WO2022213805A1 - 一种以ba为原料合成胆固醇的方法 - Google Patents

一种以ba为原料合成胆固醇的方法 Download PDF

Info

Publication number
WO2022213805A1
WO2022213805A1 PCT/CN2022/082486 CN2022082486W WO2022213805A1 WO 2022213805 A1 WO2022213805 A1 WO 2022213805A1 CN 2022082486 W CN2022082486 W CN 2022082486W WO 2022213805 A1 WO2022213805 A1 WO 2022213805A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
reaction
solvent
cholesterol
Prior art date
Application number
PCT/CN2022/082486
Other languages
English (en)
French (fr)
Inventor
仇文卫
李幸子
顾向忠
李晨晨
蒋澄宇
吴殊岚
Original Assignee
华东师范大学
江苏佳尔科药业集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东师范大学, 江苏佳尔科药业集团股份有限公司 filed Critical 华东师范大学
Publication of WO2022213805A1 publication Critical patent/WO2022213805A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J9/00Normal steroids containing carbon, hydrogen, halogen or oxygen substituted in position 17 beta by a chain of more than two carbon atoms, e.g. cholane, cholestane, coprostane

Definitions

  • the invention belongs to the technical field of organic chemical synthesis, and relates to a method for synthesizing cholesterol by using plant source raw material 21-hydroxy-20-methylpregna-4-en-3-one, also known as bisnoralcohol or BA (Bisnoralcohol) as a raw material Methods.
  • Cholesterol also known as cholesterol, is widely present in animals, especially in brain tissue. Cholesterol is an indispensable and important substance for animal tissue cells. It not only participates in the formation of cell membranes, but also is the raw material for synthesizing bile acids and steroid hormones, especially the raw materials for synthesizing vitamin D3, as well as pharmaceutical excipients (injection grade) and food and feed additives, etc. .
  • commercially available cholesterol is extracted from the brain and spinal cord of pigs, sheep, cattle and other animals or from lanolin.
  • the source of many diseases is the animal itself, especially with the occurrence of mad cow disease, Streptococcus suis, avian influenza and other infectious events, making people pay more and more attention to the safety of cholesterol.
  • the upstream raw material for the production of vitamin D3 is cholesterol. Due to the risk of epidemics, European and American countries have long not allowed the use of brain stem cholesterol as a raw material. From July 1, 2020, my country has also restricted the use of brain stem cholesterol raw materials. Therefore, there is an urgent need to develop a plant-derived, safe and green cholesterol synthesis method.
  • the chemical synthesis reports of cholesterol mainly include the following methods:
  • Cholesterol (CN 1772760A, shown in Scheme 1) was synthesized with a total yield of 61% using diosgenin as a raw material through 6-step reaction.
  • the raw material price of this route is relatively high, the steps are cumbersome, and the reagents used are highly toxic and polluting, and are not suitable for industrial production.
  • the object of the present invention is to provide a method for synthesizing cholesterol with BA as a raw material.
  • the present invention uses plant source raw material 21-hydroxy-20-methylpregn-4-en-3-one ((20S)-21-hydroxy-20-methylpregn-4-en-3-one), also known as binorol Or BA (bisnoralcohol) is used as the raw material, and the cholesterol is synthesized through the steps of oxidation, Wittig reaction, acetylation, reduction, selective hydrogenation reduction, etc., and the purity can reach the standard of commercial grade cholesterol (>95%).
  • the raw material for synthesizing cholesterol of the invention is safe and economical, the synthesis method is simple to operate, the yield is high, the total yield can reach 78.5%, the cost is low, and the industrial production is convenient.
  • the raw material BA (bisnoralcohol) used in the present invention is derived from the fermentation of leftover phytosterols from the oil and fat process.
  • Raw materials of animal origin may present a risk of infection by pathogenic bacteria and viruses.
  • the raw material BA includes but is not limited to being obtained by biological fermentation of phytosterol, or obtained by chemical synthesis method.
  • the method for synthesizing cholesterol with BA raw material comprises the following steps:
  • step (a) in the first solvent, the BA represented by formula (1) undergoes oxidation reaction to obtain the compound of formula (2);
  • step (b) in the second solvent, the compound of formula (2) is subjected to Wittig reaction to obtain the compound of formula (3);
  • step (c) in the third solvent, the compound of formula (3) is subjected to acetylation reaction to obtain the compound of formula (4);
  • step (d) in the fourth solvent, the compound of formula (4) is subjected to reduction reaction to obtain compounds of formula (5) and formula (6);
  • Step (e) in the fifth solvent, the compound of formula (5) is subjected to selective hydrogenation reduction reaction to obtain the cholesterol; wherein, the reaction process of the method is shown in route (A):
  • the oxidation reaction is specifically: in the first solvent, the BA shown in the formula (1) undergoes an oxidation reaction with TEMPO, sodium bicarbonate, tetrabutylammonium bromide, and an oxidizing agent to obtain the formula (2) Compounds.
  • the molar ratio of BA, TEMPO, sodium bicarbonate, tetrabutylammonium bromide, and oxidizing agent represented by formula (1) is 1:(0.01-1):(1.35-20):(0.1-1):( 1.15-5); preferably, it is 1:0.01:1.35:0.1:1.15.
  • the oxidation reaction is carried out under the action of an oxidant, and the oxidant is selected from one of N-chlorosuccinimide NCS, N-bromosuccinimide NBS, 2-iodoylbenzoic acid IBX, etc. or more; preferably, N-chlorosuccinimide NCS.
  • the temperature of the oxidation reaction is 0-30°C; preferably, it is 0°C.
  • the time of the oxidation reaction is 3-8h; preferably, it is 6h.
  • the synthesis step of the compound of formula (2) includes: BA represented by formula (1) is dissolved in the first solvent, then TEMPO, sodium bicarbonate, tetrabutylammonium bromide, NCS are added to generate Oxidation reaction yields the compound of formula (2).
  • step (b) the Wittig reaction is specifically: in the second solvent, the compound of formula (2), 3,3-dimethylallyl halide, triphenylphosphine, potassium tert-butoxide undergo Wittig reaction , the compound of formula (3) is obtained.
  • the molar ratio of the compound of formula (2), 3,3-dimethylallyl halide, triphenylphosphine and potassium tert-butoxide is 1:(1.5-4):(1.5-4):(1 ⁇ 4); preferably, 1:2:2:1.8 or 1:4:4:3.6.
  • the second solvent is one or more of toluene, benzene, tetrahydrofuran, n-hexane, etc.; preferably, it is toluene.
  • the temperature of the Wittig reaction is 60-140°C; preferably, it is 135°C.
  • the time of the Wittig reaction is 4-9h; preferably, it is 5h or 8h.
  • step (c) the acetylation reaction is specifically: the compound of formula (3), acetyl chloride, acetic anhydride, and pyridine undergo an acetylation reaction in a third solvent to obtain the compound of formula (4).
  • the molar ratio of the compound of formula (3), acetyl chloride, acetic anhydride and pyridine is: 1:(25-62.5):(25-62.5):(4-6); preferably, it is 1:25:25: 5.
  • the third solvent is one or more of acetic anhydride, acetyl chloride, ethyl acetate, dichloromethane, etc.; preferably, it is a mixed solvent of acetyl chloride and acetic anhydride (molar ratio is 1:1) .
  • the temperature of the acetylation reaction is 40-110°C; preferably, it is 100°C.
  • the time of the acetylation reaction is 3-5h; preferably, it is 3.5h.
  • acetyl chloride and acetic anhydride are used as both reactants and solvents.
  • the synthesis step of the compound of formula (4) includes: adding acetyl chloride, acetic anhydride and pyridine to the compound of formula (3) to undergo acetylation reaction to obtain the compound of formula (4).
  • step (d) the reduction reaction is specifically as follows: the compound of formula (4) and the reducing agent undergo a reduction reaction in a fourth solvent to obtain compounds of formula (5) and formula (6).
  • the molar ratio of the compound of formula (4) and the reducing agent is 1:(15-25); preferably, it is 1:15.
  • the reducing agent is one or more of NaBH 4 , KBH 4 and the like; preferably, it is NaBH 4 .
  • the temperature of the reduction reaction is 0-30°C; preferably, it is 25°C.
  • the time of the reduction reaction is 6-9 hours; preferably, it is 8 hours.
  • the steps of synthesizing the compounds of formula (5) and formula (6) include: dissolving the compound of formula (4) in a fourth solvent, and performing a reduction reaction with a reducing agent to obtain formula (5) and formula (6) ) compound.
  • the selective hydrogenation reduction reaction is specifically: the compound of formula (5), under the action of a catalyst, undergoes a selective hydrogenation reduction reaction with a reducing agent in the fifth solvent to obtain cholesterol.
  • a purification step is also included, and the purification step is one or more of column chromatography, recrystallization, beating and the like.
  • the catalyst is RaneyNi.
  • the reducing agent is H 2 .
  • the mass ratio of the compound of formula (5) and the catalyst RaneyNi is 1:(0.05-5); preferably, it is 1:2.
  • the fifth solvent is selected from one or more of isopropanol, dichloromethane, methanol, 2-methyltetrahydrofuran, tetrahydrofuran, ethanol, water, methyl tert-butyl ether, ethyl acetate, toluene, etc. species; preferably, isopropanol.
  • the temperature of the hydrogenation reduction reaction is 0-60°C; preferably, it is 30°C.
  • the pressure of the reducing agent H2 in the hydrogenation reduction reaction is 1-20 atm, preferably, 1 atm.
  • the time of the hydrogenation reduction reaction is 6-10 h; preferably, it is 7 h.
  • the cholesterol synthesis step includes: dissolving the compound of formula (5) in a fifth solvent, adding Raney Ni and H 2 for replacement, and performing a selective hydrogenation reduction reaction to obtain cholesterol.
  • the present invention also provides a compound whose structure is shown in formula (4):
  • the compound of formula (6) of the present invention is catalyzed by RaneyNi to selectively hydrogenate and reduce to obtain epicholesterol.
  • the beneficial effects of the present invention include: the preparation method of cholesterol of the present invention, the raw material BA used is plant-derived raw material, avoids the risk of pathogenic bacteria and virus infection that may exist in animal-derived raw materials, and is cheap and easy to obtain; the synthesis steps of the cholesterol are simple and convenient. The yield is high, the side reactions are few, the environment is friendly, and the industrial production is convenient; the safety problem of the existing cholesterol product and the problems of high cost, unfriendly environment, and unsuitability for large-scale industrial production in the synthesis technology are solved.
  • the Wittig reaction of the present invention 3,3-dimethylallyl bromide is used to synthesize the Wittig reagent (3,3-dimethylallyl triphenylphosphine bromide), with few side reactions, easy removal of impurities, and improved reaction yield.
  • acetylation reaction of the present invention acetyl chloride and acetic anhydride are used both as reactants and as solvents, which avoids the generation of impurities and further improves the yield.
  • the reduction reaction of the present invention by screening the reaction solvent, when a mixture of tetrahydrofuran, ethanol and water is selected as the solvent, the generation of by-products can be effectively reduced, and the reaction yield can be greatly improved.
  • Fig. 1 is in the comparative example 1 of the present invention, the reaction liquid TLC thin plate chromatography situation.
  • Fig. 2 is the TLC thin plate chromatography of the reaction solution in Comparative Example 1 of the present invention.
  • Fig. 3 is the situation of TLC thin plate chromatography of the reaction solution in Comparative Example 2 of the present invention.
  • Fig. 4 is the situation of TLC thin plate chromatography of the reaction solution in Comparative Example 2 of the present invention.
  • Fig. 5 is the situation of TLC thin plate chromatography of the reaction solution in Comparative Example 3 of the present invention.
  • Fig. 6 is the situation of TLC thin plate chromatography of the reaction solution in Comparative Example 4 of the present invention.
  • Fig. 7 is the gas chromatogram of the crude cholesterol product prepared by method (1) in Example 5 of the present invention.
  • Fig. 8 is the gas chromatogram of the refined cholesterol prepared by the method (1) in the fifth embodiment of the present invention.
  • Fig. 9 is the gas chromatogram of the crude cholesterol product prepared by method (2) in Example 5 of the present invention.
  • Fig. 10 is the gas chromatogram of the refined cholesterol prepared by the method (2) in the fifth embodiment of the present invention.
  • the compound structure was determined by nuclear magnetic resonance and high-resolution mass spectrometer; reagents were mainly provided by Shanghai Sinopharm Chemical Reagent Company; product purification was mainly by beating and column chromatography; silica gel (200-300) was produced by Qingdao Ocean Chemical Factory .
  • BA 50.00g, 0.15mol
  • TEMPO 235mg, 1.50mmol
  • dichloromethane 400mL
  • sodium bicarbonate 17.60g, 0.21mol
  • NCS 23.10g, 173.00mmol
  • tetrabutylammonium bromide 4.84g, 15mmol
  • water 160mL
  • the present embodiment provides the preparation results of the compound of formula (3) under 4 different experimental conditions:
  • Triphenylphosphine (23.97g, 91.40mmol), 3,3-dimethylallyl bromide (13.62g, 91.40mmol), 230mL of toluene were added to a 500mL single-necked flask, and after the reaction was performed at 135°C for 2h under reflux, Cool to room temperature, add potassium tert-butoxide (9.23 g, 82.26 mmol) in an ice bath, stir for 0.5 h, add the compound of formula (2) (15.00 g, 45.70 mmol), heat up to 135° C. and reflux for 2.5 h.
  • the ratio of E/Z configuration of intermediate compound 4, compound 5, and compound 6 obtained by acetylation and reduction of compound 3 remains basically unchanged, and the double bond at C-22 is in E configuration.
  • Primary, Z configuration is secondary (3E/3Z ⁇ 87/13).
  • the cis-trans isomer of the C-22 double bond in compound 5 can be reduced by Raney nickel hydrogenation to obtain cholesterol. Therefore, the ratio of the E/Z configuration of the corresponding compound is not indicated in the following examples.
  • Triphenylphosphine (47.95g, 182.80mmol), 3,3-dimethylallyl chloride (19.12g, 182.80mmol), 230mL of toluene were added to a 500mL single-necked flask, and after the reaction was performed at 135°C for 4h under reflux, Cool to room temperature, add potassium tert-butoxide (18.46 g, 164.52 mmol) in an ice bath, stir for 0.5 h, add the compound of formula (2) (15.00 g, 45.70 mmol), heat up to 135 °C and reflux for 4.5 h.
  • Triphenylphosphine 13.19 g, 50.27 mmol
  • 3,3-dimethylallyl bromide 7.49 g, 50.27 mmol
  • 230 mL of toluene were added to a 500 mL one-necked flask, and the reaction was carried out under reflux at 135° C. for 2 h.
  • Cool to room temperature add potassium tert-butoxide (9.23 g, 82.26 mmol) in an ice bath, stir for 0.5 h, add the compound of formula (2) (15.00 g, 45.70 mmol), heat up to 135° C. and reflux for 2.5 h.
  • Triphenylphosphine (17.62 g, 67.18 mmol), 3,3-dimethylallyl bromide (10.01 g, 67.18 mmol), and 230 mL of toluene were added to a 500-mL single-necked flask, and the reaction was performed at 135° C. for 2 h under reflux. Cool to room temperature, add potassium tert-butoxide (9.23 g, 82.26 mmol) in an ice bath, stir for 0.5 h, add the compound of formula (2) (15.00 g, 45.70 mmol), heat up to 135° C. and reflux for 2.5 h.
  • the present embodiment provides the preparation results of the compound of formula (4) under 5 different experimental conditions:
  • the present embodiment provides the preparation results of compounds of formula (5) and formula (6) under 5 different experimental conditions:
  • the present embodiment provides the preparation results of cholesterol under 2 different experimental conditions:
  • Example 5 in the gas chromatogram of the crude cholesterol obtained by experimental method (1) (Fig. 7), the peak with retention time of 7.987min (93.28%) was the peak of cholesterol; the retention time was 7.200min (0.6%) , 7.374min (1.52%), 7.723min (1.01%), the corresponding compounds of these three impurity peaks are one of the partially reduced impurities 7-1, 7-2, 7-3; the retention time is 8.096min (3.11%) ), the corresponding compound of the impurity peak is the overreduced impurity 7-4.
  • Example 5 in the gas chromatogram of the refined cholesterol obtained by experimental method (1) column chromatography purification (Fig. 8), the peak with retention time of 7.992min (95.87%) was the peak of cholesterol; the retention time was 7.193min (0.58%), 7.364min (2.01%), 7.705min (0.08%), the corresponding compounds of these three impurity peaks are one of the partially reduced impurities 7-1, 7-2, and 7-3; the retention time is 8.087 The compound corresponding to the impurity peak at min (0.91%) is the overreduced impurity 7-4.
  • Example 5 in the gas chromatogram of crude cholesterol obtained by experimental method (2) (Fig. 9), the peak with retention time of 8.073min (93.26%) was the peak of cholesterol; retention time was 7.296min (0.26%) , 7.464min (2.52%), 7.596min (0.17%), the corresponding compounds of these three impurity peaks are one of the partially reduced impurities 7-1, 7-2, 7-3; the retention time is 8.192min (3.36% ), the corresponding compound of the impurity peak is the overreduced impurity 7-4.
  • Patent literature (background technology Scheme 2, CN105218610 A) reported that stigmasterol degraded product was used as raw material, and through 5-step reaction, cholesterol was synthesized with a total yield of 67%.
  • the first step reaction is shown in the following reaction formula one:
  • Patent document CN105218610 A describes the reaction formula 1 using BA-oxidized compound 02 as a raw material, using ethanol as a solvent, under the action of p-toluenesulfonic acid and triethyl orthoformate, and heating to 40 ° C for 4 hours of insulation reaction to obtain compound 03.
  • Molar yield 97.50%.
  • the present invention uses ethanol as a solvent, and compound 02 as a substrate.
  • the reaction is incubated at 40° C. for 4h, and TLC detects that the raw materials have reacted completely ( As shown in Figure 1), the compound 03' (shown in Reaction Formula 2) is obtained by post-processing according to the method in the patent document (CN105218610 A), which is inconsistent with the compound described in the patent document.
  • the present invention also attempts to reduce the amount of triethyl orthoformate, and TLC detects that the reaction of the raw materials is complete (as shown in Figure 2), but does not obtain the result of reaction formula 1 as described in the patent document (CN105218610 A), but obtains The result shown in the following reaction formula three.
  • the 3-position carbonyl group of compound 02 is protected according to the method reported in patent document CN 105218610 A, the C-22-position aldehyde group will be preferentially protected to generate acetal, and the compound 03′ shown in reaction formula two or formula three is generated and 03", and the compound 03 described in the patent document (CN 105218610 A) could not be obtained.
  • the compounds 03' and 03" shown in the reaction formula 2 or formula 3 cannot be subjected to the subsequent Wittig reaction.
  • Triphenylphosphine (797 mg, 3.04 mmol), 1-bromo-3-methylbutane (459 mg, 3.04 mmol), 10 mL of toluene were added to a 50 mL one-necked flask, and after refluxing at 135 °C for 2 h, cooled to room temperature and ice bath.
  • Potassium tert-butoxide (307 mg, 2.74 mmol) was added in batches, stirred for 0.5 h under ice bath, and then the compound of formula (2) (500 mg, 1.52 mmol) was added, and the reaction was refluxed at 135° C. for 2.5 h.
  • the 3-position ester group of the compound of formula 4 is reduced by NaBH 4 to obtain the compound of formula 5, and then the double bond of the side chain of the compound of formula 5 is reduced by Raney Ni/H 2 to synthesize cholesterol.
  • the reducing agent adopted for the reduction of the side chain double bond of the compound of formula 5 is H 2
  • the catalyst is RaneyNi as shown in the following reaction formula 6:
  • the present invention attempts to use Raney Ni/H 2 as a reducing agent to perform a selective hydrogenation reduction reaction on the double bond of the side chain, and then use NaBH 4 to reduce the 3-position ester group.
  • the reaction results are shown in Reaction Formula 7, and compounds 6 and 6' were obtained (TLC detection of the reaction solution is shown in Figure 5), but the expected compound 7 was not obtained, indicating that RaneyNi/H 2 , as a reducing agent, cannot react to the side chain.
  • Selective hydrogenation reduction is carried out, therefore, the sequence of the reduction reaction as shown in Reaction Scheme 6 cannot be changed.
  • the present invention tries H2 as a reducing agent and 10% Pd/C as a catalyst to selectively hydrogenate and reduce the double bond of the side chain.
  • the reaction results are shown in Reaction Formula 9, and compounds 8 and 8' were obtained (TLC detection of the reaction solution is shown in Figure 6), but the expected target product cholesterol was not obtained, indicating that 10% Pd/C cannot replace Raney Ni as a catalyst , selective hydrogenation reduction of the side chain.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Steroid Compounds (AREA)

Abstract

本发明公开了一种以BA为原料合成胆固醇的方法,以植物源原料21-羟基-20-甲基孕甾-4-烯-3-酮,又称双降醇或BA为原料,经氧化、Wittig反应、乙酰化、还原、选择性氢化还原等步骤合成所述胆固醇,纯度可达到市售级胆固醇的标准(>95%)。本发明合成胆固醇的原料为植物源来源不仅价格便宜,而且安全性高,避免了致病菌和病毒感染的风险,合成方法操作简单,收率较高,副反应少,环境友好,经济性好,便于工业化生产;解决了现有胆固醇产品的安全问题以及合成技术中成本高,环境不友好,不适合大规模工业化生产的问题。

Description

一种以BA为原料合成胆固醇的方法 技术领域
本发明属于有机化学合成技术领域,涉及一种以植物源原料21-羟基-20-甲基孕甾-4-烯-3-酮,又称为双降醇或BA(Bisnoralcohol)为原料合成胆固醇的方法。
背景技术
胆固醇又名胆甾醇,广泛存在于动物体内,尤以脑组织中最为丰富。胆固醇是动物组织细胞不可缺少的重要物质,不仅参与细胞膜的形成,还是合成胆汁酸、甾体激素的原料,特别是合成维生素D3的原料以及作为药用辅料(注射级)和食品、饲料添加剂等。目前,商品化供应的胆固醇是从猪、羊、牛等动物的脑和脊髓中提取或从羊毛脂提取。研究发现许多疾病的来源为动物本身,尤其随着疯牛病、猪链球菌、禽流感等感染事件的发生,使得人们越来越重视胆固醇的安全性。如生产维生素D3的上游原料是胆固醇,因存在流行病风险,欧美国家早已不允许使用脑干胆固醇为原料,从2020年7月1日起我国也限制了脑干胆固醇原料的使用。因此,迫切需要开发一种植物源的、安全、绿色的胆固醇合成方法。
胆固醇的化学合成报道主要有以下方法:
(1)以薯蓣苷元为原料,经6步反应,以总收率61%合成了胆固醇(CN 1772760A,如Scheme 1所示)。该路线原料价格相对较高、步骤繁琐,所用试剂毒性大、污染大,不适宜工业化生产。
Figure PCTCN2022082486-appb-000001
Scheme 1
(2)以豆甾醇降解物为原料,经5步反应,以总收率67%合成胆固醇,(CN 105218610  A,如图Scheme 2所示)。但本发明申请人通过试验表明该路线存在的问题如下:该专利第一步反应采用原甲酸三乙酯对C-3羰基进行醚化保护时,选择性差,容易对侧链醛基进行反应形成缩醛物(具体请见发明内容部分的“对比例一”)。因此,该路线可行性存在严重的问题。
Figure PCTCN2022082486-appb-000002
Scheme 2
(3)以孕烯醇酮为原料,经4步反应,以总收率72%合成胆固醇,(CN 105218609 A,如图Scheme 3所示),该路线使用了贵金属铑催化剂以及手性膦配体,价格昂贵,不适合大规模工业化生产。
Figure PCTCN2022082486-appb-000003
Scheme 3
(4)以孕烯醇酮为原料,经2步反应,以总收率80%合成胆固醇,(CN 104961788 A,如图Scheme 4所示),该路线同样使用了贵金属铑催化剂以及手性膦配体,价格昂贵,不适合大规模工业生产。
Figure PCTCN2022082486-appb-000004
Scheme 4
(5)以豆甾醇为原料,经5步反应,以总收率68%合成胆固醇,(CN 105237603 A,如图Scheme 5所示),该路线在合成过程中使用到了O 3,对监测反应及设备提出更高的要求,经济性和安全性不够好。
Figure PCTCN2022082486-appb-000005
Scheme 5
(6)以豆甾醇为原料,经4步反应,以总收率70%合成胆固醇,(CN 106632565 A,如图Scheme 6所示),该路线同样使用了O 3,增加了工艺难度,对监测反应及设备提出更高的要求,经济性和安全性不好。
Figure PCTCN2022082486-appb-000006
Scheme 6
目前已经报道的胆固醇合成路线存在操作繁琐,污染大,使用的催化剂价格昂贵或其中的一些操作步骤存在问题等,因此以上这些报道的合成路线均不适合工业化生产。同时,由于疯牛病、猪链球菌感染等疾病的发生,使人们越来越重视胆固醇的安全生产,因此研发一种基于植物源原料的,高效绿色环保、经济的胆固醇合成方法具有重要意义和工业化价值。
发明内容
为了解决现有技术存在的不足,本发明的目的是提供一种以BA为原料合成胆固醇的方法。本发明以植物源原料21-羟基-20-甲基孕甾-4-烯-3-酮((20S)-21-hydroxy-20-methylpregn-4-en-3-one)又称双降醇或BA(bisnoralcohol)为原料,经过氧化、Wittig反应、乙酰化、还原、选择性氢化还原等步骤合成所述胆固醇,纯度可达到市售级胆固醇的标准(>95%)。本发明合成胆固醇的原料安全、经济,合成方法操作简单、收率高、总收率可达到78.5%,成本低、便于工业化生产。
本发明所使用的原料BA(bisnoralcohol),来源于油脂工艺下脚料植物甾醇的发酵,是一种植物源的绿色原料,目前年产量达千吨级,价格便宜,能够很好避免现有技术中动物源原料可能存在致病菌和病毒感染的风险。
本合成方法中,所述原料BA包括但不限于通过植物甾醇经生物发酵得到,或由化学合成方法得到。
本发明提供的以BA原料合成胆固醇的方法,包括以下步骤:
步骤(a)、在第一溶剂中,式(1)所示的BA经氧化反应,得到式(2)化合物;
步骤(b)、在第二溶剂中,式(2)化合物经Wittig反应,得到式(3)化合物;
步骤(c)、在第三溶剂中,式(3)化合物经乙酰化反应,得到式(4)化合物;
步骤(d)、在第四溶剂中,式(4)化合物经还原反应,得到式(5)和式(6)化合物;
步骤(e)、在第五溶剂中,式(5)化合物经选择性氢化还原反应,得到所述胆固醇;其中,所述方法的反应过程如路线(A)所示:
Figure PCTCN2022082486-appb-000007
路线(A)
本发明步骤(a)中,所述氧化反应具体为:在第一溶剂中,式(1)所示的BA与TEMPO、碳酸氢钠、四丁基溴化铵、氧化剂发生氧化反应,得到式(2)化合物。
其中,式(1)所示的BA、TEMPO、碳酸氢钠、四丁基溴化铵、氧化剂的摩尔比为1:(0.01~1):(1.35~20):(0.1~1):(1.15~5);优选地,为1:0.01:1.35:0.1:1.15。
其中,所述氧化反应在氧化剂的作用下进行,所述氧化剂选自N-氯代琥珀酰亚胺NCS、N-溴代琥珀酰亚胺NBS、2-碘酰基苯甲酸IBX等中的一种或多种;优选地,为N-氯代琥珀酰亚胺NCS。
其中,所述第一溶剂选自二氯甲烷、四氢呋喃、甲苯、二甲基亚砜、水等中的一种或多种;优选地,为二氯甲烷和水的混合溶剂(体积比V/V=5/2)。
其中,所述氧化反应的温度为0~30℃;优选地,为0℃。
其中,所述氧化反应的时间为3~8h;优选地,为6h。
在一具体实施方式中,式(2)化合物的合成步骤包括:式(1)所示的BA溶解在第一溶剂中,然后加入TEMPO、碳酸氢钠、四丁基溴化铵、NCS,发生氧化反应,得到式(2)化合物。
步骤(b)中,所述Wittig反应具体为:在第二溶剂中,式(2)化合物、3,3-二甲基烯丙基卤代物、三苯基膦、叔丁醇钾发生Wittig反应,得到式(3)化合物。
其中,式(2)化合物、3,3-二甲基烯丙基卤代物、三苯基膦、叔丁醇钾的摩尔比为1:(1.5~4):(1.5~4):(1~4);优选地,为1:2:2:1.8或1:4:4:3.6。
其中,所述第二溶剂为甲苯、苯、四氢呋喃、正己烷等中的一种或多种;优选地,为甲苯。
其中,所述Wittig反应的温度为60~140℃;优选地,为135℃。
其中,所述Wittig反应的时间为4~9h;优选地,为5h或8h。
步骤(c)中,所述乙酰化反应具体为:式(3)化合物、乙酰氯、乙酸酐、吡啶在第三溶剂中发生乙酰化反应,得到式(4)化合物。
其中,式(3)化合物、乙酰氯、乙酸酐、吡啶的摩尔比为:1:(25~62.5):(25~62.5):(4~6);优选地,为1:25:25:5。
其中,所述第三溶剂为乙酸酐、乙酰氯、乙酸乙酯、二氯甲烷等中的一种或多种;优选地,为乙酰氯和乙酸酐的混合溶剂(摩尔比为1:1)。
其中,所述乙酰化反应的温度为40~110℃;优选地,为100℃。
其中,所述乙酰化反应的时间为3~5h;优选地,为3.5h。
其中,所述乙酰化反应中,乙酰氯、乙酸酐既作反应物,又作溶剂。
在一具体实施方式中,式(4)化合物的合成步骤包括:式(3)化合物加入乙酰氯、乙酸酐、吡啶发生乙酰化反应,得到式(4)化合物。
步骤(d)中,所述还原反应具体为:所述式(4)化合物、还原剂在第四溶剂中发生还原反应,得到式(5)和式(6)化合物。
其中,式(4)化合物、还原剂的摩尔比为1:(15~25);优选地,为1:15。
其中,所述第四溶剂为四氢呋喃、乙醇、水、二氯甲烷、2-甲基四氢呋喃、异丙醇、乙酸、甲基叔丁基醚等中的一种或多种;优选地,为四氢呋喃、乙醇、水的混合溶剂(体积比V/V/V=16/8/5)。
其中,所述还原剂为NaBH 4、KBH 4等中的一种或多种;优选地,为NaBH 4
其中,所述还原反应的温度为0~30℃;优选地,为25℃。
其中,所述还原反应的时间为6~9h;优选地,为8h。
在一具体实施方式中,式(5)和式(6)化合物的合成步骤包括:式(4)化合物溶解在第四溶剂中,和还原剂发生还原反应,得到式(5)和式(6)化合物。
步骤(e)中,所述选择性氢化还原反应具体为:式(5)化合物,在催化剂作用下,与 还原剂在所述第五溶剂中发生选择性氢化还原反应,得到胆固醇。
其中,在得到胆固醇之前还包括纯化步骤,所述纯化步骤为柱层析、重结晶、打浆等中的一种或多种。
其中,所述催化剂为RaneyNi。
其中,所述还原剂为H 2
其中,式(5)化合物、催化剂RaneyNi的质量比为1:(0.05~5);优选地,为1:2。
其中,所述第五溶剂选自异丙醇、二氯甲烷、甲醇、2-甲基四氢呋喃、四氢呋喃、乙醇、水、甲基叔丁基醚、乙酸乙酯、甲苯等中的一种或多种;优选地,为异丙醇。
其中,所述氢化还原反应的温度为0~60℃;优选地,为30℃。
其中,所述氢化还原反应的还原剂H 2压力为1-20atm,优选地,为1atm。
其中,所述氢化还原反应的时间为6~10h;优选地,为7h。
在一具体实施方式中,胆固醇的合成步骤包括:式(5)化合物溶解在第五溶剂中,加入Raney Ni、H 2置换后,发生选择性氢化还原反应,得到胆固醇。
本发明还提供了一种化合物,所述化合物的结构如式(4)所示:
Figure PCTCN2022082486-appb-000008
本发明以上式(3)、式(4)、式(5)和式(6)化合物,由于通过Wittig反应引入的D环侧链双键具有顺反构型,因此式(3)、式(4)、式(5)和式(6)化合物均不是单一物质,均为混合物。
本发明式(6)化合物经RaneyNi催化,选择性氢化还原得到表胆固醇。
Figure PCTCN2022082486-appb-000009
本发明的有益效果包括:本发明胆固醇的制备方法,所用原料BA为植物源原料,避免了动物源原料可能存在的致病菌和病毒感染的风险,廉价易得;该胆固醇的合成步骤简便、收率较高,副反应少,环境友好,方便实现工业化生产;解决了现有胆固醇产品的安全问题 以及合成技术中成本高,环境不友好,不适合大规模工业化生产的问题。
本发明Wittig反应中,使用3,3-二甲基烯丙基溴合成Wittig试剂(3,3-二甲基烯丙基溴化三苯基膦),副反应少,杂质易于除去,提高了反应收率。本发明乙酰化反应中,乙酰氯、乙酸酐既作为反应物,又作为溶剂使用,避免了杂质的生成,进一步提高了收率。本发明还原反应中,通过对反应溶剂的筛选,当选择四氢呋喃、乙醇与水的混合物作为溶剂时,能够有效减少副产物的生成,极大提高反应收率。本发明选择性氢化还原反应中,当选用H 2作为还原剂,Raney Ni作为催化剂时,通过对反应溶剂的筛选,当选择异丙醇作为选择性氢化还原反应的溶剂时,能够有效提高反应的收率。
附图说明
图1为本发明对比例一中,反应液TLC薄板层析情况。
图2为本发明对比例一中,反应液TLC薄板层析情况。
图3为本发明对比例二中,反应液TLC薄板层析情况。
图4为本发明对比例二中,反应液TLC薄板层析情况。
图5为本发明对比例三中,反应液TLC薄板层析情况。
图6为本发明对比例四中,反应液TLC薄板层析情况。
图5,TLC:PE/EA=20:1;除图5外,TLC:PE/EA=5:1。
图7为本发明实施例五中,方法(1)制备所得胆固醇粗品的气相色谱图。
图8为本发明实施例五中,方法(1)制备所得精品胆固醇的气相色谱图。
图9为本发明实施例五中,方法(2)制备所得胆固醇粗品的气相色谱图。
图10为本发明实施例五中,方法(2)制备所得精品胆固醇的气相色谱图。
具体实施方式
结合以下具体实施例和附图,对本发明作进一步的详细说明。实施本发明的过程、条件、实验方法等,除以下专门提及的内容之外,均为本领域的普遍知识和公知常识,本发明没有特别限制内容。
下述实施例中,化合物结构用核磁共振仪和高分辨质谱仪测定;试剂主要由上海国药化学试剂公司提供;产品纯化主要通过打浆、柱色谱;硅胶(200-300)由青岛海洋化工厂生产。
实施例一 式(2)化合物的制备
于1000mL单口烧瓶中依次加入BA(50.00g,0.15mol),TEMPO(235mg,1.50mmol),二氯甲烷(400mL),碳酸氢钠(17.60g,0.21mol),NCS(23.10g,173.00mmol),四丁基溴化铵(4.84g,15mmol)和水(160mL),0℃反应6h。TLC检测反应完毕后加入五水合 硫代硫酸钠溶液(11.25g五水合硫代硫酸钠/225mL水),5-10℃搅拌20min,分液,水相用二氯甲烷(100mL×3)萃取,合并有机层,用1%氢氧化钠溶液(300mL)洗涤,分液,有机相用无水硫酸钠干燥,减压浓缩,得到式(2)化合物(47.21g,白色固体,摩尔收率95%)。 1H NMR(400MHz,CDCl 3)δ9.55(s,1H),5.71(s,1H),2.45-2.23(m,5H),1.99(t,J=13.7Hz,2H),1.91-1.78(m,2H),1.68(t,J=10.2Hz,2H),1.43(m,5H),1.30-1.19(m,2H),1.17(s,3H),1.11(d,J=5.5Hz,3H),1.06-0.89(m,3H),0.75(s,3H). 13C NMR(100MHz,CDCl 3)δ205.00,199.65,171.31,123.99,55.25,53.84,51.04,49.54,43.10,39.39,38.68,35.80,35.68,34.06,32.93,32.05,27.11,24.64,21.06,17.48,13.53,12.44.HRMS(ESI):calcd for C 22H 32NaO 2[M+Na] +,351.2295,found 351.2292.
Figure PCTCN2022082486-appb-000010
实施例二 式(3)化合物的制备
本实施例给出了4种不同实验条件下式(3)化合物的制备结果:
(1)于500mL单口烧瓶中加入三苯基膦(23.97g,91.40mmol)、3,3-二甲基烯丙基溴(13.62g,91.40mmol),甲苯230mL,135℃回流反应2h后,冷却至室温,冰浴下加入叔丁醇钾(9.23g,82.26mmol),搅拌0.5h后加入式(2)化合物(15.00g,45.70mmol),升温到135℃回流反应2.5h。TLC监测反应完全后,冷却至室温,蒸除溶剂,加入二氯甲烷,加入2M HCl(12mL)调节PH值为中性,有机相用水洗,饱和NaCl的水溶液(100mL×3)洗,无水硫酸钠干燥,减压浓缩后用甲基叔丁基醚和甲醇的混合溶液(30mL,V/V=5/1)打浆,得到式(3)化合物(3E和3Z,3E/3Z≈87/13,白色固体16.72g,摩尔收率96%)。
注:本发明中,化合物3经过乙酰化、还原得到的中间体化合物4、化合物5、化合物6的E/Z构型的比例基本保持不变,C-22位的双键以E构型为主,Z构型为辅(3E/3Z≈87/13)。另外,化合物5中C-22位双键的顺反异构体经过雷尼镍氢化还原均可得到胆固醇,因此,后面的实施例中不再标注相应化合物E/Z构型的比例。
(2)于500mL单口烧瓶中加入三苯基膦(47.95g,182.80mmol)、3,3-二甲基烯丙基氯(19.12g,182.80mmol),甲苯230mL,135℃回流反应4h后,冷却至室温,冰浴下加入叔丁醇钾(18.46g,164.52mmol),搅拌0.5h后加入式(2)化合物(15.00g,45.70 mmol),升温到135℃回流反应4.5h。TLC监测反应完全后,冷却至室温,蒸除溶剂,加入二氯甲烷,加入2M HCl(12mL)调节PH值为中性,有机相用水洗,饱和NaCl的水溶液(100mL×3)洗,无水硫酸钠干燥,减压浓缩后用甲基叔丁基醚和甲醇的混合溶液(30mL,V/V=5/1)打浆,得到式(3)化合物(3E和3Z,白色固体12.51g,摩尔收率72%)。
(3)于500mL单口烧瓶中加入三苯基膦(13.19g,50.27mmol)、3,3-二甲基烯丙基溴(7.49g,50.27mmol),甲苯230mL,135℃回流反应2h后,冷却至室温,冰浴下加入叔丁醇钾(9.23g,82.26mmol),搅拌0.5h后加入式(2)化合物(15.00g,45.70mmol),升温到135℃回流反应2.5h。TLC监测反应完全后,冷却至室温,蒸除溶剂,加入二氯甲烷,加入2M HCl(12mL)调节PH值为中性,有机相用水洗,饱和NaCl的水溶液(100mL×3)洗,无水硫酸钠干燥,减压浓缩后用甲基叔丁基醚和甲醇的混合溶液(30mL,V/V=5/1)打浆,得到式(3)化合物(3E和3Z,白色固体13.90g,摩尔收率80%)。
(4)于500mL单口烧瓶中加入三苯基膦(17.62g,67.18mmol)、3,3-二甲基烯丙基溴(10.01g,67.18mmol),甲苯230mL,135℃回流反应2h后,冷却至室温,冰浴下加入叔丁醇钾(9.23g,82.26mmol),搅拌0.5h后加入式(2)化合物(15.00g,45.70mmol),升温到135℃回流反应2.5h。TLC监测反应完全后,冷却至室温,蒸除溶剂,加入二氯甲烷,加入2M HCl(12mL)调节PH值为中性,有机相用水洗,饱和NaCl的水溶液(100mL×3)洗,无水硫酸钠干燥,减压浓缩后用甲基叔丁基醚和甲醇的混合溶液(30mL,V/V=5/1)打浆,得到式(3)化合物(3E和3Z,白色固体14.77g,摩尔收率85%)。 1H NMR(500MHz,CDCl 3)δ6.17-6.08(m,1H),5.77-5.69(m,2H),5.40-5.35(m,1H),2.45-2.22(m,6H),2.13-2.07(m,1H),2.04-1.96(m,1H),1.92-1.79(m,4H),1.76-1.72(m,8H),1.70-1.64(m,2H),1.62(d,J=0.9Hz,3H),1.54-1.39(m,3H),1.38-1.17(m,5H),1.15(s,4H),1.07-0.96(m,5H),0.92(d,J=6.6Hz,3H),0.68(s,3H). 13C NMR(125MHz,CDCl 3)δ199.74,171.79,138.55,132.59,125.25,124.27,123.73,56.32,55.69,53.88,42.51,40.63,38.84,38.65,35.68,35.60,34.01,32.97,32.06,27.87,25.96,24.08,21.50,20.88,18.27,17.39,12.24.HRMS(ESI):calcd for C 27H 40NaO[M+Na] +,403.2971,found 403.2967.
Figure PCTCN2022082486-appb-000011
实施例三 式(4)化合物的制备
本实施例给出了5种不同实验条件下式(4)化合物的制备结果:
(1)于50mL单口烧瓶中加入式(3)化合物(3E和3Z,500mg,1.31mmol)、乙酸酐(3.34g,32.75mmol)、乙酰氯(2.57g,32.75mmol)和吡啶(518mg,6.55mmol),100℃回流反应3.5h,TLC监测反应完全后,冷却至室温,蒸除乙酰氯和乙酸酐,加入二氯甲烷(150mL),有机相加水洗涤(80mL×3),分离有机相,无水硫酸钠干燥,蒸除溶剂,柱层析纯化(石油醚/乙酸乙酯=80/1,v/v),得到式(4)化合物(4E和4Z,白色固体528mg,摩尔收率95%)。
(2)于50mL单口烧瓶中加入式(3)化合物(3E和3Z,500mg,1.31mmol)、乙酸酐(3.34g,32.75mmol)、乙酰氯(2.57g,32.75mmol)和吡啶(621mg,7.86mmol),110℃回流反应4h,TLC监测反应完全后,冷却至室温,蒸除乙酰氯和乙酸酐,加入二氯甲烷(150mL),有机相加水洗涤(80mL×3),分离有机相,无水硫酸钠干燥,蒸除溶剂,柱层析纯化(石油醚/乙酸乙酯=80/1,v/v),得到式(4)化合物(4E和4Z,白色固体516mg,摩尔收率93%)。
(3)于50mL单口烧瓶中加入式(3)化合物(3E和3Z,500mg,1.31mmol)、乙酸酐(6.02g,58.95mmol)、乙酰氯(2.57g,32.75mmol)和吡啶(518mg,6.55mmol),90℃回流反应4h,TLC监测反应完全后,冷却至室温,蒸除乙酰氯和乙酸酐,加入二氯甲烷(150mL),有机相加水洗涤(80mL×3),分离有机相,无水硫酸钠干燥,蒸除溶剂,柱层析纯化(石油醚/乙酸乙酯=80/1,v/v),得到式(4)化合物(4E和4Z,白色固体505mg,摩尔收率91%)。
(4)于50mL单口烧瓶中加入式(3)化合物(3E和3Z,500mg,1.31mmol)、乙酸酐(6.02g,58.95mmol)、乙酰氯(2.57g,32.75mmol)和吡啶(621mg,7.86mmol),100℃回流反应4h,TLC监测反应完全后,冷却至室温,蒸除乙酰氯和乙酸酐,加入二氯甲烷(150mL),有机相加水洗涤(80mL×3),分离有机相,无水硫酸钠干燥,蒸除溶剂,柱层析纯化(石油醚/乙酸乙酯=80/1,v/v),得到式(4)化合物(4E和4Z,白色固体496mg,摩尔收率89%)。
(5)于50mL单口烧瓶中加入式(3)化合物(3E和3Z,500mg,1.31mmol)、乙酸酐(3.21g,31.44mmol)、乙酰氯(2.47g,31.44mmol),65℃回流反应4h,TLC监测反应完全后,冷却至室温,蒸除乙酰氯和乙酸酐,加入二氯甲烷(150mL),有机相加水洗涤(80mL×3),分离有机相,无水硫酸钠干燥,蒸除溶剂,柱层析纯化(石油醚/乙酸乙酯=80/1,v/v),得到式(4)化合物(4E和4Z,白色固体461mg,摩尔收率83%)。 1H NMR(500MHz,CDCl 3)δ6.18-6.13(m,1H),5.78(d,J=10.8Hz,1H),5.71(d,J=2.2Hz,1H),5.46-5.39(m,2H),2.50-2.41(m,1H),2.15(s,5H),2.05-2.01(m,1H),1.90-1.82(m,1H),1.78-1.75(m,6H),1.72-1.63 (m,3H),1.51-1.40(m,1H),1.37-1.16(m,5H),1.07(d,J=6.6Hz,3H),1.60-1.56(m,8H),1.03(d,J=3.5Hz,4H),0.75(s,3H). 13C NMR(125MHz,CDCl 3)δ169.43,146.98,139.38,138.53,132.65,125.28,124.11,124.08,117.02,56.86,55.91,48.00,42.48,40.27,39.64,34.92,33.79,31.85,31.76,28.56,25.92,24.82,24.18,21.21,21.11,20.64,18.86,18.23,12.20.HRMS(ESI):calcd for C 29H 42NaO 2[M+Na] +,445.3077,found 445.3081.
Figure PCTCN2022082486-appb-000012
实施例四 式(5)和式(6)化合物的制备
本实施例给出了5种不同实验条件下式(5)和式(6)化合物的制备结果:
(1)于100mL单口烧瓶中加入式(4)化合物(4E和4Z,486mg,1.15mmol),四氢呋喃、乙醇和水的混合溶剂(23.5mL,V/V/V=16/8/5),0℃下加入硼氢化钠(653mg,17.25mmol),25℃反应8h。TLC监测反应完全后,加入2M NaOH溶液(10mL),蒸除溶剂,加入二氯甲烷(50mL×3)萃取,有机相水洗,饱和NaCl溶液(50mL×3)洗,无水硫酸钠干燥,减压浓缩,柱层析纯化(石油醚/乙酸乙酯=40/1,v/v),得式(5)化合物(5E和5Z,白色固体403mg,摩尔收率92%)和式(6)化合物(6E和6Z,白色固体30mg,摩尔收率7%)。
(2)于100mL单口烧瓶中加入式(4)化合物(4E和4Z,523mg,1.24mmol),四氢呋喃、乙醇和水的混合溶剂(20.1mL,V/V/V=16/4/3),0℃下加入硼氢化钠(938mg,24.80mmol),25℃反应8h。TLC监测反应完全后,加入2M NaOH溶液(10mL),蒸除溶剂,加入二氯甲烷(50mL×3)萃取,有机相水洗,饱和NaCl溶液(50mL×3)洗,无水硫酸钠干燥,减压浓缩,柱层析纯化(石油醚/乙酸乙酯=40/1,v/v),得式(5)化合物(5E和5Z,白色固体415mg,摩尔收率88%)和式(6)化合物(6E和6Z,白色固体47mg,摩尔收率10%)。
(3)于100mL单口烧瓶中加入式(4)化合物(4E和4Z,500mg,1.18mmol),四氢呋喃、乙醇和水的混合溶剂(22.5mL,V/V/V=16/8/3),0℃下加入硼氢化钠(1.12g,29.50mmol),25℃反应8h。TLC监测反应完全后,加入2M NaOH溶液(10mL),蒸除溶剂,加入二氯甲烷(50mL×3)萃取,有机相水洗,饱和NaCl溶液(50mL×3)洗,无水硫酸钠干燥,减压浓缩,柱层析纯化(石油醚/乙酸乙酯=40/1,v/v),得式(5)化合物(5E和5Z,白色固体394mg,摩尔收率87%)和式(6)化合物(6E和6Z,白色固体54mg,摩尔收率12%)。
(4)于100mL单口烧瓶中加入式(4)化合物(4E和4Z,500mg,1.18mmol),甲醇、 二氯甲烷的混合溶剂(6mL,V/V=2/1),0℃下加入硼氢化钠(893mg,23.6mmol),25℃反应8h。TLC监测反应完全后,加入2M NaOH溶液(10mL),蒸除溶剂,加入二氯甲烷(50mL×3)萃取,有机相水洗,饱和NaCl溶液(50mL×3)洗,无水硫酸钠干燥,减压浓缩,柱层析纯化(石油醚/乙酸乙酯=40/1,v/v),得式(5)化合物(5E和5Z,白色固体353mg,摩尔收率78%)和式(6)化合物(6E和6Z,白色固体91mg,摩尔收率20%)。
(5)于100mL单口烧瓶中加入式(4)化合物(4E和4Z,420mg,0.99mmol),四氢呋喃、乙醇和水的混合溶剂(20.3mL,V/V/V=16/8/5),0℃下加入硼氢化钾(801mg,14.85mmol),25℃反应8h。TLC监测反应完全后,加入2M NaOH溶液(10mL),蒸除溶剂,加入二氯甲烷(50mL×3)萃取,有机相水洗,饱和NaCl溶液(50mL×3)洗,无水硫酸钠干燥,减压浓缩,柱层析纯化(石油醚/乙酸乙酯=40/1,v/v),得式(5)化合物(5E和5Z,白色固体120mg,摩尔收率32%)和式(6)化合物(6E和6Z,白色固体75mg,摩尔收率20%)。
注:硼氢化钾的还原性弱于硼氢化钠,并且选择性不好,副反应较多,导致3号位生成α-OH副产物较多,因此实验收率低。
式(5)化合物: 1H NMR(600MHz,CDCl 3)δ6.15-6.11(m,1H),5.75(d,J=10.6Hz,1H),5.43-5.31(m,2H),3.55-3.47(m,1H),2.33-2.19(m,2H),2.14-2.09(m,1H),2.02-1.92(m,2H),1.86-1.79(m,2H),1.73(d,J=9.5Hz,6H),1.70-1.64(m,1H),1.57-1.41(m,6H),1.29-1.11(m,3H),1.10-1.05(m,2H),1.04(d,J=6.6Hz,3H),1.02-0.98(m,4H),0.95-0.89(m,1H),0.70(s,3H). 13C NMR(150MHz,CDCl 3)δ140.76,138.55,138.55,136.35,132.60,125.30,124.09,121.70,121.69,120.62,71.77,56.79,55.93,50.15,42.37,42.30,40.27,39.68,37.28,36.52,31.91,31.89,31.66,28.56,25.94,24.29,21.09,20.66,19.42,18.25,12.10.HRMS(ESI):calcd for C 27H 42NaO[M+Na] +,405.3128,found 405.3125.
式(6)化合物: 1H NMR(600MHz,CDCl 3)δ6.13(dd,J=15.0,10.8Hz,1H),5.78-5.72(m,1H),5.43-5.36(m,2H),4.01(t,J=3.0Hz,1H),2.57(d,J=14.7Hz,1H),2.15-2.09(m,1H),2.09-2.04(m,1H),2.03-1.94(m,2H),1.74(dd,J=9.5,1.3Hz,6H),1.71-1.65(m,3H),1.64-1.60(m,1H),1.60-1.51(m,4H),1.50-1.38(m,4H),1.29-1.21(m,3H),1.20-1.15(m,2H),1.05(d,J=6.8Hz,3H),1.01(s,3H),0.71(s,3H). 13C NMR(150MHz,CDCl 3)δ138.72,138.68,132.76,125.43,124.22,124.15,67.25,56.90,56.03,50.52,42.49,40.42,40.02,39.79,37.50,33.38,32.10,31.99,29.06,28.68,26.07,24.40,20.93,20.79,18.81,18.37,12.23.HRMS(ESI):calcd for C 27H 42NaO[M+Na] +,405.3128,found 405.3130.
Figure PCTCN2022082486-appb-000013
实施例五 胆固醇的制备
本实施例给出了2种不同实验条件下胆固醇的制备结果:
(1)于100mL单口烧瓶中加入式(5)化合物(5E和5Z,1.0g,2.62mmol),Raney Ni(2.0g,湿重),异丙醇(30mL),H 2(1atm),30℃反应7h,TLC监测反应完全后,过滤除去Raney Ni,滤液减压浓缩,得到粗品胆固醇(气相色谱纯度93.28%,图7),经柱层析纯化(石油醚/乙酸乙酯=5/1,v/v),得到胆固醇(白色固体995mg,摩尔收率98.5%,气相色谱纯度95.87%,图8)。
(2)于100mL单口烧瓶中加入式(5)化合物(5E和5Z,2.0g,5.23mmol),Raney Ni(4.0g,湿重),二氯甲烷和甲醇的混合溶剂(50mL,V/V=1/4),H 2(1atm),30℃反应7h,TLC监测反应完全后,过滤除去Raney Ni,滤液减压浓缩,得到粗品胆固醇(气相色谱纯度93.26%,图9),经重结晶纯化(无水乙醇/水=9/1,v/v),得到胆固醇(白色固体1.72g,摩尔收率86%,气相色谱纯度95.09%,图10)。mp:147-149℃。 1H NMR(600MHz,CDCl 3)δ5.36-5.34(m,1H),3.55-3.49(m,1H),2.35-2.19(m,2H),2.06-1.92(m,2H),1.86-1.79(m,3H),1.68-1.19(m,14H),1.19-1.03(m,7H),1.01(s,3H),0.98-0.93(m,1H),0.91(d,J=6.6Hz,3H),0.86(dd,J=6.6,2.8Hz,6H),0.68(s,3H). 13C NMR(150MHz,CDCl 3)δ140.77,121.73,71.82,56.78,56.17,50.14,42.33,42.32,39.80,39.53,37.27,36.52,36.20,35.80,31.93,31.92,31.68,28.25,28.03,24.31,23.84,22.84,22.58,21.10,19.41,18.73,11.87.HRMS(ESI):calcd for C 27H 46NaO[M+Na] +,409.3441,found 409.3121.
Figure PCTCN2022082486-appb-000014
化合物5(5E和5Z)经Raney Ni加氢还原获得胆固醇过程中可能引入的杂质结构如化合物7-1,7-2,7-3,7-4:
Figure PCTCN2022082486-appb-000015
在实施例五中,实验方法(1)所得粗品胆固醇的气相色谱图中(图7),保留时间为7.987min(93.28%)的峰是胆固醇的出峰;保留时间为7.200min(0.6%),7.374min(1.52%),7.723min(1.01%)这三个杂质峰分别对应的化合物为部分还原杂质7-1,7-2,7-3其中之一;保留时间为8.096min(3.11%)的杂质峰对应的化合物为过还原杂质7-4。
在实施例五中,实验方法(1)柱层析纯化所得精品胆固醇的气相色谱图中(图8),保留时间为7.992min(95.87%)的峰是胆固醇的出峰;保留时间为7.193min(0.58%),7.364min(2.01%),7.705min(0.08%)这三个杂质峰分别对应的化合物为部分还原杂质7-1,7-2,7-3其中之一;保留时间为8.087min(0.91%)的杂质峰对应的化合物为过还原杂质7-4。
在实施例五中,实验方法(2)所得粗品胆固醇的气相色谱图中(图9),保留时间为8.073min(93.26%)的峰是胆固醇的出峰;保留时间为7.296min(0.26%),7.464min(2.52%),7.596min(0.17%)这三个杂质峰分别对应的化合物为部分还原杂质7-1,7-2,7-3其中之一;保留时间为8.192min(3.36%)的杂质峰对应的化合物为过还原杂质7-4。
在实施例五中,实验方法(2)重结晶纯化所得精品胆固醇的气相色谱图中(图10),保留时间为8.026min(95.09%)的峰是胆固醇的出峰;保留时间为7.223min(0.57%),7.405min(2.17%),7.755min(0.12%)这三个杂质峰分别对应的化合物为部分还原杂质7-1,7-2,7-3其中之一;保留时间为8.122min(1.95%)的杂质峰对应的化合物为过还原杂质7-4。
对比例一
专利文献(背景技术Scheme 2,CN105218610 A)报导的以豆甾醇降解物为原料,经5步反应,以总收率67%合成胆固醇。该专利文献的技术路线中第一步反应如下反应式一所示:
Figure PCTCN2022082486-appb-000016
反应式一
专利文献CN105218610 A中描述反应式一以BA氧化后的化合物02作为原料,以乙醇为溶剂,在对甲苯磺酸、原甲酸三乙酯作用下,加热至40℃保温反应4h,得到化合物03。 摩尔收率:97.50%。
按照上述专利文献提供的实验方法,本发明以乙醇作为溶剂,化合物02作为底物,在对甲苯磺酸、原甲酸三乙酯催化作用下,40℃保温反应4h,TLC检测原料已经反应完全(如图1所示),按照专利文献(CN105218610 A)方法后处理得到化合物03′(反应式二所示),与该专利文献所描述的化合物不符。本发明也尝试减少原甲酸三乙酯的量,TLC检测原料反应完全(如图2所示),但并没有得到如专利文献(CN105218610 A)所描述的反应式一的结果,而是得到了如下反应式三所示的结果。说明按照专利文献CN 105218610 A报导的方法对化合物02的3-位羰基进行保护时,C-22位醛基会被优先保护生成缩醛,生成反应式二或式三所示的化合物03′和03″,而不能得到专利文献(CN 105218610 A)中所述的化合物03,显然,反应式二或式三所示的化合物03′和03″不能进行后续Wittig反应。
Figure PCTCN2022082486-appb-000017
反应式二
Figure PCTCN2022082486-appb-000018
反应式三
实验方法:于50mL单口烧瓶中加入4ml乙醇,原甲酸三乙酯2ml,式(02)化合物(2.00g,70.20mmol),对甲苯磺酸(20mg,0.12mmol),40℃保温反应,反应4h,TLC检测原料已经反应完全(如图1所示)。冰浴下加入乙酸钠(20mg),加水,水洗滤饼至洗出液为中性,抽干后柱层析纯化(石油醚:乙酸乙酯=20:1),得到化合物03′(无色油状物2.30g,摩尔收率88%)。 1H NMR(600MHz,CDCl 3)δ5.23-5.19(m 1H),5.10(d,J=1.9Hz,1H),4.30(d,J=2.4Hz,1H),3.81-3.70(m,4H),3.61-3.55(m,1H),3.49-3.41(m,2H),2.31-2.25(m,1H),2.18-1.96(m,4H),1.85-1.78(m,2H),1.71-1.52(m,7H),1.43-1.33(m,4H),1.29(d,J=7.0Hz,3H),1.22-1.18(m,6H),0.99(d,J=6.7Hz,3H),0.96(s,3H),0.70(s,3H). 13C NMR(150MHz,CDCl 3)δ154.52,141.06,118.03,106.07,99.04,64.60,63.35,62.14,56.48,51.88,48.33,42.59,40.39,39.62,35.18,33.86,31.92,31.86,27.72,25.55,24.42,21.17,18.96,15.49,15.37,14.68, 11.94,11.89.HRMS(ESI):calcd for C 28H 46NaO 3[M+Na] +,453.3339,found 453.3328.
实验方法:于50mL单口烧瓶中加入4ml乙醇,原甲酸三乙酯1ml,式(02)化合物(2.00g,70.20mmol),对甲苯磺酸(20mg,0.12mmol),40℃保温反应,反应4h,TLC检测原料已经反应完全(如图2所示)。冰浴下加入乙酸钠(20mg),加水,水洗滤饼至洗出液为中性,抽干后柱层析纯化(石油醚:乙酸乙酯=5:1),得到化合物03″(无色油状物2.32g,摩尔收率95%)。 1H NMR(600MHz,CDCl3)δ5.69(d,J=1.8Hz,1H),4.27(d,J=2.4Hz,1H),3.78-3.72(m,1H),3.58-3.53(m,1H),3.47-3.40(m,2H),2.42-2.21(m,4H),2.01-1.97(m,2H),1.84-1.77(m,2H),1.69-1.58(m,3H),1.53-1.47(m,2H),1.41-1.27(m,3H),1.21-1.17(m,6H),1.16(d,J=4.1Hz,4H),1.13-1.08(m,1H),1.04-0.98(m,2H),0.96(d,J=6.8Hz,3H),0.93-0.86(m,1H),0.69(s,3H). 13C NMR(150MHz,CDCl 3)δ199.58,171.53,123.76,105.95,64.58,63.40,55.39,53.81,51.81,42.52,40.33,39.42,35.69,35.63,33.97,32.92,32.03,27.62,24.37,21.01,17.37,15.48,15.36,11.91,11.86.
对比例二
专利文献(CN105218610 A)报道的第二步Wittig反应,如下反应式四所示:
Figure PCTCN2022082486-appb-000019
反应式四
在该专利文献中,以甲苯为溶剂,加入三苯基膦和1-氯-3-甲基丁烷回流2h,加入叔丁醇钾和化合物03,回流反应4h,得到化合物04,摩尔收率:90.29%。如本发明采用专利文献(CN 105218610 A)的方法(对比例二,反应式四),使用1-氯-3-甲基丁烷或1-溴-3-甲基丁烷对本发明涉及的式(2)化合物进行Wittig反应,反应结果如反应式五所示,得到了化合物3′,而没有得到预期的化合物3,说明专利文献(CN 105218610 A)中公开的方法不能应用于本发明。
Figure PCTCN2022082486-appb-000020
反应式五
实验方法:于50mL单口烧瓶中加入三苯基膦(797mg,3.04mmol)、1-氯-3-甲基丁烷(324mg,3.04mmol),甲苯(10mL),135℃回流反应2h后,冷却至室温,冰浴下分3批加入叔丁醇钾(307mg,2.74.02mmol),冰浴下搅拌0.5h后加入式(2)化合物(500mg,1.52mmol),135℃回流反应4h。TLC监测反应完全后(如图3所示),冷却至室温,旋蒸除溶剂,加入二氯甲烷(50mL),加入2M HCl(4mL)调节溶液为中性,有机相用水洗,饱和NaCl的水溶液(50mL×3)洗,无水硫酸钠干燥,减压浓缩,柱层析(PE:EA=20:1)得化合物3′(无色油状物516mg,摩尔收率85%)。
1H NMR(600MHz,CDCl 3)δ9.53(d,J=5.0Hz,1H),2.72-2.68(m,1H),2.39-2.25(m,6H),2.10(dd,J=14.4,4.8Hz,1H),1.94-1.86(m,3H),1.68-1.53(m,8H),1.43-1.30(m,4H),1.25(s,3H),1.15(s,3H),1.04(d,J=6.7Hz,3H),0.89(d,J=6.6Hz,6H),0.72(s,3H). 13C NMR(150MHz,CDCl 3)δ205.71,198.54,163.30,133.32,55.49,54.31,51.82,48.85,42.21,39.05,38.94,38.40,35.35,35.16,33.95,32.12,29.71,28.43,27.31,26.49,23.74,23.21,22.54,20.74,17.80,13.60,12.97.HRMS(ESI):calcd for C 27H 42NaO 2[M+Na] +,421.3077,found 421.3075.
于50mL单口烧瓶中加入三苯基膦(797mg,3.04mmol)、1-溴-3-甲基丁烷(459mg,3.04mmol),甲苯10mL,135℃回流反应2h后,冷却至室温,冰浴下分批加入叔丁醇钾(307mg,2.74mmol),冰浴下搅拌0.5h后加入式(2)化合物(500mg,1.52mmol),135℃回流反应2.5h。TLC监测反应完全后(如图4所示),冷却至室温,旋蒸除溶剂,加入二氯甲烷(50mL),加入2M HCl(4mL)调节溶液为中性,有机相用水洗,饱和NaCl的水溶液(50mL×3)洗,无水硫酸钠干燥,减压浓缩,柱层析(PE:EA=20:1)得化合物3′(无色油状物 534mg,摩尔收率88%)。
1H NMR(600MHz,CDCl 3)δ9.53(d,J=5.0Hz,1H),2.72-2.68(m,1H),2.39-2.25(m,6H),2.10(dd,J=14.4,4.8Hz,1H),1.94-1.86(m,3H),1.68-1.53(m,8H),1.43-1.30(m,4H),1.25(s,3H),1.15(s,3H),1.04(d,J=6.7Hz,3H),0.89(d,J=6.6Hz,6H),0.72(s,3H). 13C NMR(150MHz,CDCl 3)δ205.71,198.54,163.30,133.32,55.49,54.31,51.82,48.85,42.21,39.05,38.94,38.40,35.35,35.16,33.95,32.12,29.71,28.43,27.31,26.49,23.74,23.21,22.54,20.74,17.80,13.60,12.97.HRMS(ESI):calcd for C 27H 42NaO 2[M+Na] +,421.3077,found 421.3075.
对比例三
本发明中式4化合物的3-位酯基经NaBH 4还原得到式5化合物,然后式5化合物的侧链双键经Raney Ni/H 2还原合成胆固醇。其中,式5化合物的侧链双键的还原采用的还原剂为H 2,催化剂为RaneyNi如下反应式六所示:
Figure PCTCN2022082486-appb-000021
反应式六
同时,本发明尝试了先用Raney Ni/H 2作为还原剂先对侧链的双键进行选择性氢化还原反应,然后再用NaBH 4还原3-位酯基。反应结果如反应式七所示,得到了化合物6和6′(TLC检测反应液情况如图5所示),而没有得到预期的化合物7,说明RaneyNi/H 2作为还原剂,不能对侧链进行选择性氢化还原,因此,如反应式六所示的还原反应顺序不能更改。
Figure PCTCN2022082486-appb-000022
反应式七
实验方法:于100mL单口烧瓶中加入式(4)化合物(2.10g,17.2mmol),RaneyNi(4.20 g,湿重),异丙醇(30mL),H 2(1atm),30℃反应11h,TLC监测反应完全后,过滤除去Raney Ni,滤液减压浓缩,得到混合物6和6′,从产物 1H NMR的结果判断化合物6和异构体6′含量比例为1:0.28。
对比例四
本发明中化合物5经过RaneyNi/H 2还原合成胆固醇。如下反应式八所示:
Figure PCTCN2022082486-appb-000023
反应式八
同时,本发明尝试了H 2作为还原剂、10%Pd/C作为催化剂对侧链的双键进行选择性氢化还原反应。反应结果如反应式九所示,得到了化合物8和8′(TLC检测反应液情况如图6所示),而没有得到预期的目标产物胆固醇,说明10%Pd/C不能替代Raney Ni作为催化剂,对侧链进行选择性氢化还原。
Figure PCTCN2022082486-appb-000024
反应式九
实验方法:于100mL单口烧瓶中加入式(5)化合物(1.50g,3.56mmol),10%Pd/C(150mg),异丙醇(30mL),H 2(1atm),30℃反应7h,TLC监测反应完全后,过滤除去Pd/C,滤液减压浓缩,得到反应式8以及异构体8′。从产物 1H NMR的结果判断化合物8和异构体8′含量比例为1:0.25。
本发明的保护内容不局限于以上实施例。在不背离本发明构思的精神和范围下,本领域技术人员能够想到的变化和优点都被包括在本发明中,并且以所附的权利要求书为保护范围。

Claims (12)

  1. 一种以BA为原料合成胆固醇的方法,其特征在于,所述方法以BA为原料,经过氧化、Wittig反应、乙酰化、还原、选择性氢化还原步骤合成所述胆固醇,具体包括以下步骤:
    步骤(a)、在第一溶剂中,式(1)所示的BA经氧化反应,得到式(2)化合物;
    步骤(b)、在第二溶剂中,式(2)化合物经Wittig反应,得到式(3)化合物;
    步骤(c)、在第三溶剂中,式(3)化合物经乙酰化反应,得到式(4)化合物;
    步骤(d)、在第四溶剂中,式(4)化合物经还原反应,得到式(5)和式(6)化合物;
    步骤(e)、在第五溶剂中,式(5)化合物经选择性氢化还原反应,得到所述胆固醇;
    其中,所述方法的反应过程如路线(A)所示:
    Figure PCTCN2022082486-appb-100001
    注:化合物3、化合物4、化合物5、化合物6中,C-22位双键均以E构型为主,Z构型为埔。
    路线(A)。
  2. 如权利要求1所述的方法,其特征在于,步骤(a)中,所述氧化反应具体为:在所述第一溶剂中,式(1)所示的BA与TEMPO、碳酸氢钠、四丁基溴化铵、氧化剂发生氧化反应,得到式(2)化合物。
  3. 如权利要求2所述的方法,其特征在于,所述式(1)所示的BA、TEMPO、碳酸氢钠、四丁基溴化铵、氧化剂的摩尔比为1:(0.01~1):(1.35~20):(0.1~1):(1.15~5);和/或,所述氧化剂选自N-氯代琥珀酰亚胺NCS、N-溴代琥珀酰亚胺NBS、2-碘酰基苯甲酸IBX中的一种或多种;和/或,所述第一溶剂选自二氯甲烷、四氢呋喃、甲苯、二甲基亚砜、水中的一种或多种;和/或,所述氧化反应的温度为0~30℃;和/或,所述氧化反应的时间为3~8 h。
  4. 如权利要求1所述的方法,其特征在于,步骤(b)中,所述Wittig反应具体为:在所述第二溶剂中,式(2)化合物、3,3-二甲基烯丙基卤代物、三苯基膦、叔丁醇钾发生Wittig 反应,得到式(3)化合物。
  5. 如权利要求4所述的方法,其特征在于,所述式(2)化合物、3,3-二甲基烯丙基卤代物、三苯基膦、叔丁醇钾的摩尔比为1:(1.5~4):(1.5~4):(1~4);和/或,所述第二溶剂为甲苯、苯、四氢呋喃、正己烷中的一种或多种;和/或,所述Wittig反应的温度为60~140℃;和/或,所述Wittig反应的时间为4~9h。
  6. 如权利要求1所述的方法,其特征在于,步骤(c)中,所述乙酰化反应具体为:所述式(3)化合物、乙酰氯、乙酸酐、吡啶在所述第三溶剂中发生乙酰化反应,得到式(4)化合物。
  7. 如权利要求6所述的方法,其特征在于,所述式(3)化合物、乙酰氯、乙酸酐、吡啶的摩尔比为1:(25~62.5):(25~62.5):(4~6);和/或,所述第三溶剂为乙酸酐、乙酰氯、乙酸乙酯、二氯甲烷中的一种或多种;和/或,所述乙酰化反应的温度为40~110℃;和/或,所述乙酰化反应的时间为3~5h。
  8. 如权利要求1所述的方法,其特征在于,步骤(d)中,所述还原反应具体为:所述式(4)化合物、还原剂在所述第四溶剂中发生还原反应,得到式(5)和式(6)化合物。
  9. 如权利要求8所述的方法,其特征在于,所述式(4)化合物、还原剂的摩尔比为1:(15~25);和/或,所述第四溶剂为四氢呋喃、乙醇、水、二氯甲烷、2-甲基四氢呋喃、异丙醇、乙酸、甲基叔丁基醚中的一种或多种;和/或,所述还原剂选自NaBH 4、KBH 4中的一种或两种;和/或,所述还原反应的温度为0~30℃;和/或,所述还原反应的时间为6~9h。
  10. 如权利要求1所述的方法,其特征在于,步骤(e)中,所述选择性氢化还原反应具体为:所述式(5)化合物,在催化剂作用下,与还原剂在所述第五溶剂中,发生选择性氢化还原反应,得到胆固醇。
  11. 如权利要求10所述的方法,其特征在于,所述还原剂选自H 2;和/或,所述催化剂为RaneyNi;和/或,所述式(5)化合物、催化剂的质量比为1:(0.05~5);和/或,所述第五溶剂选自异丙醇、二氯甲烷、甲醇、2-甲基四氢呋喃、四氢呋喃、乙醇、水、甲基叔丁基醚、乙酸乙酯、甲苯中的一种或多种;和/或,所述氢化还原反应的温度为0~60℃;和/或,所述氢化还原反应的还原剂H 2压力为1-20atm;和/或,所述氢化还原反应的时间为6~10h。
  12. 化合物,其特征在于,所述化合物的结构如式(4)所示:
    Figure PCTCN2022082486-appb-100002
PCT/CN2022/082486 2021-04-09 2022-03-23 一种以ba为原料合成胆固醇的方法 WO2022213805A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110380817.6A CN113248557A (zh) 2021-04-09 2021-04-09 一种以ba为原料合成胆固醇的方法
CN202110380817.6 2021-04-09
CN202111448458.XA CN113943336B (zh) 2021-04-09 2021-11-30 一种以ba为原料合成胆固醇的方法
CN202111448458.X 2021-11-30

Publications (1)

Publication Number Publication Date
WO2022213805A1 true WO2022213805A1 (zh) 2022-10-13

Family

ID=77221952

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/100050 WO2022213480A1 (zh) 2021-04-09 2021-06-15 一种以ba为原料合成胆固醇的方法
PCT/CN2022/082486 WO2022213805A1 (zh) 2021-04-09 2022-03-23 一种以ba为原料合成胆固醇的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100050 WO2022213480A1 (zh) 2021-04-09 2021-06-15 一种以ba为原料合成胆固醇的方法

Country Status (2)

Country Link
CN (2) CN113248557A (zh)
WO (2) WO2022213480A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113248557A (zh) * 2021-04-09 2021-08-13 华东师范大学 一种以ba为原料合成胆固醇的方法
CN114395009B (zh) * 2022-01-27 2024-02-27 华东师范大学 一种高纯度胆固醇的合成方法
CN114524856B (zh) * 2022-01-27 2024-03-15 华东师范大学 一种高纯度植物源胆固醇的合成方法
WO2023152768A1 (en) * 2022-02-11 2023-08-17 Fermenta Biotech Limited Synthesis of cholesterol form bisnoralcohol
CN114874277B (zh) * 2022-03-08 2023-04-14 江苏佳尔科药业集团股份有限公司 一种胆固醇的合成方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129196A (ja) * 1984-11-27 1986-06-17 Chugai Pharmaceut Co Ltd 3β−ヒドロキシ−5−コレン酸類の製造方法
JPS61227592A (ja) * 1985-04-01 1986-10-09 Chugai Pharmaceut Co Ltd 27−ノル−25−オキソコレステロ−ル類
US5714481A (en) * 1983-08-02 1998-02-03 Research Corporation Technologies, Inc. Derivatives of 5-androsten-17 ones and 5-androstan-17-ones
CN104961788A (zh) * 2015-06-25 2015-10-07 湖南科瑞生物科技股份有限公司 一种胆固醇的合成方法
CN112608361A (zh) * 2019-12-19 2021-04-06 湖南科瑞生物制药股份有限公司 制备胆固醇、其衍生物及类似物的方法
CN113248557A (zh) * 2021-04-09 2021-08-13 华东师范大学 一种以ba为原料合成胆固醇的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106632565A (zh) * 2016-11-07 2017-05-10 湖南科瑞生物制药股份有限公司 一种合成胆固醇的新方法
CN111072744B (zh) * 2019-12-03 2021-09-14 江苏佳尔科药业集团股份有限公司 一种以ba为原料合成熊去氧胆酸的方法
CN111560045A (zh) * 2020-06-23 2020-08-21 江苏佳尔科药业集团股份有限公司 一种以ba为原料合成石胆酸的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5714481A (en) * 1983-08-02 1998-02-03 Research Corporation Technologies, Inc. Derivatives of 5-androsten-17 ones and 5-androstan-17-ones
JPS61129196A (ja) * 1984-11-27 1986-06-17 Chugai Pharmaceut Co Ltd 3β−ヒドロキシ−5−コレン酸類の製造方法
JPS61227592A (ja) * 1985-04-01 1986-10-09 Chugai Pharmaceut Co Ltd 27−ノル−25−オキソコレステロ−ル類
CN104961788A (zh) * 2015-06-25 2015-10-07 湖南科瑞生物科技股份有限公司 一种胆固醇的合成方法
CN112608361A (zh) * 2019-12-19 2021-04-06 湖南科瑞生物制药股份有限公司 制备胆固醇、其衍生物及类似物的方法
CN113248557A (zh) * 2021-04-09 2021-08-13 华东师范大学 一种以ba为原料合成胆固醇的方法
CN113943336A (zh) * 2021-04-09 2022-01-18 华东师范大学 一种以ba为原料合成胆固醇的方法

Also Published As

Publication number Publication date
CN113943336B (zh) 2024-06-18
CN113943336A (zh) 2022-01-18
CN113248557A (zh) 2021-08-13
WO2022213480A1 (zh) 2022-10-13

Similar Documents

Publication Publication Date Title
WO2022213805A1 (zh) 一种以ba为原料合成胆固醇的方法
WO2021258723A1 (zh) 一种以ba为原料合成石胆酸的方法
CN111072744B (zh) 一种以ba为原料合成熊去氧胆酸的方法
CN102516345B (zh) 醋酸乌利司他及其关键中间体的制备方法
CN114524856B (zh) 一种高纯度植物源胆固醇的合成方法
CN114395009B (zh) 一种高纯度胆固醇的合成方法
CA2968310A1 (en) 6.alpha.-alkyl-6,7-dione steroids as intermediates for the production of steroidal fxr modulators
CN106749466B (zh) 一种高纯度奥贝胆酸的制备方法
CN109912676B (zh) 一种3β-熊去氧胆酸的制备方法
WO2022228080A1 (zh) 一种以ba为原料合成7-酮基石胆酸的方法
CN115181150A (zh) 一种由植物甾醇降解物合成熊去氧胆酸的方法
CN115536719B (zh) 一种高纯度植物源7-酮基石胆酸的合成方法
WO2006006718A1 (ja) ステロイド化合物の製造方法
CN110172078B (zh) 19羟化可托多松衍生物及19-羟基雄烯二酮的制备方法
CN107383137A (zh) 一种鹅去氧胆酸的合成方法
TWI334781B (en) Stereospecific synthesis of sapogenins
CN111320664B (zh) 一种24-胆烯烯酸乙酯的制备方法
CN107663221A (zh) 一种奥贝胆酸的制备方法
CN112209982B (zh) 一种鹅去氧胆酸的制备方法
Morrow et al. Synthesis of 17-disubstituted steroids by the Claisen rearrangement
CN111320663B (zh) 一种24-胆烯烯酸乙酯中间体的制备方法
CN115819491A (zh) 7-酮基石胆酸及熊去氧胆酸的合成方法
CN116836213A (zh) 一种7-酮石胆酸中间体及其合成方法和应用
CN118290508A (zh) 脱氢诺龙醋酸酯的制备方法
CN117917425A (zh) 一种植物源熊去氧胆酸的合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22783872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/02/2024)