WO2022211008A1 - 接合用金属ペースト、および、接合体の製造方法 - Google Patents

接合用金属ペースト、および、接合体の製造方法 Download PDF

Info

Publication number
WO2022211008A1
WO2022211008A1 PCT/JP2022/016454 JP2022016454W WO2022211008A1 WO 2022211008 A1 WO2022211008 A1 WO 2022211008A1 JP 2022016454 W JP2022016454 W JP 2022016454W WO 2022211008 A1 WO2022211008 A1 WO 2022211008A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
liquid phase
bonding
metal
metal paste
Prior art date
Application number
PCT/JP2022/016454
Other languages
English (en)
French (fr)
Inventor
光平 乙川
琢磨 片瀬
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to JP2023511696A priority Critical patent/JPWO2022211008A1/ja
Priority to US18/284,338 priority patent/US20240149344A1/en
Publication of WO2022211008A1 publication Critical patent/WO2022211008A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F7/064Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts using an intermediate powder layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • B23K35/025Pastes, creams, slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3006Ag as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/302Cu as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • B23K35/3618Carboxylic acids or salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold

Definitions

  • the present invention relates to a bonding metal paste used for bonding members together, and a method for manufacturing a bonded body using this bonding metal paste.
  • semiconductor devices such as LEDs and power modules have a structure in which a semiconductor element is bonded onto a circuit layer made of a metal member.
  • a method using a solder material is widely used as disclosed in Patent Document 1, for example.
  • Patent Document 2 proposes a technique of forming a plating film and a Sn-based solder layer, alloying them by heat treatment to form an alloy layer, and mounting an electronic component on a substrate.
  • Patent Document 3 proposes a technique for bonding electronic components such as semiconductor elements onto a circuit using a metal paste containing metal powder.
  • a bonding layer made of a conductive sintered body is formed, and an electronic component such as a semiconductor element is bonded to a circuit via this bonding layer.
  • the bonding layer is composed of a metal sintered body, it has excellent thermal conductivity and excellent bonding reliability.
  • the bonding layer when the bonding layer is formed of a sintered metal, the bonding layer can be formed under relatively low temperature conditions and the melting point of the bonding layer itself is high, so that the bonding strength does not significantly decrease even in a high temperature environment.
  • a liquid phase does not occur in the temperature rising process during joining. Therefore, self-alignment of the relative positions of the members could not be achieved.
  • the present invention has been made in view of the above-mentioned circumstances, and is capable of generating a liquid phase in the temperature rising process during bonding, adjusting the relative positions of members by self-alignment, and providing a heat-resistant member. It is an object of the present invention to provide a bonding metal paste capable of forming a bonding layer composed of a metal sintered body with excellent bonding strength and bonding strength, and a method for manufacturing a bonded body using this bonding metal paste.
  • the metal paste for bonding of the present invention contains a metal powder, a copper salt, an amine, and an alcohol, and the ratio of the weight A of Cu in the copper salt to the weight B of the metal powder is A/ B is in the range of 0.02 or more and 0.25 or less, it is pasty within the temperature range of 15 ° C. or more and 35 ° C. or less, and a liquid phase is generated in the process of raising the temperature from 35 ° C., and the liquid phase It is characterized in that the liquid phase disappears in the process of increasing the temperature above the production temperature, and a metal sintered body is formed above the liquid phase disappearance temperature.
  • the metal powder, the copper salt, the amine, and the alcohol are included, the paste is in the form of a paste within the temperature range of 15° C. or higher and 35° C. or lower, and the liquid phase is formed in the process of increasing the temperature from 35° C. can be printed or dispensed or pin-transferred in a working environment at room temperature.
  • a liquid phase is generated in the temperature rising process during bonding, and the relative positions of the bonding members can be self-aligned.
  • the metal powder since the metal powder is contained, even if a liquid phase occurs, a distance can be secured between the members, and a sufficient bonding layer can be formed.
  • the liquid phase disappears at the liquid phase generation temperature or higher, and the metal sintered body is formed at the liquid phase disappearance temperature or higher, so the bonding strength does not decrease even in a high temperature environment. It is possible to form a bonding layer excellent in Further, since the ratio A/B between the weight A of Cu in the copper salt and the weight B of the metal powder is in the range of 0.02 or more and 0.25 or less, the liquid phase is sufficiently In addition, the density of the metal sintered body after sintering becomes sufficiently high, and strong bonding strength can be realized.
  • the metal powder is preferably one or two of silver and copper.
  • the metal powder is one or two of silver and copper, it is possible to form a bonding layer that is particularly excellent in heat conduction.
  • the copper salt preferably contains an organic carboxylic acid copper salt.
  • the metal complex can be reliably formed by adding it together with the amine, and the liquid phase can be reliably formed during the temperature rising process during bonding. can appear.
  • the metal paste for bonding of the present invention may contain two or more of the copper salts.
  • a single copper salt does not form a paste at a temperature range of 15°C or higher and 35°C or lower
  • a combination of two or more kinds of the copper salt can form a paste at a temperature range of 15°C or higher and 35°C or lower. It becomes possible to Moreover, it is possible to adjust the liquid phase formation temperature and the liquid phase disappearance temperature by combining them.
  • the said amine contains a linear alkylamine.
  • the amine is supposed to contain a straight-chain alkylamine, it is possible to reliably form a metal complex by adding it together with a copper salt, and a liquid phase reliably appears during the heating process during bonding. can be made
  • the amine may be composed of two or more kinds of amines.
  • a mixture of two or more amines can be combined to form a paste in a temperature range of 15°C to 35°C. It becomes possible to Moreover, it is possible to adjust the liquid phase formation temperature and the liquid phase disappearance temperature by combining them.
  • the alcohol may consist of two or more alcohols.
  • the paste viscosity is not optimal for a single alcohol depending on the method of use, it is possible to adjust the paste viscosity to a suitable value by combining two or more alcohols.
  • the metal paste for bonding of the present invention preferably contains a silver salt in addition to the metal powder, copper salt, amine and alcohol.
  • the silver salt reacts with the amine to form a silver complex, and the silver complex is reduced by alcohol to generate nano-sized silver particles, making it possible to further improve the bonding strength.
  • a method for manufacturing a bonded body of the present invention is a method for manufacturing a bonded body in which a first member and a second member are bonded, wherein the first member and the second member are The above-described bonding metal paste is disposed between the first member and the second member, and the temperature is raised in a state where the bonding metal paste is disposed between the first member and the second member. and the second member, the temperature is raised to the liquid phase generation temperature or higher to disappear the liquid phase, and the temperature is further raised to the liquid phase disappearance temperature or higher to form a metal sintered body. and joining the first member and the second member.
  • the metal paste for bonding is disposed between the first member and the second member in a temperature range of 15° C. or higher and 35° C. or lower, and then the temperature is raised. Since the surface tension of the liquid phase causes self-alignment of the relative positions of the first member and the second member. In addition, since the temperature is raised to the liquid phase generation temperature or higher to cause the liquid phase to disappear, and the temperature is further raised to the liquid phase disappearance temperature or higher to form the metal sintered body, a bonding layer made of the metal sintered body is formed. It is possible to manufacture a bonded body excellent in heat resistance and bonding strength.
  • a metal sintered body that generates a liquid phase in the temperature rising process during bonding can adjust the relative position of members by self-alignment, and has excellent heat resistance and bonding strength. It is possible to provide a bonding metal paste capable of forming a bonding layer composed of the above metal bonding paste, and a method for manufacturing a bonded body using this bonding metal paste.
  • FIG. 2 is a flowchart showing a method for joining joined bodies using a joining metal paste according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of a method of joining a joined body using a joining metal paste according to an embodiment of the present invention
  • FIG. 4 is an explanatory diagram of a mounting position of a Si chip and a confirmation method of self-alignment in an example
  • FIG. 4 is an explanatory diagram of a method for evaluating the liquid phase formation temperature in Examples.
  • the metal paste for bonding of the present embodiment is used when manufacturing a bonded body by bonding the first member and the second member. For example, it is used when bonding a semiconductor element (second member) as an electronic component to a circuit layer (first member) of an insulated circuit board.
  • the bonding metal paste of the present embodiment contains metal powder, copper salt, amine, and alcohol. Furthermore, the metal paste for joining of this embodiment may contain a silver salt. In addition, in the metal paste for bonding of the present embodiment, the ratio A/B between the weight A of Cu in the copper salt and the weight B of the metal powder is in the range of 0.02 or more and 0.25 or less.
  • the metal paste for bonding according to the present embodiment is paste-like within a temperature range of 15° C. or higher and 35° C. or lower.
  • the liquid phase disappears and the metal sintered body is formed at a temperature equal to or higher than the liquid phase disappearance temperature.
  • the metal paste for bonding contains a copper salt and an amine, so that a metal complex (copper complex) is formed by mixing these.
  • This metal complex becomes a paste within a temperature range of 15° C. or higher and 35° C. or lower, and a liquid phase is generated by further heating.
  • the ratio A/B of the weight A of Cu in the copper salt to the weight B of the metal powder is less than 0.02, the content of the copper salt becomes insufficient and the liquid is There is a risk that the phase will not be sufficiently formed and the self-alignment property will be impaired.
  • the weight ratio A/B exceeds 0.25, the liquid phase is excessively generated, the amount of volatilized organic matter increases, the density of the metal sintered body after firing decreases, and the bonding strength may decrease.
  • the ratio A/B between the weight A of Cu in the copper salt and the weight B of the metal powder is set within the range of 0.02 or more and 0.25 or less.
  • the above weight ratio A/B is preferably 0.04 or more, more preferably 0.06 or more.
  • the above weight ratio A/B is preferably 0.20 or less, more preferably 0.15 or less.
  • the metal powder is preferably one or two of silver and copper. Moreover, it is preferable that the metal powder has an average particle size within the range of 100 nm or more and 3 ⁇ m or less.
  • a copper salt may be added together with an amine to form a copper complex.
  • an organic carboxylic acid copper salt as the copper salt.
  • copper (II) acetate monohydrate, copper citrate 2.5 hydrate, copper 2-ethylhexanoate, etc. can be used, and as the copper salt, copper (II) acetate It is preferred to use the monohydrate.
  • the amine should just form a copper complex by being added with a copper salt.
  • the amine preferably contains a linear alkylamine. Specifically, dodecylamine, tetradecylamine, stearinamine, aminodecane, etc. can be used, and dodecylamine is preferably used as the amine. In addition, in this embodiment, two or more types of amines may be contained as amines.
  • Glycerin, ⁇ -terpineol, diethylene glycol (DEG) 2-ethyl 1,3-hexanediol (EHD) and the like can be used as alcohols.
  • DEG diethylene glycol
  • EHD 2-ethyl 1,3-hexanediol
  • you may contain two or more types of alcohol as alcohol.
  • silver salts include silver acetate, silver oxalate, silver propionate, silver myristate, silver butyrate, and the like. In particular, it is preferable to use silver acetate.
  • the content of the metal powder is preferably in the range of 25 mass% or more and 75 mass% or less.
  • the content of the copper salt is within the range of 4 mass % or more and 16 mass % or less.
  • the content of amine is preferably in the range of 16 mass% or more and 54 mass% or less.
  • the alcohol content is preferably in the range of 1 mass % or more and 10 mass % or less.
  • the content of the silver salt is preferably in the range of 0.1 mass % or more and 12 mass % or less.
  • each content is when the metal paste for joining is 100 mass%.
  • the metal paste for bonding of the present embodiment can be produced by weighing the above-mentioned metal powder, copper salt, amine, alcohol, and optionally silver salt so as to obtain a predetermined composition and mixing them. can.
  • FIG. 1 a bonded body 10 (semiconductor device) in which a first member 11 (circuit layer of an insulated circuit board) and a second member 12 (semiconductor element) are bonded via a bonding layer 15 is manufactured. .
  • the bonding metal paste 20 of the present embodiment is arranged between the first member 11 and the second member 12 .
  • the bonding metal paste 20 is printed on the bonding surface of the first member 11 by screen printing.
  • the coating thickness is preferably in the range of 20 ⁇ m or more and 500 ⁇ m or less.
  • the first member 11 and the second member 12 are laminated via the bonding metal paste 20 and heated to the liquid phase generation temperature or higher.
  • the copper complex formed by the copper salt and amine contained in the bonding metal paste 20 is liquefied, and a liquid phase is formed between the first member 11 and the second member 12 . 21 is generated.
  • the surface tension of the liquid phase 21 causes the relative positions of the first member 11 and the second member 12 to be self-aligned.
  • the temperature at which the liquid phase 21 is generated is preferably in the range of over 35° C. and 100° C. or less.
  • the formation temperature of the liquid phase 21 is more preferably less than 100°C.
  • the bonding metal paste 20 contains a silver salt, a silver complex is formed by the silver salt and the amine.
  • the holding temperature should be in the range of 100° C. or more and 200° C. or less, and the holding time at the holding temperature should be in the range of 5 minutes or more and 180 minutes or less.
  • the holding temperature is more preferably less than 200°C.
  • the alcohol reduces the copper complex to generate nano-sized copper particles, and the organic components (acid component of the copper salt, amine, alcohol) volatilize, of the liquid phase 21 disappears.
  • the bonding metal paste 20 contains a silver salt, the silver complex formed by the silver salt and the amine is reduced with alcohol to generate nano-sized silver particles.
  • the heating temperature is set to a temperature higher than the liquid phase disappearance temperature.
  • the heating temperature is preferably in the range of 200° C. or more and 400° C. or less, and the holding time at the heating temperature is preferably in the range of 1 minute or more and 90 minutes or less.
  • sintering of the metal powder proceeds, and as shown in FIG.
  • the metal paste for bonding 20 contains a silver salt, sintering proceeds sufficiently by generating nano-sized silver particles, and it is possible to improve the bonding strength.
  • the bonding metal paste of the present embodiment configured as described above, it contains metal powder, copper salt, amine, and alcohol, and is in the form of a paste within a temperature range of 15° C. or higher and 35° C. or lower, Since a liquid phase is generated in the process of raising the temperature from 35° C., when the metal paste 20 for bonding is disposed between the first member 11 and the second member 12 for bonding, A liquid phase is generated between the first member 11 and the second member 12 in the temperature rising process during bonding, and the surface tension of this liquid phase causes the relative positions of the first member 11 and the second member 12 to be self-aligned. can do. In addition, since the metal powder is contained, even if a liquid phase occurs, a distance can be secured between the first member 11 and the second member 12, and the bonding layer 15 can be sufficiently formed. .
  • the temperature is raised to the liquid phase generation temperature or higher to cause the liquid phase to disappear, and the temperature is further raised to the liquid phase disappearance temperature or higher to form the metal sintered body.
  • a bonding layer having excellent heat resistance and bonding strength can be formed without generating a liquid phase even when placed in a high-temperature environment later.
  • the ratio A/B of the weight A of Cu in the copper salt to the weight B of the metal powder is set within a range of 0.02 or more, so that the content of the copper salt is ensured, A sufficient liquid phase is formed in the temperature rising process during bonding, and self-alignment can be achieved.
  • the ratio A/B between the weight A of Cu in the copper salt and the weight B of the metal powder is within the range of 0.25 or less, the amount of the liquid phase generated does not become excessive, and the volatile organic matter By suppressing the amount, the density of the metal sintered body after firing becomes sufficiently high, and high bonding strength can be realized. Furthermore, in the present embodiment, since alcohol is included, nano-sized copper particles can be generated by reducing the copper ions of the copper salt that has become a liquid phase in the process of increasing the temperature during bonding. The organic component complexed with copper ions is volatilized, and the liquid phase can be reliably eliminated.
  • the bonding layer 15 made of a sintered body of these metals can be formed. It is possible to form the bonding layer 15 that is particularly excellent in heat conduction.
  • the metal complex when the copper salt contains an organic carboxylic acid copper salt, the metal complex can be reliably formed by adding it together with the amine. A liquid phase can be made to appear reliably.
  • the mixture becomes a paste in the temperature range of 15° C. or higher and 35° C. or lower with a single copper salt. Even if not, it is possible to make the mixture into a paste in a temperature range of 15° C. or more and 35° C. or less by combining two or more kinds. Moreover, it is possible to adjust the liquid phase formation temperature and the liquid phase disappearance temperature by combining them.
  • the metal complex when the amine contains a linear alkylamine, the metal complex can be reliably formed by adding it together with the copper salt, and the metal complex can be reliably formed during the temperature rising process during bonding.
  • a liquid phase can appear at
  • the mixture when two or more kinds of amines are included as amines, the mixture does not become a paste in the temperature range of 15° C. or more and 35° C. or less with single amines. Also, by combining two or more kinds, it is possible to make the mixture into a paste in a temperature range of 15° C. or more and 35° C. or less. Moreover, it is possible to adjust the liquid phase formation temperature and the liquid phase disappearance temperature by combining them.
  • the metal paste for bonding of the present embodiment when two or more types of alcohol are included as the alcohol, even if the paste viscosity is not optimal depending on the method of use with the single alcohol, it is possible to combine two or more types of alcohol. makes it possible to adjust the paste viscosity to a suitable value.
  • the metal paste for bonding of the present embodiment contains a silver salt in addition to the metal powder, copper salt, amine, and alcohol, the silver salt reacts with the amine to form a silver complex, Since nano-sized silver particles are generated by reducing the silver complex with alcohol, it is possible to further improve the bonding strength.
  • the joining metal paste 20 is disposed between the first member 11 and the second member 12 in the temperature range of 15° C. or higher and 35° C. or lower, and then Since the liquid phase 21 is generated by raising the temperature, the relative positions of the first member 11 and the second member 12 can be self-aligned by the surface tension of the liquid phase 21 . Further, in the present embodiment, the temperature is raised to the liquid phase generation temperature or higher to cause the liquid phase to disappear, and the temperature is further raised to the liquid phase disappearance temperature or higher to form the metal sintered body. It is possible to form the bonding layer 15 composed of the above, and to manufacture the bonded body 10 having excellent heat resistance and bonding strength.
  • the present invention is not limited to this, and can be modified as appropriate without departing from the technical idea of the invention.
  • the circuit layer (first member) of the insulated circuit board is described as being joined with a semiconductor element (second member) as an electronic component. It is sufficient that the member and the second member are joined using the joining metal paste of the present invention.
  • Example 1 First, copper salts and amines shown in Tables 1 and 2 were mixed at the ratios shown in Tables 1 and 2 to obtain copper salt-amine mixtures. Then, the copper salt-amine mixture was mixed with the metal powder and alcohol shown in Tables 1 and 2 to obtain various mixtures according to Inventive Examples 1-19 and Comparative Examples 1-15.
  • Tables 1 and 2 the metal particle size of the metal powder used is shown in parentheses.
  • Sn-3.0% Ag-0.5% Cu cream solder manufactured by Senju Metal Industry Co., Ltd.
  • Comparative Example 12 the Cu core Sn shell paste described in Example 1 of Japanese Patent No. 6645317 was used.
  • Example 1-19 and Comparative Examples 9, 10, 13, and 14 of the present invention the temperature was raised from room temperature, held at the liquid phase volatilization process temperature shown in Tables 3 and 4 for 60 minutes, and further heated. Then, the temperature in the firing process shown in Tables 3 and 4 was maintained for 15 minutes, and then the temperature was lowered to room temperature. The rate of temperature increase and the rate of temperature decrease were set to 2° C./min.
  • Comparative Example 11 using SnAgCu as the metal powder the temperature was raised from room temperature, held at the liquid phase volatilization process temperature shown in Table 4 for 3 minutes, and further heated to 10 minutes at the firing process temperature shown in Table 4. The temperature was maintained for a second and then cooled to room temperature. The rate of temperature increase and the rate of temperature decrease were set to 30° C./min. Also, the melting temperature of SnAgCu was taken as the liquid phase formation temperature, and the volatilization temperature of the flux was taken as the liquid phase disappearance temperature.
  • Comparative Example 12 using a Cu core and Sn shell as the metal powder, the temperature was raised from room temperature, the liquid phase volatilization process temperature shown in Table 4 was maintained for 3 minutes, and the temperature was further raised to perform the firing process shown in Table 4. The temperature was held for 10 seconds and then cooled to room temperature. The rate of temperature increase and the rate of temperature decrease were set to 30° C./min. Also, the melting point of Sn was taken as the liquid phase formation temperature, and the volatilization temperature of the flux was taken as the liquid phase disappearance temperature.
  • the liquid phase formation temperature was the temperature at the point where the tangent line drawn from the peak of the DTA curve toward the low temperature portion (low temperature side) intersects with the extended line of the flat portion of the DTA curve, as shown in FIG.
  • the bonding strength was measured using a shear strength evaluation tester (MFM 1500HF manufactured by TRY PRESICION). Specifically, the bonding strength was measured by fixing the oxygen-free copper plate of the bonded body horizontally, and moving the Si chip of the bonded body horizontally from the side with a shear tool at a position 50 ⁇ m above the surface (upper surface) of the bonding layer. , and measured the strength when the Si chip was broken. In addition, the moving speed of the share tool was set to 0.1 mm/sec. The strength test was performed three times per condition, and the arithmetic mean value thereof was used as the measurement value of the bonding strength.
  • the sample after firing was heated at 175°C for 15 minutes using a thermal shock tester (TSE-11-A manufactured by Espec Co., Ltd.), cooled to -40°C for 15 minutes, and then heated to 175°C.
  • a thermal shock test was conducted for 100 cycles, in which one cycle is the process of Using an ultrasonic imaging device (FSP8V manufactured by Hitachi Power Solutions Co., Ltd.), an image was taken to confirm the portion where the oxygen-free copper plate and the Si chip were bonded by the bonding layer.
  • the transducer (probe) used has a frequency of 140 MHz.
  • the peeled area was determined from the photographed image, and "A” was given when the peeled area was less than 10% of the chip area, and "B” was given when it was 10% or more.
  • the image obtained by the ultrasonic imaging device the part where the Si chip and the oxygen-free copper plate are peeled off looks white, and the part where they are joined looks gray.
  • Comparative Examples 1, 2, and 4-6 the mixture was powdery in the temperature range of 15° C. or higher and 35° C. or lower, and the mixture could not be printed on the oxygen-free copper plate. Therefore, self-alignment, heat resistance, and shear strength were not evaluated.
  • Comparative Examples 3, 7, 8, and 15 the mixture was liquid in the temperature range of 15° C. or more and 35° C. or less, and the mixture could not be printed on the oxygen-free copper plate. Therefore, self-alignment, heat resistance, and shear strength were not evaluated.
  • Comparative Examples 11 and 12 Cu—Sn based solder materials were used, and the heat resistance was insufficient.
  • Comparative Example 13 an Ag paste containing no copper salt was used, and no liquid phase was generated during the temperature rising process, resulting in self-alignment of "B".
  • Comparative Example 14 the firing process temperature was lower than the liquid phase disappearance temperature, organic components remained inside the bonding layer made of the sintered metal, and the bonding strength was low.
  • Inventive Example 1-19 contains a metal powder, a copper salt and an amine, is in a paste form within the temperature range of 15° C. or higher and 35° C. or lower, and becomes liquid in the process of raising the temperature from 35° C. A phase is generated, and the liquid phase disappears in the process of raising the temperature above the liquid phase generation temperature, and the metal sintered body is formed at the liquid phase disappearance temperature or higher. It was excellent in durability and bonding strength.
  • a liquid phase is generated in the temperature rising process at the time of bonding, and the relative positions of the members can be adjusted by self-alignment, and heat resistance and bonding strength can be improved. It was confirmed that it is possible to provide a bonding metal paste capable of forming an excellent bonding layer and a method for manufacturing a bonded body.
  • Example 2 Inventive Example 20 was obtained by adding 4 mass % of a silver salt (silver acetate) to the joining metal paste of Inventive Example 2 shown in Table 1. Next, an oxygen-free copper plate having a thickness of 2 mm whose outermost surface was metallized with Ag (hereinafter referred to as Ag-metallized copper plate) was prepared.
  • a silver salt silver acetate
  • Ag-metallized copper plate an oxygen-free copper plate having a thickness of 2 mm whose outermost surface was metallized with Ag
  • the bonding metal pastes of Inventive Example 2 and Inventive Example 20 were arranged (thickness: 100 ⁇ m, area: 3 mm square).
  • a square Si chip with a thickness of 2.5 mm and a side of 2.5 mm (Au-metallized surface) was mounted on the provided mixture. This was heated to form a bonding layer, and the oxygen-free copper plate and the Si chip were bonded together.
  • the conditions shown in Table 5 were set for the heating temperature and holding time in the liquid phase volatilization step, and the heating temperature and holding time in the firing step. Then, the shear strength was measured in the same procedure as in Example 1. Table 5 shows the measurement results.
  • the metal paste for bonding of Inventive Example 20 to which a silver salt is added has an improved shear strength compared to the metal paste for bonding of Inventive Example 2 to which no silver salt is added. was confirmed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

この接合用金属ペーストは、金属粉と銅塩とアミンとアルコールとを含み、前記銅塩中のCu重量Aと前記金属粉の重量Bとの比A/Bが0.02以上0.25以下の範囲内とされており、15℃以上35℃以下の温度範囲内でペースト状であり、35℃からの昇温過程で液相が生成し、液相生成温度以上の昇温過程で液相が消失し、液相消失温度以上で金属焼結体を形成する。

Description

接合用金属ペースト、および、接合体の製造方法
 本発明は、部材同士を接合する際に用いられる接合用金属ペースト、および、この接合用金属ペーストを用いた接合体の製造方法に関する。
 本願は、2021年4月1日に、日本に出願された特願2021-062770号に基づき優先権を主張し、その内容をここに援用する。
 例えば、LEDやパワーモジュールといった半導体装置は、金属部材からなる回路層の上に半導体素子が接合された構造とされている。
 ここで、半導体素子等の電子部品を回路層上に接合する際には、例えば特許文献1に示すように、はんだ材を用いた方法が広く使用されている。
また、特許文献2には、めっき膜とSn系はんだ層を形成し、熱処理によってこれらを合金化して合金層を形成し、電子部品を基板に実装する技術が提案されている。
 さらに、特許文献3には、金属粉を有する金属ペーストを用いて、半導体素子等の電子部品を回路上に接合する技術が提案されている。この金属ペーストにおいては、導電性の焼結体からなる接合層が形成され、この接合層を介して半導体素子等の電子部品が回路上に接合されることになる。
特開2000-271782号公報 特許第6459656号公報 特許第6428339号公報
 ところで、特許文献1,2に記載されたように、はんだ材を用いて、部材同士を接合する際には、接合時の昇温過程において液相が生じる。このとき、液相の表面張力によって部材同士の相対位置が調整される。すなわち、部材同士の相対位置がセルフアライメントされることになる。
 しかしながら、はんだ材を用いて接合した場合には、部材同士の間に形成される接合層には、金属間化合物が生成しており、熱伝導率が比較的低くなるおそれがあった。さらに、温度サイクルを負荷した際に接合層にクラックが生じ易く、接合信頼性が低下するおそれがあった。
 さらに、はんだ材を介して半導体素子等の電子部品と回路層とを接合した場合には、高温環境下で使用した際にはんだの一部が溶融し、半導体素子等の電子部品と回路層と接合信頼性が低下するおそれがあった。
 特に、最近では、半導体素子自体の耐熱性が向上しており、かつ、半導体装置が自動車のエンジンルーム等の高温環境下で使用されることがあり、従来のようにはんだ材で接合した構造では対応が困難となってきている。
 一方、特許文献3に記載された金属ペーストにおいては、接合層が金属の焼結体で構成されていることから、熱伝導率に優れており、接合信頼性にも優れている。
また、金属の焼結体によって接合層を形成した場合には、比較的低温条件で接合層を形成できるとともに接合層自体の融点は高くなるため、高温環境下においても接合強度が大きく低下しない。
 しかしながら、金属ペーストを用いて部材同士を接合する場合には、接合時の昇温過程において液相が生じない。このため、部材同士の相対位置をセルフアライメントすることができなかった。
 この発明は、前述した事情に鑑みてなされたものであって、接合時の昇温過程において液相を生じさせ、セルフアライメントによって部材同士の相対位置の位置調整を行うことができ、かつ、耐熱性、接合強度に優れた金属焼結体からなる接合層を形成可能な接合用金属ペースト、および、この接合用金属ペーストを用いた接合体の製造方法を提供することを目的とする。
 上記課題を解決するために、本発明の接合用金属ペーストは、金属粉と銅塩とアミンとアルコールとを含み、前記銅塩中のCu重量Aと前記金属粉の重量Bとの比A/Bが0.02以上0.25以下の範囲内とされており、15℃以上35℃以下の温度範囲内でペースト状であり、35℃からの昇温過程で液相が生成し、液相生成温度以上の昇温過程で液相が消失し、液相消失温度以上で金属焼結体を形成することを特徴としている。
 この構成の接合用金属ペーストによれば、金属粉と銅塩とアミンとアルコールとを含み、15℃以上35℃以下の温度範囲内でペースト状であり、35℃からの昇温過程で液相を生成する構成とされているので、室温での作業環境においては印刷またはディスペンス塗布またはピン転写が可能である。一方、接合時の昇温過程では液相が生じ、接合部材同士の相対位置をセルフアライメントすることができる。なお、金属粉を含有しているので、液相が生じた場合でも、部材同士の間に距離を確保することができ、接合層を十分に形成することができる。
 さらに、液相生成温度以上で液相が消失し、液相消失温度以上で金属焼結体を形成する構成とされているので、高温環境下でも接合強度が低下せず、耐熱性、接合強度に優れた接合層を形成することができる。
 また、前記銅塩中のCu重量Aと前記金属粉の重量Bとの比A/Bが0.02以上0.25以下の範囲内とされているので、昇温過程で液相を十分に形成することができるとともに、焼成後の金属焼結体密度が十分高くなり強い接合強度を実現できる。
 さらに、アルコールを含んでいるので、接合時の昇温過程において、液相となった銅塩の銅イオンを還元することでナノサイズの銅粒子を生成することができ、銅イオンと錯形成していた有機成分が揮発するようになり液相を確実に消失させることが可能となる。
 また、本発明の接合用金属ペーストにおいては、前記金属粉は、銀、銅のいずれか一種または二種であることが好ましい。
 この場合、金属粉が、銀、銅のいずれか一種または二種とされているので、熱伝導に特に優れた接合層を形成することが可能となる。
 さらに、本発明の接合用金属ペーストにおいては、前記銅塩は、有機カルボン酸銅塩を含むことが好ましい。
 この場合、前記銅塩が有機カルボン酸銅塩を含むものとされているので、アミンとともに添加させることで金属錯体を確実に形成することができ、接合時の昇温過程で確実に液相を出現させることができる。
 さらに、本発明の接合用金属ペーストにおいては、前記銅塩は2種類以上含まれていても良い。
 この場合、単体の銅塩では15℃以上35℃以下の温度範囲で混合物がペースト状にならないものであっても、2種類以上組み合わせることによって15℃以上35℃以下の温度範囲で混合物をペースト状にすることが可能となる。また、組み合わせによって液相生成温度と液相消失温度を調整することが可能となる。
 また、本発明の接合用金属ペーストにおいては、前記アミンが直鎖アルキルアミンを含むことが好ましい。
 この場合、前記アミンが直鎖アルキルアミンを含むものとされているので、銅塩とともに添加させることで金属錯体を確実に形成することができ、接合時の昇温過程で確実に液相を出現させることができる。
 また、本発明の接合用金属ペーストにおいては、前記アミンが2種類以上のアミンから成るものとしても良い。
 この場合、単体のアミンでは15℃以上35℃以下の温度範囲で混合物がペースト状にならないものであっても、2種類以上組み合わせることによって15℃以上35℃以下の温度範囲で混合物をペースト状にすることが可能となる。また、組み合わせによって液相生成温度と液相消失温度を調整することが可能となる。
 また、本発明の接合用金属ペーストにおいては、前記アルコールが2種類以上のアルコールから成るものとしいても良い。
 この場合、単体のアルコールではペースト粘度が使用方法によっては最適でないものであっても、2種類以上組み合わせることによってペースト粘度を適した値に調整することが可能となる。
 また、本発明の接合用金属ペーストにおいては、金属粉と銅塩とアミンとアルコールに加えて、さらに銀塩を含んでいることが好ましい。
 この場合、銀塩がアミンと反応して銀錯体を形成し、この銀錯体をアルコールが還元することでナノサイズの銀粒子が生成することから、接合強度のさらなる向上を図ることが可能となる。
 本発明の接合体の製造方法は、第1部材と第2部材とが接合された接合体の製造方法であって、15℃以上35℃以下の温度範囲で、前記第1部材と前記第2部材との間に、上述の接合用金属ペーストを配設し、前記第1部材と前記第2部材との間に前記接合用金属ペーストを配設した状態で昇温して、前記第1部材と前記第2部材との間に液相を生じさせ、さらに液相生成温度以上に昇温して液相を消失させ、さらに液相消失温度以上に昇温して金属焼結体を形成し、前記第1部材と前記第2部材とを接合することを特徴としている。
 この構成の接合体の製造方法によれば、15℃以上35℃以下の温度範囲で前記第1部材と前記第2部材との間に上述の接合用金属ペーストを配設し、その後、昇温して液相を生じさせているので、液相の表面張力によって、第1部材と第2部材との相対位置をセルフアライメントすることができる。
 また、液相生成温度以上に昇温して液相を消失させ、さらに液相消失温度以上に昇温して金属焼結体を形成しているので、金属焼結体からなる接合層を形成でき、耐熱性、接合強度に優れた接合体を製造することができる。
 本発明によれば、接合時の昇温過程において液相を生じさせ、セルフアライメントによって部材同士の相対位置の位置調整を行うことができ、かつ、耐熱性、接合強度に優れた金属焼結体からなる接合層を形成可能な接合用金属ペースト、および、この接合用金属ペーストを用いた接合体の製造方法を提供することができる。
本発明の一実施形態に係る接合用金属ペーストを用いた接合体の接合方法を示すフロー図である。 本発明の一実施形態に係る接合用金属ペーストを用いた接合体の接合方法の説明図である。 実施例におけるSiチップのマウント位置、および、セルフアライメントの確認方法の説明図である。 実施例における液相生成温度の評価方法の説明図である。
 以下に、本発明の一実施形態に係る接合用金属ペースト、および、接合体の製造方法について説明する。
 本実施形態の接合用金属ペーストは、第1部材と第2部材とを接合して接合体を製造する際に使用されるものである。例えば、絶縁回路基板の回路層(第1部材)に、電子部品として半導体素子(第2部材)を接合する際に用いられるものである。
 本実施形態の接合用金属ペーストは、金属粉と銅塩とアミンとアルコールとを含んでいる。さらに、本実施形態の接合用金属ペーストは、銀塩を含有してもよい。
 また、本実施形態の接合用金属ペーストにおいては、銅塩中のCu重量Aと金属粉の重量Bとの比A/Bが0.02以上0.25以下の範囲内とされている。
 そして、本実施形態のる接合用金属ペーストにおいては、15℃以上35℃以下の温度範囲内でペースト状であり、35℃からの昇温過程で液相が生成し、液相生成温度以上で液相が消失し、液相消失温度以上で金属焼結体を形成する構成とされている。
 本実施形態においては、上述のように、接合用金属ペーストが銅塩とアミンとを含んでいることから、これらを混合することで金属錯体(銅錯体)が形成されることになる。この金属錯体は、15℃以上35℃以下の温度範囲内でペースト状となり、さらに加熱することで液相が生じることになる。
 ここで、銅塩中のCu重量Aと金属粉の重量Bとの比A/Bが0.02未満の場合には、銅塩の含有量が不十分となり、接合時の昇温過程で液相が十分に形成されずセルフアライメント性が損なわれるおそれがある。一方、上述の重量比A/Bが0.25を超えると、液相が過剰に生成し、揮発する有機物量が多くなり、焼成後の金属焼結体密度が低くなり接合強度が低くなるおそれがある。
 このことから、本実施形態では、銅塩中のCu重量Aと金属粉の重量Bとの比A/Bを0.02以上0.25以下の範囲内に設定している。
 なお、上述の重量比A/Bは、0.04以上であることが好ましく、0.06以上であることがさらに好ましい。また、上述の重量比A/Bは、0.20以下であることが好ましく、0.15以下であることがさらに好ましい。
 ここで、本実施形態においては、金属粉としては、銀、銅のいずれか一種または二種であることが好ましい。
 また、金属粉としては、平均粒径が100nm以上3μm以下の範囲内であることが好ましい。
 銅塩は、アミンとともに添加されることで、銅錯体を形成するものであればよい。本実施形態では、銅塩として有機カルボン酸銅塩を用いることが好ましい。具体的には、銅塩として、酢酸銅(II)一水和物、クエン酸銅2.5水和物、2-エチルヘキサン酸銅等を用いることができ、銅塩として酢酸銅(II)一水和物を用いることが好ましい。
 なお、本実施形態においては、銅塩として、2種類以上の銅塩を含有していてもよい。
 アミンは、銅塩とともに添加されることで、銅錯体を形成するものであればよい。本実施形態では、アミンとして、直鎖アルキルアミンを含むことが好ましい。具体的には、ドデシルアミン、テトラデシルアミン、ステアリンアミン、アミノデカン等を用いることができ、アミンとしてドデシルアミンを用いることが好ましい。
 なお、本実施形態においては、アミンとして、2種類以上のアミンを含有していてもよい。
 アルコールとしては、グリセリン、α-テルピネオール、ジエチレングリコール(DEG)2-エチル1,3―ヘキサンジオール(EHD)等を用いることができる。特に、グリセリンを用いることが好ましい。
なお、本実施形態においては、アルコールとして、2種類以上のアルコールを含有していてもよい。
 また、必要に応じて銀塩を含有してもよい。この銀塩は、アミンとともに添加されることで、銀錯体を形成するものであればよい。本実施形態では、銀塩として、酢酸銀、シュウ酸銀、プロピオン酸銀、ミリスチン酸銀、酪酸銀等が挙げられる。特に、酢酸銀を用いることが好ましい。
 ここで、金属粉の含有量は、25mass%以上75mass%以下の範囲内とすることが好ましい。
 また、銅塩の含有量は、4mass%以上16mass%以下の範囲内とすることが好ましい。
 さらに、アミンの含有量は、16mass%以上54mass%以下の範囲内とすることが好ましい。
 また、アルコールの含有量は、1mass%以上10mass%以下の範囲内とすることが好ましい。
 さらに、銀塩を含む場合には、銀塩の含有量は、0.1mass%以上12mass%以下の範囲内とすることが好ましい。
 なお、各含有量は、接合用金属ペーストを100mass%とした時である。
 本実施形態の接合用金属ペーストは、上述の金属粉、銅塩、アミン、アルコール、必要に応じて銀塩を、所定の配合となるように秤量し、これらを混合することで製造することができる。
 次に、本実施形態の接合用金属ペーストを用いた接合体の製造方法について、図1および図2を参照して説明する。
 本実施形態では、第1部材11(絶縁回路基板の回路層)と第2部材12(半導体素子)とが接合層15を介して接合された接合体10(半導体装置)を製造するものである。
(ペースト配設工程S01)
 まず、図2(a)に示すように、第1部材11と第2部材12との間に、本実施形態の接合用金属ペースト20を配設する。
 本実施形態では、第1部材11の接合面に、スクリーン印刷によって、接合用金属ペースト20を印刷している。また、塗布厚さは、20μm以上500μm以下の範囲内とすることが好ましい。
(液相形成工程S02)
 次に、第1部材11と第2部材12とを接合用金属ペースト20を介して積層して液相生成温度以上に加熱する。
 このとき、35℃からの昇温過程において、接合用金属ペースト20に含まれる銅塩とアミンとによって形成される銅錯体が液化し、第1部材11と第2部材12との間に液相21が生成される。これにより、図2(b)に示すように、液相21の表面張力によって、第1部材11と第2部材12との相対位置がセルフアライメントされることになる。
 ここで、液相21の生成温度は35℃を超え100℃以下の範囲内であることが好ましい。液相21の生成温度はより好ましくは100℃未満である。
 また、接合用金属ペースト20が銀塩を含有する場合には、銀塩とアミンとによって銀錯体が形成されることになる。
(液相揮発工程S03)
 第1部材11と第2部材12との相対位置がセルフアライメントされた後、さらに加熱し、一定温度で保持する。保持温度は100℃以上200℃以下の範囲内、保持温度での保持時間は5分以上180分以下の範囲内とするとよい。保持温度はより好ましくは200℃未満である。また、液相が一気に揮発しないような温度に設定することが好ましい。
 このとき、図2(c)に示すように、アルコールが銅錯体を還元することでナノサイズの銅粒子が生成するとともに、有機成分(銅塩の酸成分、アミン、アルコール)が揮発し、殆どの液相21が消失する。また、接合用金属ペースト20が銀塩を含有する場合には、銀塩とアミンとによって形成された銀錯体がアルコールで還元されることで、ナノサイズの銀粒子が生成することになる。
(焼結工程S04)
 有機成分が揮発した後、さらに加熱する。加熱温度は液相消失温度よりも高い温度に設定する。ここでの加熱温度は200℃以上400℃以下の範囲内、加熱温度での保持時間は1分以上90分以下の範囲内とするとよい。
 このとき、金属粉の焼結が進行し、図2(d)に示すように、金属の焼結体からなる接合層15が形成される。
 なお、接合用金属ペースト20が銀塩を含有する場合には、ナノサイズの銀粒子が生成することで焼結が十分に進行し、接合強度を向上させることが可能となる。
 以上のような構成とされた本実施形態である接合用金属ペーストによれば、金属粉と銅塩とアミンとアルコールとを含み、15℃以上35℃以下の温度範囲内でペースト状であり、35℃からの昇温過程で液相が生じる構成とされているので、第1部材11と第2部材12との間に、この接合用金属ペースト20を配設して接合する場合には、接合時の昇温過程において、第1部材11と第2部材12との間に液相が生じ、この液相の表面張力により、第1部材11と第2部材12との相対位置をセルフアライメントすることができる。なお、金属粉を含有しているので、液相が生じた場合でも、第1部材11と第2部材12の間に距離を確保することができ、接合層15を十分に形成することができる。
 さらに、本実施形態においては、液相生成温度以上に昇温して液相を消失させ、さらに液相消失温度以上に昇温して金属焼結体を形成する構成とされているので、焼成後に再度高温環境下に置いても液相が生じず、耐熱性、接合強度に優れた接合層を形成することができる。
 また、本実施形態においては、銅塩中のCu重量Aと金属粉の重量Bとの比A/Bが0.02以上の範囲内とされているので、銅塩の含有量が確保され、接合時の昇温過程で液相を十分に形成し、セルフアライメントすることができる。さらに、銅塩中のCu重量Aと金属粉の重量Bとの比A/Bが0.25以下の範囲内とされているので、生成される液相量が過剰にならず、揮発する有機物量が抑制されることで、焼成後の金属焼結体密度が十分高くなり、強い接合強度を実現できる。
さらに、本実施形態においては、アルコールを含んでいるので、接合時の昇温過程において、液相となった銅塩の銅イオンを還元することでナノサイズの銅粒子を生成することができ、銅イオンと錯形成していた有機成分が揮発するようになり液相を確実に消失させることが可能となる。
 さらに、本実施形態の接合用金属ペーストにおいて、金属粉が銀、銅のいずれか一種または二種である場合には、これらの金属の焼結体からなる接合層15を形成することができ、熱伝導に特に優れた接合層15を形成することが可能となる。
 さらに、本実施形態の接合用金属ペーストにおいて、銅塩が有機カルボン酸銅塩を含む場合には、アミンとともに添加させることで金属錯体を確実に形成することができ、接合時の昇温過程で確実に液相を出現させることができる。
 さらに、本実施形態の接合用金属ペーストにおいては、前記銅塩として、2種類以上の銅塩を含む場合には、単体の銅塩では15℃以上35℃以下の温度範囲で混合物がペースト状にならないものであっても、2種類以上組み合わせることによって15℃以上35℃以下の温度範囲で混合物をペースト状にすることが可能となる。また、組み合わせによって液相生成温度と液相消失温度を調整することが可能となる。
 また、本実施形態の接合用金属ペーストにおいて、アミンが直鎖アルキルアミンを含む場合には、銅塩とともに添加させることで金属錯体を確実に形成することができ、接合時の昇温過程で確実に液相を出現させることができる。
 さらに、本実施形態の接合用金属ペーストにおいて、アミンとして、2種類以上のアミンを含む場合には、単体のアミンでは15℃以上35℃以下の温度範囲で混合物がペースト状にならないものであっても、2種類以上組み合わせることによって15℃以上35℃以下の温度範囲で混合物をペースト状にすることが可能となる。また、組み合わせによって液相生成温度と液相消失温度を調整することが可能となる。
 また、本実施形態の接合用金属ペーストにおいて、アルコールとして、2種類以上のアルコールを含む場合には、単体のアルコールではペースト粘度が使用方法によっては最適でないものであっても、2種類以上組み合わせることによってペースト粘度を適した値に調整することが可能となる。
 さらに、本実施形態の接合用金属ペーストにおいて、金属粉と銅塩とアミンとアルコールに加えて、さらに銀塩を含んでいる場合には、銀塩がアミンと反応して銀錯体を形成し、この銀錯体をアルコールが還元することでナノサイズの銀粒子が生成することから、接合強度のさらなる向上を図ることが可能となる。
 本実施形態の接合体10の製造方法によれば、15℃以上35℃以下の温度範囲で第1部材11と第2部材12との間に上述の接合用金属ペースト20を配設し、その後、昇温して液相21を生じさせているので、液相21の表面張力によって、第1部材11と第2部材12との相対位置をセルフアライメントすることができる。
 また、本実施形態においては、液相生成温度以上に昇温して液相を消失させ、さらに液相消失温度以上に昇温して金属焼結体を形成しているので、金属焼結体からなる接合層15を形成でき、耐熱性、接合強度に優れた接合体10を製造することができる。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、絶縁回路基板の回路層(第1部材)に、電子部品として半導体素子(第2部材)を接合するものとして説明したが、これに限定されることはなく、第1部材および第2部材とが本発明の接合用金属ペーストを用いて接合するものであればよい。
 以下に、本発明に係る接合用金属ペースト、および、接合体の製造方法の作用効果について評価した評価試験の結果を説明する。
(実施例1)
 まず、表1,2に示す銅塩とアミンを表1,2に示す比率で混合し、銅塩-アミン混合物を得た。そして、銅塩-アミン混合と、表1,2に示す金属粉、アルコールと、を混合し、本発明例1~19及び比較例1~15に係る各種混合物を得た。
 表1,2では、使用した金属粉の金属粒径を括弧内に示した。
 比較例11では、Sn-3.0%Ag-0.5%Cuクリームはんだ(千住金属工業株式会社製)を使用した(表2では、SnAg3Cu0.5と示す)。
 比較例12では、特許6645317号の実施例1に記載のあるCuコアSnシェルペーストを使用した。
 次に、Agでメタライズされた厚み2mmの無酸素銅板上に、上述の混合物を配設した(厚み:50μm、面積:3mm角)。配設した混合物の上に、厚さ400μmで一辺が2.5mmの正方形のSiチップ(表面をAuメタライズしたもの)をマウントした。マウント位置は、図3(a)に示すように、混合物の配設面と素子面の2辺が一致するように調整した。これを加熱して接合層を形成し、無酸素銅板とSiチップとを接合した。
 得られた混合物および接合状況について、以下の項目を評価した。
 ここで、本発明例1-19,比較例9,10,13,14においては、室温から昇温して、表3および表4に示す液相揮発工程温度で60分保持し、さらに昇温して、表3および表4に示す焼成工程温度で15分保持し、その後、室温まで降温した。なお、昇温速度および降温速度は2℃/分とした。
 金属粉としてSnAgCuを用いた比較例11においては、室温から昇温して、表4に示す液相揮発工程温度で3分保持し、さらに昇温して、表4に示す焼成工程温度で10秒保持し、その後、室温まで降温した。なお、昇温速度および降温速度は30℃/分とした。また、液相生成温度をSnAgCuの溶融温度とし、液相消失温度をフラックスの揮発温度とした。
 金属粉としてCuコアSnシェルを用いた比較例12においては、室温から昇温して、表4に示す液相揮発工程温度で3分保持し、さらに昇温して、表4に示す焼成工程温度で10秒保持し、その後、室温まで降温した。なお、昇温速度および降温速度は30℃/分とした。また、液相生成温度をSnの融点とし、液相消失温度をフラックスの揮発温度とした。
(15℃-35℃での性状)
 得られた各混合物を目視にて確認し、粉末状の残留物が確認される場合(いわゆるぼそぼその状態である場合)を「粉状」とした。「粉状」であった混合物以外の各混合物については、粘度をレオメータ(TAインスツルメント製DHR-3)により、測定温度を15℃および35℃とし、せん断速度を10(1/s)として測定した。15℃および35℃いずれの粘度も10Pa・s以上500Pa・s以下であるものを「ペースト状」であるとし、いずれかの温度での測定で10Pa・s未満であるものを「液状」であるとした。
(液相生成の有無/液相生成温度)
 熱重量示差熱分析(TG-DTA)(NETZSCH社、STA-2500 Regulus)を用いて測定した。得られた各混合物について、窒素雰囲気、10℃/分の昇温速度、25℃から500℃まで示差熱分析を行った。TGカーブで重量減少が見られず、且つ、DTAカーブにおいて吸熱ピークが見られる場合を液相が生成したと判断した。
 表3、4では、液相が生成したと判断されるものについて「有」とし、液相が生じず液状の状態を維持しているものについて「液状のまま」とし、液相が生じなかったものについて「無」と表示した。
 液相生成温度は、図4に示されるようにDTAカーブのピークから低温部(低温側)に向かって引いた接線がDTAカーブの平らな部分の延長線と交わる点の温度とした。
(液相の消失/液相消失温度)
 液相生成の有無を判断した時と同じ測定装置及び条件により500℃まで測定し、TGカーブにおいて、300℃までにアルコール添加量又はフラックス添加量以上の重量減少が確認された場合を液相が消失したとして「A」、重量減少量がアルコール添加量又はフラックス添加量未満であった場合を液相が残っているとして「B」とした。
 液相消失温度は、TGカーブにおいて重量減少時の接線が、重量減少が終わった定常状態の直線の延長線と交わる点の温度とした。
(セルフアライメント)
 焼成を行った後に、接合材とチップで隣接する辺の距離を測定し、図3(b)に示すように、4辺全てで0.2mm以上の距離があればアライメント性有りとして「A」とし、図3(c)に示すように、1辺でも0.2mm未満の距離であればアライメント性無しとして「B」とした。
(シェア強度)
 接合強度は、せん断強度評価試験機(TRY PRESICION社製MFM 1500HF)を用いて測定した。
 具体的には、接合強度の測定は、接合体の無酸素銅板を水平に固定し、接合層の表面(上面)から50μm上方の位置でシェアツールにより、接合体のSiチップを横から水平方向に押して、Siチップが破断されたときの強度を測定することによって行った。なお、シェアツールの移動速度は0.1mm/秒とした。1条件に付き3回強度試験を行い、それらの算術平均値を接合強度の測定値とした。
(耐熱性評価)
 焼成後のサンプルについて、冷熱衝撃試験機(エスペック社製TSE-11-A)を用いて175℃にて15分加熱後、-40℃に降温して15分冷却後、さらに175℃に昇温する過程を1サイクルとする熱衝撃試験を100サイクル実施した。
 超音波映像装置(日立パワーソリューションズ社製FSP8V)を用い、無酸素銅板とSiチップが接合層で接合されている部分を確認するために撮像した。使用したトランデューサー(プローブ)は周波数140MHzである。撮影した像から剥離している面積を求め、剥離面積がチップ面積の10%未満であるものを「A」、10%以上であるものを「B」とした。なお、超音波映像装置による像では、Siチップと無酸素銅板が剥離をしている部分は白、接合している部分は灰色に見える。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 比較例1,2,4-6においては、15℃以上35℃以下の温度範囲で粉状であり、無酸素銅板に混合物を印刷することができなかった。このため、セルフアライメント、耐熱性、シェア強度を評価しなかった。
 比較例3,7,8,15においては、15℃以上35℃以下の温度範囲で液状であり、無酸素銅板に混合物を印刷することができなかった。このため、セルフアライメント、耐熱性、シェア強度を評価しなかった。
 比較例9においては、銅塩中のCu重量Aと金属粉の重量Bとの比A/Bが0.01とされており、銅塩の含有量が不足しており、液相が十分に形成されず、セルフアライメントが「B」となった。
 比較例10においては、銅塩中のCu重量Aと金属粉の重量Bとの比A/Bが0.27とされており、揮発した有機物量が多いために接合層の金属焼結体密度が低くなり、接合強度(シェア強度)が低くなった。
 比較例11,12においては、Cu-Sn系のはんだ材とされており、耐熱性が不十分であった。
 比較例13においては、銅塩を有していないAgペーストとされており、昇温過程で液相が生じず、セルフアライメントが「B」となった。
比較例14においては、焼成工程温度が液相消失温度よりも低く、金属焼結体からなる接合層の内部に有機成分が残存し、接合強度が低くなった。
 これに対して、本発明例1-19においては、金属粉と銅塩とアミンとを含み、15℃以上35℃以下の温度範囲内でペースト状であり、35℃からの昇温過程で液相が生じ、液相生成温度以上の昇温過程で液相が消失し、液相消失温度以上で金属焼結体を形成するものとされており、セルフアライメントが「A」となるとともに、耐熱性、接合強度に優れていた。
 以上のことから、本発明例によれば、接合時の昇温過程において液相を生じさせ、セルフアライメントによって部材同士の相対位置の位置調整を行うことができ、かつ、耐熱性、接合強度に優れた接合層を形成可能な接合用金属ペースト、および、接合体の製造方法を提供可能であることが確認された。
(実施例2)
 表1に示す本発明例2の接合用金属ペーストに、銀塩(酢酸銀)を4mass%添加したものを、本発明例20とした。
次に、最表面がAgでメタライズされた厚み2mmの無酸素銅板(以下、Agメタライズ銅板)を準備した。
 このAgメタライズ層の上に、本発明例2、および、本発明例20の接合用金属ペーストを配設した(厚み:100μm、面積:3mm角)。配設した混合物の上に、厚さ2.5mmで一辺が2.5mmの正方形のSiチップ(表面をAuメタライズしたもの)をマウントした。これを加熱して接合層を形成し、無酸素銅板とSiチップとを接合した。ここで、液相揮発工程の加熱温度および保持時間、焼成工程の加熱温度および保持時間を表5に示す条件とした。
 そして、実施例1と同様の手順にて、シェア強度を測定した。測定結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、銀塩を添加した本発明例20の接合用金属ペーストにおいては、銀塩を添加していない本発明例2の接合用金属ペーストに比べて、シェア強度が向上することが確認された。

Claims (9)

  1.  金属粉と銅塩とアミンとアルコールとを含み、前記銅塩中のCu重量Aと前記金属粉の重量Bとの比A/Bが0.02以上0.25以下の範囲内とされており、
    15℃以上35℃以下の温度範囲内でペースト状であり、35℃からの昇温過程で液相が生成し、液相生成温度以上の昇温過程で液相が消失し、液相消失温度以上で金属焼結体を形成することを特徴とする接合用金属ペースト。
  2.  前記金属粉は、銀、銅のいずれか一種または二種であることを特徴とする請求項1に記載の接合用金属ペースト。
  3.  前記銅塩は、有機カルボン酸銅塩を含むことを特徴とする請求項1または請求項2に記載の接合用金属ペースト。
  4.  前記銅塩が2種類以上の銅塩から成ることを特徴とする請求項1から請求項3のいずれか一項に記載の接合用金属ペースト。
  5.  前記アミンが直鎖アルキルアミンを含むことを特徴とする請求項1から請求項4のいずれか一項に記載の接合用金属ペースト。
  6.  前記アミンが2種類以上のアミンから成ることを特徴とする請求項1から請求項5のいずれか一項に記載の接合用金属ペースト。
  7.  前記アルコールが2種類以上のアルコールから成ることを特徴とする請求項1から請求項6のいずれか一項に記載の接合用金属ペースト。
  8.  さらに銀塩を含むことを特徴とする請求項1から請求項7のいずれか一項に記載の接合用金属ペースト。
  9.  第1部材と第2部材とが接合された接合体の製造方法であって、
     15℃以上35℃以下の温度範囲で、前記第1部材と前記第2部材との間に、請求項1から請求項8のいずれか一項に記載の接合用金属ペーストを配設し、
     前記第1部材と前記第2部材との間に前記接合用金属ペーストを配設した状態で昇温して、前記第1部材と前記第2部材との間に液相を生じさせ、
     さらに液相生成温度以上に昇温して液相を消失させ、さらに液相消失温度以上に昇温して金属焼結体を形成し、前記第1部材と前記第2部材とを接合することを特徴とする接合体の製造方法。
PCT/JP2022/016454 2021-04-01 2022-03-31 接合用金属ペースト、および、接合体の製造方法 WO2022211008A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023511696A JPWO2022211008A1 (ja) 2021-04-01 2022-03-31
US18/284,338 US20240149344A1 (en) 2021-04-01 2022-03-31 Metal paste for bonding, and method for manufacturing bonded body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021062770 2021-04-01
JP2021-062770 2021-04-01

Publications (1)

Publication Number Publication Date
WO2022211008A1 true WO2022211008A1 (ja) 2022-10-06

Family

ID=83456571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016454 WO2022211008A1 (ja) 2021-04-01 2022-03-31 接合用金属ペースト、および、接合体の製造方法

Country Status (4)

Country Link
US (1) US20240149344A1 (ja)
JP (1) JPWO2022211008A1 (ja)
TW (1) TW202302252A (ja)
WO (1) WO2022211008A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428339A (en) 1987-07-23 1989-01-30 Showa Aluminum Corp Aluminum casting alloy for intake manifold
JP2000271782A (ja) 1999-03-24 2000-10-03 Matsushita Electric Ind Co Ltd 半田接合用の金属ペーストおよび半田接合方法
JP2014186902A (ja) * 2013-03-25 2014-10-02 Fujifilm Corp 導電膜の製造方法
JP2019070174A (ja) * 2017-10-06 2019-05-09 株式会社豊田中央研究所 接合用ペースト及びそれを用いた半導体装置
WO2020004342A1 (ja) * 2018-06-25 2020-01-02 三菱マテリアル株式会社 銀ペースト及び接合体の製造方法
JP2021062770A (ja) 2019-10-15 2021-04-22 森六テクノロジー株式会社 空調用吹出口装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428339A (en) 1987-07-23 1989-01-30 Showa Aluminum Corp Aluminum casting alloy for intake manifold
JP2000271782A (ja) 1999-03-24 2000-10-03 Matsushita Electric Ind Co Ltd 半田接合用の金属ペーストおよび半田接合方法
JP2014186902A (ja) * 2013-03-25 2014-10-02 Fujifilm Corp 導電膜の製造方法
JP2019070174A (ja) * 2017-10-06 2019-05-09 株式会社豊田中央研究所 接合用ペースト及びそれを用いた半導体装置
WO2020004342A1 (ja) * 2018-06-25 2020-01-02 三菱マテリアル株式会社 銀ペースト及び接合体の製造方法
JP2021062770A (ja) 2019-10-15 2021-04-22 森六テクノロジー株式会社 空調用吹出口装置

Also Published As

Publication number Publication date
US20240149344A1 (en) 2024-05-09
JPWO2022211008A1 (ja) 2022-10-06
TW202302252A (zh) 2023-01-16

Similar Documents

Publication Publication Date Title
JP6842500B2 (ja) 無鉛ソルダーペースト及びその製造方法
JPWO2014168026A1 (ja) ソルダペースト
WO2013132942A1 (ja) 接合方法、接合構造体およびその製造方法
JP4722751B2 (ja) 粉末はんだ材料および接合材料
JP2006289493A (ja) Sn−Zn系はんだ、鉛フリーはんだ、そのはんだ加工物、ソルダーペースト及び電子部品はんだ付け基板
KR102248760B1 (ko) 접합 조성물 및 이를 이용한 접합 방법
JP2004130371A (ja) 接合体
JP2013212524A (ja) はんだ材及びその製造方法
KR102040278B1 (ko) 무연솔더 합금 조성물 및 그 제조방법, 무연솔더 합금 조성물을 이용한 부재 간의 접합방법
KR102253739B1 (ko) 솔더 페이스트
JP3752064B2 (ja) 半田材料及びそれを用いた電子部品
CN114829036B (zh) 银膏及接合体的制造方法
KR102040280B1 (ko) 무연솔더 합금 조성물 및 그 제조방법, 무연솔더 합금 조성물을 이용한 부재 간의 접합방법
WO2022211008A1 (ja) 接合用金属ペースト、および、接合体の製造方法
JP2011251330A (ja) 高温鉛フリーはんだペースト
JP2009131872A (ja) 半田ペースト及び半田接合部の製造方法
KR20190103760A (ko) 무연솔더 합금 조성물 및 그 제조방법, 무연솔더 합금 조성물을 이용한 압전소자 제조방법
WO2021045131A1 (ja) はんだペースト及びはんだ接合体
JP2021175578A (ja) 成形はんだ及び成形はんだの製造方法
JP2017177122A (ja) 高温Pbフリーはんだペースト及びその製造方法
EP4306234A1 (en) Sintering paste and method for producing a sintering paste
JP2020164894A (ja) 接合材、接合材の製造方法、接合方法、半導体装置
JP6803107B1 (ja) プリフォームはんだ及び該プリフォームはんだを用いて形成されたはんだ接合体
JP6856963B2 (ja) プリフォームはんだ及び該プリフォームはんだを用いて形成されたはんだ接合体
JP7032687B1 (ja) はんだ合金、はんだペースト、はんだボール、はんだプリフォーム、およびはんだ継手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781218

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023511696

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18284338

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022781218

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022781218

Country of ref document: EP

Effective date: 20231102

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781218

Country of ref document: EP

Kind code of ref document: A1