WO2022237642A1 - 磷酸铁锂正极材料及其制备方法和锂离子电池 - Google Patents
磷酸铁锂正极材料及其制备方法和锂离子电池 Download PDFInfo
- Publication number
- WO2022237642A1 WO2022237642A1 PCT/CN2022/091178 CN2022091178W WO2022237642A1 WO 2022237642 A1 WO2022237642 A1 WO 2022237642A1 CN 2022091178 W CN2022091178 W CN 2022091178W WO 2022237642 A1 WO2022237642 A1 WO 2022237642A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- iron phosphate
- lithium iron
- positive electrode
- electrode material
- Prior art date
Links
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 title claims abstract description 141
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 84
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 21
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 18
- 238000002360 preparation method Methods 0.000 title abstract description 8
- 239000002245 particle Substances 0.000 claims abstract description 36
- 239000000126 substance Substances 0.000 claims abstract description 23
- 238000009826 distribution Methods 0.000 claims abstract description 17
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 10
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 9
- 102220043159 rs587780996 Human genes 0.000 claims abstract description 9
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 9
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 7
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 6
- 229910052718 tin Inorganic materials 0.000 claims abstract description 6
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 6
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 6
- 239000002002 slurry Substances 0.000 claims description 74
- 239000010406 cathode material Substances 0.000 claims description 58
- 238000000034 method Methods 0.000 claims description 51
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 21
- 229910052744 lithium Inorganic materials 0.000 claims description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 20
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 20
- 239000003966 growth inhibitor Substances 0.000 claims description 20
- 229910052799 carbon Inorganic materials 0.000 claims description 19
- 239000000047 product Substances 0.000 claims description 18
- 239000004576 sand Substances 0.000 claims description 16
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 15
- 239000002270 dispersing agent Substances 0.000 claims description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 13
- 239000010955 niobium Substances 0.000 claims description 12
- 239000002243 precursor Substances 0.000 claims description 12
- 238000005245 sintering Methods 0.000 claims description 12
- 229910003002 lithium salt Inorganic materials 0.000 claims description 11
- 159000000002 lithium salts Chemical class 0.000 claims description 11
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 10
- 239000012298 atmosphere Substances 0.000 claims description 10
- 239000003795 chemical substances by application Substances 0.000 claims description 10
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 9
- SNKMVYBWZDHJHE-UHFFFAOYSA-M lithium;dihydrogen phosphate Chemical compound [Li+].OP(O)([O-])=O SNKMVYBWZDHJHE-UHFFFAOYSA-M 0.000 claims description 9
- 150000002505 iron Chemical class 0.000 claims description 8
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 claims description 8
- 239000000243 solution Substances 0.000 claims description 8
- 238000005406 washing Methods 0.000 claims description 8
- 238000003801 milling Methods 0.000 claims description 7
- 239000012452 mother liquor Substances 0.000 claims description 7
- 239000013589 supplement Substances 0.000 claims description 7
- 229910011570 LiFe 1-x Inorganic materials 0.000 claims description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 6
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 claims description 6
- 239000011572 manganese Substances 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 239000011574 phosphorus Substances 0.000 claims description 6
- 230000001502 supplementing effect Effects 0.000 claims description 6
- JMXKSZRRTHPKDL-UHFFFAOYSA-N titanium ethoxide Chemical compound [Ti+4].CC[O-].CC[O-].CC[O-].CC[O-] JMXKSZRRTHPKDL-UHFFFAOYSA-N 0.000 claims description 6
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 5
- 239000008103 glucose Substances 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 239000011777 magnesium Substances 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- 238000001694 spray drying Methods 0.000 claims description 5
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical group [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 4
- 239000012267 brine Substances 0.000 claims description 4
- REKWWOFUJAJBCL-UHFFFAOYSA-L dilithium;hydrogen phosphate Chemical compound [Li+].[Li+].OP([O-])([O-])=O REKWWOFUJAJBCL-UHFFFAOYSA-L 0.000 claims description 4
- 239000011790 ferrous sulphate Substances 0.000 claims description 4
- 235000003891 ferrous sulphate Nutrition 0.000 claims description 4
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims description 4
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims description 4
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 claims description 4
- YHBDIEWMOMLKOO-UHFFFAOYSA-I pentachloroniobium Chemical compound Cl[Nb](Cl)(Cl)(Cl)Cl YHBDIEWMOMLKOO-UHFFFAOYSA-I 0.000 claims description 4
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 claims description 4
- 239000002904 solvent Substances 0.000 claims description 4
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 claims description 4
- 229910021380 Manganese Chloride Inorganic materials 0.000 claims description 3
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 claims description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 3
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 3
- 229910052789 astatine Inorganic materials 0.000 claims description 3
- 229960002089 ferrous chloride Drugs 0.000 claims description 3
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 claims description 3
- 239000011565 manganese chloride Substances 0.000 claims description 3
- 235000002867 manganese chloride Nutrition 0.000 claims description 3
- 229940099607 manganese chloride Drugs 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 229920002401 polyacrylamide Polymers 0.000 claims description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 3
- 235000019333 sodium laurylsulphate Nutrition 0.000 claims description 3
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 claims description 3
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 claims description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 2
- 229910002651 NO3 Inorganic materials 0.000 claims description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 2
- 229920002472 Starch Polymers 0.000 claims description 2
- 229930006000 Sucrose Natural products 0.000 claims description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 2
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 claims description 2
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 claims description 2
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 claims description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 2
- 229940011182 cobalt acetate Drugs 0.000 claims description 2
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 claims description 2
- 229910001981 cobalt nitrate Inorganic materials 0.000 claims description 2
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 claims description 2
- 229940062993 ferrous oxalate Drugs 0.000 claims description 2
- 229920003063 hydroxymethyl cellulose Polymers 0.000 claims description 2
- 229940031574 hydroxymethyl cellulose Drugs 0.000 claims description 2
- OWZIYWAUNZMLRT-UHFFFAOYSA-L iron(2+);oxalate Chemical compound [Fe+2].[O-]C(=O)C([O-])=O OWZIYWAUNZMLRT-UHFFFAOYSA-L 0.000 claims description 2
- 229910001386 lithium phosphate Inorganic materials 0.000 claims description 2
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 claims description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 claims description 2
- 229940099596 manganese sulfate Drugs 0.000 claims description 2
- 239000011702 manganese sulphate Substances 0.000 claims description 2
- 235000007079 manganese sulphate Nutrition 0.000 claims description 2
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 claims description 2
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 claims description 2
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 claims description 2
- 229910000476 molybdenum oxide Inorganic materials 0.000 claims description 2
- 235000019837 monoammonium phosphate Nutrition 0.000 claims description 2
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 claims description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 2
- 239000005011 phenolic resin Substances 0.000 claims description 2
- 229920001568 phenolic resin Polymers 0.000 claims description 2
- 229940093429 polyethylene glycol 6000 Drugs 0.000 claims description 2
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 claims description 2
- 235000019982 sodium hexametaphosphate Nutrition 0.000 claims description 2
- 235000019832 sodium triphosphate Nutrition 0.000 claims description 2
- 239000008107 starch Substances 0.000 claims description 2
- 235000019698 starch Nutrition 0.000 claims description 2
- 239000005720 sucrose Substances 0.000 claims description 2
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 claims description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 2
- 229910001887 tin oxide Inorganic materials 0.000 claims description 2
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 claims description 2
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 claims description 2
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 claims description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims 2
- QNVRIHYSUZMSGM-UHFFFAOYSA-N hexan-2-ol Chemical compound CCCCC(C)O QNVRIHYSUZMSGM-UHFFFAOYSA-N 0.000 claims 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 claims 1
- 229960001031 glucose Drugs 0.000 claims 1
- 229960003511 macrogol Drugs 0.000 claims 1
- 229940005657 pyrophosphoric acid Drugs 0.000 claims 1
- 239000011734 sodium Substances 0.000 claims 1
- 229910052708 sodium Inorganic materials 0.000 claims 1
- DAJSVUQLFFJUSX-UHFFFAOYSA-M sodium;dodecane-1-sulfonate Chemical group [Na+].CCCCCCCCCCCCS([O-])(=O)=O DAJSVUQLFFJUSX-UHFFFAOYSA-M 0.000 claims 1
- 230000014759 maintenance of location Effects 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 17
- 230000008569 process Effects 0.000 description 17
- 239000000203 mixture Substances 0.000 description 16
- 238000012360 testing method Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 10
- 239000012299 nitrogen atmosphere Substances 0.000 description 10
- 239000000843 powder Substances 0.000 description 10
- 239000012535 impurity Substances 0.000 description 8
- 239000012071 phase Substances 0.000 description 8
- 239000011164 primary particle Substances 0.000 description 8
- 238000003860 storage Methods 0.000 description 8
- 230000009286 beneficial effect Effects 0.000 description 7
- 238000000227 grinding Methods 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 238000010532 solid phase synthesis reaction Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000005054 agglomeration Methods 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229920000604 Polyethylene Glycol 200 Polymers 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000011056 performance test Methods 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 239000012798 spherical particle Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 2
- QSNQXZYQEIKDPU-UHFFFAOYSA-N [Li].[Fe] Chemical compound [Li].[Fe] QSNQXZYQEIKDPU-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910000398 iron phosphate Inorganic materials 0.000 description 2
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- JLFNLZLINWHATN-UHFFFAOYSA-N pentaethylene glycol Chemical compound OCCOCCOCCOCCOCCO JLFNLZLINWHATN-UHFFFAOYSA-N 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 1
- 239000008118 PEG 6000 Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920002584 Polyethylene Glycol 6000 Polymers 0.000 description 1
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000006257 cathode slurry Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000011267 electrode slurry Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229940113115 polyethylene glycol 200 Drugs 0.000 description 1
- 229940068918 polyethylene glycol 400 Drugs 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
- H01M4/382—Lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1397—Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present application relates to the field of cathode materials, in particular to a lithium iron phosphate cathode material, a preparation method thereof, and a lithium ion battery.
- Lithium iron phosphate cathode materials and ternary cathode materials are currently the two main cathode materials used in lithium-ion batteries. Based on their respective characteristics, there are obvious distinctions in application fields. Lithium iron phosphate cathode material has good safety and long cycle life, so it is widely used in the field of large passenger cars, while ternary cathode material has high energy density, and is widely used in the field of passenger vehicles.
- the structure of lithium iron phosphate belongs to the orthorhombic olivine structure, and its volume change during charging and discharging is very small (6.8%), so it has excellent cycle performance, but its poor electron and ion
- the conductivity also leads to its poor low temperature and rate performance, which makes it difficult to meet the requirements of power batteries for low temperature and rate.
- Aiming at the poor low-temperature performance and rate performance of lithium iron phosphate cathode materials many improvements have been made and some progress has been made.
- the low-temperature performance and rate performance of lithium iron phosphate cathode materials are not as good as those of ternary cathode materials. Compared with the material, there is still a certain gap.
- the preparation method of lithium iron phosphate mainly includes solid-phase method and hydrothermal synthesis method (referred to as "wet method").
- the solid-phase method is to mix lithium salt, phosphorus source, iron source and carbon source uniformly by mechanical mixing, and then
- the lithium iron phosphate cathode material is obtained by spraying, sintering and air crushing processes. Due to the relatively mature technology and low cost, the prepared lithium iron phosphate has a high capacity and high compaction. It is currently adopted by most cathode manufacturers.
- Lithium iron phosphate synthesized by solid phase method has the problems of low temperature and poor rate performance due to its large particle size.
- the wet synthesis method has a greater advantage in low temperature and rate performance due to the smaller size of the obtained lithium iron phosphate.
- the wet synthesis method has more heterogeneous phases in the lithium iron phosphate, and the synthesis process There are many influencing factors and poor consistency, so the capacity is low, and due to the presence of impurity phases, the content of magnetic substances is high, and the high temperature and cycle performance are poor.
- the particle size of lithium iron phosphate prepared by wet synthesis is smaller, most of the primary particles are above 160nm, and the agglomeration is more serious.
- the low temperature and rate performance are improved compared with the solid-phase method, they are still Difficult to meet the requirements of the power battery.
- the purpose of this application is to provide a lithium iron phosphate cathode material and its preparation method and lithium ion Battery.
- the first aspect of the present application provides a lithium iron phosphate positive electrode material
- the expression of the lithium iron phosphate positive electrode material is LiFe 1-x M x PO 4 /C, where 0 ⁇ x ⁇ 0.05
- M is at least one element selected from Mg, Al, Zr, Ti, Co, V, Mn, W, Sn, Nb and Mo;
- the second aspect of the present application provides a method for preparing a lithium iron phosphate cathode material, the method comprising:
- the lithium salt, phosphoric acid and iron salt are uniformly mixed under inert atmosphere conditions and then subjected to a hydrothermal reaction to obtain the first slurry;
- the precursor is sintered, and the sintered product is subjected to air crushing treatment to obtain a lithium iron phosphate positive electrode material.
- the third aspect of the present invention provides a lithium iron phosphate positive electrode material prepared by the above method.
- the fourth aspect of the present invention provides a lithium ion battery, which includes the lithium iron phosphate cathode material as described above.
- the present application has the following advantages:
- the lithium iron phosphate positive electrode material of the present application has few impurity phases, small particle size of primary particles, good dispersibility, and narrow particle size distribution range. When used as a lithium battery positive electrode material, it is beneficial to improve the low temperature performance and rate of lithium ion batteries performance;
- the content of the magnetic substance of the lithium iron phosphate positive electrode material of the present application is low, when used as the lithium ion battery positive electrode material, helps to reduce the self-discharge of the lithium ion battery, improves the high temperature storage performance and cycle performance of the lithium ion battery;
- the bulk ion doping of the grain growth inhibitor improves the electronic conductance and ion conductance, It is conducive to the improvement of the rate performance, and by adding lithium supplements, the content of impurity phases and magnetic substances in the lithium iron phosphate cathode material is effectively reduced, which is conducive to improving the self-discharge performance, high-temperature storage performance and cycle performance.
- Fig. 1 is the scanning electron microscope (SEM) picture of the lithium iron phosphate cathode material that the application embodiment 1 makes, and the magnification is 100k;
- Fig. 2 is the scanning electron microscope (SEM) picture of the lithium iron phosphate cathode material that the application embodiment 2 makes, and the magnification is 100k;
- Fig. 3 is the scanning electron microscope (SEM) picture of the lithium iron phosphate cathode material that the application embodiment 3 makes, and the magnification is 100k;
- SEM 4 is a scanning electron microscope (SEM) image of the lithium iron phosphate cathode material prepared in Comparative Example 1 of the present application, with a magnification of 100k.
- the first aspect of the present application provides a lithium iron phosphate positive electrode material, the expression of the lithium iron phosphate positive electrode material is LiFe 1-x M x PO 4 /C, where 0 ⁇ x ⁇ 0.05; M is selected from Mg, At least one element of Al, Zr, Ti, Co, V, Mn, W, Sn, Nb and Mo;
- the lithium iron phosphate cathode material has small particle size, good dispersibility and narrow particle size distribution range. It should be noted that, in this application, the expression of the lithium iron phosphate positive electrode material is LiFe 1-x M x PO 4 /C. It can be understood that the structure of the lithium iron phosphate positive electrode material is C-coated LiFe 1-x M x PO 4 .
- the content of carbon in the lithium iron phosphate positive electrode material is 1wt%-3.5wt%.
- the total weight of the lithium iron positive electrode material, the content of carbon in the lithium iron phosphate positive electrode material is 1.4wt%-3.2wt%.
- the lithium iron phosphate positive electrode material has few impurity phases, small particle size of primary particles, good dispersibility, and narrow particle size distribution range. When used as a lithium battery positive electrode material, it is beneficial to improve the low temperature performance and rate performance of the lithium ion battery.
- the content of the magnetic substance in the lithium iron phosphate positive electrode material is 850 ppm by weight to 900 ppm by weight. In some other embodiments of the present application, the content of the magnetic substance in the lithium iron phosphate positive electrode material is 850 Weight ppm-885 weight ppm.
- the lithium iron phosphate positive electrode material has a low content of magnetic substances, and when used as a lithium ion battery positive electrode material, it is beneficial to reduce the self-discharge of the lithium ion battery and improve the high temperature storage performance and cycle performance of the lithium ion battery.
- the content of the magnetic substances involved in this application is obtained by testing with a JSII-G1 magnetic substance analyzer.
- M is selected from at least one element among Mg, Al, Zr, Ti, Co, V, Mn, W, Sn, Nb and Mo, and in some embodiments of the present application, M is selected from Ti , at least one element of V and Nb.
- the second aspect of the present application provides a method for preparing a lithium iron phosphate cathode material, the method comprising:
- the lithium salt, phosphoric acid and iron salt are uniformly mixed under inert atmosphere conditions and then subjected to a hydrothermal reaction to obtain the first slurry;
- the precursor is sintered, and the sintered product is subjected to air crushing treatment to obtain a lithium iron phosphate positive electrode material.
- in-situ carbon coating and metal doping can improve the rate performance of lithium iron phosphate cathode materials to a certain extent, it is difficult to form effective in-situ coating and metal doping in the wet synthesis process.
- Ion doping the main reasons are as follows: 1. If a carbon source is added during the wet synthesis process, because the reaction temperature is not high, it is difficult to carbonize in situ. In the subsequent washing process, because the carbon source is water-soluble, it will still be washed away 2. Metal ion doping can only diffuse into the interior of the material through the subsequent sintering process, and the reaction conditions in the hydrothermal synthesis stage are not enough to allow metal ions to enter the interior of the material.
- the inventors of the present application have found that by using a dispersant and a grain growth inhibitor in combination with sand milling, the synergistic effect between the three ensures that the small-sized particles produced during the sand milling process are not agglomerated on the one hand and prevents the Its agglomerated growth in the subsequent sintering process avoids the formation of molten large particles.
- the bulk ion doping of the grain growth inhibitor improves the electronic conductance and ion conductance, which is beneficial to the improvement of the rate performance.
- the carbon source is added during the sanding process, because the carbon source is water-soluble, so the mixing and coating at the molecular level can be achieved.
- the amounts of the lithium salt, phosphoric acid and iron salt meet: the molar ratio of lithium, phosphorus and iron is 2.8-3.2:1:1.
- the amount of the organic carbon source is 8wt%-16wt%; the amount of the dispersant is 0.5wt%-5wt%; the grain The dosage of the growth inhibitor is 0.1wt%-6wt%. In some other embodiments of the present application, based on the dry basis of the second slurry, the dosage of the grain growth inhibitor is 0.3wt%-5wt%.
- the amount of the lithium supplementing agent is 0.2wt%-5.5wt%.
- the lithium supplement is used in an amount of 0.5wt%-5wt%.
- based on the dry basis of the second slurry means to calculate based on the powder mass in the second slurry
- “based on the dry basis of the third slurry” means to calculate The powder mass in the third slurry is used as the base number for calculation.
- the powder quality in the second slurry is obtained by calculating the product of the quality of the second slurry and the solid content of the second slurry; the powder quality in the third slurry is calculated by the quality of the third slurry and The product of the solid content of the third slurry is calculated and obtained.
- the solid content of the second slurry and the third slurry can be obtained by testing at 160° C. with a moisture tester.
- the lithium salt is a soluble lithium salt, for example, the lithium salt can be selected from at least one of lithium chloride, lithium sulfate, lithium hydroxide and lithium nitrate.
- the iron salt may be at least one selected from ferrous sulfate, ferrous chloride, ferrous nitrate and ferrous oxalate.
- the organic carbon source in step (3), can be selected from sucrose, water-soluble phenolic resin, glucose, polyethylene glycol 6000 (ie PEG6000), hydroxymethyl cellulose, polyacrylamide ( (C 3 H 5 NO) n , weight average molecular weight of 5 million g/mol-12 million g/mol), starch and polyvinyl alcohol (weight average molecular weight of 200,000 g/mol-700,000 g/mol) at least one.
- the dispersant is selected from sodium dodecyl sulfate, polyethylene glycol 200 (ie PEG200), polyethylene glycol 400 (ie PEG400), sodium lauryl sulfate, methyl At least one of amyl alcohol, sodium tripolyphosphate, sodium hexametaphosphate and sodium pyrophosphate. Adding a dispersant during the sand grinding process can effectively inhibit the secondary agglomeration of small particles, which is beneficial to improve the low temperature and rate performance of the lithium iron phosphate cathode material.
- the grain growth inhibitor is selected from magnesium chloride, magnesium nitrate, aluminum nitrate, zirconium nitrate, zirconium oxide, tetraethyl titanate, ethyl titanate, cobalt acetate, cobalt nitrate, di At least one of vanadium, ammonium metavanadate, manganese nitrate, manganese chloride, manganese sulfate, niobium pentachloride, tungsten disulfide, tin chloride, tin oxide, molybdenum sulfide and molybdenum oxide; In a manner, the concentration of the grain growth inhibitor is 0.3wt%-5wt%.
- the grain growth inhibitor added in the process of sand grinding can play a role of "rolling crystal" in the subsequent sintering process, inhibiting the growth of particles, and at the same time providing metal ions entering the lithium iron phosphate lattice, improving the iron phosphate
- the electronic and ionic conductivity of the lithium cathode material is conducive to improving the low temperature and rate performance of the lithium iron phosphate cathode material.
- the lithium supplement agent is selected from at least one of lithium dihydrogen phosphate, lithium monohydrogen phosphate and lithium phosphate.
- the impurity phase in the lithium iron phosphate positive electrode material can be reduced, and the content of its magnetic substance can be reduced.
- the principle is: the phosphoric acid synthesized by hydrothermal process can be The interior of the lithium iron material is re-exposed. Under the action of the lithium supplement, the impurity iron phase inside the material can be re-converted into the lithium iron phosphate material through the subsequent sintering process, which effectively reduces the content of impurity phases and magnetic substances contained in the material. It is beneficial to improve the self-discharge performance, high-temperature storage performance and cycle performance of the lithium iron phosphate cathode material.
- the solvent in step (1), is water; in some embodiments of the application, lithium salt, phosphoric acid and iron salt are mixed uniformly under inert atmosphere conditions, which can be used in the application
- Inert gases include, but are not limited to, nitrogen or argon.
- the conditions of the hydrothermal reaction are not particularly limited, and conventional process conditions in this field can be referred to.
- the conditions of the hydrothermal reaction may include: a temperature of 130°C-200°C, The time is 2h-8h.
- the first slurry is a lithium iron phosphate slurry containing a reaction mother liquor obtained after a hydrothermal reaction.
- the pH of the first slurry is 5.5-7 .
- the washing specifically includes: removing the reaction mother liquor in the first slurry, and then washing the centrifuged product with a dilute brine solution;
- the dilute salt solution is selected from at least one of the aqueous solutions of lithium chloride, lithium nitrate, lithium dihydrogen phosphate, lithium monohydrogen phosphate and ammonium dihydrogen phosphate;
- the concentration of the aqueous solution is 0.01wt%-2wt%.
- the washing can be one wash or several step-by-step washes.
- sand grinding in step (3), can reduce the primary particle size of the lithium iron phosphate positive electrode material, which is beneficial to improve its low temperature and rate performance.
- the conditions of the sanding include: the line speed is 5m/s-15m/s, and the time is 0.5h-12h.
- the control of the primary particle size of the lithium iron phosphate positive electrode material can be achieved by controlling the linear speed of the sand mill and the time of the sand mill; Agglomeration: By adding a grain growth inhibitor, the growth of particles and the adhesion and agglomeration of particles can be inhibited in the subsequent sintering process.
- the inert atmosphere is a nitrogen atmosphere or a helium atmosphere.
- step (4) the spray drying is to evaporate the water in the third slurry through flash evaporation, so as to obtain secondary spherical particles assembled from primary particles.
- the conditions of the spray drying are not particularly limited, for example, the conditions of the spray drying may include: a solid content of 30-50wt%, a temperature of 90-105°C, and a time of 5-12h .
- the sintering conditions are not particularly limited, and conventional process conditions in the art may be referred to.
- the sintering conditions may include: a temperature of 650-760° C., and a time of 5-10 hours.
- the sintering is performed under an inert atmosphere condition, and the inert gas that can be used in this application includes but not limited to nitrogen or argon.
- the sintered product is secondary spherical particles assembled from primary particles; the air crushing is to break up the secondary spherical particles of the sintered product to obtain a dispersed lithium iron phosphate positive electrode Material primary granules.
- the third aspect of the present application provides a lithium iron phosphate positive electrode material prepared by the above method.
- the content of carbon in the lithium iron phosphate positive electrode material is 1wt%-3.5wt%. In some embodiments of the present application, based on the The total weight of the lithium iron phosphate positive electrode material, the content of carbon in the lithium iron phosphate positive electrode material is 1.4wt%-3.2wt%.
- M is at least one element selected from Ti, V and Nb.
- the fourth aspect of the present application provides a lithium ion battery, which includes the lithium iron phosphate cathode material as described above.
- the lithium iron phosphate cathode material of the present application shows excellent low-temperature performance, rate performance, high-temperature performance and cycle performance in lithium-ion batteries.
- the low-temperature capacity retention rate of the lithium iron phosphate cathode material at -20°C and 1C is 65%-80%. In some other embodiments of the application, the lithium iron phosphate cathode material is The low-temperature capacity retention rate at -20°C and 1C is 70%-80%. In other embodiments of the present application, the low-temperature capacity retention rate of the lithium iron phosphate cathode material at -20°C and 1C is 70%. -75%.
- the discharge capacity retention rate of the lithium iron phosphate positive electrode material at 15C rate is 75%-86%.
- the discharge capacity retention rate is 78%-86%.
- the discharge capacity retention rate of the lithium iron phosphate positive electrode material at a rate of 15C is 81%-84%.
- the high-temperature capacity remaining rate is 90%-99%. In some other embodiments of the present application, the lithium iron phosphate positive electrode material is After being stored at 60°C for 7 days, the high-temperature capacity remaining rate is 92%-99%. In other embodiments of the present application, after the lithium iron phosphate cathode material is stored at 60°C for 7 days, the high-temperature capacity remaining rate is 95%. -98.5%; In some embodiments of the present application, after the lithium iron phosphate positive electrode material is stored at 60°C for 7 days, the high temperature capacity recovery rate is 96.5%-102%.
- the iron phosphate After the lithium cathode material is stored at 60°C for 7 days, the high-temperature capacity recovery rate is 99.5%-102%. In other embodiments of the present application, after the lithium iron phosphate cathode material is stored at 60°C for 7 days, the high-temperature capacity recovery The rate is 100%-101%.
- the cycle capacity retention rate is above 95.5%. In some other embodiments of the present application, the lithium iron phosphate positive electrode material is After 500 cycles, the cycle capacity retention rate is above 96%. In other embodiments of the present application, the cycle capacity retention rate of the lithium iron phosphate cathode material is 96.8%-97.5% after 500 cycles at 1C rate.
- the room temperature in this application refers to 25 ⁇ 2°C.
- XPS spectrum It is obtained by testing an Escalab 250Xi X-ray photoelectron spectrometer equipped with Thermo Avantage V5.926 software purchased from Thermo Scientific, wherein the test conditions include: analysis area: a circle with a diameter of about 800 ⁇ m, information Depth: about 10nm; detection limit of atomic number percentage: 0.1%; test environment: temperature is 23.6°C, relative humidity is 50%, vacuum degree is 5.0 ⁇ 10 -8 Torr; voltage is 15kV, current is 23mA, power is 350W ; The X-ray scanning angle is 45.0 ⁇ ;
- the electrochemical performance of the lithium iron phosphate cathode material was tested using a 2025-type button battery.
- the preparation process of the 2025-type button battery is as follows:
- Electrode preparation Fully mix lithium iron phosphate cathode material, acetylene black, and polyvinylidene fluoride (PVDF) with an appropriate amount of N-methylpyrrolidone (NMP) at a mass ratio of 100:1.5:2.5 to form a uniform cathode slurry
- PVDF polyvinylidene fluoride
- NMP N-methylpyrrolidone
- the positive electrode slurry was coated on an aluminum foil and dried at 100° C. for 12 hours to make a positive electrode sheet with a diameter of 14 mm, wherein the loading capacity of the lithium iron phosphate positive electrode material was 5-10 mg/cm 2 .
- Battery assembly In an argon-filled glove box with water content and oxygen content less than 5ppm, assemble the positive pole piece, separator, negative pole piece and electrolyte into a 2025-type button battery, and let it stand for 6 hours.
- a metal lithium sheet with a diameter of 17 mm and a thickness of 1 mm was used as the negative electrode sheet; a polyethylene porous membrane (Celgard 2325) with a thickness of 25 ⁇ m was used as the separator; 1 mol/L LiPF 6 , ethylene carbonate (EC) and Equal volume mixture of diethyl carbonate (DEC).
- the electrochemical performance test of the 2025-type button battery was carried out using the Shenzhen Newwell battery test system.
- Low temperature capacity retention rate At room temperature, charge the battery at 0.1C to 3.8V at a constant current, then discharge at 0.1C to 2.5V at a constant current, charge the battery again at 0.1C to 3.8V at a constant current, and then After constant current discharge to 2.5V at 0.1C, charge to 3.8V at 0.5C to obtain the charging specific capacity of the battery at room temperature and 0.5C;
- the discharge specific capacity of the battery at -20°C and 1C is obtained by current discharge to 2.0V; the ratio of the discharge specific capacity of the battery at -20°C and 1C to the charge specific capacity of the battery at room temperature and 0.5C is the low temperature of the battery capacity retention;
- Discharge capacity retention rate charge to 3.8V at 0.2C rate, cut-off current is 0.02C, and then CC discharge to 2.5V at 15C rate, the ratio of discharge specific capacity at 15C rate to discharge specific capacity at 0.2C rate is is the discharge capacity retention rate at 15C rate;
- High temperature capacity remaining rate and high temperature capacity recovery rate fully charge the battery at 0.1C, then store the battery in an oven at 60°C for 7 days, discharge it to 2.5V at 0.1C after taking it out, and then charge it to 2.5V at 0.1C 3.8V, then discharged to 2.5V; after high temperature storage, the ratio of the first discharge specific capacity of the battery discharged to 2.5V at 0.1C to the discharge specific capacity before storage is the high temperature capacity remaining rate; Charge to 3.8V, and then discharge to 2.5V The ratio of the discharge specific capacity to the discharge specific capacity before storage is the high temperature capacity recovery rate of the battery;
- Cycle capacity retention at room temperature, after the battery is charged and discharged 500 times at a rate of 1C, the ratio of the specific capacity of the 500th discharge to the specific capacity of the first discharge is the cycle capacity retention.
- LiFe 0.99 Nb 0.01 PO 4 /C is obtained as a lithium iron phosphate cathode material.
- the precursor was placed in a nitrogen atmosphere, and sintered at 720°C for 8 hours. After the sintered product was subjected to air crushing, the lithium iron phosphate cathode material LiFe 0.975 V 0.025 PO 4 /C was obtained.
- the precursor was placed in a nitrogen atmosphere, and sintered at 720°C for 8 hours. After the sintered product was subjected to air crushing, the lithium iron phosphate cathode material LiFe 0.99 Ti 0.01 PO 4 /C was obtained.
- the lithium iron phosphate cathode material was prepared according to the method in Example 1, except that an equimolar amount of manganese chloride was used to replace the niobium pentachloride in step (3) to obtain the lithium iron phosphate cathode material LiFe 0 . 99 Mn 0.01 PO 4 /C.
- the lithium iron phosphate positive electrode material was prepared according to the method of Example 1, except that, based on the dry basis of the second slurry, the amount of PEG200 (dispersant) was 0.4wt%, to obtain the lithium iron phosphate positive electrode material LiFe 0.99 Nb 0.01 PO 4 /C.
- the lithium iron phosphate positive electrode material was prepared according to the method in Example 2, except that, based on the dry basis of the second slurry, the amount of vanadium pentoxide (grain growth inhibitor) was 0.25 wt%, to obtain a lithium iron phosphate positive electrode Material LiFe 0.996 V 0.004 PO 4 /C.
- the lithium iron phosphate positive electrode material was prepared according to the method of Example 1, except that no dispersant and grain growth inhibitor were added in step (3), to obtain the lithium iron phosphate positive electrode material LiFePO 4 /C.
- the lithium iron phosphate positive electrode material was prepared according to the method of Example 1, except that no dispersant and grain growth inhibitor were added in step (3), and no sand grinding was performed to obtain the lithium iron phosphate positive electrode material LiFePO 4 /C.
- the lithium iron phosphate positive electrode material was prepared according to the method of Example 1, except that no sand grinding was performed in step (3), and the lithium iron phosphate positive electrode material LiFe 0..99 Nb 0.01 PO 4 /C was obtained.
- the lithium iron phosphate positive electrode material was prepared according to the method of Example 1, except that no lithium replenishing agent was added in step (4) to obtain the lithium iron phosphate positive electrode material LiFe 0.99 Nb 0.01 PO 4 /C.
- the present application has tested the scanning electron microscope images of the lithium iron phosphate cathode materials prepared in the above-mentioned examples and comparative examples, and exemplarily provides the SEM pictures of the lithium iron phosphate cathode materials prepared in Examples 1-3 and Comparative Example 1 , and the results are shown in Figures 1-4 respectively. It can be seen from Figures 1-4 that the primary particle size of the lithium iron phosphate material of the present application is small and the particle size distribution is uniform.
- the present application tested the particle size distribution and the content of magnetic substances of the lithium iron phosphate cathode materials prepared in the above examples and comparative examples, and the specific test results are shown in Table 1.
- Example 1 34 57 104 1.23 885 Example 2 twenty three 49 98 1.53 850 Example 3 42 65.2 110 1.04 865 Example 4 38 58 137 1.71 900 Example 5 35 61 152 1.92 890 Example 6 36 62 135 1.60 888 Comparative example 1 15 108 350 3.10 1165 Comparative example 2 35 98 400 3.72 2950 Comparative example 3 85 115 225 1.21 1205 Comparative example 4 34 56 105 1.27 2498
- the method for preparing the lithium iron phosphate cathode material of the present application can obtain small particle size, good dispersibility, narrow particle size distribution and Lithium iron phosphate cathode material with low content of magnetic substances.
- the present application tested the electrochemical properties of the lithium iron phosphate cathode materials prepared in the above examples and comparative examples, including: low-temperature capacity retention rate at -20°C and 1C, discharge capacity retention rate at 15C rate, storage at 60°C The high temperature capacity remaining rate and high temperature capacity recovery rate for 7 days, and the cycle capacity retention rate for 500 cycles at 1C rate, the specific test results are shown in Table 2.
- the method for preparing lithium iron phosphate positive electrode material of the present application can obtain excellent rate performance, low temperature performance and high temperature performance by combining dispersants, grain growth inhibitors, lithium supplements and sand milling. Lithium iron phosphate cathode material.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
编号 | D10 | D50 | D90 | (D90-D10)/D50 | 磁性物质/重量ppm |
实施例1 | 34 | 57 | 104 | 1.23 | 885 |
实施例2 | 23 | 49 | 98 | 1.53 | 850 |
实施例3 | 42 | 65.2 | 110 | 1.04 | 865 |
实施例4 | 38 | 58 | 137 | 1.71 | 900 |
实施例5 | 35 | 61 | 152 | 1.92 | 890 |
实施例6 | 36 | 62 | 135 | 1.60 | 888 |
对比例1 | 15 | 108 | 350 | 3.10 | 1165 |
对比例2 | 35 | 98 | 400 | 3.72 | 2950 |
对比例3 | 85 | 115 | 225 | 1.21 | 1205 |
对比例4 | 34 | 56 | 105 | 1.27 | 2498 |
Claims (20)
- 一种磷酸铁锂正极材料,其中,所述磷酸铁锂正极材料的表达式为LiFe 1-xM xPO 4/C,式中,0<x≤0.05;M选自Mg、Al、Zr、Ti、Co、V、Mn、W、Sn、Nb和Mo中的至少一种元素;其中,所述磷酸铁锂正极材料的粒径分布满足:(D90-D10)/D50=1-2.17;所述磷酸铁锂正极材料中磁性物质的含量为850重量ppm-900重量ppm。
- 根据权利要求1所述的磷酸铁锂正极材料,其中,基于所述磷酸铁锂正极材料的总重量,所述磷酸铁锂正极材料中碳的含量为1wt%-3.5wt%。
- 根据权利要求1或2所述的磷酸铁锂正极材料,其中,基于所述磷酸铁锂正极材料的总重量,所述磷酸铁锂正极材料中碳的含量为1.4wt%-3.2wt%。
- 根据权利要求1-3中任一项所述的磷酸铁锂正极材料,其中,所述磷酸铁锂正极材料中磁性物质的含量为850重量ppm-885重量ppm。
- 根据权利要求1-4中任一项所述的磷酸铁锂正极材料,其中,M选自Ti、V和Nb中的至少一种元素。
- 根据权利要求1-5中任一项所述的磷酸铁锂正极材料,其中,所述磷酸铁锂正极材料的粒径分布满足:(D90-D10)/D50=1-1.55。
- 一种制备磷酸铁锂正极材料的方法,其中,所述方法包括:(1)在溶剂的存在下,将锂盐、磷酸和铁盐在惰性气氛条件下混合后进行水热反应,得到第一浆料;(2)将所述第一浆料进行洗涤,得到第二浆料;(3)向所述第二浆料中加入有机碳源、分散剂和晶粒生长抑制剂,在惰性气氛条件下进行砂磨,得到第三浆料;(4)将所述第三浆料与补锂剂混合,然后进行喷雾干燥,得到前驱体;(5)将所述前驱体进行烧结,烧结产物经气碎处理后,得到磷酸铁锂正极材料。
- 根据权利要求7所述的方法,其中,所述锂盐、所述磷酸和所述铁盐的用量满足:锂元素、磷元素和铁元素的摩尔比为2.8-3.2:1:1;以所述第二浆料的干基计,所述有机碳源用量为8wt%-16wt%;以所述第二浆料的干基计,所述分散剂的用量为0.5wt%-5wt%;以所述第二浆料的干基计,所述晶粒生长抑制剂的用量为0.1wt%-6wt%;以所述第三浆料的干基计,所述补锂剂的用量为0.2wt%-5.5wt%。
- 根据权利要求7或8所述的方法,其中,以所述第二浆料的干基计,所述晶粒生长抑制剂的用量为0.3wt%-5wt%。
- 根据权利要求7-9中任一项所述的方法,其中,以所述第三浆料的干基计,所述补锂剂的用量为0.5wt%-5wt%。
- 根据权利要求7-10中任一项所述的方法,其中,所述锂盐选自氯化锂、硫酸锂、氢氧化锂和硝酸锂中的至少一种;所述铁盐选自硫酸亚铁、氯化亚铁、硝酸亚铁和草酸亚铁中的至少一种。
- 根据权利要求7-11中任一项所述的方法,其中,所述有机碳源选自蔗糖、水溶性酚醛树脂、葡萄糖、聚乙二醇6000、羟甲基纤维素、聚丙烯酰胺、淀粉和聚乙烯醇中的至少一种,其中,所述聚丙烯酰胺的重均分子量为500万g/mol-1200万g/mol,所述聚乙烯醇的重均分子量为20万g/mol-70万g/mol;所述分散剂选自十二烷基磺酸钠、聚乙二醇200、聚乙二醇400、十二烷基硫酸钠、甲基戊醇、三聚磷酸钠、六偏磷酸钠和焦磷酸钠中的至少一种;所述晶粒生长抑制剂选自氯化镁、硝酸镁、硝酸铝、硝酸锆、氧化锆、钛酸四乙酯、钛酸乙酯、醋酸钴、硝酸钴、五氧化二钒、偏钒酸铵、硝酸锰、氯化锰、硫酸锰、五氯化铌、二硫化钨、氯化锡、氧化锡、硫化钼和氧化钼中的至少一种。
- 根据权利要求7-12中任一项所述的方法,其中,所述补锂剂选自磷酸二氢锂、磷酸一氢锂和磷酸锂中的至少一种。
- 根据权利要求7-13中任一项所述的方法,其中,步骤(1)中,所述水热反应的条件包括:温度为130℃-200℃,时间为2h-8h。
- 根据权利要求7-14中任一项所述的方法,其中,步骤(2)中,所述洗涤包括:去除所述第一浆料中的反应母液,然后使用稀盐水溶液对去除反应母液后的产物进行洗涤;所述稀盐水溶液选自氯化锂、硝酸锂、磷酸二氢锂、磷酸一氢锂和磷酸二氢铵的水溶液中的至少一种。
- 根据权利要求7-15中任一项所述的方法,其中,所述稀盐水溶液的浓度为0.01wt%-2wt%。
- 根据权利要求7-16中任一项所述的方法,其中,,步骤(3)中,所述砂磨的条件包括:线速度为5m/s-15m/s,时间为0.5h-12h。
- 根据权利要求7-17中任一项所述的方法,其中,步骤(4)中,所述喷雾干燥的条件包括:固含量为30wt%-50wt%,温度为90℃-105℃,时间为5h-12h;所述烧结的条件包括:温度为650℃-760℃,时间为5h-10h。
- 一种由权利要求7-18中任意一项所述的方法制备得到的磷酸铁锂正极材料。
- 一种锂离子电池,其特征在于,包括如权利要求1-6和19中任意一项所述的磷酸铁锂正极材料。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3218477A CA3218477A1 (en) | 2021-05-10 | 2022-05-06 | Lithium iron phosphate positive electrode material, preparation method therefor, and lithium ion battery |
EP22806608.0A EP4340069A1 (en) | 2021-05-10 | 2022-05-06 | Lithium iron phosphate positive electrode material, preparation method therefor, and lithium ion battery |
KR1020237042639A KR20240006652A (ko) | 2021-05-10 | 2022-05-06 | 리튬 인산철 양극 재료, 그 제조 방법, 및 리튬 이온 배터리 |
JP2023569872A JP2024517022A (ja) | 2021-05-10 | 2022-05-06 | リン酸鉄リチウム正極材料、その製造方法及びリチウムイオン電池 |
US18/505,077 US20240079573A1 (en) | 2021-05-10 | 2023-11-08 | Lithium iron phosphate positive electrode material, preparation method thereof, and lithium ion battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110506894.1A CN115332530A (zh) | 2021-05-10 | 2021-05-10 | 磷酸铁锂正极材料及其制备方法和锂离子电池 |
CN202110506894.1 | 2021-05-10 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/505,077 Continuation US20240079573A1 (en) | 2021-05-10 | 2023-11-08 | Lithium iron phosphate positive electrode material, preparation method thereof, and lithium ion battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022237642A1 true WO2022237642A1 (zh) | 2022-11-17 |
Family
ID=83912611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/091178 WO2022237642A1 (zh) | 2021-05-10 | 2022-05-06 | 磷酸铁锂正极材料及其制备方法和锂离子电池 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20240079573A1 (zh) |
EP (1) | EP4340069A1 (zh) |
JP (1) | JP2024517022A (zh) |
KR (1) | KR20240006652A (zh) |
CN (1) | CN115332530A (zh) |
CA (1) | CA3218477A1 (zh) |
WO (1) | WO2022237642A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116143099A (zh) * | 2023-02-24 | 2023-05-23 | 南京理工大学 | 联用乙二醇和十二烷基硫酸钠协同合成磷酸铁锂电极材料的方法 |
CN116344791A (zh) * | 2023-05-26 | 2023-06-27 | 天津巴莫科技有限责任公司 | 正极材料及其制备方法、正极片和电池 |
CN116845235A (zh) * | 2023-08-29 | 2023-10-03 | 深圳海辰储能控制技术有限公司 | 正极材料、正极极片及电池 |
EP4383364A1 (en) * | 2022-12-05 | 2024-06-12 | SK Innovation Co., Ltd. | Cathode active material for lithium secondary battery and lithium secondary battery including the same |
CN118641438A (zh) * | 2024-08-13 | 2024-09-13 | 四川富临新能源科技有限公司 | 一种检测磷酸铁锂浆料中磷酸二氢锂粒度的半定量分析方法 |
WO2024192621A1 (zh) * | 2023-03-20 | 2024-09-26 | 广东邦普循环科技有限公司 | 一种磷酸锰铁锂及制备其的方法与用途 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116169261A (zh) | 2022-12-22 | 2023-05-26 | 北京当升材料科技股份有限公司 | 单晶型多元正极材料及其制备方法和锂离子电池 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104871350A (zh) * | 2012-12-21 | 2015-08-26 | 陶氏环球技术有限责任公司 | 使用水/共溶剂混合物制造锂过渡金属橄榄石的方法 |
CN105358480A (zh) * | 2013-03-15 | 2016-02-24 | 庄信万丰股份有限公司 | 锂过渡金属磷酸盐二次聚集体及其制造方法 |
CN109192963A (zh) * | 2018-09-27 | 2019-01-11 | 桑顿新能源科技有限公司 | 磷酸铁锰锂复合材料与锂离子电池 |
CN109888201A (zh) * | 2019-01-03 | 2019-06-14 | 北京泰丰先行新能源科技有限公司 | 正极活性材料、含有该正极活性材料的正极和锂二次电池 |
US20200274161A1 (en) * | 2019-02-26 | 2020-08-27 | Christophe Michot | Positive electrode active material, positive electrode having the same and lithium secondary battery |
CN112340786A (zh) * | 2020-11-06 | 2021-02-09 | 惠州亿纬锂能股份有限公司 | 一种正极材料的改性方法、改性正极材料以及锂离子电池 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106935808B (zh) * | 2015-12-31 | 2020-02-07 | 比亚迪股份有限公司 | 正极活性材料及其制备方法以及电池浆料和正极与锂电池 |
CN110127646B (zh) * | 2019-06-17 | 2020-12-25 | 桑顿新能源科技(长沙)有限公司 | 磷酸铁锂正极材料及其制备方法和电池 |
-
2021
- 2021-05-10 CN CN202110506894.1A patent/CN115332530A/zh active Pending
-
2022
- 2022-05-06 CA CA3218477A patent/CA3218477A1/en active Pending
- 2022-05-06 EP EP22806608.0A patent/EP4340069A1/en active Pending
- 2022-05-06 WO PCT/CN2022/091178 patent/WO2022237642A1/zh active Application Filing
- 2022-05-06 KR KR1020237042639A patent/KR20240006652A/ko active Search and Examination
- 2022-05-06 JP JP2023569872A patent/JP2024517022A/ja active Pending
-
2023
- 2023-11-08 US US18/505,077 patent/US20240079573A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104871350A (zh) * | 2012-12-21 | 2015-08-26 | 陶氏环球技术有限责任公司 | 使用水/共溶剂混合物制造锂过渡金属橄榄石的方法 |
CN105358480A (zh) * | 2013-03-15 | 2016-02-24 | 庄信万丰股份有限公司 | 锂过渡金属磷酸盐二次聚集体及其制造方法 |
CN109192963A (zh) * | 2018-09-27 | 2019-01-11 | 桑顿新能源科技有限公司 | 磷酸铁锰锂复合材料与锂离子电池 |
CN109888201A (zh) * | 2019-01-03 | 2019-06-14 | 北京泰丰先行新能源科技有限公司 | 正极活性材料、含有该正极活性材料的正极和锂二次电池 |
US20200274161A1 (en) * | 2019-02-26 | 2020-08-27 | Christophe Michot | Positive electrode active material, positive electrode having the same and lithium secondary battery |
CN112340786A (zh) * | 2020-11-06 | 2021-02-09 | 惠州亿纬锂能股份有限公司 | 一种正极材料的改性方法、改性正极材料以及锂离子电池 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4383364A1 (en) * | 2022-12-05 | 2024-06-12 | SK Innovation Co., Ltd. | Cathode active material for lithium secondary battery and lithium secondary battery including the same |
CN116143099A (zh) * | 2023-02-24 | 2023-05-23 | 南京理工大学 | 联用乙二醇和十二烷基硫酸钠协同合成磷酸铁锂电极材料的方法 |
CN116143099B (zh) * | 2023-02-24 | 2024-03-19 | 南京理工大学 | 联用乙二醇和十二烷基硫酸钠协同合成磷酸铁锂电极材料的方法 |
WO2024192621A1 (zh) * | 2023-03-20 | 2024-09-26 | 广东邦普循环科技有限公司 | 一种磷酸锰铁锂及制备其的方法与用途 |
CN116344791A (zh) * | 2023-05-26 | 2023-06-27 | 天津巴莫科技有限责任公司 | 正极材料及其制备方法、正极片和电池 |
CN116344791B (zh) * | 2023-05-26 | 2023-08-08 | 天津巴莫科技有限责任公司 | 正极材料及其制备方法、正极片和电池 |
CN116845235A (zh) * | 2023-08-29 | 2023-10-03 | 深圳海辰储能控制技术有限公司 | 正极材料、正极极片及电池 |
CN116845235B (zh) * | 2023-08-29 | 2024-04-02 | 深圳海辰储能控制技术有限公司 | 正极材料、正极极片及电池 |
CN118641438A (zh) * | 2024-08-13 | 2024-09-13 | 四川富临新能源科技有限公司 | 一种检测磷酸铁锂浆料中磷酸二氢锂粒度的半定量分析方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20240006652A (ko) | 2024-01-15 |
EP4340069A1 (en) | 2024-03-20 |
US20240079573A1 (en) | 2024-03-07 |
JP2024517022A (ja) | 2024-04-18 |
CA3218477A1 (en) | 2022-11-17 |
CN115332530A (zh) | 2022-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022237642A1 (zh) | 磷酸铁锂正极材料及其制备方法和锂离子电池 | |
CN108390022B (zh) | 碳-金属氧化物复合包覆的锂电池三元正极材料、其制备方法及锂电池 | |
US11289691B2 (en) | Spherical or spherical-like cathode material for a lithium battery, a battery and preparation method and application thereof | |
CN106816600B (zh) | 一种磷酸锰铁锂类材料及其制备方法以及电池浆料和正极与锂电池 | |
US9440861B2 (en) | Method for modification of lithium ion battery positive electrode material | |
US9608265B2 (en) | Precursor of cathode active material for a lithium secondary battery, method for manufacturing the precursor, cathode active material, and lithium secondary battery including the cathode active material | |
CN106663805B (zh) | 非水电解质二次电池用正极活性物质 | |
WO2016188130A1 (zh) | 一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法 | |
JP5901019B2 (ja) | リチウムイオン電池用正極活物質の製造法 | |
US20100143800A1 (en) | Negative active material for lithium secondary battery, preparing method thereof and lithium secondary battery including the same | |
JP5804427B2 (ja) | 二次電池用正極材活物質の製造方法 | |
KR100687672B1 (ko) | 비수성 전해질 이차 전지 | |
JP5728515B2 (ja) | 二次電池用正極材料の製造方法 | |
CN115312885A (zh) | 正极补锂添加剂及其制备方法和应用 | |
Li et al. | Synthesis and electrochemical characterizations of LiMn2O4 prepared by high temperature ball milling combustion method with citric acid as fuel | |
CN115304104B (zh) | 锰系补锂添加剂及其制备方法和应用 | |
TWI651272B (zh) | 一種富鋰-鋰鎳錳氧化物陰極複合材料的製備方法及其用途 | |
JP5836461B1 (ja) | リチウム二次電池用正極材料 | |
CN111512478B (zh) | 非水电解质二次电池用正极活性物质的制造方法 | |
CN108023068B (zh) | 一种4.40v高电压型钴酸锂材料及其制备方法 | |
CN116936766A (zh) | 一种钠离子电池复合正极材料及其制备方法和应用 | |
WO2024007459A1 (zh) | 一种含磷物质包覆正极材料及其制备方法与应用 | |
JP2018041683A (ja) | オリビン型リン酸リチウム系正極材料の製造方法 | |
CN115995539A (zh) | 快离子导体包覆磷酸铁锂正极材料及其制备方法和应用 | |
JP7274125B2 (ja) | 全固体リチウムイオン二次電池用正極活物質および全固体リチウムイオン二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22806608 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3218477 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023569872 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202327083302 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022806608 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20237042639 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020237042639 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022806608 Country of ref document: EP Effective date: 20231207 |