WO2022227669A1 - Précurseur de phosphate de fer et procédé de préparation associé et son application - Google Patents

Précurseur de phosphate de fer et procédé de préparation associé et son application Download PDF

Info

Publication number
WO2022227669A1
WO2022227669A1 PCT/CN2021/142593 CN2021142593W WO2022227669A1 WO 2022227669 A1 WO2022227669 A1 WO 2022227669A1 CN 2021142593 W CN2021142593 W CN 2021142593W WO 2022227669 A1 WO2022227669 A1 WO 2022227669A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
iron phosphate
phosphate
source
preparation
Prior art date
Application number
PCT/CN2021/142593
Other languages
English (en)
Chinese (zh)
Inventor
李玲
李长东
阮丁山
唐盛贺
秦存鹏
殷磊
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to HU2200339A priority Critical patent/HUP2200339A1/hu
Publication of WO2022227669A1 publication Critical patent/WO2022227669A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/375Phosphates of heavy metals of iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of lithium ion battery materials, and in particular relates to an iron phosphate precursor and a preparation method and application thereof.
  • lithium iron phosphate occupies a large position in the battery matching of new energy special vehicles (including new energy logistics vehicles, new energy sanitation vehicles, and other special vehicles for new energy) due to its high safety. Proportion. Lithium iron phosphate has the advantages of good safety performance, long cycle life, environmental protection and safety, low manufacturing cost and high energy density, especially good safety performance.
  • the electrochemical performance of the positive electrode material of lithium iron phosphate battery is relatively stable. During the charging and discharging process, the structure of the battery is not easy to change, and there is very little combustion and explosion. Even under special conditions such as short circuit, overcharge, extrusion, and acupuncture, it is still relatively stable. Safety.
  • Iron phosphate is the precursor of lithium iron phosphate.
  • the commonly used synthesis method of iron phosphate is the precipitation method, that is, ferrous sulfate, hydrogen peroxide and ammonium dihydrogen phosphate are reacted to form iron phosphate precipitation.
  • the reaction process also requires ammonia water to control pH.
  • the whole process of the reaction method is complicated to operate, takes a long time, and generates a large amount of ammonia nitrogen wastewater, which is difficult to treat and increases the difficulty of environmental protection.
  • high compaction density iron phosphate is also a development direction, so corresponding high compaction iron phosphate precursors are required.
  • the tap density of the current iron phosphate precursor is not high, generally not more than 1.0 g/cm 3 .
  • the specific surface area of the current iron phosphate precursor is also relatively high, usually about 50m 2 /g. In order to reduce the specific surface area, most iron phosphate manufacturers use high temperature above 800 °C and prolong the sintering time to melt the iron phosphate, thereby making it anhydrous.
  • the specific surface area of iron phosphate is about 1.5-3m 2 /g, so as to reduce the internal pores of iron phosphate, but this process leads to increased energy consumption, and also causes serious sintering and agglomeration of materials, and the subsequent crushing process is difficult. Greatly reduce the production efficiency of enterprises.
  • the present invention discloses an environment-friendly and simple synthesis method, thereby preparing an iron phosphate precursor with high compaction density and low specific surface area.
  • the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art.
  • the present invention provides an iron phosphate precursor and its preparation method and application.
  • the iron phosphate precursor has high compacted density and low specific surface area, the tapped density can reach 1 g/cm 3 , and the specific surface area is less than 3 m 2 /g .
  • the present invention adopts the following technical solutions:
  • An iron phosphate precursor the microscopic morphology of the iron phosphate precursor is spherical, the particle size D50 is 10-20 ⁇ m, the specific surface area is 1-3 m 2 /g, and the tap density is 1-1.5 g/cm 3 .
  • the iron phosphate precursor is mainly prepared from the following raw materials: an iron source and a phosphorus source; the molar ratio of the iron element in the iron source and the phosphorus element in the phosphorus source is (0.95-1.02):1; the iron phosphate
  • the precursor carries two crystal waters.
  • the phosphorus source is at least one of phosphoric acid, phosphorous acid, sodium hypophosphite, ammonium dihydrogen phosphate or ammonium phosphate.
  • the phosphorus source is phosphoric acid.
  • the iron source is one of iron powder, iron sheet, ferrous chloride, ferric chloride, ferrous sulfate, ferric nitrate or ferrous acetate.
  • the iron source is iron nitrate.
  • a preparation method of an iron phosphate precursor comprising the following steps:
  • ferric phosphate slurry is filtered to obtain ferric phosphate precipitation
  • the phosphorus source is at least one of phosphoric acid, phosphorous acid, sodium hypophosphite, ammonium dihydrogen phosphate or ammonium phosphate.
  • the phosphorus source is phosphoric acid.
  • the iron source is one of iron powder, iron sheet, ferrous chloride, ferric chloride, ferrous sulfate, ferric nitrate or ferrous acetate.
  • the iron source is one of iron powder, iron sheet, ferrous chloride, ferrous sulfate or ferrous acetate
  • an oxidant needs to be added after the iron source and the phosphorus source are mixed, and the oxidant is At least one of hydrogen peroxide, sodium peroxide and ammonium persulfate; more preferably hydrogen peroxide.
  • the iron source is iron nitrate.
  • the molar ratio of iron element and phosphorus element in the molten metal is (0.95-1.02):1, more preferably (0.965-0.99):1.
  • the substance used for adjusting the pH to -1 to 2.5 is sulfuric acid.
  • the pH is -0.2 to 1.0.
  • the stirring speed is 300-500 r/min, more preferably 350-450 r/min.
  • the temperature is raised to a temperature of 70-100°C, more preferably 80-95°C.
  • the drying temperature is 60-110°C, more preferably 90-100°C.
  • the washing times are 3-10 times.
  • the invention also provides the application of the iron phosphate precursor in the preparation of lithium ion batteries.
  • the present invention is by selecting ferric iron as iron source, then phosphoric acid is added to the ferric iron solution, and by controlling pH and reaction temperature, the morphology and particle size distribution of primary particles of iron phosphate are controlled, and the above-mentioned use adds phosphoric acid to ferric phosphate.
  • the initial pH of the system is very low, and then the reaction temperature is controlled at 70-100 ° C, which can form spherical dense primary particles and stack in an orderly manner.
  • Ferric phosphate water, the tap density of the ferric phosphate dihydrate is high, up to 1-1.5/cm 3 .
  • the specific surface area of the iron phosphate dihydrate prepared by the present invention is 1-3m 2 /g, because the specific surface area of the iron phosphate dihydrate is low, therefore, the required dehydration temperature in the post-processing operation is low, the energy consumption is low, and the production cost is low And the production efficiency is high, at the same time, the prepared iron phosphate has good processing performance, strong process controllability, simple and convenient operation, and is suitable for large-scale industrial production; and the synthesis process is simple and has no environmental protection problem, and does not need to treat ammonia nitrogen-containing wastewater.
  • Fig. 1 is the SEM image of the iron phosphate dihydrate of the embodiment of the present invention 1;
  • Fig. 2 is the XRD figure of the iron phosphate dihydrate of the embodiment of the present invention 1;
  • the slurry is filtered to obtain a filter residue, and then the filter residue is repeatedly washed with pure water 3 times to obtain a washed filter residue;
  • the slurry is filtered to obtain a filter residue, and then the filter residue is repeatedly washed with pure water 3 times to obtain a washed filter residue;
  • the slurry is filtered to obtain a filter residue, and then the filter residue is repeatedly washed with pure water 3 times to obtain a washed filter residue;
  • the slurry is filtered to obtain a filter residue, and then the filter residue is repeatedly washed with pure water 3 times to obtain a washed filter residue;
  • the preparation of the iron phosphate precursor of this comparative example includes the following steps:
  • a low-temperature preparation iron phosphate technological process comprises the following steps:
  • ferric phosphate dihydrate with large particle size, small specific surface area and large TD was prepared by the method of Examples 1-4 of the present invention.
  • the specific surface area of the ferric phosphate dihydrate prepared in Example 1-2 is lower than that of Comparative Example 1 and commercially available ferric phosphate, the energy consumption of subsequent calcination is lower, the particle size is larger than that of Comparative Example 1 and commercially available ferric phosphate, and vibration The solid density is much higher than that of Comparative Examples 1-2.
  • the reaction temperature of comparative example 1 is too low, need to add alkali to promote precipitation, adding alkali liquor precipitation can affect the primary particle stacking effect obtained, the primary particle stacking is not the same, will affect the specific surface area and compaction density of iron phosphate dihydrate.
  • Comparative Example 1 sodium salt wastewater is also generated, and the sodium salt wastewater needs to be treated.
  • the reaction temperature of Comparative Example 2 was too low to form a precipitate.
  • Fig. 1 is the SEM image of the iron phosphate dihydrate of Example 1 of the present invention; it can be seen from Fig. 1 that the embodiment has prepared spherical particle iron phosphate with good sphericity
  • Fig. 2 is the iron phosphate dihydrate of Example 1 of the present invention XRD pattern; from the XRD pattern in Figure 2, it can be seen that the preparation obtained in Example 1 is pure-phase iron phosphate dihydrate.
  • 3 is the SEM image of the iron phosphate dihydrate of Comparative Example 1 of the present invention; it can be seen from FIG. 3 that Comparative Example 1 is an iron phosphate formed by agglomeration of fine primary particles, so the specific surface area of the iron phosphate of Comparative Example 1 is large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

La présente invention concerne le domaine des matériaux pour batterie lithium-ion. L'invention divulgue un précurseur de phosphate de fer et un procédé de préparation associé et une application de ce dernier. Le précurseur de phosphate de fer présente une micromorphologie sphérique, une granulométrie D50 de 10 à 20 μm et une aire spécifique de 1 à 3 m2/g, et une masse volumique apparente après tassement de 1 à 1,5 g/cm3. Dans la présente invention, on choisit en tant que source de fer du fer ferrique, puis on introduit dans une solution de fer ferrique de l'acide phosphorique, et on régule, en ajustant le pH et la température de réaction, la morphologie et la distribution granulométrique des particules primaires de phosphate de fer. Le mode d'introduction de l'acide phosphorique dans le sel de fer ferrique rend le pH initial d'un système très bas, puis la température de réaction est régulée à 70 à 100 °C, il se forme des particules primaires denses sphériques, qui sont successivement empilées et séchées pour obtenir du phosphate de fer dihydraté ayant une faible aire spécifique et ne comportant pas de cavités internes, et le phosphate de fer dihydraté présente une masse volumique apparente après tassement qui est élevée, jusqu'à 1 à 1,5/cm3.
PCT/CN2021/142593 2021-04-30 2021-12-29 Précurseur de phosphate de fer et procédé de préparation associé et son application WO2022227669A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HU2200339A HUP2200339A1 (hu) 2021-04-30 2021-12-29 Vas-foszfát prekurzor és annak elõállítási eljárása és alkalmazása

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110485737.7A CN113247876A (zh) 2021-04-30 2021-04-30 一种磷酸铁前驱体及其制备方法和应用
CN202110485737.7 2021-04-30

Publications (1)

Publication Number Publication Date
WO2022227669A1 true WO2022227669A1 (fr) 2022-11-03

Family

ID=77224056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142593 WO2022227669A1 (fr) 2021-04-30 2021-12-29 Précurseur de phosphate de fer et procédé de préparation associé et son application

Country Status (3)

Country Link
CN (1) CN113247876A (fr)
HU (1) HUP2200339A1 (fr)
WO (1) WO2022227669A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115838162A (zh) * 2022-12-21 2023-03-24 三一红象电池有限公司 磷酸钒铁钠正极材料及其制备方法
CN116534824A (zh) * 2023-06-01 2023-08-04 云南云天化股份有限公司 一种连续氧化工艺制备磷酸铁的方法
CN116902946A (zh) * 2023-09-14 2023-10-20 北京林立新能源有限公司 一种用铁黑制备磷酸铁的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113247876A (zh) * 2021-04-30 2021-08-13 广东邦普循环科技有限公司 一种磷酸铁前驱体及其制备方法和应用
CN114105115B (zh) * 2021-11-22 2023-09-19 青岛九环新越新能源科技股份有限公司 磷酸铁及磷酸铁锂的生产方法和应用
CN116161634A (zh) * 2023-02-10 2023-05-26 贵州雅友新材料有限公司 一种磷酸铁的制备方法及其应用
CN117263153A (zh) * 2023-10-12 2023-12-22 金驰能源材料有限公司 一种多孔球形磷酸铁及其制备方法、金属磷酸盐

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101237042A (zh) * 2008-02-26 2008-08-06 郑州瑞普生物工程有限公司 用于锂电池正极材料正磷酸铁的制备方法
CN108609595A (zh) * 2018-05-10 2018-10-02 湖南雅城新材料有限公司 磷酸铁及其制备方法和应用
CN110357057A (zh) * 2019-07-22 2019-10-22 湖南雅城新材料有限公司 一种片状磷酸铁及其制备方法与应用
CN110482512A (zh) * 2019-07-12 2019-11-22 乳源东阳光磁性材料有限公司 一种电池级磷酸铁的制备方法
CN111847417A (zh) * 2020-07-24 2020-10-30 中南大学 一种电池级水合磷酸铁的制备方法
CN111847416A (zh) * 2020-07-24 2020-10-30 中南大学 一种钛白副产硫酸亚铁制备水合磷酸铁的方法
CN113247876A (zh) * 2021-04-30 2021-08-13 广东邦普循环科技有限公司 一种磷酸铁前驱体及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101237042A (zh) * 2008-02-26 2008-08-06 郑州瑞普生物工程有限公司 用于锂电池正极材料正磷酸铁的制备方法
CN108609595A (zh) * 2018-05-10 2018-10-02 湖南雅城新材料有限公司 磷酸铁及其制备方法和应用
CN110482512A (zh) * 2019-07-12 2019-11-22 乳源东阳光磁性材料有限公司 一种电池级磷酸铁的制备方法
CN110357057A (zh) * 2019-07-22 2019-10-22 湖南雅城新材料有限公司 一种片状磷酸铁及其制备方法与应用
CN111847417A (zh) * 2020-07-24 2020-10-30 中南大学 一种电池级水合磷酸铁的制备方法
CN111847416A (zh) * 2020-07-24 2020-10-30 中南大学 一种钛白副产硫酸亚铁制备水合磷酸铁的方法
CN113247876A (zh) * 2021-04-30 2021-08-13 广东邦普循环科技有限公司 一种磷酸铁前驱体及其制备方法和应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115838162A (zh) * 2022-12-21 2023-03-24 三一红象电池有限公司 磷酸钒铁钠正极材料及其制备方法
CN115838162B (zh) * 2022-12-21 2024-02-23 三一红象电池有限公司 磷酸钒铁钠正极材料及其制备方法
CN116534824A (zh) * 2023-06-01 2023-08-04 云南云天化股份有限公司 一种连续氧化工艺制备磷酸铁的方法
CN116534824B (zh) * 2023-06-01 2024-01-19 云南云天化股份有限公司 一种连续氧化工艺制备磷酸铁的方法
CN116902946A (zh) * 2023-09-14 2023-10-20 北京林立新能源有限公司 一种用铁黑制备磷酸铁的方法
CN116902946B (zh) * 2023-09-14 2023-11-14 北京林立新能源有限公司 一种用铁黑制备磷酸铁的方法

Also Published As

Publication number Publication date
HUP2200339A1 (hu) 2023-04-28
CN113247876A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
WO2022227669A1 (fr) Précurseur de phosphate de fer et procédé de préparation associé et son application
CN101752564B (zh) 一维纳米结构的锂离子电池正极材料磷酸铁锂的水热合成法
CN113044824B (zh) 磷酸铁废料循环再生的方法及其应用
CN110357057B (zh) 一种片状磷酸铁及其制备方法与应用
WO2022267420A1 (fr) Précurseur de phosphate de fer, son procédé de préparation et son utilisation
JP2015525182A (ja) グラフェン基LiFePO4/C複合材料の製造方法
CN112624076A (zh) 一种磷酸铁的制备方法及其应用
WO2022116690A1 (fr) Procédé de préparation de phosphate métallique et application
CN102745662B (zh) 一种非晶态磷酸铁的制备方法
CN111348637B (zh) 一种纳米磷酸铁锂及其制备方法
CN111547694A (zh) 一种利用含磷废渣制备电池级磷酸铁的方法
WO2023179046A1 (fr) Procédé de préparation d'un matériau composite phosphate de fer lithié/carbone et son utilisation
WO2023142677A1 (fr) Phosphate de fer (iii) dopé, son procédé de préparation et son utilisation
WO2024055519A1 (fr) Méthode de préparation et utilisation de phosphate de fer-manganèse-lithium
CN110980677A (zh) 一种利用残次品磷酸铁制备磷酸铁锂前驱体的方法
WO2023040286A1 (fr) Procédé d'utilisation complète de minéral contenant du fer
CN113428848A (zh) 一种电池级磷酸铁的循环制备工艺
CN112266020A (zh) 钠化钒液制备五氧化二钒正极材料的方法
CN103832991A (zh) 一种磷酸铁纳米材料的制备方法
CN108417832B (zh) 一种等摩尔比例制备磷酸铁锂的方法
CN114933292B (zh) 一种磷酸铁锂的制备方法及其应用
CN110713197B (zh) 一种从水热法制备磷酸铁锂产生的母液中回收锂盐的方法
CN109860530B (zh) 一种掺杂钛、铌的碱式磷酸铁铵、磷酸铁锂/碳复合材料及其制备方法和应用
KR20130069022A (ko) 리튬 금속인산화물의 제조방법
WO2024000839A1 (fr) Phosphate de fer-manganèse de type huréaulite et sa méthode de préparation et son utilisation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939128

Country of ref document: EP

Kind code of ref document: A1