同様の構成を有する。
面発光レーザ素子10―3では、各メサM及び突条部PPが活性層105を有していない。
面発光レーザ素子10-3も、面発光レーザ素子10の製造方法と同様の製造方法により製造できる。
図34は、変形例4の面発光レーザ素子10-4の断面図(図3のV-V線断面図(図1)に対応する断面図)である。
変形例4に係る面発光レーザ素子10-4では、図34に示すように、第1凹部R1の底面及び第2凹部R2の底面のいずれも第1多層膜反射鏡107内に位置している。
面発光レーザ素子10-4では、H2-H1が、一実施形態の面発光レーザ素子10よりも小さくなっている。
面発光レーザ素子10-4も、面発光レーザ素子10の製造方法と同様の製造方法により製造できる。
図35は、変形例5の面発光レーザ素子10-5の断面図(図3のV-V線断面図(図1)に対応する断面図)である。
変形例5に係る面発光レーザ素子10-5では、図35に示すように、H2-H1の大きさを除いて、変形例1の面発光レーザ素子10-1と同様の構成を有する。
図36は、変形例6の面発光レーザ素子10-6の断面図(図3のV-V線断面図(図1)に対応する断面図)である。
変形例6に係る面発光レーザ素子10-6では、図36に示すように、第1凹部R1の底面が第2多層膜反射鏡107内に位置し、第2凹部R2の底面が基板100内に位置する点を除いて、一実施形態の面発光レーザ素子10と同様の構成を有する。
面発光レーザ素子10-6では、各メサMは、活性層105を有していない。
すなわち、面発光レーザ素子10-6は、特に、メサピッチが小さく、最外周メサとそれ以外のメサMとの間での抵抗差が大きくなる場合に有効である。
面発光レーザ素子10-6も、一実施形態の面発光レーザ素子10の製造方法と同様の製造方法により製造できる。
図37は、変形例7の面発光レーザ素子10-7の断面図(その1)である。図38は、変形例7の面発光レーザ素子10-7の断面図(その2)である。図39は、変形例7の面発光レーザ素子10-7の平面図である。図37は、図39のV7-V7線断面図(YZ断面図)である。図38は、図39のW7-W7線断面図(XZ断面図)である。
ダミーメサDMは、コンタクトホールCH及びアノード電極110が設けられておらず、通電されない非発光部が有するメサである。
面発光レーザ素子10-7も、一実施形態の面発光レーザ素子10の製造方法と概ね同様の製造方法により製造できる。
図38は、変形例8の面発光レーザ素子10-8の平面図である。
面発光レーザ素子10-8も、一実施形態の面発光レーザ素子10の製造方法と同様の製造方法により製造できる。
図41は、変形例9の面発光レーザ素子10-9の平面図である。
面発光レーザ素子10-9も、一実施形態の面発光レーザ素子10の製造方法と同様の製造方法により製造できる。
本技術に係る面発光レーザ素子は、上記実施形態及び各変形例で説明した構成に限らず、適宜変更可能である。
例えば、第1の多層膜反射鏡102が半導体多層膜反射鏡であり、且つ、第2の多層膜反射鏡107が誘電体多層膜反射鏡であってもよい。誘電体多層膜反射鏡も、分布型ブラッグ反射鏡の一種である。
例えば、第1の多層膜反射鏡102が誘電体多層膜反射鏡であり、且つ、第2の多層膜反射鏡107が半導体多層膜反射鏡であってもよい。
例えば、第1及び第2の多層膜反射鏡102、107のいずれも誘電体多層膜反射鏡であってもよい。
本開示に係る技術(本技術)は、様々な製品(電子機器)へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される素子として実現されてもよい。
以下に、上記実施形態及び各変形例に係る面発光レーザ素子の適用例について説明する。
11.<距離測定装置を移動体に搭載した例>
(1)基板と、
前記基板の一面に設けられた電極と、
前記一面の前記電極側とは反対側に設けられ、メサを有する発光部が複数配置された第1領域と、
前記一面の前記電極側とは反対側における前記第1領域の周辺に配置された第2領域と、
を備え、
前記複数の発光部のメサのうち互いに隣接する2つのメサにより規定される第1凹部の深さ寸法よりも、前記複数の発光部のメサのうち前記第2領域に隣接するメサと前記第2領域とにより規定される第2凹部の深さ寸法の方が大きい、面発光レーザ素子。
(2)前記電極は、前記複数の発光部に対して共通に設けられた共通電極である、(1)に記載の面発光レーザ素子。
(3)前記第2領域は、前記第2領域に隣接するメサに隣接するダミーメサを含み、前記第2領域に隣接するメサと前記ダミーメサとにより前記第2凹部が規定される、(1)又は(2)に記載の面発光レーザ素子。
(4)前記第2凹部の底面は、前記基板に垂直な方向に関して、前記第1凹部の底面よりも前記一面に近い位置に位置する、(1)~(3)のいずれか1つに記載の面発光レーザ素子。
(5)前記第1及び第2凹部の開口端は、略面一である、(1)~(4)のいずれか1つに記載の面発光レーザ素子。
(6)前記第1及び第2凹部の底面は、いずれも前記基板の他面の前記一面側とは反対側に位置する、(1)~(5)のいずれか1つに記載の面発光レーザ素子。
(7)前記第1凹部の底面は、前記基板の他面の前記一面側とは反対側に位置し、前記第2凹部の底面は、前記基板内に位置する、(1)~(6)のいずれか1つに記載の面発光レーザ素子。
(8)前記第1及び第2凹部の底面は、いずれも前記基板内に位置する、(1)~(7)のいずれか1つに記載の面発光レーザ素子。
(9)前記第1及び第2領域は、前記基板を含む積層構造の面内方向の異なる位置に設けられ、前記積層構造では、前記一面の前記電極側とは反対側に第1多層膜反射鏡、活性層及び第2多層膜反射鏡がこの順に積層されている、(1)~(8)のいずれか1つに記載の面発光レーザ素子。
(10)前記第1及び第2凹部の底面は、いずれも前記第1多層膜反射鏡内に位置する、(9)に記載の面発光レーザ素子。
(11)前記第1凹部の底面は、前記第2多層膜反射鏡内に位置し、前記第2凹部の底面は、前記第1多層膜反射鏡内に位置する、(9)に記載の面発光レーザ素子。
(12)前記第1凹部の底面は、前記第1多層膜反射鏡内に位置し、前記第2凹部の底面は、前記基板内に位置する、(9)に記載の面発光レーザ素子。
(13)前記第1凹部の底面は、前記第2多層膜反射鏡内に位置し、前記第2凹部の底面は、前記基板内に位置する、(9)に記載の面発光レーザ素子。
(14)前記第1及び第2凹部の底面は、いずれも前記第2多層膜反射鏡内に位置する、(9)に記載の面発光レーザ素子。
(15)前記互いに隣接する2つのメサ及び前記第2領域を一緒に切断した断面内において、前記第1凹部の幅よりも前記第2凹部の幅の方が大きい、(1)~(14)のいずれか1つに記載の面発光レーザ素子。
(16)前記第2領域に隣接する少なくとも1つの前記メサの頂部及び前記第2領域に隣接しない少なくとも2つの前記メサの頂部に共通の別の電極が設けられる、(1)~(15)のいずれか1つに記載の面発光レーザ素子。
(17)前記互いに隣接する2つのメサの中心間の間隔は、10μm以上50μm以下である、(1)~(16)のいずれか1つに面発光レーザ素子。
(18)前記第1及び第2凹部の深さ寸法の差が、前記互いに隣接する2つのメサの中心間の間隔に基づいて設定されている、(1)~(17)のいずれか1つに記載の面発光レーザ素子。
(19)前記第1及び第2凹部の深さ寸法の差は、前記互いに隣接する2つのメサの中心間の間隔が狭いほど大きく設定される、(1)~(18)のいずれか1つに記載の面発光レーザ素子。
(20)(1)~(19)のいずれか1つに記載の面発光レーザ素子を備える、電子機器。
(21)基板上に第1多層膜反射鏡、活性層及び第2多層膜反射鏡をこの順に積層して積層体を生成する工程と、
前記積層体をエッチングしてメサを含む発光部が複数配置された第1領域及び該第1領域の周辺の第2領域を形成する工程と、
前記基板の前記第1多層膜反射鏡側の面とは反対側の面に電極を形成する工程と、
を含み、
前記第1及び第2領域を形成する工程では、前記複数の発光部のメサのうち互いに隣接する2つのメサにより規定される第1凹部の深さ寸法よりも、前記複数の発光部のメサのうち前記第2領域に隣接するメサと前記第2領域とにより規定される第2凹部の深さ寸法の方が大きくなるように前記積層体をエッチングする、面発光レーザ素子の製造方法。
(22)前記電極を形成する工程では、前記基板の前記第1多層膜反射鏡側の面とは反対側の面の、少なくとも前記第1及び第2領域に対応する領域に前記電極を形成する、請求項21に記載の面発光レーザ素子の製造方法。
(23)前記第1及び第2領域を形成する工程では、前記積層体をエッチングして前記第1及び第2領域の一方を形成した後、前記一方が形成された前記積層体をエッチングして前記第1及び第2領域の他方を形成する、(21)又は(22)に記載の面発光レーザ素子の製造方法。
Claims (20)
- 基板と、
前記基板の一面に設けられた電極と、
前記一面の前記電極側とは反対側に設けられ、メサを有する発光部が複数配置された第1領域と、
前記一面の前記電極側とは反対側における前記第1領域の周辺に配置された第2領域と、
を備え、
前記複数の発光部のメサのうち互いに隣接する2つのメサにより規定される第1凹部の深さ寸法よりも、前記複数の発光部のメサのうち前記第2領域に隣接するメサと前記第2領域とにより規定される第2凹部の深さ寸法の方が大きい、面発光レーザ素子。 - 前記電極は、前記複数の発光部に対して共通に設けられた共通電極である、請求項1に記載の面発光レーザ素子。
- 前記第2領域は、前記第2領域に隣接するメサに隣接するダミーメサを含み、
前記第2領域に隣接するメサと前記ダミーメサとにより前記第2凹部が規定される、請求項1に記載の面発光レーザ素子。 - 前記第2凹部の底面は、前記基板に垂直な方向に関して、前記第1凹部の底面よりも前記一面に近い位置に位置する、請求項1に記載の面発光レーザ素子。
- 前記第1及び第2凹部の開口端は、略面一である、請求項1に記載の面発光レーザ素子。
- 前記第1及び第2凹部の底面は、いずれも前記基板の他面の前記一面側とは反対側に位置する、請求項1に記載の面発光レーザ素子。
- 前記第1凹部の底面は、前記基板の他面の前記一面側とは反対側に位置し、
前記第2凹部の底面は、前記基板内に位置する、請求項1に記載の面発光レーザ素子。 - 前記第1及び第2凹部の底面は、いずれも前記基板内に位置する、請求項1に記載の面発光レーザ素子。
- 前記第1及び第2領域は、前記基板を含む積層構造の面内方向の異なる位置に設けられ、
前記積層構造では、前記一面の前記電極側とは反対側に第1多層膜反射鏡、活性層及び第2多層膜反射鏡がこの順に積層されている、請求項1に記載の面発光レーザ素子。 - 前記第1及び第2凹部の底面は、いずれも前記第1多層膜反射鏡内に位置する、請求項9に記載の面発光レーザ素子。
- 前記第1凹部の底面は、前記第2多層膜反射鏡内に位置し、
前記第2凹部の底面は、前記第1多層膜反射鏡内に位置する、請求項9に記載の面発光レーザ素子。 - 前記第1凹部の底面は、前記第1多層膜反射鏡内に位置し、
前記第2凹部の底面は、前記基板内に位置する、請求項9に記載の面発光レーザ素子。 - 前記第1凹部の底面は、前記第2多層膜反射鏡内に位置し、
前記第2凹部の底面は、前記基板内に位置する、請求項9に記載の面発光レーザ素子。 - 前記第1及び第2凹部の底面は、いずれも前記第2多層膜反射鏡内に位置する、請求項9に記載の面発光レーザ素子。
- 前記互いに隣接する2つのメサ及び前記第2領域を一緒に切断した断面内において、前記第1凹部の幅よりも前記第2凹部の幅の方が大きい、請求項1に記載の面発光レーザ素子。
- 前記第2領域に隣接する少なくとも1つの前記メサの頂部及び前記第2領域に隣接しない少なくとも2つの前記メサの頂部に接触するように設けられた別の電極を更に備える、請求項1に記載の面発光レーザ素子。
- 前記互いに隣接する2つのメサの中心間の間隔は、10μm以上50μm以下である、請求項1に面発光レーザ素子。
- 請求項1に記載の面発光レーザ素子を備える、電子機器。
- 基板上に第1多層膜反射鏡、活性層及び第2多層膜反射鏡をこの順に積層して積層体を生成する工程と、
前記積層体をエッチングしてメサを含む発光部が複数配置された第1領域及び該第1領域の周辺の第2領域を形成する工程と、
前記基板の前記第1多層膜反射鏡側の面とは反対側の面に電極を形成する工程と、
を含み、
前記第1及び第2領域を形成する工程では、前記複数の発光部のメサのうち互いに隣接する2つのメサにより規定される第1凹部の深さ寸法よりも、前記複数の発光部のメサのうち前記第2領域に隣接するメサと前記第2領域とにより規定される第2凹部の深さ寸法の方が大きくなるように前記積層体をエッチングする、面発光レーザ素子の製造方法。 - 前記電極を形成する工程では、前記基板の前記第1多層膜反射鏡側の面とは反対側の面の、少なくとも前記第1及び第2領域に対応する領域に前記電極を形成する、請求項19に記載の面発光レーザ素子の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22807029.8A EP4336685A1 (en) | 2021-05-14 | 2022-02-02 | Surface emitting laser element, electronic device, and method for producing surface emitting laser element |
US18/558,246 US20240235167A1 (en) | 2021-05-14 | 2022-02-02 | Surface emitting laser element, electronic device, and method for manufacturing surface emitting laser element |
CN202280033709.4A CN117280554A (zh) | 2021-05-14 | 2022-02-02 | 表面发射激光元件、电子设备及表面发射激光元件的制造方法 |
JP2023520775A JPWO2022239322A1 (ja) | 2021-05-14 | 2022-02-02 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021082519 | 2021-05-14 | ||
JP2021-082519 | 2021-05-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022239322A1 true WO2022239322A1 (ja) | 2022-11-17 |
Family
ID=84029047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/003911 WO2022239322A1 (ja) | 2021-05-14 | 2022-02-02 | 面発光レーザ素子、電子機器及び面発光レーザ素子の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240235167A1 (ja) |
EP (1) | EP4336685A1 (ja) |
JP (1) | JPWO2022239322A1 (ja) |
CN (1) | CN117280554A (ja) |
WO (1) | WO2022239322A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024185305A1 (ja) * | 2023-03-09 | 2024-09-12 | ソニーセミコンダクタソリューションズ株式会社 | 面発光レーザアレイ |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030138017A1 (en) * | 1999-09-20 | 2003-07-24 | Hsing-Chung Lee | Index guided vertical cavity surface emitting lasers |
JP2009164466A (ja) * | 2008-01-09 | 2009-07-23 | Sony Corp | 面発光型半導体レーザおよびその製造方法 |
JP2013065692A (ja) * | 2011-09-16 | 2013-04-11 | Fuji Xerox Co Ltd | 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置 |
JP2014132692A (ja) | 2008-11-20 | 2014-07-17 | Ricoh Co Ltd | 製造方法 |
JP2016021516A (ja) * | 2014-07-15 | 2016-02-04 | 株式会社リコー | 半導体装置、面発光レーザ、面発光レーザアレイ、光走査装置及び画像形成装置。 |
JP2017168715A (ja) * | 2016-03-17 | 2017-09-21 | 株式会社リコー | 面発光レーザアレイ、及びレーザ装置 |
-
2022
- 2022-02-02 CN CN202280033709.4A patent/CN117280554A/zh active Pending
- 2022-02-02 JP JP2023520775A patent/JPWO2022239322A1/ja active Pending
- 2022-02-02 WO PCT/JP2022/003911 patent/WO2022239322A1/ja active Application Filing
- 2022-02-02 US US18/558,246 patent/US20240235167A1/en active Pending
- 2022-02-02 EP EP22807029.8A patent/EP4336685A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030138017A1 (en) * | 1999-09-20 | 2003-07-24 | Hsing-Chung Lee | Index guided vertical cavity surface emitting lasers |
JP2009164466A (ja) * | 2008-01-09 | 2009-07-23 | Sony Corp | 面発光型半導体レーザおよびその製造方法 |
JP2014132692A (ja) | 2008-11-20 | 2014-07-17 | Ricoh Co Ltd | 製造方法 |
JP2013065692A (ja) * | 2011-09-16 | 2013-04-11 | Fuji Xerox Co Ltd | 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置 |
JP2016021516A (ja) * | 2014-07-15 | 2016-02-04 | 株式会社リコー | 半導体装置、面発光レーザ、面発光レーザアレイ、光走査装置及び画像形成装置。 |
JP2017168715A (ja) * | 2016-03-17 | 2017-09-21 | 株式会社リコー | 面発光レーザアレイ、及びレーザ装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024185305A1 (ja) * | 2023-03-09 | 2024-09-12 | ソニーセミコンダクタソリューションズ株式会社 | 面発光レーザアレイ |
Also Published As
Publication number | Publication date |
---|---|
US20240235167A1 (en) | 2024-07-11 |
CN117280554A (zh) | 2023-12-22 |
JPWO2022239322A1 (ja) | 2022-11-17 |
EP4336685A1 (en) | 2024-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022158301A1 (ja) | 面発光レーザ、電子機器及び面発光レーザの製造方法 | |
WO2022239322A1 (ja) | 面発光レーザ素子、電子機器及び面発光レーザ素子の製造方法 | |
JP7531511B2 (ja) | 面発光レーザ装置 | |
US20230283048A1 (en) | Surface emitting laser apparatus, electronic device, and method for manufacturing surface emitting laser apparatus | |
WO2022054411A1 (ja) | 面発光レーザ装置、電子機器及び面発光レーザ装置の製造方法 | |
WO2021220879A1 (ja) | 発光素子アレイ及び発光素子アレイの製造方法 | |
WO2023067890A1 (ja) | 面発光レーザ及び面発光レーザの製造方法 | |
WO2022201772A1 (ja) | 面発光レーザ、光源装置、電子機器及び面発光レーザの製造方法 | |
WO2023042420A1 (ja) | 面発光レーザ素子及び光源装置 | |
WO2023162488A1 (ja) | 面発光レーザ、光源装置及び測距装置 | |
WO2022158312A1 (ja) | 面発光レーザ | |
WO2022201813A1 (ja) | 半導体レーザ、電子機器及び半導体レーザの製造方法 | |
WO2023037581A1 (ja) | 面発光レーザ | |
EP4266356A1 (en) | Surface-emitting laser device | |
WO2023132139A1 (ja) | 面発光レーザ | |
WO2023233818A1 (ja) | 面発光素子 | |
WO2023149087A1 (ja) | 面発光レーザ、面発光レーザアレイ及び光源装置 | |
WO2023233850A1 (ja) | 面発光素子 | |
WO2023181658A1 (ja) | 面発光レーザ、光源装置及び電子機器 | |
WO2023171148A1 (ja) | 面発光レーザ、面発光レーザアレイ及び面発光レーザの製造方法 | |
WO2024014140A1 (ja) | 面発光レーザ及び面発光レーザの製造方法 | |
WO2023162463A1 (ja) | 発光デバイスおよびVoS(VCSEL on Silicon)デバイス | |
WO2023238621A1 (ja) | 面発光レーザ | |
WO2022176483A1 (ja) | 面発光素子、光学特性検知方法及び光学特性調整方法 | |
WO2023145148A1 (ja) | 面発光レーザ及び面発光レーザの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22807029 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023520775 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18558246 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280033709.4 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022807029 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022807029 Country of ref document: EP Effective date: 20231205 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |