WO2022239138A1 - ヘテロ接合バイポーラトランジスタおよびその製造方法 - Google Patents

ヘテロ接合バイポーラトランジスタおよびその製造方法 Download PDF

Info

Publication number
WO2022239138A1
WO2022239138A1 PCT/JP2021/018000 JP2021018000W WO2022239138A1 WO 2022239138 A1 WO2022239138 A1 WO 2022239138A1 JP 2021018000 W JP2021018000 W JP 2021018000W WO 2022239138 A1 WO2022239138 A1 WO 2022239138A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
emitter
electrode
heat dissipation
collector
Prior art date
Application number
PCT/JP2021/018000
Other languages
English (en)
French (fr)
Inventor
悠太 白鳥
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/018000 priority Critical patent/WO2022239138A1/ja
Priority to JP2023520649A priority patent/JPWO2022239138A1/ja
Publication of WO2022239138A1 publication Critical patent/WO2022239138A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors

Definitions

  • the present invention relates to a heterojunction bipolar transistor and its manufacturing method.
  • An indium phosphide (InP)-based heterojunction bipolar transistor (HBT) is a transistor that excels in high speed and high output and is suitable for optical/wireless communication integrated circuits.
  • InP-based HBT it is necessary to reduce the capacitance and shorten the electron transit time by miniaturizing elements while maintaining the amount of operating current.
  • it is required to increase the number of emitters in a so-called multi-finger structure in which a plurality of emitters are integrated in a manner that shares a base or a collector, and to reduce the distance between the emitters.
  • the junction temperature of the element (the temperature inside the element) will increase due to the miniaturization.
  • the heat generated in the outer peripheral emitter region hinders heat dissipation in the central emitter region compared to a single-finger HBT, which further increases the junction temperature. It will be.
  • junction temperature is a factor that greatly affects not only direct electrical characteristics such as current gain and high-frequency characteristics, but also long-term reliability.
  • Non-Patent Document 1 a technique of forming an HBT structure on a support substrate with high thermal conductivity has been proposed.
  • a layer 304 a base layer 305 and an emitter layer 306 are formed.
  • a base electrode 307 is formed on the base layer 305 and an emitter electrode 308 is formed on the emitter layer 306 .
  • this HBT structure is joined to the heat dissipation substrate 301 via the collector electrode layer 302, and the unnecessary InP growth substrate is removed to form the HBT structure. obtained by processing each layer.
  • the heat generated inside the HBT is dissipated toward the substrate side by heat conduction in the solid.
  • the layers below the collector contact layer 303 are made of a material having higher thermal conductivity than the compound semiconductor forming the emitter layer 306, the base layer 305, the collector layer 304, and the collector contact layer 303. Therefore, the heat dissipation of the HBT can be improved.
  • Non-Patent Document 1 in order to realize the above-described HBT structure on a heat dissipation substrate in one substrate bonding process, unlike the case of manufacturing an HBT structure on a normal InP substrate, an HBT crystal layer must be formed. must be epitaxially grown in the reverse order (the order of the emitter layer, the base layer, and the collector layer from the side in contact with the InP substrate).
  • the optimum temperature profile is set so that the crystal quality of various materials is the best, and the deterioration of the semiconductor crystal quality of the underlying layer and unintended thermal diffusion of the constituent elements do not occur. is doing.
  • the HBT crystal layer is epitaxially grown from the emitter layer side, it may be difficult to set an optimum temperature profile because the semiconductor materials of the lower layer and the upper layer are interchanged.
  • the outermost layer of the emitter layer (the layer in direct contact with the emitter electrode) is often made of InGaAs with a high In content in order to reduce the contact resistance of the emitter. Since InGaAs with a high In composition does not lattice match with InP, it is generally difficult to form a high-quality crystal. However, since it is the outermost layer, it is not necessary to consider the crystal quality of the semiconductor material in the upper layer, and in addition, by controlling lattice relaxation by controlling the thickness below the critical thickness, sufficient electrical characteristics can be obtained. Crystal quality can be achieved.
  • Non-Patent Document 1 when the structure of Non-Patent Document 1 is realized in one substrate bonding process, there is a concern that the crystal quality of the HBT crystal layer may be deteriorated or the composition may be restricted.
  • the simplest way to solve the above problem is to perform the substrate bonding process twice.
  • an HBT crystal growth layer is epitaxially grown, it is bonded to a support substrate using some kind of temporary adhesion layer, and the InP substrate is removed.
  • the order of the HBT crystal layers is reversed on the support substrate.
  • the HBT crystal layer on the support substrate and the heat dissipation substrate are bonded via the metal layer in the same manner as in Non-Patent Document 1, and the unnecessary temporary adhesive layer and support substrate are removed.
  • the HBT crystal layer since the HBT crystal layer has been transferred twice, the HBT crystal layer is formed on the heat dissipation substrate in the order in which it was grown on the InP substrate.
  • the structure of Non-Patent Document 1 can be obtained.
  • the HBT crystal layer can be grown on the InP growth substrate in the normal order (from the collector layer to the emitter layer), the crystal quality does not deteriorate during the epitaxial growth process.
  • the number of substrate bonding steps is simply doubled, which not only complicates the steps, but also deteriorates the quality of the HBT crystal layer in some cases.
  • bonding pressure is applied to the thin (thickness ⁇ 1 ⁇ m) and extremely mechanically fragile HBT crystal layer to bond it to the heat dissipation substrate.
  • the HBT crystal layer is held on the support substrate by the temporary adhesive layer, but there is a concern that the crystal quality may be degraded or, in the worst case, cracks may occur due to the effect of minute deformation of the temporary adhesive layer due to the bonding pressure. Therefore, as an ideal temporary adhesive layer, a material that is easy to peel and difficult to deform (high Young's modulus) is preferable. Choosing an adhesive layer is not easy.
  • Non-Patent Document 2 a technique has been proposed for forming a collector-up HBT structure with a single substrate bonding and without changing the order of epitaxial growth.
  • a junction layer 402 made of benzocyclobutene (BCB) is formed on a heat dissipation substrate 401, and thereon are formed a first emitter electrode 403, a second emitter electrode 404, an emitter layer 405, and an emitter layer 405.
  • the HBT element portion is formed such that the base layer 406, the collector layer 407, the sub-collector layer 408, and the collector electrode 409 are arranged in this order.
  • a thermal via 410 made of Au is formed in contact with the heat dissipation substrate 401 on the extension of the emitter layer 405 in the lateral direction, and is connected to the first emitter electrode 403 . Also, the element portion and the thermal via 410 are covered with a protective layer 411 made of BCB.
  • This structure is obtained by fabricating the HBT element portion including the first emitter electrode 403, the second emitter electrode 404, the emitter layer 405, the base layer 406, the collector layer 407 and the sub-collector layer 408 on the InP substrate, and then forming the junction layer 402. It is joined to the heat dissipation substrate through
  • the unnecessary InP growth substrate is removed and a collector electrode 409 is formed on the subcollector layer 408 .
  • an opening is formed in the bonding layer 402 on the periphery of the element section, and after forming a thermal via 410 so as to be in contact with the heat dissipation substrate 401 and the first emitter electrode 403, the entire element section is covered with a protective layer 411.
  • the adhesive layer (bonding layer) from BCB, which has a low Young's modulus, it is possible to bond to the heat dissipating substrate under relatively low bonding pressure conditions compared to when a metal is used as the material to be bonded. Therefore, it is possible to avoid destruction of the HBT element portion having weak mechanical strength.
  • the heat generated in the element part is radiated from the emitter electrode through the Au thermal via toward the heat dissipation substrate, so that a higher heat dissipation property can be obtained than the HBT structure on the InP substrate.
  • Non-Patent Document 2 since the BCB with extremely low thermal conductivity exists directly under the element portion, the path from the emitter layer to the heat dissipation substrate is the length of the emitter electrode and the thickness of the Au thermal via. As a result, the heat dissipation path becomes longer. Therefore, compared with Non-Patent Document 1, in which the entire area right under the element portion is made of a high thermal conductivity material, the effect of improving the heat dissipation is limited.
  • the existing technology has the problem that it is not easy to improve the heat dissipation while suppressing the deterioration of the crystal quality and integration density of the InP-based HBT.
  • the present invention has been made to solve the above-described problems, and aims to improve heat dissipation by suppressing deterioration in crystal quality and reduction in integration density of InP-based HBTs.
  • a heterojunction bipolar transistor according to the present invention comprises a heat dissipation substrate made of an insulating material having a higher thermal conductivity than InP, a first emitter electrode formed on the heat dissipation substrate, and an area smaller than the first emitter electrode.
  • a second emitter electrode formed on the first emitter electrode; an emitter layer made of a compound semiconductor and formed on the second emitter electrode; and an emitter layer made of a compound semiconductor and formed on the emitter layer a base layer, a collector layer made of a compound semiconductor and formed on the base layer, a collector contact layer made of a compound semiconductor and formed on the collector layer, and a collector contact layer formed on the collector contact layer a collector electrode, a base electrode connected to a base layer, a side portion of an element portion formed by a second emitter electrode, an emitter layer, a base layer, a collector layer, a collector contact layer, a first emitter electrode, and a base electrode; a protective layer formed on the heat dissipation substrate to cover the device, an emitter contact electrode formed on and in contact with the first emitter electrode around the element portion and penetrating the protective layer, and connected to the emitter contact electrode for protection.
  • an emitter wiring formed on the layer a heat dissipation structure made of metal whose one end is in contact with the heat dissipation substrate around the element portion and penetrates the protective layer, and is in contact with the heat dissipation structure and the collector electrode.
  • a collector wiring formed on the protective layer a base contact electrode connected to the base electrode and penetrating the protective layer, and a base wiring connected to the base contact electrode and formed on the protective layer.
  • a method for manufacturing a heterojunction bipolar transistor is a method for manufacturing the above-described heterojunction bipolar transistor.
  • a collector contact layer by processing the collector contact forming layer, and removing a part of the collector layer and a part of the base layer to form a contact hole reaching a part of the base electrode.
  • a second heat dissipation structure connecting to the first heat dissipation structure by forming a second heat dissipation structure, and processing the adhesive metal layer to form a first emitter electrode and a second heat dissipation structure; a twelfth step of forming a third heat dissipation structure connected to the heat dissipation structure to form a heat dissipation structure including the first heat dissipation structure, the second heat dissipation structure, and the third heat dissipation structure; and a second protection layer on the first protection layer. to form a protective layer composed of a first protective layer and a second protective layer; and a fourteenth step of forming an emitter wiring, a base wiring, and a collector wiring.
  • the protective layer covering the element section and the like is formed on the heat dissipation substrate, and one end of the protective layer is formed in contact with the heat dissipation substrate around the element section and penetrates the protective layer. Since the HBT has a heat dissipation structure made of a metal, it is possible to suppress the deterioration of the crystal quality and the reduction of the integration density of the InP-based HBT and improve the heat dissipation.
  • FIG. 1A is a cross-sectional view showing the configuration of a heterojunction bipolar transistor according to an embodiment of the invention.
  • FIG. 1B is a cross-sectional view showing the configuration of the heterojunction bipolar transistor according to the embodiment of the invention.
  • FIG. 2A is a cross-sectional view showing the state of the heterojunction bipolar transistor in an intermediate step for explaining the method of manufacturing the heterojunction bipolar transistor according to the embodiment of the present invention.
  • FIG. 2B is a cross-sectional view showing the state of the heterojunction bipolar transistor in an intermediate step for explaining the method of manufacturing the heterojunction bipolar transistor according to the embodiment of the present invention.
  • FIG. 1A is a cross-sectional view showing the configuration of a heterojunction bipolar transistor according to an embodiment of the invention.
  • FIG. 1B is a cross-sectional view showing the configuration of the heterojunction bipolar transistor according to the embodiment of the invention.
  • FIG. 2A is a cross-sectional view showing the state of the hetero
  • FIG. 2C is a cross-sectional view showing the state of the heterojunction bipolar transistor in an intermediate step for explaining the method of manufacturing the heterojunction bipolar transistor according to the embodiment of the present invention.
  • FIG. 2D is a cross-sectional view showing the state of the heterojunction bipolar transistor in an intermediate step for explaining the method of manufacturing the heterojunction bipolar transistor according to the embodiment of the present invention.
  • FIG. 2E is a cross-sectional view showing the state of the heterojunction bipolar transistor in an intermediate step for explaining the method of manufacturing the heterojunction bipolar transistor according to the embodiment of the present invention.
  • FIG. 2F is a cross-sectional view showing the state of the heterojunction bipolar transistor in an intermediate step for explaining the method of manufacturing the heterojunction bipolar transistor according to the embodiment of the present invention.
  • FIG. 2G is a cross-sectional view showing the state of the heterojunction bipolar transistor in an intermediate step for explaining the method of manufacturing the heterojunction bipolar transistor according to the embodiment of the present invention.
  • FIG. 2H is a cross-sectional view showing the state of the heterojunction bipolar transistor in an intermediate step for explaining the method of manufacturing the heterojunction bipolar transistor according to the embodiment of the present invention.
  • FIG. 2I is a cross-sectional view showing the state of the heterojunction bipolar transistor in an intermediate step for explaining the method of manufacturing the heterojunction bipolar transistor according to the embodiment of the present invention.
  • FIG. 2J is a cross-sectional view showing the state of the heterojunction bipolar transistor in an intermediate step for explaining the method of manufacturing the heterojunction bipolar transistor according to the embodiment of the present invention.
  • FIG. 2K is a cross-sectional view showing the state of the heterojunction bipolar transistor in an intermediate step for explaining the method of manufacturing the heterojunction bipolar transistor according to the embodiment of the present invention.
  • FIG. 2I is a cross-sectional view showing the state of the heterojunction bipolar transistor in an intermediate step for explaining the method of manufacturing the heterojunction bipolar transistor according to the embodiment of the present invention.
  • FIG. 2J is a cross-sectional view showing the state of the heterojunction bipolar transistor in an intermediate step for explaining the method of manufacturing the heterojunction bipolar transistor according to the embodiment of the present invention.
  • FIG. 2L is a cross-sectional view showing the state of the heterojunction bipolar transistor in an intermediate step for explaining the method of manufacturing the heterojunction bipolar transistor according to the embodiment of the present invention.
  • FIG. 2M is a cross-sectional view showing the state of the heterojunction bipolar transistor in an intermediate step for explaining the method of manufacturing the heterojunction bipolar transistor according to the embodiment of the present invention.
  • FIG. 2N is a cross-sectional view showing the state of the heterojunction bipolar transistor in an intermediate step for explaining the method of manufacturing the heterojunction bipolar transistor according to the embodiment of the present invention.
  • FIG. 2O is a cross-sectional view showing the state of the heterojunction bipolar transistor in an intermediate step for explaining the method of manufacturing the heterojunction bipolar transistor according to the embodiment of the present invention.
  • FIG. 2P is a cross-sectional view showing the state of the heterojunction bipolar transistor in an intermediate step for explaining the method of manufacturing the heterojunction bipolar transistor according to the embodiment of the present invention.
  • FIG. 2Q is a cross-sectional view showing the state of the heterojunction bipolar transistor in an intermediate step for explaining the method of manufacturing the heterojunction bipolar transistor according to the embodiment of the present invention.
  • FIG. 2R is a cross-sectional view showing the state of the heterojunction bipolar transistor in an intermediate step for explaining the method of manufacturing the heterojunction bipolar transistor according to the embodiment of the present invention.
  • FIG. 2S is a cross-sectional view showing the state of the heterojunction bipolar transistor in an intermediate step for explaining the method of manufacturing the heterojunction bipolar transistor according to the embodiment of the present invention.
  • FIG. 2T is a cross-sectional view showing the state of the heterojunction bipolar transistor in an intermediate step for explaining the method of manufacturing the heterojunction bipolar transistor according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing the configuration of the HBT structure shown in Non-Patent Document 1.
  • FIG. 4 is a cross-sectional view showing the configuration of the HBT structure shown in Non-Patent Document 2.
  • FIG. 3 is a cross-sectional view showing the configuration of the HBT structure shown in Non-Patent Document 1.
  • a heterojunction bipolar transistor according to an embodiment of the present invention will be described below with reference to FIGS. 1A and 1B.
  • This heterojunction bipolar transistor comprises first a heat dissipation substrate 101 made of an insulating material having a higher thermal conductivity than InP, a first emitter electrode 102 formed on the heat dissipation substrate 101, and and a second emitter electrode 103 formed on the first emitter electrode 102 with a small area.
  • This heterojunction bipolar transistor also has an emitter layer 104 formed on the second emitter electrode 103, a base layer 105 formed on the emitter layer 104, and a collector layer formed on the base layer 105. 106 and a collector contact layer 107 formed on the collector layer 106 .
  • Each of these layers is composed of a compound semiconductor (eg, III-V group compound semiconductor).
  • This heterojunction bipolar transistor also includes a collector electrode 108 formed on the collector contact layer 107 and a base electrode 109 formed in connection with the base layer 105 .
  • This heterojunction bipolar transistor also includes a protective layer 110 formed on the heat dissipation substrate 101 to cover the sides of the element portion, the first emitter electrode 102 and the base electrode 109 .
  • the element portion is a portion composed of the second emitter electrode 103 , the emitter layer 104 , the base layer 105 , the collector layer 106 and the collector contact layer 107 .
  • this heterojunction bipolar transistor is formed on and in contact with the first emitter electrode 102 around the element portion described above, and is connected to the emitter contact electrode 112 penetrating the protective layer 110 and the emitter contact electrode 112 for protection. and an emitter wire 113 formed on the layer 110 .
  • this heterojunction bipolar transistor has a heat dissipation structure 114 made of metal, one end of which is in contact with the top of the heat dissipation substrate 101 around the element section and is formed through the protective layer 110 .
  • the heat dissipation structure 114 is formed in a columnar shape.
  • This heterojunction bipolar transistor also has a collector wiring 115 formed on the protective layer 110 in contact with the heat dissipation structure 114 and the collector electrode 108, and a base contact connected to the base electrode 109 and penetrating the protective layer 110.
  • An electrode 116 and a base wiring 117 connected to the base contact electrode 116 and formed on the protective layer 110 are provided.
  • This heterojunction bipolar transistor also includes an insulating layer 118 made of an insulating material having higher thermal conductivity than the collector layer 106 and the emitter layer 104 and formed on the peripheral surface of the element portion.
  • a plurality of element portions are provided on the first emitter electrode 102, and each of the plurality of element portions is rectangular in plan view and arranged in the direction of the short side (short side) of the rectangle. ing.
  • This is a so-called multi-finger structure.
  • a plurality of emitter layers 104 (second emitter electrodes 103) and collector layers 106 (collector contact layers 107 and collector electrodes 108) are provided.
  • FIG. 1A shows a cross section in a direction parallel to the short sides of the above-described rectangular element portion in plan view, and FIG. shows a directional cross-section.
  • the emitter is split, and in addition, the collector is also split.
  • the collector layer 106 is formed in a larger area than the emitter layer 104 in the plurality of element portions. Further, in each element portion, the centers of the collector layer 106 and the emitter layer 104 overlap each other in plan view. As the current flows from the emitter layer 104 to the collector layer 106, the current spreads after exiting the emitter layer 104, so the collector layer 106 is formed to have a larger area.
  • heat generated in the element portion is dissipated to the heat dissipation substrate 101 via the second emitter electrode 103 and the first emitter electrode 102 .
  • heat is also radiated from the collector layer 106 side to the heat dissipation substrate 101 via the collector electrode 108 made of metal with high thermal conductivity, the collector wiring 115 and the heat dissipation structure 114 .
  • it is possible to improve the heat radiation performance of the heat generated in the element portion compared to the conventional structure.
  • each crystal layer that constitutes the element portion is formed by epitaxial growth in the same stacking order as in a conventional heterojunction bipolar transistor, so that deterioration in crystal quality due to epitaxial growth can be avoided. can be done.
  • the junction steps necessary for fabricating the heterojunction bipolar transistor according to the embodiment include the element portion (the second emitter electrode 103, the emitter layer 104, the base layer 105, the collector layer 106, the layer to be the collector contact layer 107, the base After the electrode 109) is formed, bonding to the heat dissipation substrate is performed only once. Therefore, compared with the case where substrate bonding is performed twice, it is possible to suppress deterioration in crystal quality and yield due to the bonding process.
  • the element portion and the heat dissipation substrate are bonded via an adhesive metal layer made of Au or Cu, which has high thermal conductivity.
  • an adhesive metal layer made of Au or Cu, which has high thermal conductivity.
  • a resin layer such as benzocyclobutene (BCB)
  • the Young's modulus is high, a relatively high joining pressure is required.
  • the metal structure for forming the emitter contact electrode 112 and the heat dissipation structure 114 is formed around the element portion, the junction load is transferred through the second emitter electrode 103 to the element portion. It is possible to suppress the local concentration in the crystal layers constituting the , and prevent these from being destroyed in the bonding process.
  • the heterojunction bipolar transistor according to the embodiment, heat can be dissipated from the first emitter electrode 102 toward the heat dissipating substrate 101 immediately below.
  • a so-called multi-finger structure in which the emitter layer 104 and the second emitter electrode 103 are arranged in parallel at a high density is formed without sacrificing heat dissipation as long as the accuracy of the processing technology permits. be able to.
  • a heterojunction bipolar transistor that achieves both high heat dissipation and high output performance can be obtained.
  • the heterojunction bipolar transistor according to the embodiment has a collector-up structure, only the area of the collector layer 106 can be selectively made smaller than that of the base layer 105 relatively easily. As a result, the collector parasitic capacitance can be reduced without reducing the contact area between the base electrode 109 and the base layer 105 (without increasing the base contact resistance), thereby improving the high frequency characteristics.
  • an HBT having a multi-finger structure with high heat dissipation can be formed in a single bonding process, which is excellent in that it can improve high-speed/high-output performance and long-term reliability. effect is obtained.
  • FIGS. 2A to 2T This manufacturing method is a manufacturing method for manufacturing the heterojunction bipolar transistor described above.
  • FIGS. 2A to 2F and FIGS. 2H to 2L (a) shows a cross section in a direction parallel to the short side of the element portion which is rectangular in plan view, and (b) is a rectangular element in plan view. 4 shows a cross section in a direction parallel to the long side of the part.
  • an etch stop layer 122, a collector contact formation layer 127, a collector formation layer 126, a base formation layer 125, each made of a compound semiconductor are formed on a growth substrate 121 made of InP.
  • the emitter forming layer 124 is crystal-grown in this order (first step).
  • the etch stop layer 122 can be composed of a laminated structure of a non-doped InGaAs layer and a non-doped InP layer.
  • the collector contact forming layer 127 can be made of n-type InGaAs doped with Si at a high concentration.
  • the collector forming layer 126 can be composed of n-type InP lightly doped with Si.
  • the base forming layer 125 can be composed of p-type GaAsSb doped with C at a high concentration.
  • the emitter formation layer 124 can be composed of n-type InP lightly doped with Si.
  • Each layer of the III-V compound semiconductor described above can be formed by crystal (epitaxial) growth using, for example, the metal-organic vapor phase deposition method or the molecular beam epitaxy method. Since each of the above-described crystal layers is epitaxially grown on the growth substrate 121 made of InP in a lattice-matched state, good crystallinity with few dislocations and defects can be obtained. Further, although not shown, an emitter cap forming layer made of InGaAs having a high In content and having a thickness equal to or less than the critical film thickness is formed on the emitter forming layer 124 to reduce the contact resistance with the emitter electrode. can also
  • the second emitter electrode 103 is formed on the emitter formation layer 124. Then, as shown in FIG. Further, the emitter formation layer 124, the base formation layer 125, and the collector formation layer 126 are processed to form the emitter layer 104, the base layer 105, and the collector layer . Also, a base electrode 109 is formed on the base layer 105 around the emitter layer 104 . Thus, an element portion is formed (second step).
  • the parallel number of the second emitter electrode 103 and the emitter layer 104 can be appropriately selected according to the amount of output current required in the integrated circuit.
  • Each layer and electrode can be formed by making full use of known semiconductor patterning technology, film formation/etching technology, and the like.
  • the base electrode 109 forms a portion that becomes a so-called base pad electrode in which one of the longitudinal directions of the emitter is wider than the other. This is used to facilitate connection with the base wiring, as will be described later.
  • a first structure 131 made of metal is formed on the growth substrate 121 around the above-described element portion (third step).
  • the first structure 131 is formed in the element portion and a region excluding the periphery of the element portion.
  • the first structure 131 is used as a layer for dispersing pressure in bonding.
  • the first structure 131 constitutes a part of the heat dissipation structure that will later serve as a heat dissipation path, a material with high thermal conductivity is desirable.
  • the first structure 131 can be made of a metal material such as Au or Cu.
  • the optimum distance is set from the viewpoint of processing accuracy and electrical characteristics. do.
  • the thickness (height) of the first structure 131 is made equal to the sum of the thicknesses of the second emitter electrode 103, the emitter layer 104, the base layer 105, and the collector layer .
  • the bonding pressure applied when bonding the growth substrate 121 and the heat dissipation substrate 101 is evenly applied to the second emitter electrode 103 and the first structure 131, resulting in excessive pressure concentration. It is possible to suppress deterioration of the crystal quality and cracks in the element portion due to the
  • a first insulating layer 132 made of an insulating material having a higher thermal conductivity than the collector layer 106 and the emitter layer 104 is formed on (part of) the peripheral surface of the element portion ( 15th step).
  • a first insulating layer 132 is formed on the collector contact forming layer 127 over the entire area including the element portion.
  • the first insulating layer 132 plays a role of assisting heat conduction in the element portion and protects the element portion from an etchant when the first structure 131 is etched to form a part of the heat dissipation structure. have a role. Therefore, it is desirable that the first insulating layer 132 be made of silicon nitride (SiN) or alumina (Al 2 O 3 ), which has relatively high thermal conductivity and high chemical stability.
  • the first insulating layer 132 made of these materials can be deposited using, for example, a chemical vapor deposition (CVD) method or an atomic layer deposition (ALD) method.
  • the thickness of the first insulating layer 132 depends on the dimensions and film quality of the element portion, the thickness is appropriately set so that the above effect can be obtained. Typically, a thickness of about 10 nm to 100 nm for the first insulating layer 132 is sufficient to obtain the above effect.
  • a first protective layer 133 is formed which fills the periphery of the element portion, exposes the second emitter electrode 103 on one end side of the first structure 131, and has a planarized surface. (4th step).
  • benzocyclobutene (BCB) is applied to the entire surface of the growth substrate 121 to form a coating film, and after planarizing the upper surface of the coating film, the coating film is etched back.
  • a dry etching method is used to remove the first insulating layer 132 on the second emitter electrode 103 and the first structure 131 together with part of the coating film.
  • the dry etching time is lengthened in order to reliably expose the surface of the second emitter electrode 103, the height of the formation region of the first protective layer 133 on the element portion is lowered, and the first protective layer 133 is removed.
  • the height of the surface of the second emitter electrode 103 and the surface of the first protective layer 133 are aligned (the surface of the second emitter electrode 103 and the surface of the first protective layer 133 and the surface of the substrate form the same plane), thereby suppressing the occurrence of unbonded regions.
  • a first adhesion metal layer 134 is formed on the flattened first protective layer 133 (fifth step).
  • a heat dissipation substrate 101 made of an insulating material having a higher thermal conductivity than InP and having a second adhesive metal layer 135 formed thereon is prepared (sixth step).
  • the heat dissipation substrate 101 can be made of a material such as high resistance Si, SiC, AlN, diamond, etc., which has a higher thermal conductivity and a higher insulating property than InP.
  • each adhesive metal layer is used as a heat dissipation structure and electrical wiring, so it is desirable that it is made of a metal that is relatively easy to join and has high thermal conductivity and high electrical conductivity.
  • the first adhesion metal layer 134 and the second adhesion metal layer 135 can be made of Au or Cu.
  • the first protective layer 133 made of resin such as BCB in order to improve adhesion with the first protective layer 133 made of resin such as BCB and to suppress thermal diffusion of Au or Cu to the element portion, the first protective layer 133 and the first adhesion metal layer are formed.
  • a layer composed of Ti, Mo, Ni, W or a compound thereof can be inserted.
  • the thicknesses of the first adhesion metal layer 134 and the second adhesion metal layer 135 can be set in consideration of workability and electrical resistance in forming the first emitter electrode 102, as will be described later. Typically, a thickness of about 100 nm to 500 nm provides sufficiently low electrical resistance without affecting workability.
  • the first adhesion metal layer 134 of the growth substrate 121 and the second adhesion metal layer 135 of the heat dissipation substrate 101 are brought into contact with each other so that the first adhesion metal layer 134 and the second adhesion metal layer 134 are brought into contact with each other.
  • An adhesive metal layer integrated with the layer 135 is formed, and the growth substrate 121 and the heat dissipation substrate 101 are bonded together (seventh step).
  • the above bonding can be performed by surface activated bonding, atomic diffusion bonding, or the like.
  • the bonding can be performed at a temperature of 150° C. or less in any bonding technique. can. This temperature does not affect the crystallinity of the element portion. Bonding pressure may be applied in order to correct warpage and global roughness of each substrate during bonding. This bonding pressure is distributed not only in the region where the second emitter electrode 103 is formed, but also in the region where the first structure 131 is formed. Therefore, the pressure is not locally concentrated on the second emitter electrode 103, and the risk of deterioration of crystal quality and occurrence of cracks in the crystal layer forming the element portion immediately below the second emitter electrode 103 can be reduced. can be done.
  • the growth substrate 121 and the etch stop layer 122 are removed, and as shown in FIG. 2I, the element portion is formed on the heat dissipation substrate 101 with the second emitter electrode 103 arranged on the heat dissipation substrate 101 side. Then, the collector contact forming layer 127 is exposed (eighth step).
  • the growth substrate 121 can be removed by known mechanical polishing, for example.
  • the growth substrate 121 can be removed by wet etching using a hydrochloric acid-based chemical.
  • the etch stop layer 122 may be removed by known wet etching. By using the etch stop layer 122, it is possible to reliably remove the growth substrate 121 and avoid damage to the collector contact formation layer 127 when the growth substrate 121 is removed.
  • a collector electrode 108 is formed on the collector contact forming layer 127 (9th step).
  • the collector electrode 108 can be formed using known lithography, vacuum deposition method, or lift-off method.
  • the same number of collector electrodes 108 as the number of emitter layers 104 are formed in parallel so as to match the central axis of each of the emitter layers 104 formed.
  • the width of each collector electrode 108 (the length in the direction of the short side in a plan view) can be designed to be wider than the width of each emitter layer 104 and the respective (adjacent) collector electrodes 108 do not contact each other.
  • the length of the collector electrode 108 (the length in the long side direction in a plan view) can be designed within a range that does not reach at least directly above the first structure 131 .
  • the collector contact layer 127 is processed to form the collector contact layer 107 .
  • a portion of the collector layer 106 and a portion of the base layer 105 are removed to form a contact hole 116a reaching a portion of the base electrode 109 (portion to be the base pad electrode) (tenth step).
  • the collector contact formation layer 127 made of InGaAs can be etched using a citric acid-based etchant. By using this etching, the collector contact layer 107 can be formed.
  • the base layer 105 made of GaAsSb can be etched using a citric acid-based etchant, and the collector layer 106 made of InP can be etched using a hydrochloric acid-based etchant. By using this etching, a contact hole 116a can be formed.
  • each collector layer 106 and collector contact layer 107 are divided as shown in FIG. 2L.
  • the width of each collector layer 106 and collector contact layer 107 (the length in the direction of the short side in plan view) is designed to be wider than the width of each emitter layer 104 .
  • the InGaAs collector contact layer 107 can be etched with a citric acid-based etchant, and the InP collector layer 106 can be etched with a hydrochloric acid-based etchant. Since the base layer 105 made of GaAsSb is not etched by a hydrochloric acid-based etchant, the collector layer 106 can be divided without removing the base layer 105 .
  • FIGS. 2M and 2N on the first structure 131, a first emitter contact electrode 136 forming part of the emitter contact electrode 112, a part of the heat dissipation structure 114 made of metal, and a part of the heat dissipation structure 114 are formed. is formed, and the base contact electrode 116 is formed (11th step).
  • FIG. 2M shows a cross section in a direction parallel to the short sides of the element portion which is rectangular in plan view
  • FIG. 2N shows a cross section in a direction parallel to the long sides of the element portion which is rectangular in plan view.
  • the first emitter contact electrodes 136 are formed on the first structures 131 on both sides of the element section in the short side direction in plan view (FIG. 2M).
  • the base contact electrode 116 is formed to fill the contact hole 116a and to be in contact with the base electrode 109 (FIG. 2N).
  • the first heat dissipation structure 137 is formed on the first structure 131 on the side (left side in FIG. 2N) where the base contact electrode 116 is not formed when viewed from the emitter layer 104 in the long side direction in plan view. Both can be formed using a known process similar to the formation of the collector electrode 108 .
  • the first emitter contact electrode 136 facilitates connection between the first emitter electrode 102 and the emitter wiring, and the base contact electrode 116 facilitates connection between the base electrode 109 and the base wiring.
  • the first structure 131 is processed to form a second emitter contact electrode 138 connected to the first emitter contact electrode 136 to form the emitter contact electrode 112 . Also, the first structure 131 is processed to form a second heat dissipation structure 139 that constitutes a part of the heat dissipation structure 114 and is connected to the first heat dissipation structure 137 .
  • the adhesive metal layer is processed to form the first emitter electrode 102, and the third heat dissipation structure 140 connected to the second heat dissipation structure 139 is formed to form the first heat dissipation structure 137, the second heat dissipation structure 139, A heat dissipation structure 114 composed of the third heat dissipation structure 140 is formed (step 12).
  • FIG. 2O shows a cross section in a direction parallel to the short sides of the element portion which is rectangular in plan view
  • FIG. 2P shows a cross section in a direction parallel to the long sides of the element portion which is rectangular in plan view.
  • the second emitter contact electrode 138, the second heat dissipation structure 139, the region forming the first emitter electrode 102, and the top of the base contact electrode 116 are covered with a resist mask, and in this state, the first structure 131 and the bonding are formed.
  • Each portion can be formed by wet etching the metal layer with a suitable etchant.
  • wet etching can be performed using, for example, an iodine-based etchant. In this etching, the etchant does not come into contact with the element portion due to the first insulating layer 132, so that unintended etching of the element portion can be prevented.
  • FIGS. 2Q and 2R a second insulating layer 141 made of an insulating material having higher thermal conductivity than the collector layer 106 and the emitter layer 104 is formed on part of the peripheral surface of the element portion. (16th step). Note that FIG. 2Q shows a cross section in a direction parallel to the short sides of the element portion which is rectangular in plan view, and FIG. 2R shows a cross section in a direction parallel to the long sides of the element portion which is rectangular in plan view.
  • the second insulating layer 141 is made of a material, such as SiN or Al 2 O 3 , which has a higher thermal conductivity than the compound semiconductor constituting the element portion, thereby improving heat dissipation from the collector layer 106 to the collector electrode 108 . can be improved.
  • FIGS. 2S and 2T the second protective layer 142 is formed on the first protective layer 133 to form the protective layer 110 composed of the first protective layer 133 and the second protective layer 142.
  • FIG. 2S shows a cross section in a direction parallel to the short sides of the element portion which is rectangular in plan view
  • FIG. 2T shows a cross section in a direction parallel to the long sides of the element portion which is rectangular in plan view.
  • BCB is applied to the entire surface to form a coating film, and after flattening the upper surface of the coating film, the coating film is etched back.
  • a dry etching method is used to remove part of the coating film as well as the collector electrode 108, the emitter contact electrode 112, the base contact electrode 116, and the second insulating layer 141 on the heat dissipation structure 114.
  • a second protective layer 142 is formed with the upper surface of .
  • an emitter wiring 113, a base wiring 117, and a collector wiring 115 are formed (14th step) to obtain the heterojunction bipolar transistor according to the embodiment.
  • the first emitter contact electrode and the first heat dissipation structure are formed as described with reference to FIGS. 2M, 2N, 2O and 2P.
  • a second emitter contact electrode and a second heat dissipation structure are formed, these are filled with a resin film, and the resin film is etched back to expose the surfaces of the second emitter contact electrode and the second heat dissipation structure.
  • the first emitter electrode and the third heat dissipation structure are formed on the heat dissipation substrate, and the resin film is also planarized by etch back by CMP before forming the resin film.
  • the growth substrate, the heat dissipation substrate, and the respective resins are aligned. Bonding is performed by hybrid bonding through the film portion and the metal portion, and the growth substrate is removed.
  • both substrates are bonded with their surfaces flattened, so that the bonding pressure can be prevented from being locally applied to the second emitter electrode, and the crystallinity of the element portion is lowered. can be suppressed.
  • a protective layer that covers the element section and the like is formed on the heat dissipation substrate, and one end of the protective layer is formed in contact with the heat dissipation substrate around the element section and penetrates the protective layer. Since the InP HBT has a heat dissipating structure made of a coated metal, it is possible to suppress the deterioration of the crystal quality and the reduction of the integration density of the InP-based HBT and improve the heat dissipating property.
  • SYMBOLS 101 Heat dissipation board 102... 1st emitter electrode 103... 2nd emitter electrode 104... Emitter layer 105... Base layer 106... Collector layer 107... Collector contact layer 108... Collector electrode 109... Base electrode, DESCRIPTION OF SYMBOLS 110... Protective layer, 112... Emitter contact electrode, 113... Emitter wiring, 114... Heat dissipation structure, 115... Collector wiring, 116... Base contact electrode, 117... Base wiring, 118... Insulating layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Transistors (AREA)

Abstract

ヘテロ接合バイポーラトランジスタは、一端が素子部の周囲の放熱基板(101)の上に接し、保護層(110)を貫通して形成された金属からなる放熱構造(114)を備え、放熱構造(114)およびコレクタ電極(108)の上に接して保護層(110)の上に形成されたコレクタ配線(115)と、ベース電極(109)に接続して保護層(110)を貫通するベースコンタクト電極(116)と、ベースコンタクト電極(116)に接続して保護層(110)の上に形成されたベース配線(117)とを備える。

Description

ヘテロ接合バイポーラトランジスタおよびその製造方法
 本発明は、ヘテロ接合バイポーラトランジスタおよびその製造方法に関する。
 インジウムリン(InP)系ヘテロ接合バイポーラトランジスタ(HBT)は、光/無線通信用集積回路に適した、高速性・高出力性に優れたトランジスタである。InP系HBTの更なる高速化を実現するためには、動作電流量を維持しつつ、素子微細化によりキャパシタンスの削減や電子走行時間の短縮を図る必要がある。また、高出力化においては、ベースまたはコレクタを共有する形で複数のエミッタを集積化させた、いわゆるマルチフィンガー構造のエミッタ本数の増加やエミッタ間隔の縮小化が要求される。
 一方で、微細化により素子の熱抵抗が増大することから、素子の接合温度(素子内部の温度)は、微細化により増加することとなる。加えて、マルチフィンガー構造においては、外周部に配置されたエミッタ領域の発熱により、中心に配置されたエミッタ領域の放熱がシングルフィンガーのHBTと比較して妨げられることから、更に接合温度は増加することになる。
 接合温度は、電流利得や高周波特性といった直接的な電気的特性だけでなく、長期信頼性に対しても大きな影響を与える要因となるため、HBT高速化において放熱対策が必須となる。
 HBTの放熱性を向上させるために、例えば熱伝導率が高い支持基板の上にHBT構造を形成する技術が提案されている(非特許文献1)。
 非特許文献1におけるHBT構造は、図3に示すように、放熱基板301上に金属によるコレクタ電極302が形成され、コレクタ電極層302の上に、化合物半導体の結晶からなるコレクタコンタクト層303、コレクタ層304、ベース層305、エミッタ層306が形成されている。また、ベース層305の上にベース電極307が形成され、エミッタ層306の上にエミッタ電極308が形成されている。
 このHBT構造は、InP成長基板上にHBTを構成する各層をエピタキシャル成長した後に、コレクタ電極層302を介して放熱基板301と接合し、不要となったInP成長基板を除去し、HBT構造となるように各層を加工することで得られる。
 一般に、HBT内部で発生した熱は、基板側に向かって固体中の熱伝導により放熱される。上記の構造によれば、コレクタコンタクト層303以下の層は、エミッタ層306、ベース層305、コレクタ層304、コレクタコンタクト層303を構成する化合物半導体よりも熱伝導率が高い材料で構成されていることから、HBTの放熱性を向上させることができる。
 一方で、典型的なInP基板上にHBT構造を形成する場合と異なり、放熱基板と接合する工程が必要となることから、後記の通り、種々の製造方法において様々な不具合が生じる懸念がある。
 まず、非特許文献1に示される通り、1回の基板接合工程で上記の放熱基板上HBT構造を実現するためには、通常のInP基板上にHBT構造を作製する場合と異なり、HBT結晶層を逆順(InP基板に接する側からエミッタ層、ベース層、コレクタ層の順)にエピタキシャル成長させる必要がある。
 通常、エピタキシャル成長においては、種々の材料の結晶品質が最良となるように、また、下層の半導体結晶品質の劣化や構成元素の意図しない熱拡散が生じないように考慮して最適な温度プロファイルを設定している。一方で、HBT結晶層をエミッタ層の側からエピタキシャル成長する場合は、下層と上層の半導体材料が入れ替わることで、最適な温度プロファイルを設定することが困難な場合が生じる。
 また、エミッタ層の最表層(エミッタ電極と直接接する層)は、エミッタのコンタクト抵抗を低減するためにIn組成が高いInGaAsを用いることが多い。In組成が高いInGaAsは、InPと格子整合しないため、高品質な結晶を形成することが一般に困難である。しかしながら、最表層であるため、上層の半導体材料の結晶品質を考慮する必要がないこと、加えて臨界膜厚以下に制御することで格子緩和を抑制することで、十分な電気的特性が得られる結晶品質を実現できる。
 しかしながら、エミッタ層の側から成長させる場合、In組成の高いInGaAsの上に、格子不整合となるエミッタ層、ベース層、コレクタ層を形成することになる。このため、HBT結晶層の結晶品質が低下する、あるいはそもそも、In組成の高いInGaAsをエミッタ層に導入することが困難となることが危惧される。
 以上のことから、1回の基板接合工程で上記非特許文献1の構造を実現する場合、HBT結晶層の結晶品質の低下あるいは組成に制約が生じることが懸念される。
 上記の問題を解決する最も簡便な方法は、基板接合工程を2回実施するという方法が考えられる。まず、HBT結晶成長層をエピタキシャル成長した後に、支持基板に何らかの仮接着層を用いて接合し、InP基板を除去する。この際にはHBT結晶層の順序が反転した状態で支持基板上に形成されている。次に、支持基板上のHBT結晶層と放熱基板を非特許文献1と同様に金属層を介して接合し、不要となった仮接着層および支持基板を除去する。この段階で、HBT結晶層は2回転写されたことになるので、InP基板上に成長した際の順序でHBT結晶層が放熱基板上に形成されている。最後にHBT構造を公知の方法で作製することで、非特許文献1の構造を得ることができる。
 この場合、HBT結晶層はInP成長基板上に通常の順序(コレクタ層からエミッタ層の順)で成長することができるため、エピタキシャル成長工程における結晶品質の低下は生じない。しかしながら、基板接合工程が単純に2倍必要となり、工程が煩雑化するだけでなく、場合によってはHBT結晶層の品質が劣化することが懸念される。
 一般に、被接合面に何らかのパーティクルや局所的な凹凸が生じていた場合、被接合材料の物性にも依存するが、その寸法の100~1000倍以上の未接合領域が発生する可能性がある。従って、接合工程の回数が増えるほど、意図しない未接合の領域が発生するリスクが増大し、潜在的な歩留まり低下の要因となりうる。
 また、2回目の接合においては、薄層(厚さ~1μm)でかつ、極めて機械的に脆弱なHBT結晶層に対して、接合圧力を加えて放熱基板と接合することになる。HBT結晶層は仮接着層によって支持基板上に保持されているが、接合圧力による微小な仮接着層の変形の影響を受けて、結晶品質の低下や最悪の場合クラックが生じる懸念がある。従って、理想的な仮接着層としては、剥離が容易で、変形し難い(高ヤング率)材料が好ましいが、高ヤング率は接合容易性とトレードオフであり、全ての要件をバランスよく満たす仮接着層を選定することは容易ではない。
 上記の課題を回避するため、1回の基板接合でかつ、エピタキシャル成長順序を変えずに、コレクタアップでHBT構造を形成する技術が提案されている(非特許文献2)。
 例えば、図4に示すように、放熱基板401の上にベンゾシクロブテン(BCB)からなる接合層402が形成され、この上に、第1エミッタ電極403、第2エミッタ電極404、エミッタ層405、ベース層406、コレクタ層407、サブコレクタ層408、コレクタ電極409の順となるようHBT素子部が形成されている。
 また、エミッタ層405の短手方向の延長上に、放熱基板401と接するAuによるサーマルビア410が形成され、第1エミッタ電極403と接続している。また、素子部やサーマルビア410は、BCBからなる保護層411で覆われている。
 この構造は、第1エミッタ電極403、第2エミッタ電極404、エミッタ層405、ベース層406、コレクタ層407、サブコレクタ層408までのHBT素子部を、InP基板上で作製した後に、接合層402を介して放熱基板と接合する。
 この接合の後、不要になったInP成長基板を除去して、サブコレクタ層408にコレクタ電極409を形成する。最後に、素子部外周部の接合層402に開口を形成し、放熱基板401と第1エミッタ電極403とに接するように、サーマルビア410を形成した後に、素子部全体を保護層411で被覆することで得られる。
 接着層(接合層)を、低ヤング率であるBCBから構成することで、金属を被接合材料に用いた場合と比較して比較的低い接合圧力条件で放熱基板と接合することができ、これにより機械的強度が脆弱なHBT素子部の破壊を回避することができる。また、この構造において、素子部で生じた熱は、エミッタ電極からAuサーマルビアを介して放熱基板方向に放熱するため、InP基板上のHBT構造と比較して高い放熱性が得られる。
Y. Shiratori et al., "High-Speed InP/InGaAsSb DHBT on High-Thermal-Conductivity SiC Substrate", IEEE Electron Device Letters, vol. 39, no. 6, pp. 807-810, 2018. T. Kraemer et al., "InP DHBT Process in Transferred-Substrate Technology With ft and fmax Over 400 GHz", IEEE Transactions on Electron Devices, vol. 56, no. 9, pp. 1897-1903, 2009.
 しかしながら、非特許文献2の構造では、素子部直下に熱伝導率が極めて低いBCBが存在するため、エミッタ層から放熱基板に熱伝導するまでの経路が、エミッタ電極の長さとAuサーマルビアの厚さ分、放熱経路が長くなってしまう。従って、素子部直下が全て高熱伝導率材料で構成される非特許文献1と比較すると、放熱性の向上効果は制限されることとなる。
 また、HBT素子部と素子部の間には放熱のために一定の大きさを有するAuサーマルビアが必要となるため、エミッタを複数高密度に並列配置させたマルチフィンガー構造を形成する場合、エミッタ間隔に制約を生じることになる。このことは、特にHBTの高出力化においては大きな問題となりうる。
 以上示した通り、既存の技術では、InP系HBTの結晶品質低下や集積密度低下を抑制しつつ放熱性を向上させることは容易ではないという問題があった。
 本発明は、以上のような問題点を解消するためになされたものであり、InP系HBTの結晶品質低下や集積密度低下を抑制して放熱性を向上させることを目的とする。
 本発明に係るヘテロ接合バイポーラトランジスタは、InPよりも熱伝導率が高い絶縁材料から構成された放熱基板と、放熱基板の上に形成された第1エミッタ電極と、第1エミッタ電極より小さい面積で第1エミッタ電極の上に形成された第2エミッタ電極と、化合物半導体から構成され、第2エミッタ電極の上に形成されたエミッタ層と、化合物半導体から構成され、エミッタ層の上に形成されたベース層と、化合物半導体から構成され、ベース層の上に形成されたコレクタ層と、化合物半導体から構成され、コレクタ層の上に形成されたコレクタコンタクト層と、コレクタコンタクト層の上に形成されたコレクタ電極と、ベース層に接続して形成されたベース電極と、第2エミッタ電極、エミッタ層、ベース層、コレクタ層、コレクタコンタクト層による素子部の側部、第1エミッタ電極、およびベース電極を覆って、放熱基板の上に形成された保護層と、素子部の周囲の第1エミッタ電極の上に接して形成され、保護層を貫通するエミッタコンタクト電極と、エミッタコンタクト電極に接続して保護層の上に形成されたエミッタ配線と、一端が素子部の周囲の放熱基板の上に接し、保護層を貫通して形成された金属からなる放熱構造と、放熱構造およびコレクタ電極の上に接して保護層の上に形成されたコレクタ配線と、ベース電極に接続して保護層を貫通するベースコンタクト電極と、ベースコンタクト電極に接続して保護層の上に形成されたベース配線とを備える。
 また、本発明に係るヘテロ接合バイポーラトランジスタの製造方法は、上述したヘテロ接合バイポーラトランジスタを製造する製造方法であり、InPから構成された成長基板の上に、各々が化合物半導体から構成されたエッチストップ層、コレクタコンタクト形成層、コレクタ形成層、ベース形成層、エミッタ形成層を、これらの順に結晶成長する第1工程と、エミッタ形成層の上に第2エミッタ電極を形成し、エミッタ形成層、ベース形成層、コレクタ形成層を加工して、エミッタ層、ベース層、コレクタ層を形成し、エミッタ層の周囲のベース層上にベース電極を形成することで素子部を形成する第2工程と、素子部の周囲の成長基板の上に金属からなる第1構造体を形成する第3工程と、素子部の周囲を充填し、第1構造体の一端の側、第2エミッタ電極が露出して表面が平坦化された第1保護層を形成する第4工程と、平坦化された第1保護層の上に第1接着金属層を形成する第5工程と、InPよりも熱伝導率が高い絶縁材料から構成され、表面に第2接着金属層が形成された放熱基板を用意する第6工程と、成長基板の第1接着金属層と放熱基板の第2接着金属層とを向かい合わせて当接し、第1接着金属層と第2接着金属層とを一体とした接着金属層を形成して成長基板と放熱基板とを貼り合わせる第7工程と、成長基板およびエッチストップ層を除去し、第2エミッタ電極が放熱基板の側に配置された状態で放熱基板の上に素子部が形成された状態とし、コレクタコンタクト形成層を露出させる第8工程と、コレクタコンタクト形成層の上にコレクタ電極を形成する第9工程と、コレクタコンタクト形成層を加工してコレクタコンタクト層を形成し、加えて、コレクタ層の一部およびベース層の一部を除去してベース電極の一部に到達するコンタクトホールを形成する第10工程と、第1構造体の上に、エミッタコンタクト電極の一部を構成する第1エミッタコンタクト電極、金属から構成されて放熱構造の一部を構成する第1放熱構造を形成するとともに、ベースコンタクト電極を形成する第11工程と、第1構造体を加工して、第1エミッタコンタクト電極に接続する第2エミッタコンタクト電極を形成してエミッタコンタクト電極を形成し、放熱構造の一部を構成して第1放熱構造に接続する第2放熱構造を形成し、加えて、接着金属層を加工して、第1エミッタ電極を形成するとともに、第2放熱構造に接続する第3放熱構造を形成して第1放熱構造、第2放熱構造、第3放熱構造からなる放熱構造を形成する第12工程と、第1保護層の上に第2保護層を形成して第1保護層と第2保護層とからなる保護層を形成する第13工程と、エミッタ配線、ベース配線、コレクタ配線を形成する第14工程とを備える。
 以上説明したように、本発明によれば、素子部などを覆う保護層を放熱基板の上に形成し、一端が素子部の周囲の放熱基板の上に接して保護層を貫通して形成された金属からなる放熱構造を備えるので、InP系HBTの結晶品質低下や集積密度低下を抑制して放熱性を向上させることができる。
図1Aは、本発明の実施の形態に係るヘテロ接合バイポーラトランジスタの構成を示す断面図である。 図1Bは、本発明の実施の形態に係るヘテロ接合バイポーラトランジスタの構成を示す断面図である。 図2Aは、本発明の実施の形態に係るヘテロ接合バイポーラトランジスタの製造方法を説明するための途中工程のヘテロ接合バイポーラトランジスタの状態を示す断面図である。 図2Bは、本発明の実施の形態に係るヘテロ接合バイポーラトランジスタの製造方法を説明するための途中工程のヘテロ接合バイポーラトランジスタの状態を示す断面図である。 図2Cは、本発明の実施の形態に係るヘテロ接合バイポーラトランジスタの製造方法を説明するための途中工程のヘテロ接合バイポーラトランジスタの状態を示す断面図である。 図2Dは、本発明の実施の形態に係るヘテロ接合バイポーラトランジスタの製造方法を説明するための途中工程のヘテロ接合バイポーラトランジスタの状態を示す断面図である。 図2Eは、本発明の実施の形態に係るヘテロ接合バイポーラトランジスタの製造方法を説明するための途中工程のヘテロ接合バイポーラトランジスタの状態を示す断面図である。 図2Fは、本発明の実施の形態に係るヘテロ接合バイポーラトランジスタの製造方法を説明するための途中工程のヘテロ接合バイポーラトランジスタの状態を示す断面図である。 図2Gは、本発明の実施の形態に係るヘテロ接合バイポーラトランジスタの製造方法を説明するための途中工程のヘテロ接合バイポーラトランジスタの状態を示す断面図である。 図2Hは、本発明の実施の形態に係るヘテロ接合バイポーラトランジスタの製造方法を説明するための途中工程のヘテロ接合バイポーラトランジスタの状態を示す断面図である。 図2Iは、本発明の実施の形態に係るヘテロ接合バイポーラトランジスタの製造方法を説明するための途中工程のヘテロ接合バイポーラトランジスタの状態を示す断面図である。 図2Jは、本発明の実施の形態に係るヘテロ接合バイポーラトランジスタの製造方法を説明するための途中工程のヘテロ接合バイポーラトランジスタの状態を示す断面図である。 図2Kは、本発明の実施の形態に係るヘテロ接合バイポーラトランジスタの製造方法を説明するための途中工程のヘテロ接合バイポーラトランジスタの状態を示す断面図である。 図2Lは、本発明の実施の形態に係るヘテロ接合バイポーラトランジスタの製造方法を説明するための途中工程のヘテロ接合バイポーラトランジスタの状態を示す断面図である。 図2Mは、本発明の実施の形態に係るヘテロ接合バイポーラトランジスタの製造方法を説明するための途中工程のヘテロ接合バイポーラトランジスタの状態を示す断面図である。 図2Nは、本発明の実施の形態に係るヘテロ接合バイポーラトランジスタの製造方法を説明するための途中工程のヘテロ接合バイポーラトランジスタの状態を示す断面図である。 図2Oは、本発明の実施の形態に係るヘテロ接合バイポーラトランジスタの製造方法を説明するための途中工程のヘテロ接合バイポーラトランジスタの状態を示す断面図である。 図2Pは、本発明の実施の形態に係るヘテロ接合バイポーラトランジスタの製造方法を説明するための途中工程のヘテロ接合バイポーラトランジスタの状態を示す断面図である。 図2Qは、本発明の実施の形態に係るヘテロ接合バイポーラトランジスタの製造方法を説明するための途中工程のヘテロ接合バイポーラトランジスタの状態を示す断面図である。 図2Rは、本発明の実施の形態に係るヘテロ接合バイポーラトランジスタの製造方法を説明するための途中工程のヘテロ接合バイポーラトランジスタの状態を示す断面図である。 図2Sは、本発明の実施の形態に係るヘテロ接合バイポーラトランジスタの製造方法を説明するための途中工程のヘテロ接合バイポーラトランジスタの状態を示す断面図である。 図2Tは、本発明の実施の形態に係るヘテロ接合バイポーラトランジスタの製造方法を説明するための途中工程のヘテロ接合バイポーラトランジスタの状態を示す断面図である。 図3は、非特許文献1に示されたHBT構造の構成を示す断面図である。 図4は、非特許文献2に示されたHBT構造の構成を示す断面図である。
 以下、本発明の実施の形態に係るヘテロ接合バイポーラトランジスタについて図1A、図1Bを参照して説明する。
 このヘテロ接合バイポーラトランジスタは、まず、InPよりも熱伝導率が高い絶縁材料から構成された放熱基板101と、放熱基板101の上に形成された第1エミッタ電極102と、第1エミッタ電極102より小さい面積で第1エミッタ電極102の上に形成された第2エミッタ電極103とを備える。
 また、このヘテロ接合バイポーラトランジスタは、第2エミッタ電極103の上に形成されたエミッタ層104と、エミッタ層104の上に形成されたベース層105と、ベース層105の上に形成されたコレクタ層106と、コレクタ層106の上に形成されたコレクタコンタクト層107とを備える。これらの各層(結晶層)は、化合物半導体(例えばIII-V族化合物半導体)から構成されている。
 また、このヘテロ接合バイポーラトランジスタは、コレクタコンタクト層107の上に形成されたコレクタ電極108と、ベース層105に接続して形成されたベース電極109とを備える。また、このヘテロ接合バイポーラトランジスタは、素子部の側部、第1エミッタ電極102、およびベース電極109を覆って、放熱基板101の上に形成された保護層110を備える。素子部は、第2エミッタ電極103、エミッタ層104、ベース層105、コレクタ層106、コレクタコンタクト層107による部分である。
 また、このヘテロ接合バイポーラトランジスタは、上述した素子部の周囲の第1エミッタ電極102の上に接して形成され、保護層110を貫通するエミッタコンタクト電極112と、エミッタコンタクト電極112に接続して保護層110の上に形成されたエミッタ配線113とを備える。
 また、このヘテロ接合バイポーラトランジスタは、一端が素子部の周囲の放熱基板101の上に接し、保護層110を貫通して形成された金属からなる放熱構造114を備える。放熱構造114は、柱状に形成されている。
 また、このヘテロ接合バイポーラトランジスタは、放熱構造114およびコレクタ電極108の上に接して保護層110の上に形成されたコレクタ配線115と、ベース電極109に接続して保護層110を貫通するベースコンタクト電極116と、ベースコンタクト電極116に接続して保護層110の上に形成されたベース配線117とを備える。
 また、このヘテロ接合バイポーラトランジスタは、コレクタ層106およびエミッタ層104より熱伝導率が高い絶縁材料から構成され、素子部の周面に形成された絶縁層118を備える。
 ここで、この例では、第1エミッタ電極102の上に素子部を複数備え、複数の素子部の各々は、平面視で長方形に形成され、長方形の短い辺(短辺)の方向に配列されている。これは、いわゆるマルチフィンガー構造である。実施の形態では、エミッタ層104(第2エミッタ電極103)およびコレクタ層106(コレクタコンタクト層107,コレクタ電極108)を、複数備える構成としている。なお、図1Aは、上述した平面視長方形とした素子部の短辺に平行な方向の断面を示し、図1Bは、上述した平面視長方形とした素子部の長い辺(長辺)に平行な方向の断面を示している。マルチフィンガー構造とする場合、エミッタを分割するが、これに加え、コレクタも分割することで、寄生容量の増加が抑制でき、高周波特性上有利となる。
 また、複数の素子部は、コレクタ層106がエミッタ層104より広い面積に形成されている。また、各素子部において、コレクタ層106とエミッタ層104とは、平面視で各々の中心が重なる状態とされている。電流がエミッタ層104からコレクタ層106に流れる過程で、電流は、エミッタ層104を出てから広がっていくので、コレクタ層106の方を広い面積に形成する。
 実施の形態によれば、素子部で生じた熱は、第2エミッタ電極103、第1エミッタ電極102を介して放熱基板101に放熱される。加えて、コレクタ層106の側からも、熱伝導率が高い金属からなるコレクタ電極108、コレクタ配線115、および放熱構造114を経由して放熱基板101へ放熱される。これらの結果、実施の形態によれば、従来の構造に比較して、素子部で発生した熱の放熱性を向上させることができる。
 また、後記するように、素子部を構成する各結晶の層は、従来のヘテロ接合バイポーラトランジスタと同様の積層順でエピタキシャル成長して形成するため、エピタキシャル成長に起因した、結晶品質の低下を回避することができる。
 また、実施の形態に係るヘテロ接合バイポーラトランジスタの作製に必要な接合工程は、素子部(第2エミッタ電極103、エミッタ層104、ベース層105、コレクタ層106、コレクタコンタクト層107とする層、ベース電極109)を形成した後に、放熱基板と接合する1回のみである。このため、基板接合を2回実施する場合と比較して、接合工程に起因した結晶品質や歩留まりの低下を抑制できる。
 また、後記するように、実施の形態に係るヘテロ接合バイポーラトランジスタの製造においては、熱伝導率が高いAuまたはCuからなる接着金属層を介して素子部と放熱基板を接合する。この場合、ベンゾシクロブテン(BCB)などの樹脂層により接合する場合と比較して、高ヤング率であるため比較的高い接合圧力が必要となる。しかしながら、実施の形態によれば、エミッタコンタクト電極112や放熱構造114を構成するための金属による構造体を、素子部の周囲に形成しているので、接合荷重が第2エミッタ電極103を通じて素子部を構成する結晶層に局所的に集中することが抑制され、これらが接合工程で破壊されることを防ぐことができる。
 また、実施の形態に係るヘテロ接合バイポーラトランジスタでは、第1エミッタ電極102から直下の放熱基板101に向かって放熱することができるため、非特許文献2のように、エミッタ短手方向に熱を拡散させる必要性がない。従って、実施の形態によれば、加工技術の精度が許す限り、放熱性を犠牲にすることなく、エミッタ層104および第2エミッタ電極103を高密度に並列配置した、いわゆるマルチフィンガー構造を形成することができる。これにより、高い放熱性と高出力性能を両立したヘテロ接合バイポーラトランジスタが得られる。
 また、実施の形態に係るヘテロ接合バイポーラトランジスタは、コレクタアップの構造であるため、比較的容易にコレクタ層106の面積のみを、ベース層105より選択的に小さく加工することができる。これにより、ベース電極109とベース層105との接触面積を減らすことなく(ベースコンタクト抵抗を増加させることなく)、コレクタ寄生容量を低減することができるため、高周波特性を向上させることができる。
 以上示した通り、実施の形態によれば、InP系HBTの結晶品質低下や集積密度低下を抑制して放熱性を向上させることができる。また、実施の形態によれば、放熱性が高いマルチフィンガー構造のHBTを、1回の接合工程で形成でき、高速・高出力性能の向上や長期信頼性の向上をもたらすことができるという優れた効果が得られる。
 次に、本発明の実施の形態に係るヘテロ接合バイポーラトランジスタの製造方法について、図2A~図2Tを参照して説明する。この製造方法は、上述したヘテロ接合バイポーラトランジスタを製造する製造方法である。なお、図2A~図2F,図2H~図2Lにおいて、(a)は、平面視長方形とした素子部の短辺に平行な方向の断面を示し、(b)は、平面視長方形とした素子部の長辺に平行な方向の断面を示している。
 まず、図2Aに示すように、InPから構成された成長基板121の上に、各々が化合物半導体から構成されたエッチストップ層122、コレクタコンタクト形成層127、コレクタ形成層126、ベース形成層125、エミッタ形成層124を、これらの順に結晶成長する(第1工程)。
 例えば、エッチストップ層122は、ノンドープInGaAsの層およびノンドープInPの層の積層構造から構成することができる。コレクタコンタクト形成層127は、Siを高濃度にドーピングしたn型のInGaAsから構成することができる。コレクタ形成層126は、Siを低濃度にドーピングしたn型のInPから構成することができる。ベース形成層125は、Cを高濃度にドーピングしたp型のGaAsSbから構成することができる。エミッタ形成層124は、Siを低濃度にドーピングしたn型のInPから構成することができる。
 上述したIII-V族化合物半導体の各層は、例えば、有機金属気相堆積法や分子線エピタキシー法を用いて結晶(エピタキシャル)成長することで形成できる。上述した結晶層の各々は、InPからなる成長基板121の上に格子整合した状態でエピタキシャル成長されるため、転位や欠陥の少ない良好な結晶性を得ることができる。また、図示していないが、エミッタ形成層124の上に、臨界膜厚以下の厚さの高In組成のInGaAsによるエミッタキャップ形成層を形成することで、エミッタ電極とのコンタクト抵抗の低減を図ることもできる。
 次に、図2Bに示すように、エミッタ形成層124の上に第2エミッタ電極103を形成する。また、エミッタ形成層124、ベース形成層125、コレクタ形成層126を加工して、エミッタ層104、ベース層105、コレクタ層106を形成する。また、エミッタ層104の周囲のベース層105上に、ベース電極109を形成する。これにより素子部が形成される(第2工程)。
 なお、第2エミッタ電極103およびエミッタ層104の並列数は、集積回路において要求される出力電流量に応じて適宜選択することができる。各層および電極は、公知の半導体パターニング技術、成膜・エッチング技術などを駆使して形成することができる。ベース電極109は、エミッタ長手方向の一方において、他方より幅を広げた、いわゆるベースパッド電極となる部分を形成する。これは、後記するように、ベース配線との接続を容易とするために用いる。
 次に、図2Cに示すように、上述した素子部の周囲の成長基板121の上に金属からなる第1構造体131を形成する(第3工程)。第1構造体131は、素子部および素子部の外周を除いた領域に形成する。第1構造体131は、接合における圧力を分散させるための層として用いる。また、第1構造体131は、後に放熱経路となる放熱構造の一部を構成するため、熱伝導率が高い材料が望ましい。第1構造体131は、具体的には、AuやCuとなどの金属材料で構成することができる。
 また、平面視で、第1構造体131と素子部との間隔は、最終的なHBTの占める面積や寄生容量に影響するため、加工精度や電気的特性の観点から、最適となる間隔を設定する。
 加えて、第1構造体131の厚さ(高さ)は、第2エミッタ電極103とエミッタ層104、ベース層105、およびコレクタ層106の厚さの和と等しくする。これにより、後記するように、成長基板121と放熱基板101とを接合する際に印加する接合圧力が、第2エミッタ電極103と第1構造体131とに均等に加わることとなり、過剰な圧力集中による素子部の結晶品質の低下やクラックを抑制することができる。
 次に、図2Dに示すように、素子部の周面(の一部)に、コレクタ層106およびエミッタ層104より熱伝導率が高い絶縁材料から構成された第1絶縁層132を形成する(第15工程)。この例では、コレクタコンタクト形成層127の上の、素子部を含めた全域に第1絶縁層132を形成する。
 後記するように、第1絶縁層132は、素子部の熱伝導を補助する役割と、第1構造体131をエッチングして放熱構造の一部を形成する際に、素子部をエッチャントから保護する役割を有している。従って、第1絶縁層132の材料としては、熱伝導率が比較的高く、かつ化学的安定性が高い、シリコン窒化膜(SiN)やアルミナ(Al23)から構成することが望ましい。これらの材料による第1絶縁層132は例えば、化学気相堆積(CVD)法、原子層堆積(ALD)法を用いて成膜することができる。第1絶縁層132の厚さは、素子部の寸法や膜質に依存するため、上記の効果が得られる厚さを適宜設定する。典型的には、第1絶縁層132は、10nm~100nm程度の厚さがあれば上記の効果を得るには十分である。
 次に、図2Eに示すように、素子部の周囲を充填し、第1構造体131の一端の側、第2エミッタ電極103が露出して表面が平坦化された第1保護層133を形成する(第4工程)。
 例えば、成長基板121の全面にベンゾシクロブテン(BCB)を塗布して塗布膜を形成し、塗布膜の上面を平坦化した後に、塗布膜をエッチバックする。エッチバックにおいては、ドライエッチング法を用い、一部の塗布膜とともに、第2エミッタ電極103および第1構造体131の上の第1絶縁層132を除去する。この際、第2エミッタ電極103の表面を確実に露出させるために、ドライエッチング時間を長くすると、素子部上の第1保護層133の形成領域の高さが低くなり、第1保護層133が形成された領域が、放熱基板101と接合されない状況が生じる。
 この状態においても、本発明における効果を得ることは可能である。ただし、例えばドライエッチングの代替として化学機械研磨を用いることで、第2エミッタ電極103の表面と第1保護層133の表面の高さが揃う(第2エミッタ電極103の表面と第1保護層133の表面とが同一の平面を形成する)状態に平坦化し、未接合領域の発生を抑制することができる。
 次に、図2Fに示すように、平坦化された第1保護層133の上に第1接着金属層134を形成する(第5工程)。また、図2Gに示すように、InPよりも熱伝導率が高い絶縁材料から構成され、表面に第2接着金属層135が形成された放熱基板101を用意する(第6工程)。放熱基板101は、例えば、高抵抗Si、SiC、AlN、ダイヤモンドなどの、InPより熱伝導率が高く、かつ絶縁性が高い材料から構成することができる。各接着金属層は、後述するように、放熱構造および電気配線として用いることになるため、接合が比較的容易で高熱伝導率・高電気伝導率を有する金属から構成することが望ましい。
 例えば、第1接着金属層134、第2接着金属層135は、AuやCuから構成することができる。また、BCBなどの樹脂から構成されている第1保護層133との密着性向上や、AuやCuの素子部への熱拡散を抑制するために、第1保護層133と第1接着金属層134との間に、Ti,Mo,Ni,Wあるいはこれらの化合物から構成した層を挿入することができる。
 第1接着金属層134、第2接着金属層135の厚さは、後記するように、第1エミッタ電極102の形成における、加工容易性や電気抵抗の兼ね合いで設定することができる。典型的には、これらの厚さは、100nm~500nm程度あれば、加工性に影響を与えず、十分に低い電気抵抗が得られる。
 次に、図2Hに示すように、成長基板121の第1接着金属層134と放熱基板101の第2接着金属層135とを向かい合わせて当接し、第1接着金属層134と第2接着金属層135とを一体とした接着金属層を形成して、成長基板121と放熱基板101とを貼り合わせる(第7工程)。例えば、表面活性化接合、原子拡散接合などにより、上述した貼り合わせができる。
 第1接着金属層134および第2接着金属層135の、各々の当接面となる最表面がAuから構成されていれば、いずれの接合技術においても、150℃以下の温度で接合することができる。この温度は、素子部の結晶性に影響を与えない。接合の際に、各々の基板の反りやグローバルなラフネスを矯正するために、接合圧力を印加する場合がある。この接合圧力は、第2エミッタ電極103が形成された領域だけでなく、第1構造体131が形成された領域に分散される。従って、第2エミッタ電極103に局所的に圧力が集中することが無く、第2エミッタ電極103の直下の素子部を構成する結晶層の結晶品質の低下やクラックなどが発生するリスクを低減することができる。
 次に、成長基板121およびエッチストップ層122を除去し、図2Iに示すように、第2エミッタ電極103が放熱基板101の側に配置された状態で、放熱基板101の上に素子部が形成された状態とし、コレクタコンタクト形成層127を露出させる(第8工程)。
 成長基板121は、例えば、公知の機械研磨により除去することができる。また、成長基板121は、よく知られているように、塩酸系の薬液を用いたウェットエッチングにより除去することができる。また、エッチストップ層122は、公知のウェットエッチングにより除去すればよい。エッチストップ層122を用いることで、成長基板121を確実に除去するとともに、成長基板121を除去する際に、コレクタコンタクト形成層127にダメージが生じることを回避することができる。
 次に、図2Jに示すように、コレクタコンタクト形成層127の上にコレクタ電極108を形成する(第9工程)。コレクタ電極108は、公知のリソグラフィや真空蒸着法、リフトオフ法を用いて形成することができる。
 コレクタ電極108は、複数形成したエミッタ層104の各々の中心軸と一致するよう、エミッタ層104の数と同数を並列して形成する。各々のコレクタ電極108の幅(平面視で短辺方向の長さ)は、各々のエミッタ層104の幅より広く、かつ各々の(隣り合う)コレクタ電極108が接触しないように設計することができる。また、コレクタ電極108の長さ(平面視で長辺方向の長さ)は、少なくとも、第1構造体131の直上に届かない範囲で設計することができる。
 次に、図2Kに示すように、コレクタコンタクト形成層127を加工してコレクタコンタクト層107を形成する。加えて、コレクタ層106の一部およびベース層105の一部を除去して、ベース電極109の一部(ベースパッド電極となる部分)に到達するコンタクトホール116aを形成する(第10工程)。
 例えば、InGaAsから構成されたコレクタコンタクト形成層127は、クエン酸系エッチャントを用いてエッチングすることができる。このエッチングを用いることで、コレクタコンタクト層107が形成できる。また、GaAsSbから構成されたベース層105は、クエン酸系エッチャントを用い、InPから構成されたコレクタ層106は、塩酸系エッチャントを用いてエッチングすることができる。このエッチングを用いることで、コンタクトホール116aが形成できる。
 また、コレクタコンタクト層107および、コレクタ層106を追加でエッチングすることで、図2Lに示すように、コレクタコンタクト層107およびコレクタ層106を分割する。個々のコレクタ層106およびコレクタコンタクト層107の幅(平面視短辺方向の長さ)は、個々のエミッタ層104の幅より広くなるように設計する。上記と同様に、InGaAsからなるコレクタコンタクト層107はクエン酸系のエッチャント、InPからなるコレクタ層106は塩酸系のエッチャントによりエッチングすることができる。塩酸系エッチャントでは、GaAsSbからなるベース層105はエッチングされないため、ベース層105を除去することなく、コレクタ層106の分割ができる。
 次に、図2Mおよび図2Nに示すように、第1構造体131の上に、エミッタコンタクト電極112の一部を構成する第1エミッタコンタクト電極136、金属から構成されて放熱構造114の一部を構成する第1放熱構造137を形成するとともに、ベースコンタクト電極116を形成する(第11工程)。なお、図2Mは、平面視長方形とした素子部の短辺に平行な方向の断面を示し、図2Nは、平面視長方形とした素子部の長辺に平行な方向の断面を示している。
 第1エミッタコンタクト電極136は、平面視短辺方向において、素子部両側の第1構造体131上に形成する(図2M)。ベースコンタクト電極116は、コンタクトホール116aを充填するように形成し、ベース電極109に接する状態に形成する(図2N)。第1放熱構造137は、平面視長辺方向において、エミッタ層104からみてベースコンタクト電極116が形成されていない側(図2N中左側)の第1構造体131の上に形成する。いずれも、コレクタ電極108の形成と同様の公知のプロセスを用いて形成することができる。第1エミッタコンタクト電極136は、第1エミッタ電極102とエミッタ配線との接続を容易にし、ベースコンタクト電極116は、ベース電極109とベース配線との接続を容易にする。
 次に、図2Oおよび図2Pに示すように、第1構造体131を加工して、第1エミッタコンタクト電極136に接続する第2エミッタコンタクト電極138を形成してエミッタコンタクト電極112を形成する。また、第1構造体131を加工して放熱構造114の一部を構成して第1放熱構造137に接続する第2放熱構造139を形成する。加えて、接着金属層を加工して、第1エミッタ電極102を形成するとともに、第2放熱構造139に接続する第3放熱構造140を形成して第1放熱構造137、第2放熱構造139、第3放熱構造140からなる放熱構造114を形成する(第12工程)。
 第1エミッタ電極102、第3放熱構造140の形成においては、素子形成領域外の接着金属層を完全に除去する。また、第2エミッタコンタクト電極138、第2放熱構造139の形成においては、素子形成領域外の第1構造体131を完全に除去する。なお、図2Oは、平面視長方形とした素子部の短辺に平行な方向の断面を示し、図2Pは、平面視長方形とした素子部の長辺に平行な方向の断面を示している。
 例えば、第2エミッタコンタクト電極138、第2放熱構造139、第1エミッタ電極102を形成する領域、およびベースコンタクト電極116の上をレジストマスクで被覆し、この状態で、第1構造体131および接着金属層を適切なエッチャントを用いてウェットエッチングすることで、各部分が形成できる。接着金属層や第1構造体131をAuから構成した場合、例えば、ヨウ素系のエッチャントを用いてウェットエッチングすることができる。このエッチングでは、第1絶縁層132により、素子部にエッチャントが接触することがなく、素子部における意図しないエッチングが生じることを防ぐことができる。
 次に、図2Qおよび図2Rに示すように、素子部の周面の一部に、コレクタ層106およびエミッタ層104より熱伝導率が高い絶縁材料から構成された第2絶縁層141を形成する(第16工程)。なお、図2Qは、平面視長方形とした素子部の短辺に平行な方向の断面を示し、図2Rは、平面視長方形とした素子部の長辺に平行な方向の断面を示している。第2絶縁層141は、例えば、SiNやAl23などの、素子部を構成する化合物半導体よりも熱伝導率が高い材料を用いることで、コレクタ層106からコレクタ電極108への放熱性を向上させることができる。
 次に、図2Sおよび図2Tに示すように、第1保護層133の上に第2保護層142を形成して、第1保護層133と第2保護層142とからなる保護層110を形成する(第13工程)。なお、図2Sは、平面視長方形とした素子部の短辺に平行な方向の断面を示し、図2Tは、平面視長方形とした素子部の長辺に平行な方向の断面を示している。
 例えば、全面にBCBを塗布して塗布膜を形成し、塗布膜の上面を平坦化した後に、塗布膜をエッチバックする。エッチバックにおいては、ドライエッチング法を用い、一部の塗布膜とともに、コレクタ電極108、エミッタコンタクト電極112、ベースコンタクト電極116、および放熱構造114の上の第2絶縁層141を除去し、各部分の上面を露出させた状態で、第2保護層142を形成する。
 この後、エミッタ配線113、ベース配線117、コレクタ配線115を形成する(第14工程)ことで、実施の形態に係るヘテロ接合バイポーラトランジスタが得られる。
 上述した製造方法において、成長基板121と放熱基板101との貼り合わせを、接着金属層を介した接合により実施する例を示したが、これに限るものではなく、他の貼り合わせ技術(接合技術)においても、本発明の効果を損なうことなく同様の構造を形成することができる。
 例えば、図2B,図2Cを用いて説明したように素子部を形成した後に、図2M、図2N、図2O、図2Pを用いて説明したような、第1エミッタコンタクト電極、第1放熱構造、第2エミッタコンタクト電極、第2放熱構造を形成し、これらを樹脂膜で充填し、樹脂膜をエッチバックし、第2エミッタコンタクト電極、第2放熱構造の表面を露出させる。一方、放熱基板に、第1エミッタ電極、第3放熱構造を形成し、こちらにおいても、樹脂膜を形成にCMPによりエッチバックすることで平坦化する。最後に、第2エミッタコンタクト電極と第1エミッタ電極との位置関係、第2放熱構造と第3放熱構造との位置関係などが合うようにアライメントしながら、成長基板と放熱基板と、各々の樹脂膜の部分と金属の部分とを介したハイブリッドボンディングにより貼り合わせ、成長基板を除去する。
 この方法によっても、双方の基板は、表面が平坦化された状態で接合されるので、接合圧力が第2エミッタ電極に局所的に印加させることを防ぐことができ、素子部の結晶性が低下することを抑制できる。
 なお、上述では、超高速集積回路を実現する上で有望な放熱基板上のnpn型InP/GaAsSb系HBTについて詳細に述べたが、同様な効果は、他のHBTに対しても有効である。
 以上に説明したように、本発明によれば、素子部などを覆う保護層を放熱基板の上に形成し、一端が素子部の周囲の放熱基板の上に接して保護層を貫通して形成された金属からなる放熱構造を備えるので、InP系HBTの結晶品質低下や集積密度低下を抑制して放熱性を向上させることができる。
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。
 101…放熱基板、102…第1エミッタ電極、103…第2エミッタ電極、104…エミッタ層、105…ベース層、106…コレクタ層、107…コレクタコンタクト層、108…コレクタ電極、109…ベース電極、110…保護層、112…エミッタコンタクト電極、113…エミッタ配線、114…放熱構造、115…コレクタ配線、116…ベースコンタクト電極、117…ベース配線、118…絶縁層。

Claims (6)

  1.  InPよりも熱伝導率が高い絶縁材料から構成された放熱基板と、
     前記放熱基板の上に形成された第1エミッタ電極と、
     前記第1エミッタ電極より小さい面積で前記第1エミッタ電極の上に形成された第2エミッタ電極と、
     化合物半導体から構成され、前記第2エミッタ電極の上に形成されたエミッタ層と、
     化合物半導体から構成され、前記エミッタ層の上に形成されたベース層と、
     化合物半導体から構成され、前記ベース層の上に形成されたコレクタ層と、
     化合物半導体から構成され、前記コレクタ層の上に形成されたコレクタコンタクト層と、
     前記コレクタコンタクト層の上に形成されたコレクタ電極と、
     前記ベース層に接続して形成されたベース電極と、
     前記第2エミッタ電極、前記エミッタ層、前記ベース層、前記コレクタ層、前記コレクタコンタクト層による素子部の側部、前記第1エミッタ電極、および前記ベース電極を覆って、前記放熱基板の上に形成された保護層と、
     前記素子部の周囲の前記第1エミッタ電極の上に接して形成され、前記保護層を貫通するエミッタコンタクト電極と、
     前記エミッタコンタクト電極に接続して前記保護層の上に形成されたエミッタ配線と、
     一端が前記素子部の周囲の前記放熱基板の上に接し、前記保護層を貫通して形成された金属からなる放熱構造と、
     前記放熱構造および前記コレクタ電極の上に接して前記保護層の上に形成されたコレクタ配線と、
     前記ベース電極に接続して前記保護層を貫通するベースコンタクト電極と、
     前記ベースコンタクト電極に接続して前記保護層の上に形成されたベース配線と
     を備えるヘテロ接合バイポーラトランジスタ。
  2.  請求項1記載のヘテロ接合バイポーラトランジスタにおいて、
     前記コレクタ層および前記エミッタ層より熱伝導率が高い絶縁材料から構成され、前記素子部の周面に形成された絶縁層をさらに備えることを特徴とするヘテロ接合バイポーラトランジスタ。
  3.  請求項1または2記載のヘテロ接合バイポーラトランジスタにおいて、
     前記第1エミッタ電極の上に前記素子部を複数備え、
     複数の前記素子部の各々は、平面視で長方形に形成され、長方形の短い辺の方向に配列され
     複数の前記素子部は、前記コレクタ層が前記エミッタ層より広い面積に形成されている
     ことを特徴とするヘテロ接合バイポーラトランジスタ。
  4.  請求項1~3のいずれかのヘテロ接合バイポーラトランジスタを製造する製造方法であって、
     InPから構成された成長基板の上に、各々が化合物半導体から構成されたエッチストップ層、コレクタコンタクト形成層、コレクタ形成層、ベース形成層、エミッタ形成層を、これらの順に結晶成長する第1工程と、
     前記エミッタ形成層の上に前記第2エミッタ電極を形成し、前記エミッタ形成層、前記ベース形成層、前記コレクタ形成層を加工して、前記エミッタ層、前記ベース層、前記コレクタ層を形成し、前記エミッタ層の周囲の前記ベース層上に前記ベース電極を形成することで前記素子部を形成する第2工程と、
     前記素子部の周囲の前記成長基板の上に金属からなる第1構造体を形成する第3工程と、
     前記素子部の周囲を充填し、前記第1構造体の一端の側、前記第2エミッタ電極が露出して表面が平坦化された第1保護層を形成する第4工程と、
     平坦化された前記第1保護層の上に第1接着金属層を形成する第5工程と、
     InPよりも熱伝導率が高い絶縁材料から構成され、表面に第2接着金属層が形成された前記放熱基板を用意する第6工程と、
     前記成長基板の前記第1接着金属層と前記放熱基板の前記第2接着金属層とを向かい合わせて当接し、前記第1接着金属層と前記第2接着金属層とを一体とした接着金属層を形成して前記成長基板と前記放熱基板とを貼り合わせる第7工程と、
     前記成長基板および前記エッチストップ層を除去し、前記第2エミッタ電極が前記放熱基板の側に配置された状態で前記放熱基板の上に前記素子部が形成された状態とし、前記コレクタコンタクト形成層を露出させる第8工程と、
     前記コレクタコンタクト形成層の上に前記コレクタ電極を形成する第9工程と、
     前記コレクタコンタクト形成層を加工して前記コレクタコンタクト層を形成し、加えて、前記コレクタ層の一部および前記ベース層の一部を除去して前記ベース電極の一部に到達するコンタクトホールを形成する第10工程と、
     前記第1構造体の上に、前記エミッタコンタクト電極の一部を構成する第1エミッタコンタクト電極、金属から構成されて前記放熱構造の一部を構成する第1放熱構造を形成するとともに、前記ベースコンタクト電極を形成する第11工程と、
     前記第1構造体を加工して、前記第1エミッタコンタクト電極に接続する第2エミッタコンタクト電極を形成して前記エミッタコンタクト電極を形成し、前記放熱構造の一部を構成して第1放熱構造に接続する第2放熱構造を形成し、加えて、前記接着金属層を加工して、前記第1エミッタ電極を形成するとともに、前記第2放熱構造に接続する第3放熱構造を形成して前記第1放熱構造、前記第2放熱構造、前記第3放熱構造からなる前記放熱構造を形成する第12工程と、
     前記第1保護層の上に第2保護層を形成して前記第1保護層と前記第2保護層とからなる前記保護層を形成する第13工程と、
     前記エミッタ配線、前記ベース配線、前記コレクタ配線を形成する第14工程と
     を備えることを特徴とするヘテロ接合バイポーラトランジスタの製造方法。
  5.  請求項4記載のヘテロ接合バイポーラトランジスタの製造方法において、
     前記第3工程の後の前記第4工程の前に、前記素子部の周面の一部に、前記コレクタ層および前記エミッタ層より熱伝導率が高い絶縁材料から構成された第1絶縁層を形成する第15工程と、
     前記第12工程の後の前記第13工程の前に、前記素子部の周面の一部に、前記コレクタ層および前記エミッタ層より熱伝導率が高い絶縁材料から構成された第2絶縁層を形成する第16工程と、
     をさらに備えることを特徴とするヘテロ接合バイポーラトランジスタの製造方法。
  6.  請求項4記載のヘテロ接合バイポーラトランジスタの製造方法において、
     前記第2工程は、前記素子部を複数形成し、
     前記第9工程は、複数の前記素子部の各々個別に前記コレクタ電極を形成する
     ことを特徴とするヘテロ接合バイポーラトランジスタの製造方法。
PCT/JP2021/018000 2021-05-12 2021-05-12 ヘテロ接合バイポーラトランジスタおよびその製造方法 WO2022239138A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/018000 WO2022239138A1 (ja) 2021-05-12 2021-05-12 ヘテロ接合バイポーラトランジスタおよびその製造方法
JP2023520649A JPWO2022239138A1 (ja) 2021-05-12 2021-05-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/018000 WO2022239138A1 (ja) 2021-05-12 2021-05-12 ヘテロ接合バイポーラトランジスタおよびその製造方法

Publications (1)

Publication Number Publication Date
WO2022239138A1 true WO2022239138A1 (ja) 2022-11-17

Family

ID=84028980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018000 WO2022239138A1 (ja) 2021-05-12 2021-05-12 ヘテロ接合バイポーラトランジスタおよびその製造方法

Country Status (2)

Country Link
JP (1) JPWO2022239138A1 (ja)
WO (1) WO2022239138A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955386A (ja) * 1995-08-15 1997-02-25 Fujitsu Ltd 縦型半導体装置
JP2000082709A (ja) * 1998-09-04 2000-03-21 Toshiba Corp 半導体装置
JP2008181990A (ja) * 2007-01-24 2008-08-07 Sony Corp 半導体装置の製造方法および半導体装置
JP2008258563A (ja) * 2007-03-12 2008-10-23 Sony Corp 半導体装置の製造方法、半導体装置および電子機器
US8860092B1 (en) * 2008-09-22 2014-10-14 Hrl Laboratories, Llc Metallic sub-collector for HBT and BJT transistors
US20200219994A1 (en) * 2018-03-09 2020-07-09 Waython Intelligent Technologies Suzhou Co., Ltd Common-emitter and common-base heterojunction bipolar transistor
JP2021052150A (ja) * 2019-09-26 2021-04-01 株式会社村田製作所 パワーアンプ単位セル及びパワーアンプモジュール

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955386A (ja) * 1995-08-15 1997-02-25 Fujitsu Ltd 縦型半導体装置
JP2000082709A (ja) * 1998-09-04 2000-03-21 Toshiba Corp 半導体装置
JP2008181990A (ja) * 2007-01-24 2008-08-07 Sony Corp 半導体装置の製造方法および半導体装置
JP2008258563A (ja) * 2007-03-12 2008-10-23 Sony Corp 半導体装置の製造方法、半導体装置および電子機器
US8860092B1 (en) * 2008-09-22 2014-10-14 Hrl Laboratories, Llc Metallic sub-collector for HBT and BJT transistors
US20200219994A1 (en) * 2018-03-09 2020-07-09 Waython Intelligent Technologies Suzhou Co., Ltd Common-emitter and common-base heterojunction bipolar transistor
JP2021052150A (ja) * 2019-09-26 2021-04-01 株式会社村田製作所 パワーアンプ単位セル及びパワーアンプモジュール

Also Published As

Publication number Publication date
JPWO2022239138A1 (ja) 2022-11-17

Similar Documents

Publication Publication Date Title
JP5667109B2 (ja) ヘテロ接合バイポーラトランジスタおよびその製造方法
US9524872B1 (en) Heterogeneous integrated circuits and devices thereof with a surrogate substrate and transferred semiconductor devices
TW200405475A (en) Semiconductor device and the manufacturing method thereof, and the power amplifier module
JP5280611B2 (ja) 半導体デバイスの製造方法、および得られるデバイス
WO2019208294A1 (ja) 集積回路およびその製造方法
JP6348451B2 (ja) ヘテロ接合バイポーラトランジスタ
JP3507828B2 (ja) ヘテロ接合バイポーラトランジスタ及びその製造方法
JP5601079B2 (ja) 半導体装置、半導体回路基板および半導体回路基板の製造方法
WO2022239138A1 (ja) ヘテロ接合バイポーラトランジスタおよびその製造方法
US9679996B2 (en) Semiconductor device having buried region beneath electrode and method to form the same
CN109994540B (zh) 半导体装置
JP2016171172A (ja) ヘテロ接合バイポーラトランジスタおよびその製造方法
JP2015211182A (ja) ヘテロ接合バイポーラトランジスタおよびその製造方法
US20240194561A1 (en) Hetero-junction bipolar transistor and method of manufacturing the same
JP2003077930A (ja) 半導体装置及びその製造方法
JP3347947B2 (ja) 半導体装置の製造方法
JP6589584B2 (ja) 半導体装置及び半導体装置の製造方法
JP6611182B2 (ja) ヘテロ接合バイポーラトランジスタおよびその製造方法
US20210036134A1 (en) Bipolar Transistor and Production Method Therefor
JP2000349088A (ja) 半導体装置及びその製造方法
JP6791828B2 (ja) ヘテロ接合バイポーラトランジスタおよびその製造方法
JP7480854B2 (ja) ヘテロ接合バイポーラトランジスタおよびその製造方法
JP6447322B2 (ja) 半導体素子及び半導体素子の製造方法
US11798995B2 (en) Hetero-junction bipolar transistor and method for manufacturing the same
JP6235451B2 (ja) ヘテロ接合バイポーラトランジスタおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941872

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18554309

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023520649

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941872

Country of ref document: EP

Kind code of ref document: A1