WO2022222309A1 - 有机发光显示装置的制备方法以及有机发光显示装置 - Google Patents

有机发光显示装置的制备方法以及有机发光显示装置 Download PDF

Info

Publication number
WO2022222309A1
WO2022222309A1 PCT/CN2021/111180 CN2021111180W WO2022222309A1 WO 2022222309 A1 WO2022222309 A1 WO 2022222309A1 CN 2021111180 W CN2021111180 W CN 2021111180W WO 2022222309 A1 WO2022222309 A1 WO 2022222309A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport layer
hole transport
solution
thin film
organic light
Prior art date
Application number
PCT/CN2021/111180
Other languages
English (en)
French (fr)
Inventor
胡来归
周小洁
詹义强
秦亚杰
Original Assignee
光华临港工程应用技术研发(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光华临港工程应用技术研发(上海)有限公司 filed Critical 光华临港工程应用技术研发(上海)有限公司
Publication of WO2022222309A1 publication Critical patent/WO2022222309A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to the field of semiconductor devices, and in particular, to a preparation method of an organic light-emitting display device and an organic light-emitting display device.
  • OLED organic light-emitting diodes
  • the current commercial OLED display usually adopts the method of vacuum evaporation.
  • the material obtained by vacuum evaporation is unevenly deposited, difficult to control the crystallinity, and requires high precision of the mask, which makes the preparation of the mask complicated and expensive.
  • the spin-coating method has the advantages of solution-based film formation, but the solution is easily wasted during the spin-coating process, which is not suitable for the preparation of large-area devices.
  • the method of using inkjet printing has gradually become popular. Compared with the spin coating method, the waste of materials is reduced, and full-color printing can be realized. However, its yield is low and there is crosstalk between pixels.
  • sub-micron patterns can also be obtained by using imprinting technology, but the imprinting technology causes uneven materials and is prone to defects.
  • the technical problem to be solved by the present invention is to provide a preparation method of an organic light-emitting display device and an organic light-emitting display device, which can save costs, simplify the process, and can also be prepared on a flexible substrate, which can be used for flexible display, wearable devices, etc. .
  • the present invention provides a preparation method of an organic light-emitting display device, which includes the following steps: providing a substrate with a thin film transistor, and a metal electrode terminal is exposed on the thin film transistor as a nucleation site of a hole transport layer form a small molecule hole transport layer solution on the surface of the nucleation site; evaporate the solvent in the solution to form a film on the solute on the nucleation site to form a hole transport layer; continue to grow the light-emitting layer and electron transport layer and cathode to form an organic light emitting display device.
  • the small molecule hole transport layer solution is formed by dissolving the small molecule hole transport layer material in alcohol, alkane, or amine reagent.
  • the reagent is selected from one or a mixture of methanol, chloroform, and dimethylformamide.
  • the small molecule hole transport layer material is selected from one or a mixture of carbazole, organic amine and butadiene compounds.
  • the small molecule hole transport layer material is selected from one or a mixture of NPB, PVK and TAPC.
  • the method for forming the solution of the small molecule hole transport layer is selected from one of drop coating and blade coating.
  • the drop coating is to drop the organic molecule solution on the substrate in the form of droplets, and the droplets diffuse to the surroundings with zero contact angle while evaporating.
  • shear force induces the growth of the solution, and the blade is placed at a certain inclination angle to drop the solution on the metal nucleation point.
  • the substrate is heated to promote volatilization of the solvent.
  • the present invention provides an organic light-emitting display device, comprising: a substrate with a thin film transistor, and a metal electrode terminal is exposed on the thin film transistor as a nucleation site of a hole transport layer; A small molecule hole transport layer is formed on the surface of the core site; the light-emitting layer, the electron-transport layer and the cathode cover the thin film; the prepared organic light-emitting device is driven by a thin film transistor to realize organic light-emitting display.
  • TFT thin film transistor
  • the above technical solution does not use thermal evaporation to prepare the hole transport layer.
  • TFT thin film transistor
  • micro/nano-sized small molecule hole transport layers are grown through selective regions.
  • the film formation speed is faster, and the electrodes are directly in the growth process. function, and can be directly grown into device arrays, and the film uniformity is high.
  • FIG. 1 is a schematic diagram showing the implementation steps of the method according to a specific embodiment of the present invention.
  • FIG. 2A to FIG. 2D are schematic process diagrams of the method according to an embodiment of the present invention.
  • step S10 providing a substrate with a thin film transistor, and a metal electrode terminal is exposed on the thin film transistor as a nucleation site of the hole transport layer
  • step S11 forming a small molecule hole transport layer solution on the surface of the nucleation site
  • Step S12 evaporating the solvent in the solution to form a film on the solute on the nucleation site
  • Step S13 continuing to grow the light-emitting layer , an electron transport layer and a cathode to form an organic light emitting display device.
  • a substrate 20 with a thin film transistor 21 is provided, and a metal electrode terminal 22 is exposed on the thin film transistor 21 as a nucleation site of the hole transport layer.
  • the channel material of the thin film transistor is IGZO or other high mobility semiconductor materials
  • the driving mode of the thin film transistor is active driving or semi-active driving
  • the thin film transistor is driven by
  • the exposed metal electrode terminal is a metal drain electrode or a metal source electrode
  • the exposed metal electrode is a chromium/gold (Cr/Au) two-layer metal or other metal materials.
  • a small molecule hole transport layer solution 23 is formed on the surface of the nucleation site.
  • the nucleation site is the metal electrode terminal 22 .
  • the small molecule hole transport layer material is mainly formed on the electrode.
  • the solution method includes drop coating and blade coating.
  • the drop coating method is that the organic molecule solution falls on the substrate in the form of small droplets, and the droplets diffuse to the surroundings with zero contact angle while evaporating.
  • the blade coating method is that shear force induces the growth of the solution, and the solution is dropped on the metal nucleation point by the blade at a certain inclination angle.
  • step S12 the solvent in the solution 23 is evaporated, so that the solute forms a film on the nucleation site.
  • the above steps heat the substrate to promote the volatilization of the reagents in the droplets to form the organic thin film 24 .
  • the thin film is a hole transport layer.
  • the light-emitting layer 25 , the electron transport layer 26 and the cathode 27 are continuously grown to form an organic light-emitting display device.
  • the light-emitting layer/electron-transporting layer can use the small molecule material Alq3.
  • an organic light-emitting display device comprising: a substrate 20 with a thin film transistor 21, and a metal electrode terminal 22 is exposed on the thin film transistor 21 as a nucleation site of the hole transport layer; A hole transport layer 24 composed of small molecular materials is formed on the surface of the nucleation site; the light emitting layer 25, the electron transport layer 26 and the cathode 27 covering the thin film 24 can be actively or semi-actively driven by thin film transistors
  • the organic light-emitting device realizes organic light-emitting display.
  • the above technical solution does not use thermal evaporation to prepare the hole transport layer.
  • the TFT electrode is used as a nucleation site, and a small molecule hole transport layer with a micro/nano size is grown in a selective area.
  • the film formation speed is faster, and the electrode directly plays a role in the growth. It can be directly grown into device arrays with high film uniformity.
  • the substrate of the TFT driver board is glass
  • the exposed electrode of the TFT is ITO
  • ITO is used as the anode of the micro-OLED.
  • the bare electrode is plated with Cr/Au as the nucleation site of the small molecule hole transport layer, which is a micro-nano-scale metal array pattern with different diameters and periods, in which Cr is used to increase the substrate and Adhesion of Au.
  • the TFT driving backplane is treated with hydrophilicity under ozone to increase the hydrophilicity of the metal electrode.
  • the required small molecule hole transport layer solution is configured, the solutes are NPB, PVK, TAPC, etc., and the solvents are methanol, chloroform, dimethylformamide, and the like.
  • the prepared concentration is based on the solubility of the solute in the solvent, a saturated solution or an unsaturated solution with a certain concentration.
  • Small molecule hole transport thin film arrays are grown on metal nucleation sites by drop coating or blade coating.
  • the process flow of drop-coating or blade-coating selective area growth of micro-OLED array includes: the first step, use a pipette to suck an appropriate amount of NPB solution of the small molecule hole transport layer on the TFT driver board, the solution spreads quickly and evenly, and the solvent volatilizes into Alternatively, pipette an appropriate amount of the small molecule hole transport layer NPB solution onto a scraper, and use shear force to induce the growth of the solution.
  • the second step after the solvent has evaporated, the film is annealed in a N2 environment at 80°C for 1 h to make the solvent evaporate completely.
  • the material is formed on a metal array with a thickness of 20-50nm.
  • the third step is to use thermal evaporation technology to evaporate the light-emitting layer/electron transport layer small molecule material Alq3 under a vacuum of 5*10-3, and the evaporation rate is Thickness is 70-100nm.
  • the fourth step using thermal evaporation technology to deposit LiF (1nm)/Al (130nm) under 5*10-3 vacuum, the evaporation rate is In the fifth step, in the N2 environment, the OLED is encapsulated with a cover glass to obtain a low-cost and large-area TFT-driven micro-OLED pixel display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供了一种有机发光显示装置的制备方法以及有机发光显示装置。所述方法包括如下步骤:提供带有薄膜晶体管的基板,所述薄膜晶体管上裸露一金属电极端作为空穴传输层的成核位点;在所述成核位点表面形成小分子空穴传输层溶液;将溶液中的溶剂蒸发,使溶质在成核位点上成膜;继续生长发光层、电子传输层以及阴极,形成有机发光显示装置。上述技术方案未采用热蒸发制备空穴传输层。不仅可以节约成本,简化工艺,还适用于柔性衬底,可用于柔性显示,可穿戴设备等。

Description

有机发光显示装置的制备方法以及有机发光显示装置 技术领域
本发明涉及半导体器件领域,尤其涉及一种有机发光显示装置的制备方法以及有机发光显示装置。
背景技术
半个世纪前,阴极射线管(CRT)的出现加速了视频显示器的发展。随后,液晶显示器(LCD)和有机发光二极管(OLED)应运而生。相比于LCD,OLED具有自发射、高对比度、宽视角、快速响应等优点,吸引了人们大量的关注。特别地,OLED可以直接在柔性衬底上制备,进而实现全彩化,这使得OLED可以运用于TV、电脑、手机、VR等设备。但是由于光刻工艺与有机材料不兼容,且有机材料暴露于水、氧、显影液等易变性。目前商业化的OLED显示通常是采用真空蒸镀的方法,然而使用真空蒸镀得到的材料沉积不均匀,结晶性控制困难,而且对掩膜板精度要求高,使得掩膜板制备复杂且价格昂贵。旋涂法具有溶液法成膜的优势,但溶液在旋涂的过程中容易浪费,不太适合制备大面积器件。近些年,使用喷墨打印的方法也逐渐普及,相比于旋涂法减少了材料的浪费,且可实现全彩打印,然而其良率较低、像素间存在串扰。另外,使用压印技术也可以得到亚微米图案,但是压印技术造成材料不均匀,容易产生缺陷。
发明内容
本发明所要解决的技术问题是,提供一种有机发光显示装置的制备方法以及有机发光显示装置,可以节约成本,简化工艺,还可以在柔性衬底上制备,可用于柔性显示,可穿戴设备等。
为了解决上述问题,本发明提供了一种有机发光显示装置的制备方法,包括如下步骤:提供带有薄膜晶体管的基板,所述薄膜晶体管上裸露一金属电极端作为空穴传输层的成核位点;在所述成核位点表面形成小分子空穴传输层溶液;将溶液中的溶剂蒸发,使溶质在成核位点上成膜,形成空穴传输层;继续生长发光层、电子传输层以及阴极,形成有机发光显示装置。
可选的,所述小分子空穴传输层溶液是将小分子空穴传输层材料溶解在醇类、烷类、或胺类试剂中形成。所述试剂选自于甲醇、三氯甲烷、以及二甲基甲酰胺的一种或其混合物。
可选的,所述小分子空穴传输层材料选自于咔唑类、有机胺类和丁二烯类化合物中的一种或其混合物。所述小分子空穴传输层材料选自于NPB、PVK和TAPC的一种或其混合物。
可选的,形成小分子空穴传输层溶液的方法选自于滴涂和刮涂中的一种。所述滴涂为将有机分子溶液以液滴的形式落在衬底上,液滴以零接触角向周围边扩散边蒸发。所述刮涂为剪切力诱导溶液生长,将刮刀以一定倾斜角度将溶液落在金属成核为点。
可选的,所述将溶液中的溶剂蒸发的步骤,是将衬底加热以促进溶剂的挥发。
为了解决上述问题,本发明提供了一种有机发光显示装置,包括:带有薄膜晶体管的基板,所述薄膜晶体管上裸露一金属电极端作为空穴传输层的成核位点;在所述成核位点表面形成小分子空穴传输层;覆盖所述薄膜的发光层、电子传输层以及阴极;利用薄膜晶体管驱动制备得到的有机发光器件,实现有机发光显示。
上述技术方案未采用热蒸发制备空穴传输层。通过滴涂和刮涂的方式,将薄膜晶体管(TFT)电极作为成核位点,通过选择性区域生长微米/纳米尺寸的小分子空穴传输层,成膜速度更快,电极直接在生长中起作用,并可直接生长成器件阵列,且薄膜均匀性高。根据不同的表面能分布,在图案化的微电极之间或之上,可控地制造图案化的高度结晶甚至单晶膜/阵列。该技术不仅可以节约成本,简化工艺,还可以在柔性衬底上制备,可用于柔性显示,可穿戴设备等。
附图说明
附图1所示是本发明一具体实施方式所述方法的实施步骤示意图。
附图2A至附图2D所示是本发明一具体实施方式所述方法的工艺示意图。
具体实施方式
下面结合附图对本发明提供的有机发光显示装置的制备方法以及有机发光显示装置的具体实施方式做详细说明。
附图1所示是本具体实施方式所述方法的实施步骤示意图,包括:步骤S10,提供带有薄膜晶体管的基板,所述薄膜晶体管上裸露一金属电极端作为空穴传输层的成核位点;步骤S11,在所述成核位点表面形成小分子空穴传输层溶液;步骤S12,将溶液中的溶剂蒸发,使溶质在成核位点上成膜;步骤S13,继续生长发光层、电子传输层以及阴极,形成有机发光显示装置。
附图2A所示,参考步骤S10,提供带有薄膜晶体管21的基板20,所述薄膜晶体管21上裸露一金属电极端22作为空穴传输层的成核位点。在本发明的一个具体实施方式中,所述薄膜晶体管的沟道材料是IGZO或其它高迁移率半导体材料,所述薄膜晶体管的驱动方式为有源驱动或半有源驱动,所述薄膜晶体管上裸露的金属电极端为金属漏极或金属源极,所述的裸露金属电极为铬/金(Cr/Au)两层金属或其它金属材料。
附图2B所示,参考步骤S11,在所述成核位点表面形成小分子空穴传输层溶液23。成核位点即金属电极端22。所述的有机分子的成核原理,当电极的表面能大于其它位置时,小分子空穴传输层材料主要成膜在电极上。所述的溶液法包括滴涂和刮涂方式。所述的滴涂方式为将有机分子溶液以小液滴的形式落在衬底上,液滴以零接触角向周围边扩散边蒸发。所述的刮涂方式为剪切力诱导溶液生长,将刮刀以一定倾斜角度将溶液落在金属成核为点。
附图2C所示,参考步骤S12,将溶液23中的溶剂蒸发,使溶质在成核位点上成膜。上述步骤将衬底加热,以促进液滴中试剂的挥发形成有机薄膜24。该薄膜为空穴传输层。
附图2D所示,参考步骤S13,继续生长发光层25、电子传输层26以及阴极27,形成有机发光显示装置。发光层/电子传输层可以采用小分子材料Alq3。上述步骤实施完毕后,即获得一种有机发光显示装置,包括:带有薄膜晶体管21的基板20,所述薄膜晶体管21上裸露一金属电极端22作为空穴传输层的成核位点;在所述成核位点表面形成由小分子材料构成的空穴传输层24;覆盖所述薄膜24的发光层25,电子传输层26以及阴极27,利用薄膜晶体管即可有源或半有源驱动有机发光器件,实现有机发光显示。
上述技术方案未采用热蒸发制备空穴传输层。通过滴涂和刮涂的方式,将TFT电极作为成核位点,通过选择性区域生长微米/纳米尺寸的小分子空穴传输层, 成膜速度更快,电极直接在生长中起作用,并可直接生长成器件阵列,且薄膜均匀性高。根据不同的表面能分布,在图案化的微电极之间或之上,可控地制造图案化的高度结晶甚至单晶膜/阵列。不仅可以节约成本,简化工艺,还可以在柔性衬底上制备,可用于柔性显示,可穿戴设备等。
以下给出本发明一实施例。
(1)TFT驱动板裸露小分子空穴传输层成核位点。
TFT驱动板衬底为玻璃,TFT裸露电极为ITO,ITO作为micro-OLED的阳极。制备完TFT后,裸露的电极镀上Cr/Au作为小分子空穴传输层的成核位点,其为具有不同直径和周期的微纳尺度的金属阵列图形,其中Cr是为了增加衬底和Au的粘结性。
(2)将TFT驱动背板上放在臭氧下亲水处理。
将TFT驱动背板放在臭氧下亲水处理,以此增加金属电极的亲水性。
(3)配置小分子空穴传输层溶液。
配置所需的小分子空穴传输层溶液,溶质为NPB、PVK和TAPC等,溶剂为甲醇、三氯甲烷、二甲基甲酰胺等。所配浓度依据溶质在溶剂中的溶解度,饱和溶液或者一定浓度的不饱和溶液。
(4)通过滴涂或刮涂的方式,在金属成核位点生长小分子空穴传输薄膜阵列。滴涂或刮涂选择性区域生长micro-OLED阵列的工艺流程包括:第一步,用移液枪吸取适量小分子空穴传输层NPB溶液于TFT驱动板上,溶液快速均匀铺展、溶剂挥发成膜;或者,用移液枪吸取适量小分子空穴传输层NPB溶液于刮刀上,利用剪切力诱导溶液生长。第二步,待溶剂蒸发完,在80℃的N2环境下对薄膜进行退火1h,使溶剂挥发完全,根据溶液浓度和剂量的不同,材料在金属阵列上成膜,厚度为20-50nm。第三步,用热蒸发技术在5*10-3真空度下蒸镀发光层/电子传输层小分子材料Alq3,蒸镀速率为
Figure PCTCN2021111180-appb-000001
厚度为70-100nm。第四步,采用热蒸发技术在5*10-3真空度下沉积LiF(1nm)/Al(130nm),蒸镀速率为
Figure PCTCN2021111180-appb-000002
第五步,在N2环境下,利用盖玻片封装OLED,即得到低成本大面积的TFT驱动micro-OLED像素显示。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (11)

  1. 一种有机发光显示装置的制备方法,包括如下步骤:
    提供带有薄膜晶体管的基板,所述薄膜晶体管上裸露一金属电极端作为空穴传输层的成核位点;
    在所述成核位点表面形成小分子空穴传输层溶液;
    将溶液中的溶剂蒸发,使溶质在成核位点上成膜;
    继续生长发光层、电子传输层以及阴极,形成有机发光显示装置。
  2. 根据权利要求1所述的方法,其中,所述小分子空穴传输层溶液是将小分子空穴传输层材料溶解在醇类、烷类、或胺类试剂中形成。
  3. 根据权利要求2所述的方法,其中,所述试剂选自于甲醇、三氯甲烷、以及二甲基甲酰胺的一种或其混合物。
  4. 根据权利要求2所述的方法,其中,所述小分子空穴传输层材料选自于咔唑类、有机胺类和丁二烯类化合物中的一种或其混合物。
  5. 根据权利要求4所述的方法,其中,所述小分子空穴传输层材料选自于NPB、PVK和TAPC的一种或其混合物。
  6. 根据权利要求1所述的方法,其中,形成小分子空穴传输层溶液的方法选自于滴涂和刮涂中的一种。
  7. 根据权利要求6所述的方法,其中,所述滴涂为将有机分子溶液以液滴的形式落在衬底上,液滴以零接触角向周围边扩散边蒸发。
  8. 根据权利要求6所述的方法,其中,所述刮涂为剪切力诱导溶液生长,将刮刀以一定倾斜角度将溶液落在金属成核为点。
  9. 根据权利要求1所述的方法,其中,所述将溶液中的溶剂蒸发的步骤,是将衬底加热以促进溶剂的挥发。
  10. 根据权利要求1所述的方法,其中,所述带有薄膜晶体管的基板为刚性衬底、柔性衬底中的一种。
  11. 一种有机发光显示装置,包括:
    带有薄膜晶体管的基板,所述薄膜晶体管上裸露一金属电极端作为空穴传输层的成核位点;
    在所述成核位点表面的由小分子空穴材料构成薄膜,形成空穴传输层;
    覆盖所述薄膜的发光层、电子传输层以及阴极;
    利用薄膜晶体管驱动有机发光器件,实现有机发光显示。
PCT/CN2021/111180 2021-04-23 2021-08-06 有机发光显示装置的制备方法以及有机发光显示装置 WO2022222309A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110441385.5 2021-04-23
CN202110441385.5A CN113517417B (zh) 2021-04-23 2021-04-23 有机发光显示装置的制备方法以及有机发光显示装置

Publications (1)

Publication Number Publication Date
WO2022222309A1 true WO2022222309A1 (zh) 2022-10-27

Family

ID=78062778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111180 WO2022222309A1 (zh) 2021-04-23 2021-08-06 有机发光显示装置的制备方法以及有机发光显示装置

Country Status (2)

Country Link
CN (1) CN113517417B (zh)
WO (1) WO2022222309A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101617064A (zh) * 2006-12-06 2009-12-30 北莱茵法威廉明斯特大学 由气相沉积进行有机分子选区生长的普适方法
CN102047462A (zh) * 2008-05-27 2011-05-04 北莱茵法威廉明斯特大学 一种控制有机分子沉积的方法及有机电子器件
CN103907178A (zh) * 2011-11-04 2014-07-02 索尼公司 有机半导体元件的制造方法、有机半导体元件、有机单晶体薄膜的成长方法、有机单晶体薄膜、电子设备及有机单晶体薄膜组
CN111564558A (zh) * 2020-05-14 2020-08-21 苏州大学 有机晶态薄膜的制备方法及有机场效应晶体管

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004227994A (ja) * 2003-01-24 2004-08-12 Victor Co Of Japan Ltd 有機エレクトロルミネッセンス素子
CN101132054A (zh) * 2007-09-28 2008-02-27 天津理工大学 一种新型结构的有机电致发光器件及其制备方法
CN101944572A (zh) * 2009-09-16 2011-01-12 西安交通大学 一种有机电致发光器件的制备方法
JP2011222801A (ja) * 2010-04-12 2011-11-04 Ricoh Co Ltd 有機薄膜トランジスタ及びその製造方法、並びに有機トランジスタアレイ、表示装置
JP2014519206A (ja) * 2011-06-30 2014-08-07 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド トップエミッション型の有機エレクトロルミネッセンスデバイス及びその製造方法。
CN102881830B (zh) * 2012-09-28 2015-11-04 北京大学 一种有机太阳能电池及其制备方法
JP2016517453A (ja) * 2013-03-14 2016-06-16 ナノコ テクノロジーズ リミテッド ホスフィンを用いて作られた量子ドット
CN105161635B (zh) * 2015-07-01 2018-06-19 Tcl集团股份有限公司 一种具有自组装电子传输层的qled器件及其制备方法
CN105140358B (zh) * 2015-09-21 2018-07-17 福州大学 一种基于全刮涂技术制备量子点发光二极管的方法
CN105609651A (zh) * 2016-01-07 2016-05-25 东南大学 自组装聚合物空穴传输层结构的高效量子点发光二极管
US11349091B2 (en) * 2017-05-19 2022-05-31 The Florida State University Research Foundation, Inc. Halide perovskite thin films and methods for production thereof
CN107634328B (zh) * 2017-09-01 2020-10-09 中国科学院重庆绿色智能技术研究院 一种石墨烯透明天线及其制备方法
CN108987589A (zh) * 2017-10-13 2018-12-11 广东聚华印刷显示技术有限公司 电致发光层及其制备方法、电致发光器件、显示和照明装置
CN108439330A (zh) * 2018-04-20 2018-08-24 常州达奥新材料科技有限公司 一种复合型镁铝基储氢材料的制备方法
CN109148697A (zh) * 2018-09-21 2019-01-04 北京恒信卓元科技有限公司 一种钙钛矿太阳能电池的制备方法
KR102256513B1 (ko) * 2019-04-09 2021-05-27 한양대학교 산학협력단 금속 칼코겐 화합물 박막의 제조방법
CN110718634A (zh) * 2019-11-06 2020-01-21 常熟理工学院 具有光栅阵列结构电子传输层的太阳能电池及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101617064A (zh) * 2006-12-06 2009-12-30 北莱茵法威廉明斯特大学 由气相沉积进行有机分子选区生长的普适方法
CN102047462A (zh) * 2008-05-27 2011-05-04 北莱茵法威廉明斯特大学 一种控制有机分子沉积的方法及有机电子器件
CN103907178A (zh) * 2011-11-04 2014-07-02 索尼公司 有机半导体元件的制造方法、有机半导体元件、有机单晶体薄膜的成长方法、有机单晶体薄膜、电子设备及有机单晶体薄膜组
CN111564558A (zh) * 2020-05-14 2020-08-21 苏州大学 有机晶态薄膜的制备方法及有机场效应晶体管

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHU JUAN, FONTEIN FLORIAN, WANG HONG, ZHONG QIGANG, LI CHENGLONG, LI JIANPING, WANG BO, LIAO LIANGSHENG, WANG YUE, HUANG LIZHEN, F: "Micro organic light-emitting diodes fabricated through area-selective growth", MATERIALS CHEMISTRY FRONTIERS, vol. 1, no. 12, 28 September 2017 (2017-09-28), pages 2606 - 2612, XP055979874, DOI: 10.1039/C7QM00383H *
ZHU JUAN, LI JIANPING, ZHONG QIGANG, WANG HONG, HUANG LIZHEN, FONTEIN FLORIAN, HU LAIGUI, LIU RAN, FUCHS HARALD, WANG WENCHONG, WA: "Lithography Compatible, Flexible Micro-Organic Light-Emitting Diodes by Template-Directed Growth", SMALL METHODS, vol. 3, no. 3, 1 March 2019 (2019-03-01), DE , pages 1 - 5, XP055979877, ISSN: 2366-9608, DOI: 10.1002/smtd.201800508 *

Also Published As

Publication number Publication date
CN113517417B (zh) 2023-06-13
CN113517417A (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
WO2018227750A1 (zh) 柔性tft基板的制作方法
JP4961819B2 (ja) 電界効果トランジスタ及びその製造方法
JP4440523B2 (ja) インクジェット法による有機el表示装置及びカラーフィルターの製造方法、製造装置
KR101138869B1 (ko) 유기발광 디스플레이의 단위 화소부 구동소자의 제조방법
US6844579B2 (en) Organic device including semiconducting layer aligned according to microgrooves of photoresist layer
US9999943B2 (en) Method of manufacturing a mask
JP2004304140A (ja) 薄膜トランジスタとその製造方法
US20070172775A1 (en) Method of forming an organic semiconductor pattern and method of manufacturing an organic thin film transistor using the same
CN108365132B (zh) 一种顶发光oled基板及其制备方法、oled显示面板
WO2020172930A1 (zh) 一种可交联空穴传输层材料及其制备方法
Noda et al. 74.1 L: Late‐News Paper: Oxide TFTs and Color Filter Array Technology for Flexible Top‐emission White OLED Display
WO2013113232A1 (zh) 阵列基板及其制造方法
US7867813B2 (en) Organic thin film transistors
WO2020191903A1 (zh) Oled显示面板及其制备方法
WO2020056953A1 (zh) Oled显示面板及其制备方法
WO2016086608A1 (zh) 薄膜晶体管及其制备方法、阵列基板、显示装置
WO2018082327A1 (en) Method of fabricating electrodes, method of fabricating thin film transistor, method of fabricating array substrate, thin film transistor, array substrate, and display apparatus
TWI297553B (zh)
WO2022222309A1 (zh) 有机发光显示装置的制备方法以及有机发光显示装置
US20060255336A1 (en) Thin film transistor and method of manufacturing the same
US8012527B2 (en) Manufacturing method of display device and display device therefrom
CN113140676B (zh) 基于液滴的有机分子薄膜及其微纳器件阵列的制备方法
US20240170492A1 (en) Array substrate, manufacturing method thereof, and display panel thereof
JP2008311403A (ja) 有機半導体膜の形成方法
JP6202714B2 (ja) 薄膜トランジスタ素子の製造方法及び塗布型半導体層のパターニング方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937533

Country of ref document: EP

Kind code of ref document: A1