WO2022239304A1 - 全固体リチウムイオン電池用電極複合体の製造方法 - Google Patents

全固体リチウムイオン電池用電極複合体の製造方法 Download PDF

Info

Publication number
WO2022239304A1
WO2022239304A1 PCT/JP2022/002099 JP2022002099W WO2022239304A1 WO 2022239304 A1 WO2022239304 A1 WO 2022239304A1 JP 2022002099 W JP2022002099 W JP 2022002099W WO 2022239304 A1 WO2022239304 A1 WO 2022239304A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
electrode composite
solid electrolyte
solid
raw material
Prior art date
Application number
PCT/JP2022/002099
Other languages
English (en)
French (fr)
Inventor
裕 永田
順二 秋本
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Publication of WO2022239304A1 publication Critical patent/WO2022239304A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing an electrode assembly for an all-solid lithium ion battery.
  • This application claims priority based on Japanese Patent Application No. 2021-081219 filed in Japan on May 12, 2021, the content of which is incorporated herein.
  • Lithium-ion secondary batteries have a high energy density and are used in information-related equipment such as personal computers and mobile phones. In recent years, development of high-output and high-capacity lithium-ion secondary batteries for electric vehicles or hybrid vehicles is underway.
  • Patent Document 1 discloses a positive electrode layer containing a positive electrode active material and a first solid electrolyte, a negative electrode layer containing a negative electrode active material and a lithium hydride, and a second solid electrolyte provided between the positive electrode layer and the negative electrode layer. and a solid electrolyte layer containing a solid electrolyte, wherein the first solid electrolyte and the second solid electrolyte have the general formula LixAyOz (A is at least one of S, B, C, P, Al, and Ti).
  • An all-solid-state battery is disclosed which is characterized by being a glass containing an oxide represented by.
  • Patent Document 2 discloses an all-solid lithium secondary battery comprising a counter electrode layer, a negative electrode layer, and a sulfide glass-based electrolyte disposed between the counter electrode layer and the negative electrode layer, wherein the negative electrode layer is A mixture containing at least one high-capacity negative electrode material of Sn, Si or Ge and the sulfide glass-based electrolyte, a predetermined binding force acting on both ends of the all-solid lithium secondary battery, Disclosed is an all-solid-state lithium secondary battery characterized in that when the surface texture of the negative electrode layer is observed, voids observed based on comparison with a scale of 25 ⁇ m are not observed, and the surface texture is densified. .
  • Patent Document 3 discloses a negative electrode mixture for an all-solid lithium ion secondary battery, wherein the negative electrode mixture contains a negative electrode active material, a solid electrolyte and a conductive material, and the negative electrode active material is an alloy with Li. and at least one active material selected from the group consisting of oxides of the metal, and the solid electrolyte is a LiX—Li 2 SP 2 S 5 -based solid electrolyte (where X is F, Cl , Br, and at least one halogen selected from the group consisting of I), and the volume ratio (%) of the conductive material when the volume of the negative electrode mixture is 100% by volume, and the bulk density of the solid electrolyte discloses a negative electrode mixture characterized in that the value obtained by multiplying is 0.53 or more and 3.0 or less.
  • Patent document 4 includes a positive electrode active material represented by A 2 S ⁇ AX, wherein A is an alkali metal and X is I, Br, Cl, F, BF 4 , BH 4 , SO 4 . , BO3 , PO4, O, Se, N, P, As, Sb, PF6, AsF6 , ClO4 , NO3 , CO3 , CF3SO3 , CF3COO , N ( SO2F ) 2 and N(CF 3 SO 2 ) 2 for an all solid state secondary battery.
  • A is an alkali metal and X is I, Br, Cl, F, BF 4 , BH 4 , SO 4 . , BO3 , PO4, O, Se, N, P, As, Sb, PF6, AsF6 , ClO4 , NO3 , CO3 , CF3SO3 , CF3COO , N ( SO2F ) 2 and N(CF 3 SO 2 ) 2 for an all solid state secondary battery.
  • the present invention was made in view of the above circumstances, and aims to provide a method for manufacturing an electrode assembly for an all-solid-state lithium-ion battery that is excellent in mass productivity.
  • a method for producing an electrode composite for an all-solid-state lithium-ion battery comprises an electrode composite raw material containing an electrode active material, a solid electrolyte raw material, and a carbon material that is a conductive material. Combine with mechanical energy.
  • the carbon material may have a specific surface area of 10 m 2 /g or more.
  • the carbon material may have a specific surface area of 1000 m 2 /g or more.
  • the electrode active material may be a positive electrode active material.
  • the positive electrode active material may be the first Li 2 S.
  • the solid electrolyte raw material is a sulfide solid electrolyte raw material containing a second Li 2 S and P 2 S 5 . There may be.
  • the electrode assembly raw material may further contain a lithium salt.
  • lithium salt is lithium oxide, lithium nitride, lithium fluoride, lithium chloride, lithium bromide, lithium iodide, It may be one or more selected from the group consisting of lithium sulfate, lithium carbonate, lithium borate, lithium phosphate, lithium nitrate, lithium silicate, and lithium aluminate.
  • the electrode composite raw material includes the first Li 2 S, the solid electrolyte raw material, and the carbon material. , may be 20-60:20-70:3-20.
  • the electrode active material may be a negative electrode active material.
  • the negative electrode active material may be a Si-based active material composed of one or more of Si and a Si compound.
  • the Si-based active material may be Si.
  • the method for producing an electrode assembly for an all-solid-state lithium ion battery according to (14) or (15) above is a sulfide solid electrolyte raw material, wherein the solid electrolyte raw material contains Li 2 S and P 2 S 5 may be
  • the raw material for the electrode composite may further contain a lithium salt.
  • the lithium salt is lithium oxide, lithium nitride, lithium fluoride, lithium chloride, lithium bromide, lithium iodide, It may be one or more selected from the group consisting of lithium sulfate, lithium carbonate, lithium borate, lithium phosphate, lithium nitrate, lithium silicate, and lithium aluminate.
  • the present inventors have found that by combining an electrode composite raw material, which includes an electrode active material, a solid electrolyte raw material, and a carbon material that is a conductive material, with mechanical energy, all solid lithium ions can be obtained in one step.
  • the inventors have found that a battery electrode assembly can be produced, and completed the present invention.
  • composite with mechanical energy means that a solid electrolyte is synthesized from solid electrolyte raw materials with mechanical energy, and the electrode active material and the carbon material are combined in the synthesized solid electrolyte. "distribute".
  • the solid electrolyte has been synthesized can be judged by the disappearance of the solid electrolyte raw material peak by XPS or the appearance of an exothermic peak other than the solid electrolyte raw material by DSC. It is preferable that the synthesized solid electrolyte is amorphous. Whether or not the solid electrolyte is amorphous can be confirmed by the disappearance of diffraction peaks of raw materials other than the active material in XRD.
  • a method for producing an electrode composite for an all-solid-state lithium ion battery of the first embodiment includes an electrode composite including a positive electrode active material that is an electrode active material, a sulfide solid electrolyte raw material that is a solid electrolyte raw material, and a carbon material. Combining raw materials with mechanical energy. Each requirement will be explained below.
  • the electrode composite raw material used in the method for manufacturing the electrode composite for an all-solid-state lithium ion battery of the first embodiment includes a positive electrode active material, a sulfide solid electrolyte raw material, and a carbon material.
  • a sulfide solid electrolyte raw material which is a solid electrolyte raw material, the conductivity of the electrode assembly can be improved.
  • the positive electrode active material is not particularly limited as long as it does not lose the function of the active material when it is combined with other materials by mechanical energy.
  • positive electrode active materials include Li 2 S.
  • L 2 S is preferable because it has a large theoretical capacity as compared with conventional lithium transition metal oxides, and thus dramatically improves the energy density.
  • the positive electrode active material is Li 2 S
  • the negative electrode active material does not need to have a lithium source because Li 2 S has a lithium source. Therefore, the use of Li 2 S as the positive electrode active material eliminates the need to use unstable lithium metal or lithium metal alloy during manufacturing, thereby improving the manufacturing aspect.
  • Li 2 S (sometimes referred to as first Li 2 S) is preferable as the positive electrode active material.
  • the sulfide solid electrolyte raw material is not particularly limited as long as at least a part of the sulfide solid electrolyte raw material becomes an amorphous sulfide solid electrolyte by compounding with mechanical energy.
  • sulfide solid electrolyte raw materials include Li2S , P2S5 , SiS2 , GeS2 , Al2S3 , ZnS , As2S3 , Sb2S3 , WS2 , and CuS .
  • the sulfide solid electrolyte raw material preferably contains Li 2 S (hereinafter sometimes referred to as second Li 2 S) and P 2 S 5 (may be referred to as first P 2 S 5 ). . Since the sulfide solid electrolyte raw material contains the second Li 2 S and P 2 S 5 , a good sulfide solid electrolyte that is amorphous and has excellent deformability can be obtained by mechanical energy. When synthesizing the sulfide solid electrolyte from the second Li 2 S and P 2 S 5 , the amount of P 2 S 5 is used to synthesize the first Li 2 S functioning as an electrode active material and the solid electrolyte. The ratio of the second Li 2 S to be obtained is determined.
  • the carbon material supplements the electrical conductivity of the positive electrode active material.
  • the carbon material is not particularly limited as long as it functions as a conductive material. Moreover, the carbon material has a function of promoting the synthesis of the solid electrolyte.
  • Carbon materials include acetylene black, carbon nanotubes, activated carbon, graphene, furnace black (for example, furnace black having a hollow shell structure), carbon fiber, and the like. The carbon material may contain one or more of these.
  • Furnace black having a hollow shell structure is a type of conductive furnace black and refers to one having a hollow shell structure with a porosity of about 60 to 80%.
  • the “hollow shell structure” refers to a structure in which graphite crystals are thinly gathered to form an outer shell in the form of particles, and voids are provided inside the outer shell.
  • Furnace black having a hollow shell structure includes, for example, Ketjenblack (manufactured by Lion Corporation).
  • the electronic conductivity of the electrode composite can be improved. This can further improve the charge/discharge capacity of the electrode assembly.
  • the low-conductivity carbon material is activated carbon.
  • the high-conductivity carbon material is one or more selected from the group consisting of acetylene black, ketjen black, carbon nanotubes, and graphene.
  • the specific surface area of the carbon material is preferably 10 m 2 /g or more. A more preferable specific surface area of the carbon material is 100 m 2 /g or more. A more preferable specific surface area of the carbon material is 1000 m 2 /g or more. A particularly preferable specific surface area of the carbon material is 1500 m 2 /g or more. If the specific surface area is less than 10 m 2 /g, the contact between the positive electrode active material and the carbon material cannot be sufficiently increased, so there is a tendency that the effect of improving the charge-discharge capacity cannot be sufficiently enjoyed. Although the upper limit of the specific surface area is not particularly limited, it is usually 6000 m 2 /g or less.
  • the specific surface area of a carbon material refers to the BET specific surface area determined by the Brenauer-Emmet-Telle (BET) method. It refers to the specific surface area determined using the nitrogen adsorption isotherm obtained by adsorption.
  • BET Brenauer-Emmet-Telle
  • As a measuring device for determining the BET specific surface area for example, an automatic specific surface area/pore size distribution measuring device (BELSORP-mini II, manufactured by Bell Japan Co., Ltd.) can be used.
  • the electrode composite raw material of the first embodiment may further contain a lithium salt in addition to the positive electrode active material, the sulfide solid electrolyte raw material, and the carbon material.
  • a lithium salt has a function of improving the electrical conductivity of the sulfide solid electrolyte and a function of improving the flexibility of the sulfide solid electrolyte.
  • the lithium salt is not particularly limited as long as it has the function of improving the electrical conductivity of the sulfide solid electrolyte or the function of improving the flexibility of the sulfide solid electrolyte.
  • lithium salts include lithium oxide, lithium nitride, lithium fluoride, lithium chloride, lithium bromide, lithium iodide, lithium sulfate, lithium carbonate, lithium borate, lithium phosphate, lithium nitrate, lithium silicate, aluminum It is preferably one or more selected from the group consisting of lithium oxide.
  • the electrode composite raw material of the first embodiment may further contain optional components such as binders, solvents, and ion-conducting substances.
  • binder Although the binder is not particularly limited, a thermoplastic resin, a thermosetting resin, or the like can be used.
  • binders include polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene-butadiene rubber, tetrafluoroethylene-hexafluoroethylene copolymer, and tetrafluoroethylene-hexafluoropropylene copolymer.
  • FEP tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • EPF tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • EPF tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • EPF resin ethylene-tetrafluoroethylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • ECTFE ethylene-chlorotrifluoroethylene copolymer
  • ECTFE vinylidene fluoride - hexafluoropropylene-tetrafluoroethylene copolymer
  • ethylene-acrylic acid copolymer polyacrylic acid, sodium polyacrylate, lithium polyacrylate
  • Examples include
  • the electrode composite raw material contains a binder
  • its content is not particularly limited, but it is preferably 0.01 to 10% by weight in the electrode composite raw material.
  • solvent By using an electrode composite obtained by mixing a solvent, it becomes easier to produce an electrode composite layer. The solvent is removed by drying when fabricating the electrode composite layer.
  • the solvent include, but are not limited to, amine solvents such as N,N-dimethylaminopropylamine and diethylenetriamine, ether solvents such as tetrahydrofuran, ketone solvents such as methyl ethyl ketone, ester solvents such as methyl acetate, dimethyl
  • amide solvents such as acetamide and 1-methyl-2-pyrrolidone
  • hydrocarbon solvents such as toluene, xylene, n-hexane and cyclohexane. These solvents may be used alone or in combination of two or more.
  • the content is not particularly limited, but is preferably 10 to 10000 parts by weight with respect to 100 parts by weight of the solid content of the electrode composite raw material.
  • the electrode composite raw material may contain an ion conductive material.
  • the ion conductive substance is not particularly limited, but the lithium ion conductivity at room temperature is preferably 10 ⁇ 5 S/cm or more, more preferably 10 ⁇ 4 S/cm or more.
  • Examples of crystalline oxide solid electrolytes having such characteristics include lithium aluminum titanium phosphate (LATP), lithium aluminum germanium phosphate (LAGP), lithium lanthanum zirconium oxide (LLZ), and lithium lanthanum titanium oxide. (LLT), lithium germanium phosphorus sulfide (LGPS), lithium silicon sulfide (LSS), lithium phosphorus halogen sulfide (LPSX), lithium boron carbon hydride, and the like.
  • the positive electrode active material of the first embodiment is the first Li 2 S and the sulfide solid electrolyte raw material is the second Li 2 S and P 2 S 5
  • the weight ratio of P 2 S 5 and the carbon material is preferably 30-80:10-50:3-20.
  • the weight ratio of the sum of the first Li 2 S and the second Li 2 S, the P 2 S 5 and the carbon material in the electrode composite raw material is 30-80:10-50:3-20 This is preferable because the ion conductivity in the electrode composite and the contact between the electrode active material, the solid electrolyte, and the carbon material can be sufficiently obtained, thereby improving the battery characteristics.
  • the positive electrode active material of the first embodiment is the first Li 2 S
  • the sulfide solid electrolyte raw material is the second Li 2 S and P 2 S 5
  • the electrode composite raw material contains a lithium salt
  • the weight ratio of the sum of the first Li 2 S and the second Li 2 S in the electrode composite raw material, the P 2 S 5 , the carbon material, and the lithium salt is preferably 30-80:10-40:3-20:5-30.
  • the weight ratio of the sum of the first Li 2 S and the second Li 2 S, the P 2 S 5 , the carbon material, and the lithium salt in the electrode composite raw material is 30 to 80: 10 to 40: 3
  • a ratio of 20:5 to 30 is preferable because the battery characteristics of the electrode composite are further improved.
  • Examples of the method of compounding the electrode composite raw material with mechanical energy include a method of compounding the electrode composite raw material using a planetary ball mill, a kneader, a planetary mixer, a vibration mill, a magnetic stirrer, or the like.
  • the electrode composite raw material of the present disclosure is obtained by mixing the electrode composite raw material with zirconia balls at 370 rpm for 2 hours.
  • the fact that the raw materials for the electrode composite were combined and the solid electrolyte was synthesized was confirmed by X - ray photoelectron spectroscopy ( XPS). It can be confirmed by the disappearance of the /2 peak.
  • the fact that the solid electrolyte is amorphous can be confirmed by the disappearance of diffraction peaks other than those of the electrode active material in powder X-ray diffraction (XRD) of the obtained electrode assembly.
  • XRD powder X-ray diffraction
  • heat treatment may be performed after compounding the electrode composite raw material with mechanical energy.
  • the contact interface between the electrode active material Li 2 S, the solid electrolyte raw material, the carbon material and/or the first lithium salt can be strengthened, and the interfacial resistance can be reduced.
  • the heat treatment after compositing is not particularly limited, but can be performed, for example, in an atmosphere of argon, nitrogen, air, etc., at a temperature of 80 to 250° C., preferably 100 to 200° C., for 1 second to 10 hours.
  • the heat treatment after compositing may be performed using a known heating device, specifically, for example, a constant temperature dryer, a blow dryer, a reduced pressure dryer, an infrared dryer, an electric furnace, a gas replacement furnace, a hot A plate or the like may be used.
  • a known heating device specifically, for example, a constant temperature dryer, a blow dryer, a reduced pressure dryer, an infrared dryer, an electric furnace, a gas replacement furnace, a hot A plate or the like may be used.
  • An electrode composite manufactured by the method for manufacturing an all-solid-state lithium-ion battery electrode composite according to the first embodiment includes a positive electrode active material, a sulfide solid electrolyte, and a carbon material.
  • the sulfide solid electrolyte is amorphous.
  • XRD powder X-ray diffraction
  • the generation of the sulfide solid electrolyte was confirmed by the X-ray photoelectron spectroscopy (XPS) of the electrode assembly, where the S2p1/ 2 peak seen near 165 eV corresponding to the crosslinked S of P2S5 used as the raw material for the solid electrolyte was You can confirm that it has disappeared.
  • XRD spectrum can be obtained, for example, by measuring with a RIGAKU SmartLab II in the 2 ⁇ range of 10 to 60°.
  • the XPS spectrum can be measured, for example, with KRATOS Nova manufactured by KRATOS ANALYTICAL.
  • the electrode composite raw material used in the method for producing the all-solid-state lithium-ion battery electrode composite of the second embodiment includes a positive electrode active material, a solid electrolyte raw material, and a carbon material.
  • the stability of the electrode assembly can be improved by using the solid electrolyte raw material.
  • the positive electrode active material is not particularly limited as long as it does not lose the function of the active material when it is combined with other materials by mechanical energy.
  • positive electrode active materials include L 2 S.
  • L 2 S is preferable because it has a large theoretical capacity as compared with conventional lithium transition metal oxides, and thus dramatically improves the energy density.
  • the positive electrode active material is Li 2 S
  • the negative electrode active material does not need to have a lithium source because Li 2 S has a lithium source. Therefore, the use of Li 2 S as the positive electrode active material eliminates the need to use unstable lithium metal or lithium metal alloy during manufacturing, thereby improving the manufacturing aspect.
  • Li 2 S it is easy to uniformly disperse in the synthesized solid electrolyte while maintaining the characteristics of the active material. Therefore, Li 2 S (first Li 2 S) is preferable as the positive electrode active material.
  • Solid electrolyte raw material The solid electrolyte raw material is not particularly limited as long as a solid electrolyte can be synthesized from the solid electrolyte raw material by compounding with mechanical energy.
  • Solid electrolyte raw materials include lithium oxide (Li 2 O), lithium nitride, lithium fluoride, lithium chloride (LiCl), lithium bromide (LiBr), lithium iodide (LiI), lithium sulfate (Li 2 SO 4 ), Two or more selected from the group consisting of lithium carbonate (Li 2 CO 3 ), lithium borate, lithium phosphate, lithium nitrate, lithium silicate (Li 4 SiO 4 ), and lithium aluminate are preferred.
  • Li 2 SO 4 , Li 2 CO 3 , LiCl, LiBr, LiI, Li 2 O, and Li 4 SiO 4 are particularly preferred as solid electrolyte raw materials. By containing these, mechanical energy can be used to obtain an amorphous, excellent deformability, and good solid electrolyte.
  • the carbon material supplements the electrical conductivity of the positive electrode active material.
  • the carbon material is not particularly limited as long as it functions as a conductive material. Moreover, the carbon material has a function of promoting the synthesis of the solid electrolyte.
  • Carbon materials include acetylene black, carbon nanotubes, activated carbon, graphene, furnace black (for example, furnace black having a hollow shell structure), carbon fiber, and the like. The carbon material may contain one or more of these.
  • Furnace black having a hollow shell structure includes, for example, Ketjenblack (manufactured by Lion Corporation).
  • the electronic conductivity of the electrode composite can be improved by combining the low-conductivity carbon material and the high-conductivity carbon material. This further improves the charge/discharge capacity of the electrode assembly.
  • the low-conductivity carbon material is activated carbon.
  • the high-conductivity carbon material is one or more selected from the group consisting of acetylene black, ketjen black, carbon nanotubes, and graphene.
  • the specific surface area of the carbon material is preferably 10 m 2 /g or more. A more preferable specific surface area of the carbon material is 100 m 2 /g or more. A more preferable specific surface area of the carbon material is 1000 m 2 /g or more. A more preferable specific surface area of the carbon material is 1500 m 2 /g or more. If the specific surface area is less than 10 m 2 /g, the contact between the positive electrode active material and the carbon material cannot be sufficiently increased, so there is a tendency that the effect of improving the charge-discharge capacity cannot be sufficiently enjoyed. Although the upper limit of the specific surface area is not particularly limited, it is usually 6000 m 2 /g or less.
  • the electrode composite raw material of the second embodiment may further contain optional components such as binders, solvents, and ion-conducting substances.
  • the positive electrode active material of the second embodiment is the first Li 2 S
  • the solid electrolyte raw material is lithium oxide, lithium nitride, lithium fluoride, lithium chloride, lithium bromide, lithium iodide, lithium sulfate, lithium carbonate, boron.
  • the weight of the first Li 2 S, the solid electrolyte raw material, and the carbon material is preferably 20-60:20-70:3-20.
  • the weight ratio of the solid electrolyte raw material and the carbon material in the electrode composite raw material is 20 to 60:20 to 70:3 to 20, the ionic conductivity in the electrode composite, the active material, the solid electrolyte and the carbon Since sufficient contact with the material can be obtained, the battery characteristics are improved, which is preferable.
  • the weight ratio of the solid electrolyte raw material and the carbon material in the electrode composite raw material is 20 to 60:20 to 70:3 to 20
  • the ionic conductivity in the electrode composite, the active material, the solid electrolyte and the carbon Since sufficient contact with the material can be obtained, the battery characteristics are improved, which is preferable.
  • Electrode use of mechanical energy As a method for compounding the electrode composite raw material with mechanical energy, the same method as in the first embodiment can be used.
  • the fact that the electrode assembly raw materials are combined to synthesize a solid electrolyte can be confirmed, for example, by performing DSC measurement of the electrode assembly and confirming the position of the exothermic peak. Further, whether the solid electrolyte is amorphous can be confirmed by performing XRD measurement of the obtained electrode assembly and confirming the disappearance of the diffraction peak of the solid electrolyte raw material other than the electrode active material. Confirmation methods such as XRD and DSC can be used, and the conditions for compounding can be appropriately adjusted.
  • heat treatment may be performed after compounding the raw material for the electrode composite with mechanical energy. Heat treatment can be performed by the same method as in the first embodiment.
  • An electrode composite manufactured by the method for manufacturing an all-solid-state lithium-ion battery electrode composite according to the second embodiment includes a positive electrode active material, a solid electrolyte, and a carbon material. It is preferable that the solid electrolyte is amorphous.
  • the solid electrolyte of the electrode assembly is amorphous, for example, the diffraction peak of the solid electrolyte raw material disappears in the XRD spectrum obtained by measuring with SmartLab II manufactured by RIGAKU in the 2 ⁇ range of 10 to 60°.
  • the solid electrolyte has an exothermic peak at 400° C. or less in a curve (DSC curve) obtained by differential scanning calorimetry (DSC) measurement, which is different from that of the solid electrolyte raw material.
  • a DSC curve is obtained by installing a differential scanning calorimeter (for example, DSC6200 manufactured by Seiko Instruments Inc.) at a temperature range of 50° C. to 500° C. and a heating rate of 5° C./min.
  • a method for producing an electrode composite for an all-solid-state lithium-ion battery according to the third embodiment includes an electrode composite raw material containing a negative electrode active material as an electrode active material, a sulfide solid electrolyte raw material, and a carbon material. Composite with Each requirement will be explained below.
  • the electrode composite raw material used in the method for producing the all-solid-state lithium-ion battery electrode composite of the third embodiment includes a negative electrode active material, a sulfide solid electrolyte raw material, and a carbon material.
  • the conductivity of the electrode assembly can be improved by using the sulfide solid electrolyte raw material.
  • the negative electrode active material is not particularly limited as long as it does not lose the function of the active material when it is combined with another material by mechanical energy.
  • the negative electrode active material is, for example, a Si-based active material made of one of Si and a Si compound. If the negative electrode active material is a Si-based active material, it can be uniformly dispersed in the sulfide solid electrolyte when the electrode composite material is composited with mechanical energy. Examples of Si compounds include SiO and LiSi. In particular, Si is preferable as the Si-based active material because it has a very large theoretical capacity compared to conventional graphite.
  • the sulfide solid electrolyte raw material is not particularly limited as long as a sulfide solid electrolyte can be synthesized from the sulfide solid electrolyte raw material by combining with mechanical energy.
  • sulfide solid electrolyte raw materials include Li2S , P2S5 , SiS2 , GeS2 , Al2S3 , ZnS , As2S3 , Sb2S3 , WS2 , and CuS.
  • the sulfide solid electrolyte raw material preferably contains Li 2 S and P 2 S 5 . When the sulfide solid electrolyte raw material contains Li 2 S and P 2 S 5 , a good sulfide solid electrolyte that is amorphous and has excellent deformability can be obtained by mechanical energy.
  • the carbon material supplements the electrical conductivity of the negative electrode active material.
  • the carbon material is not particularly limited as long as it functions as a conductive material. Moreover, the carbon material has a function of promoting the synthesis of the solid electrolyte.
  • Carbon materials include acetylene black, carbon nanotubes, activated carbon, graphene, furnace black (for example, furnace black having a hollow shell structure), carbon fiber, and the like. The carbon material may contain one or more of these.
  • Furnace black having a hollow shell structure includes, for example, Ketjenblack (manufactured by Lion Corporation).
  • the electronic conductivity of the electrode composite can be improved by combining the low-conductivity carbon material and the high-conductivity carbon material. This further improves the charge/discharge capacity of the electrode assembly.
  • the low-conductivity carbon material is activated carbon.
  • the high-conductivity carbon material is one or more selected from the group consisting of acetylene black, ketjen black, carbon nanotubes, and graphene.
  • the specific surface area of the carbon material is preferably 10 m 2 /g or more. A more preferable specific surface area of the carbon material is 100 m 2 /g or more. A more preferable specific surface area of the carbon material is 1000 m 2 /g or more. A particularly preferable specific surface area of the carbon material is 1500 m 2 /g or more. If the specific surface area is less than 10 m 2 /g, the contact between the negative electrode active material and the carbon material cannot be sufficiently increased, so there is a tendency that the effect of improving the charge-discharge capacity cannot be sufficiently enjoyed. Although the upper limit of the specific surface area is not particularly limited, it is usually 6000 m 2 /g or less.
  • the electrode composite raw material of the third embodiment may further contain a lithium salt (lithium salt) in addition to the negative electrode active material, the sulfide solid electrolyte raw material, and the carbon material.
  • a lithium salt has a function of improving the electrical conductivity of the sulfide solid electrolyte and a function of improving the flexibility of the sulfide solid electrolyte.
  • the lithium salt is not particularly limited as long as it has the function of improving the electrical conductivity of the sulfide solid electrolyte or the function of improving the flexibility of the sulfide solid electrolyte.
  • lithium salts include lithium oxide, lithium nitride, lithium fluoride, lithium chloride, lithium bromide, lithium iodide, lithium sulfate, lithium carbonate, lithium borate, lithium phosphate, lithium nitrate, lithium silicate, aluminum It is preferably one or more selected from the group consisting of lithium oxide.
  • the electrode composite raw material of the third embodiment may further contain optional components such as binders, solvents, and ion-conducting substances.
  • the negative electrode active material of the third embodiment is a Si-based active material and the sulfide solid electrolyte raw material is Li 2 S and P 2 S 5
  • the Si-based active material in the electrode composite raw material and Li 2 S , P 2 S 5 and the carbon material Si-based active material: Li 2 S: P 2 S 5 : carbon material
  • a weight ratio of 20 to 70: 10 to 30: 10 to 40: 3 to 20 Preferably.
  • the weight ratio of the Si-based active material, Li 2 S, P 2 S 5 and the carbon material in the electrode composite raw material is 20 to 70: 10 to 30: 10 to 40: 3 to 20, It is preferable because the ionic conductivity in the electrode composite and the contact between the active material and the solid electrolyte and the carbon material can be sufficiently obtained, thereby improving the battery characteristics.
  • the sulfide solid electrolyte raw material is Li 2 S and P 2 S 5
  • the electrode composite raw material contains a lithium salt
  • the electrode composite Weight ratio of Si-based active material, Li 2 S, P 2 S 5 , carbon material, and lithium salt in raw materials is preferably 20-70:10-30:10-40:3-20:5-30.
  • the weight ratio of the Si-based active material, Li 2 S, P 2 S 5 , carbon material, and lithium salt in the electrode composite raw material is 20 to 70:10 to 30:10 to 40:3 to 20: When it is 5 to 30, the battery characteristics of the electrode assembly are further improved, which is preferable.
  • Composite use of mechanical energy Compositing of the raw material for the electrode composite with mechanical energy can be performed in the same manner as in the first embodiment. Synthesis of the sulfide solid electrolyte can be confirmed by the same method as in the first embodiment.
  • heat treatment may be performed after compounding the raw material for the electrode composite with mechanical energy.
  • the heat treatment can be performed under the same conditions as in the first embodiment.
  • An electrode composite manufactured by the method for manufacturing an all-solid-state lithium-ion battery electrode composite according to the third embodiment includes a negative electrode active material, a sulfide solid electrolyte, and a carbon material.
  • a sulfide solid electrolyte Preferably, at least a portion of the sulfide solid electrolyte is amorphous.
  • Whether or not a sulfide solid electrolyte is generated can be confirmed by XPS, as in the first embodiment. Whether or not the sulfide solid electrolyte is amorphous can be confirmed by XRD as in the first embodiment.
  • an electrode composite raw material containing a negative electrode active material that is an electrode active material, a solid electrolyte raw material, and a carbon material is combined with mechanical energy. become Each requirement will be explained below.
  • the electrode composite raw material used in the method for producing the electrode composite for an all-solid-state lithium ion battery of the fourth embodiment includes a negative electrode active material, a solid electrolyte raw material, and a carbon material.
  • the stability of the electrode assembly can be improved by using the solid electrolyte raw material.
  • the negative electrode active material is not particularly limited as long as it does not lose the function of the active material when it is combined with other materials with mechanical energy.
  • the negative electrode active material is, for example, a Si-based active material made of one of Si and a Si compound. If the negative electrode active material is a Si-based active material, it can be uniformly dispersed in the solid electrolyte when the electrode composite material is composited with mechanical energy.
  • Si compounds include SiO and LiSi. Si is particularly preferred as the Si-based active material because it has a much larger theoretical capacity than conventional graphite.
  • Solid electrolyte raw material The solid electrolyte raw material is not particularly limited as long as a solid electrolyte can be synthesized from the solid electrolyte raw material by compounding with mechanical energy.
  • Solid electrolyte raw materials include lithium oxide, lithium nitride, lithium fluoride, lithium chloride, lithium bromide, lithium iodide, lithium sulfate (Li 2 SO 4 ), lithium carbonate (Li 2 CO 3 ), lithium borate, phosphorus Two or more selected from the group consisting of lithium oxide, lithium nitrate, lithium silicate, and lithium aluminate are preferred.
  • Li 2 SO 4 , Li 2 CO 3 , LiCl, LiBr, LiI, Li 2 O, and Li 4 SiO 4 are particularly preferred as solid electrolyte raw materials. By containing these, mechanical energy can be used to obtain an amorphous, excellent deformability, and good solid electrolyte.
  • the carbon material supplements the electrical conductivity of the negative electrode active material.
  • the carbon material is not particularly limited as long as it functions as a conductive material. Moreover, the carbon material has a function of promoting the synthesis of the solid electrolyte.
  • Carbon materials include acetylene black, carbon nanotubes, activated carbon, graphene, furnace black (for example, furnace black having a hollow shell structure), carbon fiber, and the like. The carbon material may contain one or more of these.
  • Furnace black having a hollow shell structure includes, for example, Ketjenblack (manufactured by Lion Corporation).
  • the electronic conductivity of the electrode composite can be improved by combining the low-conductivity carbon material and the high-conductivity carbon material. This further improves the charge/discharge capacity of the electrode assembly.
  • the low-conductivity carbon material is activated carbon.
  • the high-conductivity carbon material is one or more selected from the group consisting of acetylene black, ketjen black, carbon nanotubes, and graphene.
  • the specific surface area of the carbon material is preferably 10 m 2 /g or more. A more preferable specific surface area of the carbon material is 100 m 2 /g or more. A more preferable specific surface area of the carbon material is 1000 m 2 /g or more. A particularly preferable specific surface area of the carbon material is 1500 m 2 /g or more. If the specific surface area is less than 10 m 2 /g, the contact between the negative electrode active material and the carbon material cannot be sufficiently increased, so there is a tendency that the effect of improving the charge-discharge capacity cannot be sufficiently enjoyed. Although the upper limit of the specific surface area is not particularly limited, it is usually 6000 m 2 /g or less.
  • the electrode composite raw material of the fourth embodiment may further contain optional components such as binders, solvents, and ion-conducting substances.
  • the negative electrode active material of the fourth embodiment is a Si-based active material
  • the solid electrolyte raw material is lithium oxide, lithium nitride, lithium fluoride, lithium chloride, lithium bromide, lithium iodide, lithium sulfate, lithium carbonate, lithium borate. , lithium phosphate, lithium nitrate, lithium silicate, and lithium aluminate
  • the weight ratio of the Si-based active material, the solid electrolyte raw material, and the carbon material is preferably 10-60:20-80:3-20.
  • the weight ratio of the Si-based active material, the solid electrolyte raw material, and the carbon material in the electrode composite raw material is 10-60:20-80:3-20, the ionic conductivity and activity in the electrode composite are improved. This is preferable because it is possible to obtain sufficient contact points between the substance, the solid electrolyte, and the carbon material, thereby improving the battery characteristics.
  • Electrode use of mechanical energy As a method for compounding the electrode composite raw material with mechanical energy, the same method as in the first embodiment can be used.
  • the fact that the electrode assembly raw materials are combined to synthesize a solid electrolyte can be confirmed, for example, by performing DSC measurement of the electrode assembly and confirming the position of the exothermic peak. Further, whether the solid electrolyte is amorphous can be confirmed by performing XRD measurement of the obtained electrode assembly and confirming the disappearance of the diffraction peak of the solid electrolyte raw material other than the electrode active material. Confirmation methods such as XRD and DSC can be used, and the conditions for compounding can be appropriately adjusted.
  • heat treatment may be performed after the raw material for the electrode composite is composited with mechanical energy. Heat treatment can be performed by the same method as in the first embodiment.
  • An electrode composite manufactured by the method for manufacturing an all-solid-state lithium-ion battery electrode composite according to the fourth embodiment includes a negative electrode active material, a solid electrolyte, and a carbon material. Part of the solid electrolyte is preferably amorphous.
  • the solid electrolyte is amorphous can be confirmed by XRD or DSC, as in the second embodiment.
  • the conditions in the examples are one example of conditions adopted for confirming the feasibility and effect of the present invention, and the present invention is based on this one example of conditions. It is not limited. Various conditions can be adopted in the present invention as long as the objects of the present invention are achieved without departing from the gist of the present invention.
  • Li 2 S manufactured by Mitsuwa Chemical Industry Co., Ltd.
  • P 2 S 5 manufactured by Sigma-Aldrich Co., Ltd.
  • activated carbon A MSC30, manufactured by Kansai Coke and Chemicals Co., Ltd., specific surface area 3000 m 2 /g
  • the weighed electrode composite raw material was placed in a 45 ml pot together with about 40 g of 5 mm zirconia balls, and mixed at a revolution speed of 370 rpm for 2 hours to obtain positive electrode composite 1. got
  • a positive electrode composite 2 was obtained by performing the same treatment as for the positive electrode composite 1, except that 20 mg and activated carbon: 20 mg were used.
  • Li 2 S: 130 mg, P 2 S 5 : 50 mg, and activated carbon: 20 mg were used so that the weight ratio of Li 2 S:P 2 S : activated carbon A was 65:25:10.
  • a positive electrode composite 3 was obtained by performing the same treatment as in 1.
  • Li 2 S: 140 mg, P 2 S : 40 mg, and activated carbon: 20 mg were used so that the weight ratio of Li 2 S:P 2 S : activated carbon A was 70:20:10.
  • a positive electrode composite 4 was obtained by performing the same treatment as in 1.
  • Li 2 S: 120 mg, P 2 S 5 : 40 mg, LiI: 20 mg, and activated carbon: 20 mg were added so that the weight ratio of Li 2 S:P 2 S 5 :LiI:activated carbon A was 60:20:10:10.
  • a positive electrode composite 5 was obtained by performing the same treatment as the positive electrode composite 1 except that it was used.
  • Li2S : 130 mg, P2S5 : 40 mg, LiI: 10 mg, and activated carbon: 20 mg were added so that the weight ratio of Li2S : P2S5 :LiI:activated carbon A was 65:20: 5 :10.
  • a positive electrode composite 6 was obtained by performing the same treatment as the positive electrode composite 1 except that it was used.
  • Li 2 S: 120 mg, P 2 S 5 : 62 mg, and activated carbon: 18 mg were used so that the weight ratio of Li 2 S:P 2 S : activated carbon A was 60:31: 9 .
  • a positive electrode composite 7 was obtained by performing the same treatment as in 1.
  • Positive electrode composite 8 Positive electrode composite 1 except that 120 mg of Li 2 S, 58 mg of P 2 S 5 and 22 mg of activated carbon were used so that the weight ratio of Li 2 S:P 2 S 5 :activated carbon A was 60:29:11.
  • a positive electrode composite 8 was obtained by performing the same treatment.
  • Positive electrode composite 9 Positive electrode composite 1 except that 120 mg of Li 2 S, 66 mg of P 2 S 5 and 14 mg of activated carbon were used so that the weight ratio of Li 2 S:P 2 S 5 :activated carbon A was 60:33:7.
  • a positive electrode composite 9 was obtained by performing the same treatment.
  • Li2S 120 mg
  • P2S5 20 mg
  • LiI 50 mg
  • activated carbon 10 mg
  • a positive electrode composite 10 was obtained by performing the same treatment as for the positive electrode composite 1 except that it was used.
  • Li2S : 120 mg, P2S5 : 20 mg, LiI: 40 mg, and activated carbon: 20 mg were added so that the weight ratio of Li2S : P2S5 :LiI:activated carbon A was 60:10:20: 10 .
  • a positive electrode composite 11 was obtained by performing the same treatment as for the positive electrode composite 1 except that it was used.
  • a positive electrode composite 12 was obtained in the same manner as the positive electrode composite 10 except that activated carbon B (MSA20, manufactured by Kansai Coke and Chemicals Co., Ltd., specific surface area: 2500 m 2 /g) was used instead of activated carbon A.
  • activated carbon B MSA20, manufactured by Kansai Coke and Chemicals Co., Ltd., specific surface area: 2500 m 2 /g
  • a positive electrode composite 13 was obtained in the same manner as the positive electrode composite 10 except that Ketjenblack (EC600JD, manufactured by Lion Corporation, specific surface area 1200 m 2 /g) was used instead of activated carbon A.
  • Ketjenblack E600JD, manufactured by Lion Corporation, specific surface area 1200 m 2 /g
  • a positive electrode composite 14 was obtained in the same manner as the positive electrode composite 10 except that Ketjenblack (Li-100, manufactured by DENKA, specific surface area: 100 m 2 /g) was used instead of the activated carbon A.
  • Ketjenblack Li-100, manufactured by DENKA, specific surface area: 100 m 2 /g
  • Li 2 S: 120 mg, P 2 S : 60 mg, and activated carbon: 20 mg were used so that the weight ratio of Li 2 S:P 2 S : activated carbon B was 60:30:10.
  • a positive electrode composite 15 was obtained by performing the same treatment as in 1.
  • a positive electrode composite 16 was obtained in the same manner as the positive electrode composite 11 except that LiBr (manufactured by Sigma-Aldrich) was used instead of LiI.
  • a positive electrode composite 17 was obtained by performing the same treatment as the positive electrode composite 1 except that it was used.
  • Li 2 S 60 mg
  • Li 2 SO 4 so that the weight ratio of Li 2 S:Li 2 SO 4 :Li 2 CO 3 :LiBr:activated carbon A is 30:31.5:14.5:14:10 : 63 mg, Li 2 CO 3 : 29 mg, LiBr: 28 mg, and activated carbon: 20 mg
  • a positive electrode composite 18 was obtained in the same manner as for the positive electrode composite 1 .
  • a positive electrode composite 19 was obtained by performing the same treatment as for the positive electrode composite 18 except that the ball mill treatment time was changed from 2 hours to 8 hours.
  • Li 2 S 60 mg
  • Li 2 SO 4 so that the weight ratio of Li 2 S:Li 2 SO 4 :Li 2 CO 3 :LiI:activated carbon A is 30:26:11.5:22.5:10 : 52 mg, Li 2 CO 3 : 23 mg, LiI: 45 mg, activated carbon: 20 mg.
  • Li 2 S 60 mg
  • Li 2 O 37 mg
  • LiI 83 mg
  • activated carbon A positive electrode composite 21 was obtained by the same treatment as for the positive electrode composite 19, except that 20 mg was used.
  • Li 2 S 60 mg
  • Li 2 SO 4 Li 2 S: 60 mg
  • Li 2 SO 4 Li 2 S: 60 mg
  • Li 2 SO : A positive electrode composite 22 was obtained in the same manner as the positive electrode composite 19 except that 58 mg of Li 2 O: 11 mg, LiI: 51 mg, and activated carbon: 20 mg were used.
  • Comparative positive electrode composite 1 Solid electrolyte 1 obtained by treating 80Li 2 S-20P 2 S 5 in a ball mill at 500 rpm for 10 hours was used, and the weight ratio of Li 2 S:solid electrolyte 1:activated carbon was 50:40:10. , Li 2 S: 100 mg, solid electrolyte 1: 80 mg, and activated carbon: 20 mg, the same treatment as for the positive electrode composite 1 was performed to obtain a comparative positive electrode composite 1.
  • Comparative positive electrode composite 2 (Comparative positive electrode composite 2) Except that solid electrolyte 2 obtained by treating 60Li 2 S-40P 2 S 5 in a ball mill at 500 rpm for 10 hours was used instead of solid electrolyte 1, the same treatment as in comparative cathode composite 1 was performed. A positive electrode composite 2 was obtained.
  • Comparative positive electrode composite 3 Solid electrolyte 3 obtained by treating 45Li 2 SO 4 -30Li 2 CO 3 -25LiBr in a ball mill at 370 rpm for 60 hours was used, and the weight ratio of Li 2 S:solid electrolyte 3:activated carbon was 30:60:10.
  • a comparative positive electrode composite 3 was obtained by performing the same treatment as for the comparative positive electrode composite 1 except that Li 2 S: 60 mg, solid electrolyte 3: 120 mg, and activated carbon: 20 mg were used.
  • Comparative positive electrode composite 4 The same treatment as in Comparative Positive Electrode Composite 3 was performed, except that Solid Electrolyte 4 obtained by treating 45Li 2 SO 4 -30Li 2 CO 3 -30LiI in a ball mill at 370 rpm for 60 hours instead of Solid Electrolyte 3 was used. Comparative positive electrode composite 4 was obtained.
  • Si (manufactured by Nilaco Corporation, purity 99.999%): Li 2 S: P 2 S 5 : LiI: Activated carbon A so that the weight ratio is 50: 9: 14: 17: 10, Si: 100 mg, Li 2 S : 18 mg, P 2 S 5 : 28 mg, LiI: 34 mg, and activated carbon: 20 mg.
  • Ni 100 mg, Li 2 S: 17 mg, and P 2 S so that the weight ratio of Si:Li 2 S:P 2 S 5 :LiI:activated carbon A is 50:8.5:14:16.5:11.
  • a negative electrode composite 2 was obtained in the same manner as for the positive electrode composite 1 except that 5:28 mg, LiI: 33 mg, and activated carbon: 22 mg were used.
  • Ni (Negative electrode composite 3) Si: 100 mg, Li 2 S: 18 mg, and P 2 S so that the weight ratio of Si:Li 2 S:P 2 S 5 :LiI:activated carbon A is 50:9:14.5:17.5:9
  • a negative electrode composite 3 was obtained in the same manner as for the positive electrode composite 1, except that 5:29 mg, LiI: 35 mg, and activated carbon: 18 mg were used.
  • Negative electrode composite 4 A negative electrode composite 4 was obtained by performing the same treatment as for the positive electrode composite 1 except that the activated carbon B was used instead of the activated carbon A.
  • Negative electrode composite 5 A negative electrode composite 5 was obtained by performing the same treatment as for the positive electrode composite 1 except that Ketjenblack was used instead of the activated carbon A.
  • a negative electrode composite 6 was obtained by performing the same treatment as for the positive electrode composite 1 except that acetylene black was used instead of the activated carbon A.
  • Ni (Negative electrode composite 7) Si: 100 mg, Li 2 S: 15 mg, and P 2 S so that the weight ratio of Si:Li 2 S:P 2 S 5 :LiI:activated carbon B is 50:7.5:12.5:15:15.
  • a negative electrode composite 7 was obtained in the same manner as for the positive electrode composite 1 except that 5:25 mg, LiI: 30 mg, and activated carbon: 30 mg were used.
  • Ni (Negative electrode composite 8) Si: 100 mg, Li 2 S: 13 mg, and P 2 S so that the weight ratio of Si:Li 2 S:P 2 S 5 :LiI:activated carbon B is 50:6.5:10.5:13:20.
  • a negative electrode composite 8 was obtained in the same manner as for the positive electrode composite 1 except that 5:21 mg, LiI: 26 mg, and activated carbon B: 40 mg were used.
  • Ni 60 mg
  • Li 2 SO 4 52 mg
  • Li A negative electrode composite 10 was obtained in the same manner as for the positive electrode composite 19 except that 2 CO 3 : 23 mg, LiI: 45 mg, and activated carbon: 20 mg were used.
  • a negative electrode composite 11 was obtained by performing the same treatment as for the positive electrode composite 19 except for the above.
  • a negative electrode composite 12 was obtained by performing the same treatment as for the positive electrode composite 19 except that the composite was used.
  • Comparative negative electrode composite 1 Solid electrolyte 5 obtained by treating 3Li 2 S-1P 2 S 5 -2LiI in a ball mill at 500 rpm for 10 hours was used, and the weight ratio of Si:solid electrolyte 5:activated carbon A was 50:40:10.
  • a comparative negative electrode composite 1 was obtained by performing the same treatment as for the positive electrode composite 1 except that Si: 100 mg, solid electrolyte 5: 80 mg, and activated carbon: 20 mg were used.
  • Comparative negative electrode composite 2 A solid electrolyte 6 obtained by treating 75Li 2 S-25P 2 S 5 with a ball mill at 500 rpm for 10 hours instead of the solid electrolyte 5 was used. A negative electrode composite 2 was obtained.
  • Comparative negative electrode composite 3 (Comparative negative electrode composite 3) The same treatment as in Comparative negative electrode composite 1 was performed, except that solid electrolyte 7 obtained by treating 42Li 2 SO 4 -28Li 2 CO 3 -30LiI in a ball mill at 370 rpm for 60 hours instead of solid electrolyte 5 was used. Comparative Negative Electrode Composite 3 was obtained.
  • Composite 1 and 80Li 2 S-20P 2 S5 was treated in a ball mill at 500 rpm for 10 hours (composite 2 mixed at a weight ratio of 90:10) 80 mg) was added, and a cylindrical jig made of SKD11 (10 mm ⁇ , height 15 mm ) was inserted from the upper side of a ceramic cylindrical tube jig to sandwich the solid electrolyte (E-1), and pressed at a pressure of 80 MPa for 3 minutes to form a solid electrolyte layer with a diameter of 10 mm ⁇ and a thickness of about 0.6 mm. .
  • the SKD11 cylindrical jig (positive electrode current collector) inserted from the upper side is once extracted, the positive electrode composite prepared on the solid electrolyte layer in the ceramic cylindrical tube is put, and the SKD11 cylinder is again inserted from the upper side.
  • a jig (positive electrode current collector) was inserted and pressed at a pressure of 720 MPa for 3 minutes to form a positive electrode composite layer having a diameter of 10 mm ⁇ and a thickness of about 0.1 mm.
  • the SKD11 cylindrical jig (negative electrode current collector) inserted from the lower side is removed, and a 0.20 mm thick lithium sheet (manufactured by Honjo Metal Co., Ltd.) as the negative electrode is punched out with a hole punch to a diameter of 8 mm ⁇ .
  • a cylindrical jig made of SKD11 (10 mm ⁇ , height 10 mm) was used as a negative electrode current collector from below a ceramic cylindrical tube jig (inner diameter 10 mm ⁇ , outer diameter 23 mm ⁇ , height 20 mm).
  • 80 mg of the solid electrolyte (E-2) (3Li 2 SP 2 S 5 -2LiI processed in a ball mill at 500 rpm for 10 hours) was added from the upper side of the ceramic cylindrical tube jig, and the positive electrode was further added.
  • a cylindrical jig made of SKD11 (10 mm ⁇ , height 15 mm) as a current collector was inserted from the upper side of a ceramic cylindrical jig to sandwich the solid electrolyte (E-2), and pressed at a pressure of 80 MPa for 3 minutes.
  • a solid electrolyte layer having a diameter of 10 mm ⁇ and a thickness of about 0.5 mm was formed.
  • the SKD11 cylindrical jig (positive electrode current collector) inserted from the upper side is once extracted, the negative electrode composite prepared on the solid electrolyte layer in the ceramic cylindrical tube is put, and the SKD11 cylinder is again inserted from the upper side.
  • a jig (positive electrode current collector) was inserted and pressed at a pressure of 720 MPa for 3 minutes to form a positive electrode composite layer with a diameter of 10 mm ⁇ and a thickness of about 0.05 mm.
  • the SKD11 cylindrical jig (negative electrode current collector) inserted from the lower side is removed, and a 0.20 mm thick lithium sheet (manufactured by Honjo Metal Co., Ltd.) as the negative electrode is punched out with a hole punch to a diameter of 8 mm ⁇ .
  • a cylindrical jig made of SKD11 (10 mm ⁇ , height 10 mm) was used as a negative electrode current collector from below a ceramic cylindrical tube jig (inner diameter 10 mm ⁇ , outer diameter 23 mm ⁇ , height 20 mm).
  • 80 mg of the solid electrolyte (E-2) (3Li 2 SP 2 S 5 -2LiI processed in a ball mill at 500 rpm for 10 hours) was added from the upper side of the ceramic cylindrical tube jig, and the positive electrode was further added.
  • a cylindrical jig made of SKD11 (10 mm ⁇ , height 15 mm) as a current collector was inserted from the upper side of a ceramic cylindrical jig to sandwich the solid electrolyte (E-2), and pressed at a pressure of 80 MPa for 3 minutes.
  • a solid electrolyte layer having a diameter of 10 mm ⁇ and a thickness of about 0.5 mm was formed.
  • the SKD11 cylindrical jig (positive electrode current collector) inserted from the upper side is once extracted, the positive electrode composite prepared on the solid electrolyte layer in the ceramic cylindrical tube is put, and the SKD11 cylinder is again inserted from the upper side.
  • a jig (positive electrode current collector) was inserted and pressed at a pressure of 80 MPa for 3 minutes to form a positive electrode composite layer having a diameter of 10 mm ⁇ and a thickness of about 0.1 mm.
  • the SKD11 cylindrical jig negative electrode current collector
  • the negative electrode composite is inserted
  • the SKD11 cylindrical jig positive electrode current collector
  • DSC measurement Positive electrode composites 18 to 22, comparative positive electrode composites 3 and 4, negative electrode composites 10 to 12, and comparative negative electrode composite 3 were measured using a comparative differential scanning calorimeter (DSC6200 manufactured by Seiko Instruments Inc.). The measurement was performed at a temperature range of 50° C. to 500° C. and a heating rate of 5° C./min. The exothermic peaks for each conjugate are shown in Tables 1 and 2. Note that none of the solid electrolyte raw materials used in the production of each composite exhibited an exothermic peak in the temperature range of 50°C to 500°C. "-" in the DSC exothermic peak temperature column indicates that the temperature was not measured.
  • the electrode composite (positive electrode composite and negative electrode composite) using the method for producing an electrode composite for an all-solid-state lithium ion battery of the present invention has a solid electrolyte synthesized and It was confirmed that the positive electrode composite 21 was amorphous except for the positive electrode composite 21 .
  • the electrode composite (positive electrode composite and negative electrode composite) using the method for manufacturing the electrode composite for all-solid-state lithium ion batteries of the present invention was manufactured in one step, the conventional manufacturing method (comparative positive electrode composite The battery performance was as high as that of the composite and the comparative negative electrode composite).
  • production of a positive electrode or negative electrode composite consists of two steps, a step of producing a solid electrolyte and a step of producing a positive electrode or negative electrode composite.
  • the electrode assembly can be produced with fewer steps than in the past, so the industrial applicability is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

この全固体リチウムイオン電池用電極複合体の製造方法は、電極活物質と、固体電解質原料と、導電材である炭素材料と、を含む、電極複合体原料を機械的エネルギーで複合化する。

Description

全固体リチウムイオン電池用電極複合体の製造方法
 本発明は、全固体リチウムイオン電池用電極複合体の製造方法に関する。
 本願は、2021年5月12日に、日本に出願された特願2021-081219号に基づき優先権を主張し、その内容をここに援用する。
 リチウムイオン2次電池は、エネルギー密度が高く、パソコン、携帯電話などの情報関連機器等に使用されている。近年、電気自動車またはハイブリッド自動車向けに高出力かつ高容量のリチウムイオン2次電池の開発が進められている。
 しかし、現在のリチウムイオン2次電池は、可燃性の有機電解液を用いているので、リチウムイオン2次電池が異常発熱した際に発火しやすいという問題がある。実際、携帯機器でリチウムイオン2次電池を原因とする発火事故が起こっており、安全性の改善が強く求められている。
 リチウムイオン2次電池の有機電解液を無機固体電解質にすることで、発火のリスクを低減することができる。そのため、全固体リチウムイオン電池が注目されている。
 特許文献1には、正極活物質と第1固体電解質とを含む正極層と、負極活物質とリチウム水素化物とを含む負極層と、前記正極層と前記負極層の間に設けられ、第2固体電解質を含む固体電解質層と、を備え、前記第1固体電解質及び前記第2固体電解質は、一般式LixAyOz(Aは、S、B、C、P、Al、Tiの少なくともいずれかである)で表される酸化物を含むガラスであることを特徴とする全固体電池が開示されている。
 特許文献2には、対極層と、負極層と、前記対極層と前記負極層の間に配置された硫化物ガラス系電解質と、を備える全固体リチウム二次電池であって、前記負極層はSn、Si又はGeの少なくても何れか一種類の高容量負極材料と前記硫化物ガラス系電解質含む合剤からなり、所定の拘束力が前記全固体リチウム二次電池の両端に作用し、前記負極層の面組織を観察するとき、25μmのスケールとの対比に基づいて観察される空隙が観察されない、面組織が緻密化されたことを特徴とする全固体リチウム二次電池が開示されている。
 特許文献3には、全固体リチウムイオン二次電池用の負極合材であって、前記負極合材は、負極活物質、固体電解質及び導電材を含有し、前記負極活物質は、Liと合金を形成可能な金属、及び当該金属の酸化物からなる群より選ばれる少なくとも一種の活物質を含み、前記固体電解質は、LiX-LiS-P系固体電解質(XはF、Cl、Br、及びIからなる群より選ばれる少なくとも1つのハロゲン)であり、前記負極合材の体積を100体積%としたときの前記導電材の体積割合(%)に、前記固体電解質のかさ密度を乗じて得られる値が0.53以上3.0以下であることを特徴とする、負極合材が開示されている。
 特許文献4には、AS・AXで表される正極活物質を含み、前記Aは、アルカリ金属であり、前記Xは、I、Br、Cl、F、BF、BH、SO、BO、PO、O、Se、N、P、As、Sb、PF、AsF、ClO、NO、CO、CFSO、CFCOO、N(SOF)及びN(CFSOから選択される全固体二次電池用の正極が開示されている。
日本国特開2020-64701号公報 日本国特開2020-161309号公報 日本国特許第6593381号公報 日本国特許第6529508号公報
 しかしながら、特許文献1~4に開示されている正極複合体及び負極複合体の製造方法は、まず固体電解質を合成し、その後、正極複合体または負極複合体を製造していた。特に、固体電解質の合成には長時間を要していたので、特許文献1~4に開示されている正極複合体及び負極複合体の製造方法は、量産性に乏しいという問題があった。
 本発明は、上記の事情を鑑みなされた発明であり、量産性に優れる全固体リチウムイオン電池用電極複合体の製造方法を提供することを目的とする。
 上記課題を解決するために、本発明は以下の手段を提案している。
(1)本発明の一態様に係る全固体リチウムイオン電池用電極複合体の製造方法は、電極活物質と、固体電解質原料と、導電材である炭素材料と、を含む、電極複合体原料を機械的エネルギーで複合化する。
(2)上記(1)に記載の全固体リチウムイオン電池用電極複合体の製造方法は、前記炭素材料の比表面積が10m/g以上であってもよい。
(3)上記(1)または(2)に記載の全固体リチウムイオン電池用電極複合体の製造方法は、前記炭素材料の比表面積が1000m/g以上であってもよい。
(4)上記(1)~(3)のいずれか1つに記載の全固体リチウムイオン電池用電極複合体の製造方法は、前記電極活物質が、正極活物質であってもよい。
(5)上記(4)に記載の全固体リチウムイオン電池用電極複合体の製造方法は、前記正極活物質が、第1のLiSであってもよい。
(6)上記(5)に記載の全固体リチウムイオン電池用電極複合体の製造方法は、前記固体電解質原料が第2のLiSとPとを含む、硫化物固体電解質原料であってもよい。
(7)上記(6)に記載の全固体リチウムイオン電池用電極複合体の製造方法は、前記電極複合体原料において、前記第1のLiSおよび前記第2のLiSの合計と、Pと、前記炭素材料と、の重量比が30~80:10~50:3~20であってもよい。
(8)上記(6)または(7)に記載の全固体リチウムイオン電池用電極複合体の製造方法は、前記電極複合体原料がさらにリチウム塩を含んでもよい。
(9)上記(8)に記載の全固体リチウムイオン電池用電極複合体の製造方法は、前記リチウム塩が、酸化リチウム、窒化リチウム、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム、硫酸リチウム、炭酸リチウム、ホウ酸リチウム、リン酸リチウム、硝酸リチウム、ケイ酸リチウム、アルミン酸リチウムからなる群から選択される1種以上であってもよい。
(10)上記(8)または(9)に記載の全固体リチウムイオン電池用電極複合体の製造方法は、前記電極複合体原料において、前記第1のLiSおよび前記第2のLiSの合計と、前記Pと、前記炭素材料と、前記リチウム塩と、の重量比が30~80:10~40:3~20:5~30であってもよい。
(11)上記(5)に記載の全固体リチウムイオン電池用電極複合体の製造方法は、前記固体電解質原料として、酸化リチウム、窒化リチウム、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム、硫酸リチウム、炭酸リチウム、ホウ酸リチウム、リン酸リチウム、硝酸リチウム、ケイ酸リチウム、アルミン酸リチウムからなる群から選択される2種以上を含んでもよい。
(12)上記(11)に記載の全固体リチウムイオン電池用電極複合体の製造方法は、前記電極複合体原料において、前記第1のLiSと、前記固体電解質原料と、前記炭素材料と、の重量比が20~60:20~70:3~20であってもよい。
(13)上記(1)~(3)のいずれか1項に記載の全固体リチウムイオン電池用電極複合体の製造方法は、前記電極活物質が、負極活物質であってもよい。
(14)上記(13)に記載の全固体リチウムイオン電池用電極複合体の製造方法は、前記負極活物質が、SiおよびSi化合物の1種以上からなるSi系活物質であってもよい。
(15)上記(14)に記載の全固体リチウムイオン電池用電極複合体の製造方法は、前記Si系活物質がSiであってもよい。
(16)上記(14)または(15)に記載の全固体リチウムイオン電池用電極複合体の製造方法は、前記固体電解質原料がLiSとPとを含む、硫化物固体電解質原料であってもよい。
(17)上記(16)に記載の全固体リチウムイオン電池用電極複合体の製造方法は、前記電極複合体原料において、前記Si系活物質と、LiSと、Pと、前記炭素材料と、の重量比が20~70:10~30:10~40:3~20であってもよい。
(18)上記(16)または(17)に記載の全固体リチウムイオン電池用電極複合体の製造方法は、前記電極複合体原料がさらにリチウム塩を含んでもよい。
(19)上記(18)に記載の全固体リチウムイオン電池用電極複合体の製造方法は、前記リチウム塩が、酸化リチウム、窒化リチウム、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム、硫酸リチウム、炭酸リチウム、ホウ酸リチウム、リン酸リチウム、硝酸リチウム、ケイ酸リチウム、アルミン酸リチウムからなる群から選択される1種以上であってもよい。
(20)上記(18)または(19)に記載の全固体リチウムイオン電池用電極複合体の製造方法は、前記電極複合体原料において、前記Si系活物質と、LiSと、Pと、前記炭素材料と、前記リチウム塩と、の重量比が20~70:10~30:10~40:3~20:5~30であってもよい。
(21)上記(14)または(15)に記載の全固体リチウムイオン電池用電極複合体の製造方法は、前記固体電解質原料として、酸化リチウム、窒化リチウム、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム、硫酸リチウム、炭酸リチウム、ホウ酸リチウム、リン酸リチウム、硝酸リチウム、ケイ酸リチウム、アルミン酸リチウムのうち、少なくとも2種類を含んでもよい。
(22)上記(21)に記載の全固体リチウムイオン電池用電極複合体の製造方法は、前記電極複合体原料において、前記Si系活物質と、前記固体電解質原料と、前記炭素材料と、の重量比が10~60:20~80:3~20であってもよい。
 本発明の上記態様によれば、量産性に優れる全固体リチウムイオン電池用電極複合体の製造方法を提供することができる。
 本発明者らは、電極活物質と、固体電解質原料と、導電材である炭素材料と、を含む、電極複合体原料を機械的エネルギーで、複合化することによって、1工程で全固体リチウムイオン電池用電極複合体を製造できることを見出し、本発明を完成した。なお、本明細書で、「機械的エネルギーで複合化する」とは、機械的エネルギーで固体電解質原料から固体電解質を合成し、かつ、合成された固体電解質中に電極活物質と、炭素材料とを、分散させる」ことをいう。固体電解質を合成できているかどうかは、XPSによる固体電解質原料ピークの消失またはDSCにて固体電解質原料以外の発熱ピークの出現により判断できる。合成された固体電解質がアモルファスになっていることが好ましい。固体電解質がアモルファスになっているかどうかはXRDにて活物質以外の原料の回折ピークの消失によって確認できる。以下、本発明の各実施形態について説明する。
<第1実施形態>
 第1実施形態の全固体リチウムイオン電池用電極複合体の製造方法は、電極活物質である正極活物質と、固体電解質原料である硫化物固体電解質原料と、炭素材料と、を含む電極複合体原料を機械的エネルギーで複合化する。以下、各要件について説明する。
[電極複合体原料]
 第1実施形態の全固体リチウムイオン電池用電極複合体の製造方法に用いられる電極複合体原料は、正極活物質と、硫化物固体電解質原料と、炭素材料と、を含む。固体電解質原料である硫化物固体電解質原料を用いることで、電極複合体の導電性を改善することができる。
(正極活物質)
 正極活物質は、機械的エネルギーで他の材料と複合化する際に、活物質の機能を失わないのであれば、特に限定されない。正極活物質としては、例えば、LiSが挙げられる。LSは、従来のリチウム遷移金属酸化物と比較して大きな理論容量を有することから、エネルギー密度の飛躍的な向上するので好ましい。また、正極活物質がLiSである場合、LiSがリチウム源を有することから、負極活物質がリチウム源を有する必要が無い。そのため、正極活物質にLiSを用いることで、製造時に不安定なリチウム金属やリチウム金属合金を用いなくてもよくなり、製造面が改善される。また、LiSを用いることで、活物質の特性を維持しつつ、合成された硫化物固体電解質に、均一に分散しやすい。そのため、正極活物質としては、LiS(第1のLiSと称する場合がある)が好ましい。
(硫化物固体電解質原料)
 硫化物固体電解質原料は、機械的エネルギーで複合化することで、硫化物固体電解質原料の一部が少なくともアモルファスの硫化物固体電解質になるのであれば、特に限定されない。硫化物固体電解質原料としては、LiS、P、SiS、GeS、Al、ZnS、As、Sb、WS、CuSなどが挙げられる。硫化物固体電解質原料は、LiS(以下、第2のLiSと称する場合がある)とP(第1のPと称する場合がある)とを含むことが好ましい。硫化物固体電解質原料が第2のLiSとPとを含むことで、機械的エネルギーによって、アモルファスであり、変形性に優れ、良好な硫化物固体電解質を得ることができる。第2のLiSとPとから、硫化物固体電解質を合成する場合、Pの量で、電極活物質として機能する第1のLiSと固体電解質の合成に用いられる第2のLiSとの比が決まる。
(炭素材料)
 炭素材料は、正極活物質の電気伝導性を補う。炭素材料は導電材として機能するのであれば、特に限定されない。また、炭素材料は、固体電解質の合成を促進する機能を有する。炭素材料としては、アセチレンブラック、カーボンナノチューブ、活性炭、グラフェン、ファーネスブラック(例えば、中空シェル構造を有するファーネスブラック)、炭素繊維等が挙げられる。炭素材料は、これらのうち1種または2種以上を含んでもよい。中空シェル構造を有するファーネスブラックとは、導電性ファーネスブラックの一種であり、空隙率は60~80%程度の中空シェル状の構造を持つものをいう。ここで「中空シェル構造」とは、黒鉛結晶が薄く寄り集まって粒子形態の外殻を形成し、外殻の内側に空隙を有する構造をいう。中空シェル構造を有するファーネスブラックとしては、例えば、ケッチェンブラック(ライオン社製)等が挙げられる。
 導電率が低い炭素材料(低導電率炭素材料)を用いた場合に、当該炭素材料よりも高い導電率の炭素材料(高導電率炭素材料)とを組み合わせることで、電極複合体の電子伝導性が改善することができる。これによって、電極複合体の充放電容量をさらに向上させることができる。なお、低導電率炭素材料は、活性炭である。高導電率炭素材料は、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ、グラフェンからなる群から選択される1種以上である。低導電率炭素材料と高導電率炭素材料との重量比は、低導電率炭素材料:高導電率炭素材料=10:0~5:5であることが好ましい。
 炭素材料の比表面積は、10m/g以上が好ましい。より好ましい炭素材料の比表面積は、100m/g以上である。さらに好ましい炭素材料の比表面積は、1000m/g以上である。特に好ましい炭素材料の比表面積は、1500m/g以上である。比表面積が10m/g未満であると、正極活物質と炭素材料との接点を十分に増加させることができないため、充放電容量を向上させる効果を充分に享受することができない傾向がある。比表面積の上限は特に限定されないが、通常6000m/g以下である。
 本明細書において、炭素材料の比表面積は、Brenauer-Emmet-Telle(BET)法により求めたBET比表面積をいい、具体的には、炭素材料を液体窒素温度下において、炭素材料に窒素ガスを吸着して得られる窒素吸着等温線を用いて求めた比表面積をいう。BET比表面積を求めるための測定装置としては、例えば、自動比表面積/細孔分布測定装置(日本ベル株式会社製、BELSORP-mini II)を用いることができる。
 (リチウム塩)
 第1実施形態の電極複合体原料は、正極活物質、硫化物固体電解質原料、炭素材料に加えて、更にリチウム塩を含有してもよい。リチウム塩は、硫化物固体電解質の導電率を向上する機能や、硫化物固体電解質の柔軟性を向上する機能を有する。リチウム塩は、硫化物固体電解質の導電率を向上する機能または硫化物固体電解質の柔軟性を向上する機能を有するのであれば、特に限定されない。例えば、リチウム塩としては、酸化リチウム、窒化リチウム、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム、硫酸リチウム、炭酸リチウム、ホウ酸リチウム、リン酸リチウム、硝酸リチウム、ケイ酸リチウム、アルミン酸リチウムからなる群から選択される1種以上であることが好ましい。
(その他成分)
 第1実施形態の電極複合体原料は、さらに、バインダー、溶媒、イオン伝導性物質等の任意成分を含有してもよい。
「バインダー」
 バインダーとしては、特に限定されないが、熱可塑性樹脂や熱硬化性樹脂等を用いることができる。バインダーとしては、例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、テトラフルオロエチレン-ヘキサフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-クロロトリフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン-ペンタフルオロプロピレン共重合体、プロピレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体、フッ化ビニリデン-パーフルオロメチルビニルエーテル-テトラフルオロエチレン共重合体、エチレン-アクリル酸共重合体、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリアクリル酸リチウム、ポリメタクリル酸、ポリメタクリル酸ナトリウム、ポリメタクリル酸リチウム等が挙げられる。これらのバインダーは、単独で使用しても良いし、2種以上を併用してもよい。
 電極複合体原料が、バインダーを含む場合、その含有量は、特に限定されないが、電極複合体原料中0.01~10重量%であることが好ましい。
「溶媒」
 溶媒を混合して得られた電極複合体を用いることで、電極複合体層を作製しやすくなる。溶媒は、電極複合体層を作製する際、乾燥により除去される。溶媒としては、特に限定されないが、例えば、N,N―ジメチルアミノプロピルアミン、ジエチレントリアミン等のアミン系溶媒、テトラヒドロフラン等のエーテル系溶媒、メチルエチルケトン等のケトン系溶媒、酢酸メチル等のエステル系溶媒、ジメチルアセトアミド、1-メチル-2-ピロリドン等のアミド系溶媒、トルエン、キシレン、n-ヘキサン、シクロヘキサン等の炭化水素系溶媒等が挙げられる。これらの溶媒は、単独で使用しても良いし、2種以上を併用しても良い。
 電極複合体原料が上記溶媒を混合して得られたものである場合、その含有量は、特に限定されないが、電極複合体原料の固形分100重量部に対し10~10000重量部が好ましい。
「イオン伝導性物質」
 電極複合体原料にはイオン伝導性物質を含んでもよい。イオン伝導性物質としては、特に制限されることはないが、室温におけるリチウムイオン伝導率は、10-5S/cm以上であるのが好ましく、10-4S/cm以上であるのがより好ましい。このような特性を有する結晶性酸化物固体電解質としては、例えばリチウムアルミニウムチタンリン酸化物(LATP)、リチウムアルミニウムゲルマニウムリン酸化物(LAGP)、リチウムランタンジルコニウム酸化物(LLZ)、リチウムランタンチタン酸化物(LLT)、リチウムゲルマニウムリン硫化物(LGPS)、リチウムケイ素硫化物(LSS)、リチウムリンハロゲン硫化物(LPSX)、リチウムホウ素炭素水素化物などが挙げられる。
(重量比)
 第1実施形態の正極活物質が第1のLiSであり、硫化物固体電解質原料が第2のLiSおよびPである場合に、電極複合体原料中の第1のLiSおよび第2のLiSの合計と、Pと、炭素材料と、の重量比(第1のLiSおよび第2のLiSの合計:P:炭素材料)が30~80:10~50:3~20であることが好ましい。電極複合体原料中の第1のLiSおよび第2のLiSの合計と、Pと、炭素材料と、の重量比が30~80:10~50:3~20であると、電極複合体内のイオン伝導性と、電極活物質と固体電解質及び炭素材料との接点を十分に得ることができるため、電池特性が向上するので、好ましい。
 第1実施形態の正極活物質が第1のLiSであり、硫化物固体電解質原料が第2のLiSおよびPであり、さらに電極複合体原料がリチウム塩を含有する場合に、電極複合体原料中の第1のLiSおよび第2のLiSの合計と、Pと、炭素材料と、リチウム塩との重量比(第1のLiSおよび第2のLiSの合計:P:炭素材料:リチウム塩)が30~80:10~40:3~20:5~30であることが好ましい。電極複合体原料中の第1のLiSおよび第2のLiSの合計と、Pと、炭素材料と、リチウム塩との重量比が30~80:10~40:3~20:5~30であると、より電極複合体の電池特性が向上するので好ましい。
[機械的エネルギーによる複合化]
 電極複合体原料を機械的エネルギーで複合化する方法は、例えば、遊星ボールミル、ニーダー、プラネタリミキサ、振動ミル、マグネッティックスターラ等を用いて電極複合体原料を複合化する方法が挙げられる。例えば、遊星ボールミルを用いる場合、電極複合体原料をジルコニアボールとともに370rpmで2時間混合することで本開示の電極複合体原料が得られる。電極複合体原料が複合化し、固体電解質が合成されたことは、X線光電子分光(XPS)において、固体電解質原料として用いた、Pの架橋Sに対応する165eV付近に見られるS 2p1/2ピークが消失していることで確認できる。固体電解質がアモルファスになっていることは、得られた電極複合体の粉末X線回折(XRD)において、電極活物質以外の回折ピークが消失していることにより確認できる。XRD,XPSなどの確認方法を用いることで、複合化時の条件を適宜調整することができる。
 第1実施形態に係る全固体リチウムイオン電池用電極複合体の製造方法において、電極複合体原料を機械的エネルギーで複合化した後、加熱処理を行ってもよい。加熱処理を行うことで、電極活物質であるLiSと固体電解質原料、炭素材料及び/または第1のリチウム塩の接触界面を強固にすることができ、界面抵抗を低減することができる。複合化後の加熱処理は、特に限定されないが、例えば、アルゴン、窒素、空気等の雰囲気下、80~250℃、好ましくは100~200℃の条件で、1秒間~10時間行うことができる。複合化後の加熱処理は、公知の加熱装置を用いて行えばよく、具体的には、例えば、定温乾燥機、送風乾燥機、減圧乾燥機、赤外線乾燥機、電気炉、ガス置換炉、ホットプレート等を用いて行えばよい。
[電極複合体]
 第1実施形態に係る全固体リチウムイオン電池用電極複合体の製造方法で製造された電極複合体は、正極活物質と硫化物固体電解質と、炭素材料と、を含む。硫化物固体電解質がアモルファスであることが好ましい。硫化物固体電解質がアモルファスになっている場合、電極複合体の粉末X線回折(XRD)にて、電極活物質以外の回折ピークがないことで確認できる。硫化物固体電解質の生成は、電極複合体のX線光電子分光(XPS)にて、固体電解質原料として用いた、Pの架橋Sに対応する165eV付近に見られるS 2p1/2ピークが消失していることで、確認できる。XRDスペクトルは例えば、RIGAKU社製 SmartLab IIにて2θ範囲10~60°で測定することで得られる。XPSスペクトルは例えば、KRATOS ANALYTICAL社製 KRATOS Novaにて測定することができる。
<第2実施形態>
 第2実施形態の全固体リチウムイオン電池用電極複合体の製造方法は、電極活物質である正極活物質と、固体電解質原料と、炭素材料と、を含む電極複合体原料を機械的エネルギーで複合化する。以下、各要件について説明する。
[電極複合体原料]
 第2実施形態の全固体リチウムイオン電池用電極複合体の製造方法に用いられる電極複合体原料は、正極活物質と、固体電解質原料と、炭素材料と、を含む。固体電解質原料を用いることで、電極複合体の安定性を改善することができる。
(正極活物質)
 正極活物質は、機械的エネルギーで他の材料と複合化する際に、活物質の機能を失わないのであれば、特に限定されない。正極活物質としては、例えば、LSが挙げられる。LSは、従来のリチウム遷移金属酸化物と比較して大きな理論容量を有することから、エネルギー密度の飛躍的な向上するので好ましい。また、正極活物質がLiSである場合、LiSがリチウム源を有することから、負極活物質がリチウム源を有する必要が無い。そのため、正極活物質にLiSを用いることで、製造時に不安定なリチウム金属やリチウム金属合金を用いなくてもよくなり、製造面が改善される。また、LiSを用いることで、活物質の特性を維持しつつ、合成された固体電解質に、均一に分散しやすい。そのため、正極活物質としては、LiS(第1のLiS)が好ましい。
(固体電解質原料)
 固体電解質原料は、機械的エネルギーで複合化することで、固体電解質原料から固体電解質を合成できるのであれば、特に限定されない。固体電解質原料としては、酸化リチウム(LiO)、窒化リチウム、フッ化リチウム、塩化リチウム(LiCl)、臭化リチウム(LiBr)、ヨウ化リチウム(LiI)、硫酸リチウム(LiSO)、炭酸リチウム(LiCO)、ホウ酸リチウム、リン酸リチウム、硝酸リチウム、ケイ酸リチウム(LiSiO)、アルミン酸リチウムからなる群から選択される2種以上であることが好ましい。固体電解質原料は、LiSO、LiCO、LiCl、LiBr、LiI、LiO、LiSiOが特に好ましい。これらを含むことで機械的エネルギーによって、アモルファスであり、変形性に優れ、良好な固体電解質を得ることができる。
(炭素材料)
 炭素材料は、正極活物質の電気伝導性を補う。炭素材料は導電材として機能するのであれば、特に限定されない。また、炭素材料は、固体電解質の合成を促進する機能を有する。炭素材料としては、アセチレンブラック、カーボンナノチューブ、活性炭、グラフェン、ファーネスブラック(例えば、中空シェル構造を有するファーネスブラック)、炭素繊維等が挙げられる。炭素材料は、これらのうち1種または2種以上を含んでもよい。中空シェル構造を有するファーネスブラックとしては、例えば、ケッチェンブラック(ライオン社製)等が挙げられる。低導電率炭素材料を用いた場合に、低導電率炭素材料と高導電率炭素材料とを組み合わせることで、電極複合体の電子伝導性が改善することができる。これによって、電極複合体の充放電容量をさらに向上させる。なお、低導電率炭素材料は、活性炭である。高導電率炭素材料は、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ、グラフェンからなる群から選択される1種以上である。低導電率炭素材料と高導電率炭素材料との重量比は、低導電率炭素材料:高導電率炭素材料=10:0~5:5であることが好ましい。
 炭素材料の比表面積は、10m/g以上が好ましい。より好ましい炭素材料の比表面積は、100m/g以上である。さらに好ましい炭素材料の比表面積は、1000m/g以上である。さらに好ましい炭素材料の比表面積は、1500m/g以上である。比表面積が10m/g未満であると、正極活物質と炭素材料との接点を十分に増加させることができないため、充放電容量を向上させる効果を充分に享受することができない傾向がある。比表面積の上限は特に限定されないが、通常6000m/g以下である。
(その他成分)
 第2実施形態の電極複合体原料は、さらに、バインダー、溶媒、イオン伝導性物質等の任意成分を含有してもよい。
(重量比)
 第2実施形態の正極活物質が第1のLiSであり、固体電解質原料が酸化リチウム、窒化リチウム、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム、硫酸リチウム、炭酸リチウム、ホウ酸リチウム、リン酸リチウム、硝酸リチウム、ケイ酸リチウム、アルミン酸リチウムからなる群から選択される2種以上である場合、第1のLiSと、固体電解質原料と、炭素材料と、の重量比(第1のLiS:固体電解質原料:炭素材料)が20~60:20~70:3~20であることが好ましい。電極複合体原料中の固体電解質原料と、炭素材料と、の重量比が20~60:20~70:3~20であると、電極複合体内のイオン伝導性と、活物質と固体電解質及び炭素材料との接点を十分に得ることができるため、電池特性が向上するので、好ましい。上記の群から選択される2種以上から機械的エネルギーで複合化することで、少なくとも固体電解質原料の一部は、固体電解質となる。
[機械的エネルギーによる複合化]
 電極複合体原料を機械的エネルギーで複合化する方法は、第1実施形態と同様の方法が挙げられる。電極複合体原料が複合化し、固体電解質が合成されたことは、例えば、電極複合体のDSC測定を行い、発熱ピークの位置を確認することで、確認することができる。また、固体電解質がアモルファスであることは、得られた電極複合体のXRD測定を行い、電極活物質以外の固体電解質原料の回折ピークの消失により確認できる。XRD、DSCなどの確認方法を用い、複合化時の条件は適宜調整することができる。
 第2実施形態に係る全固体リチウムイオン電池用電極複合体の製造方法において、電極複合体原料を機械的エネルギーで複合化した後、加熱処理を行ってもよい。加熱処理は、第1実施形態と同様の方法で行うことができる。
[電極複合体]
 第2実施形態に係る全固体リチウムイオン電池用電極複合体の製造方法で製造された電極複合体は、正極活物質と、固体電解質と、炭素材料と、を含む。固体電解質がアモルファスとなっていることが好ましい。
 電極複合体の固体電解質がアモルファスである場合、例えば、RIGAKU社製 SmartLab IIにて2θ範囲10~60°で測定して得られるXRDスペクトルにおいて、固体電解質原料の回折ピークが消失している。また、固体電解質は、示差走査熱量測定(DSC)測定で得られる曲線(DSC曲線)において、固体電解質原料とは異なる発熱ピークを400℃以下に有する。DSC曲線は示差走査熱量計(例えば、セイコーインスツルメンツ社製DSC6200)に設置し、温度範囲50℃~500℃、昇温速度5℃/分で測定を行うことで得られる。
<第3実施形態>
 第3実施形態の全固体リチウムイオン電池用電極複合体の製造方法は、電極活物質である負極活物質と、硫化物固体電解質原料と、炭素材料と、を含む電極複合体原料を機械的エネルギーで複合化する。以下、各要件について説明する。
[電極複合体原料]
 第3実施形態の全固体リチウムイオン電池用電極複合体の製造方法に用いられる電極複合体原料は、負極活物質と、硫化物固体電解質原料と、炭素材料と、を含む。硫化物固体電解質原料を用いることで、電極複合体の導電性を改善することができる。
(負極活物質)
 負極活物質は、機械的エネルギーで他の材料と複合化する際に、活物質の機能を失わないのであれば、特に限定されない。負極活物質は、例えば、SiおよびSi化合物の1種からなるSi系活物質である。負極活物質がSi系活物質であれば、電極複合体原料を機械的エネルギーで複合化する際に、均一に硫化物固体電解質中に分散することができる。Si化合物としては、SiO、LiSi等が挙げられる。特にSi系活物質としては、従来の黒鉛と比較して、非常に大きな理論容量を有するのでSiが好ましい。
(硫化物固体電解質原料)
 硫化物固体電解質原料は、機械的エネルギーで複合化することで、硫化物固体電解質原料から硫化物固体電解質を合成できるのであれば、特に限定されない。硫化物固体電解質原料としては、LiS、P、SiS、GeS2、Al、ZnS、As、Sb、WS、CuSなどが挙げられる。硫化物固体電解質原料は、LiSとPとを含むことが好ましい。硫化物固体電解質原料がLiSとPとを含むことで、機械的エネルギーによって、アモルファスであり、変形性に優れ、良好な硫化物固体電解質を得ることができる。
(炭素材料)
 炭素材料は、負極活物質の電気伝導性を補う。炭素材料は導電材として機能するのであれば、特に限定されない。また、炭素材料は、固体電解質の合成を促進する機能を有する。炭素材料としては、アセチレンブラック、カーボンナノチューブ、活性炭、グラフェン、ファーネスブラック(例えば、中空シェル構造を有するファーネスブラック)、炭素繊維等が挙げられる。炭素材料は、これらのうち1種または2種以上を含んでもよい。中空シェル構造を有するファーネスブラックとしては、例えば、ケッチェンブラック(ライオン社製)等が挙げられる。低導電率炭素材料を用いた場合に、低導電率炭素材料と高導電率炭素材料とを組み合わせることで、電極複合体の電子伝導性が改善することができる。これによって、電極複合体の充放電容量をさらに向上させる。なお、低導電率炭素材料は、活性炭である。高導電率炭素材料は、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ、グラフェンからなる群から選択される1種以上である。低導電率炭素材料と高導電率炭素材料との重量比は、低導電率炭素材料:高導電率炭素材料=10:0~5:5であることが好ましい。
 炭素材料の比表面積は、10m/g以上が好ましい。より好ましい炭素材料の比表面積は、100m/g以上である。さらに好ましい炭素材料の比表面積は、1000m/g以上である。特に好ましい炭素材料の比表面積は、1500m/g以上である。比表面積が10m/g未満であると、負極活物質と炭素材料との接点を十分に増加させることができないため、充放電容量を向上させる効果を充分に享受することができない傾向がある。比表面積の上限は特に限定されないが、通常6000m/g以下である。
 (リチウム塩)
 第3実施形態の電極複合体原料は、負極活物質、硫化物固体電解質原料、炭素材料に加えて、更にリチウム塩(リチウム塩)を含有してもよい。リチウム塩は、硫化物固体電解質の導電率を向上する機能や、硫化物固体電解質の柔軟性を向上する機能を有する。リチウム塩は、硫化物固体電解質の導電率を向上する機能または硫化物固体電解質の柔軟性を向上する機能を有するのであれば、特に限定されない。例えば、リチウム塩としては、酸化リチウム、窒化リチウム、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム、硫酸リチウム、炭酸リチウム、ホウ酸リチウム、リン酸リチウム、硝酸リチウム、ケイ酸リチウム、アルミン酸リチウムからなる群から選択される1種以上であることが好ましい。
(その他成分)
 第3実施形態の電極複合体原料は、さらに、バインダー、溶媒、イオン伝導性物質等の任意成分を含有してもよい。
(重量比)
 第3実施形態の負極活物質がSi系活物質であり、硫化物固体電解質原料がLiSおよびPである場合に、電極複合体原料中のSi系活物質と、LiSと、Pと、炭素材料と、の重量比(Si系活物質:LiS:P:炭素材料)が20~70:10~30:10~40:3~20であることが好ましい。電極複合体原料中のSi系活物質と、LiSと、Pと、炭素材料と、の重量比が20~70:10~30:10~40:3~20であると、電極複合体内のイオン伝導性と、活物質と固体電解質及び炭素材料との接点を十分に得ることができるため、電池特性が向上するので、好ましい。
 第3実施形態の負極活物質がSi系活物質であり、硫化物固体電解質原料がLiSおよびPであり、さらに電極複合体原料がリチウム塩を含有する場合に、電極複合体原料中のSi系活物質と、LiSと、Pと、炭素材料と、リチウム塩との重量比(Si系活物質:LiS:P:炭素材料:リチウム塩)が20~70:10~30:10~40:3~20:5~30であることが好ましい。電極複合体原料中のSi系活物質と、LiSと、Pと、炭素材料と、リチウム塩との重量比が20~70:10~30:10~40:3~20:5~30であると、より電極複合体の電池特性が向上するので好ましい。
[機械的エネルギーによる複合化]
 電極複合体原料を機械的エネルギーで複合化は、第1実施形態と同様の方法で行うことができる。硫化物固体電解質の合成の確認は、第1実施形態と同様の方法で行うことができる。
 第3実施形態に係る全固体リチウムイオン電池用電極複合体の製造方法において、電極複合体原料を機械的エネルギーで複合化した後、加熱処理を行ってもよい。加熱処理は、第1実施形態と同様の条件で行うことができる。
[電極複合体]
 第3実施形態に係る全固体リチウムイオン電池用電極複合体の製造方法で製造された電極複合体は、負極活物質と、硫化物固体電解質と、炭素材料と、を含む。硫化物固体電解質の一部が少なくともアモルファスであることが好ましい。
 硫化物固体電解質が生成されているかどうかは第1実施形態と同様に、XPSで確認できる。硫化物固体電解質がアモルファスになっているかどうかは、第1実施形態と同様にXRDで確認することができる。
<第4実施形態>
 第4実施形態の全固体リチウムイオン電池用電極複合体の製造方法は、電極活物質である負極活物質と、固体電解質原料と、炭素材料と、を含む電極複合体原料を機械的エネルギーで複合化する。以下、各要件について説明する。
[電極複合体原料]
 第4実施形態の全固体リチウムイオン電池用電極複合体の製造方法に用いられる電極複合体原料は、負極活物質と固体電解質原料と、炭素材料と、を含む。固体電解質原料を用いることで、電極複合体の安定性を改善することができる。
 負極活物質は、機械的エネルギーで他の材料と複合化する際に、活物質の機能を失わないのであれば、特に限定されない。負極活物質は、例えば、SiおよびSi化合物の1種からなるSi系活物質である。負極活物質がSi系活物質であれば、電極複合体原料を機械的エネルギーで複合化する際に、均一に固体電解質中に分散することができる。Si化合物としては、SiO、LiSiが挙げられる。特にSi系活物質としては、従来の黒鉛と比較して、非常に大きな理論容量を有するので特にSiが好ましい。
(固体電解質原料)
 固体電解質原料は、機械的エネルギーで複合化することで、固体電解質原料から固体電解質を合成できるのであれば、特に限定されない。固体電解質原料としては、酸化リチウム、窒化リチウム、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム、硫酸リチウム(LiSO)、炭酸リチウム(LiCO)、ホウ酸リチウム、リン酸リチウム、硝酸リチウム、ケイ酸リチウム、アルミン酸リチウムからなる群から選択される2種以上であることが好ましい。固体電解質原料は、LiSO、LiCO、LiCl、LiBr、LiI、LiO、LiSiOが特に好ましい。これらを含むことで機械的エネルギーによって、アモルファスであり、変形性に優れ、良好な固体電解質を得ることができる。
(炭素材料)
 炭素材料は、負極活物質の電気伝導性を補う。炭素材料は導電材として機能するのであれば、特に限定されない。また、炭素材料は、固体電解質の合成を促進する機能を有する。炭素材料としては、アセチレンブラック、カーボンナノチューブ、活性炭、グラフェン、ファーネスブラック(例えば、中空シェル構造を有するファーネスブラック)、炭素繊維等が挙げられる。炭素材料は、これらのうち1種または2種以上を含んでもよい。中空シェル構造を有するファーネスブラックとしては、例えば、ケッチェンブラック(ライオン社製)等が挙げられる。低導電率炭素材料を用いた場合に、低導電率炭素材料と高導電率炭素材料とを組み合わせることで、電極複合体の電子伝導性が改善することができる。これによって、電極複合体の充放電容量をさらに向上させる。なお、低導電率炭素材料は、活性炭である。高導電率炭素材料は、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ、グラフェンからなる群から選択される1種以上である。低導電率炭素材料と高導電率炭素材料との重量比は、低導電率炭素材料:高導電率炭素材料=10:0~5:5であることが好ましい。
 炭素材料の比表面積は、10m/g以上が好ましい。より好ましい炭素材料の比表面積は、100m/g以上である。さらに好ましい炭素材料の比表面積は、1000m/g以上である。特に好ましい炭素材料の比表面積は、1500m/g以上である。比表面積が10m/g未満であると、負極活物質と炭素材料との接点を十分に増加させることができないため、充放電容量を向上させる効果を充分に享受することができない傾向がある。比表面積の上限は特に限定されないが、通常6000m/g以下である。
(その他成分)
 第4実施形態の電極複合体原料は、さらに、バインダー、溶媒、イオン伝導性物質等の任意成分を含有してもよい。
(重量比)
 第4実施形態の負極活物質がSi系活物質であり、固体電解質原料が酸化リチウム、窒化リチウム、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム、硫酸リチウム、炭酸リチウム、ホウ酸リチウム、リン酸リチウム、硝酸リチウム、ケイ酸リチウム、アルミン酸リチウムからなる群から選択される2種以上である場合、Si系活物質と、固体電解質原料と、炭素材料と、の重量比(Si系活物質:固体電解質原料:炭素材料)が10~60:20~80:3~20であることが好ましい。電極複合体原料中のSi系活物質と、固体電解質原料と、炭素材料と、の重量比が10~60:20~80:3~20であると、電極複合体内のイオン伝導性と、活物質と固体電解質及び炭素材料との接点を十分に得ることができるため、電池特性が向上するので、好ましい。
[機械的エネルギーによる複合化]
 電極複合体原料を機械的エネルギーで複合化する方法は、第1実施形態と同様の方法が挙げられる。電極複合体原料が複合化し、固体電解質が合成されたことは、例えば、電極複合体のDSC測定を行い、発熱ピークの位置を確認することで、確認することができる。また、固体電解質がアモルファスであることは、得られた電極複合体のXRD測定を行い、電極活物質以外の固体電解質原料の回折ピークの消失により確認できる。XRD、DSCなどの確認方法を用い、複合化時の条件は適宜調整することができる。
 第4実施形態に係る全固体リチウムイオン電池用電極複合体の製造方法において、電極複合体原料を機械的エネルギーで複合化した後、加熱処理を行ってもよい。加熱処理は第1実施形態と同様の方法で行うことができる。
[電極複合体]
 第4実施形態に係る全固体リチウムイオン電池用電極複合体の製造方法で製造された電極複合体は、負極活物質と、固体電解質と、炭素材料と、を含む。固体電解質の一部がアモルファスとなっていることが好ましい。
 固体電解質がアモルファスになっているかどうかは、第2実施形態と同様に、XRDまたはDSCで確認することができる。
 以上、本開示の全固体リチウムイオン電池用電極複合体の製造方法について、詳述した。その他、本発明の趣旨に逸脱しない範囲で、上記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能である。
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
(正極複合体1)
 電極複合体原料として、LiS(三津和化学工業社製)とP(シグマアルドリッチ社製)、活性炭A(MSC30、関西熱化学社製、比表面積3000m/g)を重量比57:33:10となるようにLiS:114mg、P:66mg、活性炭:20mgを秤量した。遊星ボールミル(Frilsch社製Premium Line P-7)を用い、秤量した電極複合体原料を5mmのジルコニアボール約40gとともに45mlのポットに入れ、公転速度370rpmで2時間混合することにより、正極複合体1を得た。
(正極複合体2)
 LiS:P:LiI(シグマアルドリッチ社製):活性炭Aの重量比が50:30:10:10となるように、LiS:100mg、P:60mg、LiI:20mg、活性炭:20mgを用いたこと以外、正極複合体1と同様の処理を行い、正極複合体2を得た。
(正極複合体3)
 LiS:P:活性炭Aの重量比が65:25:10となるように、LiS:130mg、P:50mg、活性炭:20mgを用いたこと以外、正極複合体1と同様の処理を行い、正極複合体3を得た。
(正極複合体4)
 LiS:P:活性炭Aの重量比が70:20:10となるように、LiS:140mg、P:40mg、活性炭:20mgを用いたこと以外、正極複合体1と同様の処理を行い、正極複合体4を得た。
(正極複合体5)
 LiS:P:LiI:活性炭Aの重量比が60:20:10:10となるように、LiS:120mg、P:40mg、LiI:20mg、活性炭:20mgを用いたこと以外、正極複合体1と同様の処理を行い、正極複合体5を得た。
(正極複合体6)
 LiS:P:LiI:活性炭Aの重量比が65:20:5:10となるように、LiS:130mg、P:40mg、LiI:10mg、活性炭:20mgを用いたこと以外、正極複合体1と同様の処理を行い、正極複合体6を得た。
(正極複合体7)
 LiS:P:活性炭Aの重量比が60:31:9となるように、LiS:120mg、P:62mg、活性炭:18mgを用いたこと以外、正極複合体1と同様の処理を行い、正極複合体7を得た。
(正極複合体8)
 LiS:P:活性炭Aの重量比が60:29:11となるように、LiS:120mg、P:58mg、活性炭:22mg用いたこと以外、正極複合体1と同様の処理を行い、正極複合体8を得た。
(正極複合体9)
 LiS:P:活性炭Aの重量比が60:33:7となるように、LiS:120mg、P:66mg、活性炭:14mg用いたこと以外、正極複合体1と同様の処理を行い、正極複合体9を得た。
(正極複合体10)
 LiS:P:LiI:活性炭Aの重量比が60:10:25:5となるように、LiS:120mg、P:20mg、LiI:50mg、活性炭:10mgを用いたこと以外、正極複合体1と同様の処理を行い、正極複合体10を得た。
(正極複合体11)
 LiS:P:LiI:活性炭Aの重量比が60:10:20:10となるように、LiS:120mg、P:20mg、LiI:40mg、活性炭:20mgを用いたこと以外、正極複合体1と同様の処理を行い、正極複合体11を得た。
(正極複合体12)
 活性炭Aの代わりに活性炭B(MSA20、関西熱化学社製、比表面積2500m/g)を用いたこと以外、正極複合体10と同様の処理を行い、正極複合体12を得た。
(正極複合体13)
 活性炭Aの代わりにケッチェンブラック(EC600JD、ライオン社製、比表面積1200m/g)を用いたこと以外、正極複合体10と同様の処理を行い、正極複合体13を得た。
(正極複合体14)
 活性炭Aの代わりにケッチェンブラック(Li-100、DENKA社製、比表面積100m/g)を用いたこと以外、正極複合体10と同様の処理を行い、正極複合体14を得た。
(正極複合体15)
 LiS:P:活性炭Bの重量比が60:30:10となるように、LiS:120mg、P:60mg、活性炭:20mgを用いたこと以外、正極複合体1と同様の処理を行い、正極複合体15を得た。
(正極複合体16)
 LiIの代わりにLiBr(シグマアルドリッチ社製)を用いたこと以外、正極複合体11と同様の処理を行い、正極複合体16を得た。
(正極複合体17)
 LiS:P:LiI:活性炭Aの重量比が50:10:30:10となるように、LiS:100mg、P:20mg、LiI:60mg、活性炭:20mgを用いたこと以外、正極複合体1と同様の処理を行い、正極複合体17を得た。
(正極複合体18)
 LiS:LiSO:LiCO:LiBr:活性炭Aの重量比が30:31.5:14.5:14:10となるように、LiS:60mg、LiSO:63mg、LiCO:29mg、LiBr:28mg、活性炭:20mgを用いたこと以外、正極複合体1と同様の処理により、正極複合体18を得た。
(正極複合体19)
 ボールミル処理時間を2時間から8時間に変更したこと以外、正極複合体18と同様の処理を行い、正極複合体19を得た。
(正極複合体20)
 LiS:LiSO:LiCO:LiI:活性炭Aの重量比が30:26:11.5:22.5:10となるように、LiS:60mg、LiSO:52mg、LiCO:23mg、LiI:45mg、活性炭:20mgを用いたこと以外、正極複合体19と同様の処理により、正極複合体20を得た。
(正極複合体21)
 LiS:LiO:LiI:活性炭Aの重量比が30:18.5:41.5:10となるように、LiS:60mg、LiO:37mg、LiI:83mg、活性炭:20mgを用いたこと以外、正極複合体19と同様の処理により、正極複合体21を得た。
(正極複合体22)
LiS:LiSO:LiO:LiI:活性炭Aの重量比が30:29:5.5:25.5:10となるように、LiS:60mg、LiSO:58mg、LiO:11mg、LiI:51mg、活性炭:20mgを用いたこと以外、正極複合体19と同様の処理により、正極複合体22を得た。
(比較正極複合体1)
80LiS-20Pをボールミルにて500rpm、10時間処理することで得た固体電解質1を用い、LiS:固体電解質1:活性炭の重量比が50:40:10となるように、LiS:100mg、固体電解質1:80mg、活性炭:20mgを用いたこと以外、正極複合体1と同様の処理を行い、比較正極複合体1を得た。
(比較正極複合体2)
 60LiS-40Pをボールミルにて500rpm、10時間処理することで得た固体電解質2を固体電解質1の代わりに用いたこと以外、比較正極複合体1と同様の処理を行い、比較正極複合体2を得た。
(比較正極複合体3)
 45LiSO-30LiCO-25LiBrをボールミルにて370rpm、60時間処理することで得た固体電解質3を用い、LiS:固体電解質3:活性炭の重量比が30:60:10となるように、LiS:60mg、固体電解質3:120mg、活性炭:20mgを用いたこと以外、比較正極複合体1と同様の処理を行い、比較正極複合体3を得た。
(比較正極複合体4)
 固体電解質3の代わりに45LiSO-30LiCO-30LiIをボールミルにて370rpm、60時間処理することで得た固体電解質4を用いたこと以外、比較正極複合体3と同様の処理を行い、比較正極複合体4を得た。
(負極複合体1)
 Si(ニラコ社製 純度99.999%):LiS:P:LiI:活性炭Aの重量比が50:9:14:17:10となるように、Si:100mg、LiS:18mg、P:28mg、LiI:34mg、活性炭:20mgを用いたこと以外、正極複合体1と同様の処理を行い、負極複合体1を得た。
(負極複合体2)
 Si:LiS:P:LiI:活性炭Aの重量比が50:8.5:14:16.5:11となるように、Si:100mg、LiS:17mg、P:28mg、LiI:33mg、活性炭:22mgを用いたこと以外、正極複合体1と同様の処理を行い、負極複合体2を得た。
(負極複合体3)
 Si:LiS:P:LiI:活性炭Aの重量比が50:9:14.5:17.5:9となるように、Si:100mg、LiS:18mg、P:29mg、LiI:35mg、活性炭:18mgを用いたこと以外、正極複合体1と同様の処理を行い、負極複合体3を得た。
(負極複合体4)
 活性炭Aの代わりに活性炭Bを用いたこと以外、正極複合体1と同様の処理を行いり、負極複合体4を得た。
(負極複合体5)
 活性炭Aの代わりにケッチェンブラックを用いたこと以外、正極複合体1と同様の処理を行いり、負極複合体5を得た。
(負極複合体6)
 活性炭Aの代わりにアセチレンブラックを用いたこと以外、正極複合体1と同様の処理を行いり、負極複合体6を得た。
(負極複合体7)
 Si:LiS:P:LiI:活性炭Bの重量比が50:7.5:12.5:15:15となるように、Si:100mg、LiS:15mg、P:25mg、LiI:30mg、活性炭:30mgを用いたこと以外、正極複合体1と同様の処理を行い、負極複合体7を得た。
(負極複合体8)
 Si:LiS:P:LiI:活性炭Bの重量比が50:6.5:10.5:13:20となるように、Si:100mg、LiS:13mg、P:21mg、LiI:26mg、活性炭B:40mgを用いたこと以外、正極複合体1と同様の処理を行い、負極複合体8を得た。
(負極複合体9)
 Si:LiS:P:活性炭Aの重量比が50:15.5:24.5:10となるように、Si:100mg、LiS:31mg、P:49mg、活性炭:20mgを用いたこと以外、正極複合体1と同様の処理を行い、負極複合体9を得た。
(負極複合体10)
 Si:LiSO:LiCO:LiI:活性炭Aの重量比が30:26:11.5:22.5:10となるように、Si:60mg、LiSO:52mg、LiCO:23mg、LiI:45mg、活性炭:20mgを用いたこと以外、正極複合体19と同様の処理を行い、負極複合体10を得た。
(負極複合体11)
 Si:LiO:LiI:活性炭Aの重量比が30:18.5:41.5:10となるように、Si:60mg、LiO:37mg、LiI:83mg、活性炭:20mgを用いたこと以外、正極複合体19と同様の処理を行い、負極複合体11を得た。
(負極複合体12)
 Si:LiSO:LiI:活性炭Aの重量比が30:37.5:22.5:10となるように、Si:60mg、LiSO:75mg、LiI:45mg、活性炭:20mgを用いたこと以外、正極複合体19と同様の処理を行い、負極複合体12を得た。
(比較負極複合体1)
 3LiS-1P-2LiIをボールミルにて500rpm、10時間処理することで得た固体電解質5を用い、Si:固体電解質5:活性炭Aの重量比が50:40:10となるように、Si:100mg、固体電解質5:80mg、活性炭:20mgを用いたこと以外、正極複合体1と同様の処理を行い、比較負極複合体1を得た。
(比較負極複合体2)
 固体電解質5の代わりに75LiS-25Pをボールミルにて500rpm、10時間処理することで得た固体電解質6を用いたこと以外、比較負極複合体1と同様の処理を行い、比較負極複合体2を得た。
(比較負極複合体3)
 固体電解質5の代わりに42LiSO-28LiCO-30LiIをボールミルにて370rpm、60時間処理することで得た固体電解質7を用いたこと以外、比較負極複合体1と同様の処理を行い、比較負極複合体3を得た。
(LiS正極半電池作製条件)
 アルゴンガス雰囲気グローブボックス内にて、セラミックス製の円筒管治具(内径10mmΦ、外径23mmΦ、高さ20mm)の下側から負極集電体としてSKD11製の円筒治具(10mmΦ、高さ10mm)を差し込み、セラミックス製の円筒管治具の上側から固体電解質(E-1)(5LiS-GeS-Pを510℃で8時間焼成した複合化物1と80LiS-20Pをボールミルにて500rpm、10時間処理した複合化物2を重量比90:10で混合した複合化物)80mgを入れて、さらに正極集電体としてSKD11製の円筒治具(10mmΦ、高さ15mm)をセラミックス製の円筒管治具の上側から差し込んで固体電解質(E-1)を挟み込み、80MPaの圧力で3分間プレスすることにより直径10mmΦ、厚さ約0.6mmの固体電解質層を形成した。次に、上側から差し込んだSKD11製の円筒治具(正極集電体)を一旦抜き取り、セラミックス製の円筒管内の固体電解質層の上に作製した正極複合体を入れ、再び上側からSKD11製の円筒治具(正極集電体)を差し込み、720MPaの圧力で3分間プレスすることで、直径10mmΦ、厚さ約0.1mmの正極複合体層を形成した。次に、下側から差し込んだSKD11製の円筒治具(負極集電体)を抜き取り、負極として厚さ0.20mmのリチウムシート(本城金属社製)を穴あけポンチで直径8mmΦに打ち抜いたものと厚さ0.3mmのインジウムシート(フルウチ化学社製)を穴あけポンチで直径9mmΦに打ち抜いたものを重ねてセラミックス製の円筒管治具の下側から入れて、再び下側からSKD11製の円筒治具(負極集電体)を差し込み、80MPaの圧力で3分間プレスすることでリチウム-インジウム合金負極を形成した。以上のようにして、下側から順に、負極集電体、リチウム-インジウム合金負極、固体電解質層、正極複合体層、正極集電体が積層された全固体リチウムイオン電池を作製した。これを密閉することで正極複合体評価用電池とした。
(Si負極半電池作製条件)
 アルゴンガス雰囲気グローブボックス内にて、セラミックス製の円筒管治具(内径10mmΦ、外径23mmΦ、高さ20mm)の下側から負極集電体としてSKD11製の円筒治具(10mmΦ、高さ10mm)を差し込み、セラミックス製の円筒管治具の上側から固体電解質(E-2)(3LiS-P-2LiIをボールミルにて500rpm、10時間処理したもの)80mgを入れて、さらに正極集電体としてSKD11製の円筒治具(10mmΦ、高さ15mm)をセラミックス製の円筒管治具の上側から差し込んで固体電解質(E-2)を挟み込み、80MPaの圧力で3分間プレスすることにより直径10mmΦ、厚さ約0.5mmの固体電解質層を形成した。次に、上側から差し込んだSKD11製の円筒治具(正極集電体)を一旦抜き取り、セラミックス製の円筒管内の固体電解質層の上に作製した負極複合体を入れ、再び上側からSKD11製の円筒治具(正極集電体)を差し込み、720MPaの圧力で3分間プレスすることで、直径10mmΦ、厚さ約0.05mmの正極複合体層を形成した。次に、下側から差し込んだSKD11製の円筒治具(負極集電体)を抜き取り、負極として厚さ0.20mmのリチウムシート(本城金属社製)を穴あけポンチで直径8mmΦに打ち抜いたものと厚さ0.3mmのインジウムシート(フルウチ化学社製)を穴あけポンチで直径9mmΦに打ち抜いたものを重ねてセラミックス製の円筒管治具の下側から入れて、再び下側からSKD11製の円筒治具(負極集電体)を差し込み、80MPaの圧力で3分間プレスすることでリチウム-インジウム合金負極を形成した。以上のようにして、下側から順に、負極集電体、リチウム-インジウム合金負極、固体電解質層、正極複合体層、正極集電体が積層された全固体リチウムイオン電池を作製した。これを密閉することで評価用電池とした。
(フルセル1)
 アルゴンガス雰囲気グローブボックス内にて、セラミックス製の円筒管治具(内径10mmΦ、外径23mmΦ、高さ20mm)の下側から負極集電体としてSKD11製の円筒治具(10mmΦ、高さ10mm)を差し込み、セラミックス製の円筒管治具の上側から固体電解質(E-2)(3LiS-P-2LiIをボールミルにて500rpm、10時間処理したもの)80mgを入れて、さらに正極集電体としてSKD11製の円筒治具(10mmΦ、高さ15mm)をセラミックス製の円筒管治具の上側から差し込んで固体電解質(E-2)を挟み込み、80MPaの圧力で3分間プレスすることにより直径10mmΦ、厚さ約0.5mmの固体電解質層を形成した。次に、上側から差し込んだSKD11製の円筒治具(正極集電体)を一旦抜き取り、セラミックス製の円筒管内の固体電解質層の上に作製した正極複合体を入れ、再び上側からSKD11製の円筒治具(正極集電体)を差し込み、80MPaの圧力で3分間プレスすることで、直径10mmΦ、厚さ約0.1mmの正極複合体層を形成した。次に、下側から差し込んだSKD11製の円筒治具(負極集電体)を抜き取り、負極複合体を入れ、再び下側からSKD11製の円筒治具(正極集電体)を差し込み、720MPaの圧力で3分間プレスすることで、下側から順に、負極集電体、負極合材層、固体電解質層、正極複合体層、正極集電体が積層された全固体リチウムイオン電池を作製した。これを密閉することで評価用電池とした。
(XRD測定)
 正極複合体1~22、比較正極複合体1~4、負極複合体1~12、および比較負極複合体1~3に対し、RIGAKU社製 SmartLab IIにて2θ範囲10~60°で測定を行い、XRDスペクトルを得た。活物質以外のピークがある場合を有、活物質以外のピークが無い場合を無とした。結果を表1および表2に示す。
(XPS測定)
 正極複合体1~17、比較正極複合体1および2、負極複合体1~9、比較負極複合体1および2に対し、KRATOS ANALYTICAL社製 KRATOS Novaで測定を行い、XPSスペクトルを得た。165eV付近にピークがある場合を有、ピークが無い場合を無とした。得られた結果を表1および2に示す。XPS165eV付近ピーク有無の欄の「-」は測定していないことを示す。
(DSC測定)
 正極複合体18~22、比較正極複合体3および4、負極複合体10~12、および比較負極複合体3に対し、比較示差走査熱量計(セイコーインスツルメンツ社製DSC6200)を用い測定を行った。測定は、温度範囲50℃~500℃、昇温速度5℃/分で行った。各複合体の発熱ピークを表1および2に示す。なお、各複合体の製造に用いた固体電解質原料は、全て温度範囲50℃~500℃の範囲に発熱ピークが現れなかった。DSC発熱ピーク温度の欄の「-」は測定していないことを示す。
(充放電特性評価)
 上記正極複合体1~22、比較正極複合体1~4、負極複合体1~12、比較負極複合体1~3を用いて作製した評価用電池を充放電装置(ACD-M01A、アスカ電子社製)にて定電流充放電し、電極活物質当たりの2サイクル目放電容量または2サイクル目充電容量を調べた。得られた結果を表1及び2に示す。さらに、フルセル1の評価結果を表3に示す。ここで、充放電特性は正極及びフルセルについては放電容量、負極については充電容量を用いた。また、負極複合体1~6及び比較負極複合体1~4を用いた電池については、放電容量を2500mAh/gまでとした。得られた結果を表1~3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~3に示されたように、本発明の全固体リチウムイオン電池用電極複合体の製造方法を用いた電極複合体(正極複合体および負極複合体)は、固体電解質が合成され、また正極複合体21を除きアモルファスになっていることが確認された。本発明の全固体リチウムイオン電池用電極複合体の製造方法を用いた電極複合体(正極複合体および負極複合体)は、1工程で製造したにも関わらず、従来の製造方法(比較正極複合体および比較負極複合体)と同様に高い電池性能を示した。通常、正極または負極複合体の作製には、固体電解質の作製工程および正極または負極複合体の作製工程の2工程からなるが、本発明では1工程で製造できることから、生産性が向上する。
 本開示の全固体リチウムイオン電池用電極複合体の製造方法を用いることで、従来よりも少ない工程で、電極複合体を製造できるので、産業上の利用可能性が高い。

Claims (22)

  1.  電極活物質と、
     固体電解質原料と、
     導電材である炭素材料と、
    を含む、電極複合体原料を機械的エネルギーで複合化する、全固体リチウムイオン電池用電極複合体の製造方法。
  2.  前記炭素材料の比表面積が10m/g以上である、請求項1に記載の全固体リチウムイオン電池用電極複合体の製造方法。
  3.  前記炭素材料の比表面積が1000m/g以上である、請求項1または請求項2に記載の全固体リチウムイオン電池用電極複合体の製造方法。
  4.  前記電極活物質が、正極活物質である、請求項1~3のいずれか1項に記載の全固体リチウムイオン電池用電極複合体の製造方法。
  5.  前記正極活物質が、第1のLiSである、請求項4に記載の全固体リチウムイオン電池用電極複合体の製造方法。
  6.  前記固体電解質原料が第2のLiSとPとを含む、硫化物固体電解質原料である、請求項5に記載の全固体リチウムイオン電池用電極複合体の製造方法。
  7.  前記電極複合体原料において、前記第1のLiSおよび前記第2のLiSの合計と、Pと、前記炭素材料と、の重量比が30~80:10~50:3~20である、請求項6に記載の全固体リチウムイオン電池用電極複合体の製造方法。
  8.  前記電極複合体原料がさらにリチウム塩を含む、請求項6または7に記載の全固体リチウムイオン電池用電極複合体の製造方法。
  9.  前記リチウム塩が、酸化リチウム、窒化リチウム、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム、硫酸リチウム、炭酸リチウム、ホウ酸リチウム、リン酸リチウム、硝酸リチウム、ケイ酸リチウム、アルミン酸リチウムからなる群から選択される1種以上である、請求項8に記載の全固体リチウムイオン電池用電極複合体の製造方法。
  10.  前記電極複合体原料において、前記第1のLiSおよび前記第2のLiSの合計と、前記Pと、前記炭素材料と、前記リチウム塩と、の重量比が30~80:10~40:3~20:5~30である、請求項8または9に記載の全固体リチウムイオン電池用電極複合体の製造方法。
  11.  前記固体電解質原料として、酸化リチウム、窒化リチウム、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム、硫酸リチウム、炭酸リチウム、ホウ酸リチウム、リン酸リチウム、硝酸リチウム、ケイ酸リチウム、アルミン酸リチウムからなる群から選択される2種以上を含む、請求項5に記載の全固体リチウムイオン電池用電極複合体の製造方法。
  12.  前記電極複合体原料において、前記第1のLiSと、前記固体電解質原料と、前記炭素材料と、の重量比が20~60:20~70:3~20である、請求項11に記載の全固体リチウムイオン電池用電極複合体の製造方法。
  13.  前記電極活物質が、負極活物質である、請求項1~3のいずれか1項に記載の全固体リチウムイオン電池用電極複合体の製造方法。
  14.  前記負極活物質が、SiおよびSi化合物の1種以上からなるSi系活物質である、請求項13に記載の全固体リチウムイオン電池用電極複合体の製造方法。
  15.  前記Si系活物質がSiである、請求項14に記載の全固体リチウムイオン電池用電極複合体の製造方法。
  16.  前記固体電解質原料がLiSとPとを含む、硫化物固体電解質原料である、請求項14または15に記載の全固体リチウムイオン電池用電極複合体の製造方法。
  17.  前記電極複合体原料において、前記Si系活物質と、LiSと、Pと、前記炭素材料と、の重量比が20~70:10~30:10~40:3~20である、請求項16に記載の全固体リチウムイオン電池用電極複合体の製造方法。
  18.  前記電極複合体原料がさらにリチウム塩を含む、請求項16または17に記載の全固体リチウムイオン電池用電極複合体の製造方法。
  19.  前記リチウム塩が、酸化リチウム、窒化リチウム、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム、硫酸リチウム、炭酸リチウム、ホウ酸リチウム、リン酸リチウム、硝酸リチウム、ケイ酸リチウム、アルミン酸リチウムからなる群から選択される1種以上である、請求項18記載の全固体リチウムイオン電池用電極複合体の製造方法。
  20.  前記電極複合体原料において、前記Si系活物質と、LiSと、Pと、前記炭素材料と、前記リチウム塩と、の重量比が20~70:10~30:10~40:3~20:5~30である、請求項18または19に記載の全固体リチウムイオン電池用電極複合体の製造方法。
  21.  前記固体電解質原料として、酸化リチウム、窒化リチウム、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム、硫酸リチウム、炭酸リチウム、ホウ酸リチウム、リン酸リチウム、硝酸リチウム、ケイ酸リチウム、アルミン酸リチウムのうち、少なくとも2種類を含む、請求項14または15に記載の全固体リチウムイオン電池用電極複合体の製造方法。
  22.  前記電極複合体原料において、前記Si系活物質と、前記固体電解質原料と、前記炭素材料と、の重量比が10~60:20~80:3~20である、請求項21に記載の全固体リチウムイオン電池用電極複合体の製造方法。
PCT/JP2022/002099 2021-05-12 2022-01-21 全固体リチウムイオン電池用電極複合体の製造方法 WO2022239304A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-081219 2021-05-12
JP2021081219 2021-05-12

Publications (1)

Publication Number Publication Date
WO2022239304A1 true WO2022239304A1 (ja) 2022-11-17

Family

ID=84028136

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/002099 WO2022239304A1 (ja) 2021-05-12 2022-01-21 全固体リチウムイオン電池用電極複合体の製造方法
PCT/JP2022/011940 WO2022239467A1 (ja) 2021-05-12 2022-03-16 全固体リチウムイオン電池用電極複合体の製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011940 WO2022239467A1 (ja) 2021-05-12 2022-03-16 全固体リチウムイオン電池用電極複合体の製造方法

Country Status (2)

Country Link
JP (1) JPWO2022239467A1 (ja)
WO (2) WO2022239304A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098024A (ja) * 2011-11-01 2013-05-20 Toyota Motor Corp 電極材料の製造方法及び電極材料
JP2014011033A (ja) * 2012-06-29 2014-01-20 Idemitsu Kosan Co Ltd 正極合材
JP2019212447A (ja) * 2018-06-01 2019-12-12 トヨタ自動車株式会社 正極合材及びその製造方法
JP2020021674A (ja) * 2018-08-02 2020-02-06 トヨタ自動車株式会社 全固体電池およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098024A (ja) * 2011-11-01 2013-05-20 Toyota Motor Corp 電極材料の製造方法及び電極材料
JP2014011033A (ja) * 2012-06-29 2014-01-20 Idemitsu Kosan Co Ltd 正極合材
JP2019212447A (ja) * 2018-06-01 2019-12-12 トヨタ自動車株式会社 正極合材及びその製造方法
JP2020021674A (ja) * 2018-08-02 2020-02-06 トヨタ自動車株式会社 全固体電池およびその製造方法

Also Published As

Publication number Publication date
WO2022239467A1 (ja) 2022-11-17
JPWO2022239467A1 (ja) 2022-11-17

Similar Documents

Publication Publication Date Title
JP5954345B2 (ja) リチウム固体電池モジュールの製造方法
JP6061139B2 (ja) 全固体型リチウム硫黄電池の正極合材の製造方法
KR101847311B1 (ko) 정극 합재 및 그 제조 방법, 그리고 전고체형 리튬황 전지
JP5601157B2 (ja) 正極活物質材料、正極活物質層、全固体電池および正極活物質材料の製造方法
KR101780578B1 (ko) 정극 합재 및 전고체형 리튬황 전지
WO2013084352A1 (ja) 正極活物質材料、正極活物質層、全固体電池および正極活物質材料の製造方法
JP5970284B2 (ja) 全固体電池
JP5445809B1 (ja) 正極合材及び全固体型リチウム硫黄電池
JP5682318B2 (ja) 全固体電池
JPWO2007015409A1 (ja) 固体電解質シート
JP2011165467A (ja) 固体電池
JP2016170942A (ja) 固体電池用正極活物質の製造方法
JP2012089406A (ja) 正極活物質材料の製造方法、リチウム固体電池の製造方法および正極活物質材料
JP6531888B2 (ja) 正極合材及び全固体型リチウム硫黄電池
WO2010041598A1 (ja) 窒化リン酸リチウム化合物の製造方法
JP7156157B2 (ja) 正極合材、全固体電池、正極合材の製造方法および全固体電池の製造方法
JP6531886B2 (ja) 正極合材及び全固体型リチウム硫黄電池
JP7151658B2 (ja) 正極合材
JP2020087736A (ja) 正極合材、全固体電池および正極合材の製造方法
WO2022239304A1 (ja) 全固体リチウムイオン電池用電極複合体の製造方法
WO2021251031A1 (ja) 複合化全固体型リチウム硫黄電池用正極合材
JP6292436B2 (ja) 正極合材及び全固体型リチウム硫黄電池
WO2022149477A1 (ja) 酸化物固体電解質、電極合材、および全固体リチウムイオン電池
JP2023152447A (ja) 全固体リチウムイオン電池用正極複合体の製造方法
JP2022133785A (ja) 硫化物固体電解質の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807011

Country of ref document: EP

Kind code of ref document: A1