WO2022210668A1 - 漏電検出回路およびバッテリ状態検出回路 - Google Patents

漏電検出回路およびバッテリ状態検出回路 Download PDF

Info

Publication number
WO2022210668A1
WO2022210668A1 PCT/JP2022/015337 JP2022015337W WO2022210668A1 WO 2022210668 A1 WO2022210668 A1 WO 2022210668A1 JP 2022015337 W JP2022015337 W JP 2022015337W WO 2022210668 A1 WO2022210668 A1 WO 2022210668A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
terminal
detection circuit
battery
resistor
Prior art date
Application number
PCT/JP2022/015337
Other languages
English (en)
French (fr)
Inventor
卓也 石井
銀河 片瀬
秀哉 山崎
Original Assignee
ヌヴォトンテクノロジージャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヌヴォトンテクノロジージャパン株式会社 filed Critical ヌヴォトンテクノロジージャパン株式会社
Priority to CN202280023796.5A priority Critical patent/CN117043615A/zh
Priority to EP22780879.7A priority patent/EP4317997A1/en
Priority to JP2023511353A priority patent/JPWO2022210668A1/ja
Publication of WO2022210668A1 publication Critical patent/WO2022210668A1/ja
Priority to US18/471,834 priority patent/US20240012069A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • G01R31/007Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks using microprocessors or computers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/16Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line
    • G01R27/18Measuring resistance to earth, i.e. line to ground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to an earth leakage detection circuit and a battery state detection circuit.
  • Electric vehicles such as electric vehicles are equipped with a high-voltage, large-capacity battery that supplies DC power to the motor.
  • a high-voltage battery is constructed by connecting a plurality of battery cells such as lithium-ion batteries in series, and is insulated from a vehicle body chassis serving as a ground for safety.
  • a leakage detection circuit that detects the presence or absence of leakage between a high-voltage battery and a vehicle body chassis is disclosed in Patent Document 1, for example.
  • the earth leakage detection circuit connects the detection resistor to the vehicle body chassis, so the earth leakage detection circuit is configured with the vehicle body chassis potential reference with the vehicle body chassis as zero potential.
  • the battery state detection circuit may be configured based on the positive electrode potential of the battery.
  • Patent document 1 is an example of a leakage detection circuit configured based on the battery potential, but the negative electrode of the battery is configured as zero potential of the leakage detection circuit. For this reason, it cannot be applied to the case where the positive electrode is set to zero potential, such that the battery state detection circuit detects the current on the positive electrode side of the battery.
  • the present disclosure provides an earth leakage detection circuit that allows the zero potential of the earth leakage detection circuit to be referenced to either the positive electrode of the battery or the negative electrode.
  • an earth leakage detection circuit detects earth leakage from a battery having a first electrode having a positive or negative polarity and a second electrode having a polarity opposite to the first electrode to a chassis.
  • a detection circuit having a reference voltage source terminal for outputting a reference voltage, a first detection terminal, a ground terminal connected to the first electrode, the second electrode and the A first resistor connected between the chassis, a second resistor connected between the chassis and the first detection terminal, and a resistor between the first detection terminal and a predetermined terminal.
  • a third resistor connected between the predetermined terminal is the reference voltage source terminal and the polarity of the first electrode is negative when the polarity of the first electrode is positive.
  • the predetermined terminal is the first electrode
  • the detection circuit detects the voltage of the first detection terminal and detects the presence or absence of electric leakage based on the detected voltage.
  • the battery state detection circuit includes the above-described leakage detection circuit, a current detection resistor connected between the first electrode and the load, and the voltage across the current detection resistor and an amplifier circuit for detecting as a signal indicating the current value of the battery.
  • the zero potential of the earth leakage detection circuit can be based on the positive electrode of the battery or the negative electrode.
  • FIG. 1A is a diagram showing a circuit configuration example when the leakage detection circuit according to the first embodiment is configured on the positive electrode side of a battery.
  • FIG. 1B is a diagram showing a modification of the leakage detection circuit of FIG. 1A.
  • FIG. 1C is a diagram showing another modification of the leakage detection circuit of FIG. 1A.
  • FIG. 2 is a diagram showing an example of characteristics of the leakage detection circuit according to the first embodiment.
  • FIG. 3A is a diagram showing a circuit configuration example when the leakage detection circuit according to the first embodiment is configured on the negative electrode side of the battery.
  • 3B is a diagram showing a modification of the detection circuit of the leakage detection circuit of FIG. 3A.
  • FIG. 3C is a diagram showing another modification of the leakage detection circuit of FIG.
  • FIG. 4 is a diagram showing an example of characteristics of the leakage detection circuit shown in FIG. 3A.
  • FIG. 5 is a diagram showing a circuit configuration example when the leakage detection circuit according to the second embodiment is configured on the positive electrode side of the battery.
  • FIG. 6 is a diagram showing a characteristic example of the leakage detection circuit according to the second embodiment.
  • FIG. 7 is a diagram showing a circuit configuration example when the leakage detection circuit according to the second embodiment is configured on the negative electrode side of the battery.
  • FIG. 8 is a diagram showing an example of characteristics of the leakage detection circuit shown in FIG.
  • FIG. 9 is a diagram showing a circuit configuration example of a battery state detection circuit in which the leakage detection circuit according to the third embodiment is provided on the positive terminal side of the battery.
  • FIG. 10 is a diagram showing a circuit configuration example of a battery state detection circuit in which the leakage detection circuit according to the third embodiment is provided on the negative electrode side of the battery.
  • the earth leakage detection circuit according to the first embodiment is configured so that the zero potential of the earth leakage detection circuit can be based on either the positive terminal or the negative terminal of the battery.
  • a leakage detection circuit in which the positive electrode of the battery is set to zero potential will be described with reference to FIGS. 1A to 1C and 2.
  • FIG. 1A is a diagram showing a circuit configuration example when the earth leakage detection circuit of the first embodiment is configured on the positive electrode side of the battery.
  • a battery 1 is also shown in FIG. 1A.
  • the battery 1 has a configuration in which a plurality of battery cells are connected in series, for example, in order to supply a voltage of several hundred volts to a motor mounted on an electric vehicle. Since it is a high voltage, it is insulated from the vehicle body ground for safety reasons, and its insulation resistance is usually as high as several megohms.
  • FIG. 1A is a diagram showing a circuit configuration example when the earth leakage detection circuit of the first embodiment is configured on the positive electrode side of the battery.
  • a battery 1 is also shown in FIG. 1A.
  • the battery 1 has a configuration in which a plurality of battery cells are connected in series, for example, in order to supply a voltage of several hundred volts to a motor mounted on an electric vehicle. Since it is a high voltage, it is insulated from the vehicle body ground
  • insulation resistances R1 and R2 are equivalently provided between the negative electrode and the vehicle ground and between the positive electrode and the vehicle ground, respectively.
  • the battery 1 and the leakage detection circuit 10 may be mounted on something other than an electric vehicle.
  • the battery 1 and the leakage detection circuit 10 may be mounted, for example, on automobiles, power storage systems, aircraft, ships, server devices, AGVs (Automatic Guided Vehicles, also called automated guided vehicles), and the like.
  • the earth leakage detection circuit 10 is applied to detect the earth leakage of the battery 1 in the equipment or device in which the battery 1 is mounted and the chassis ground of the equipment or device is required to be insulated from the battery 1 .
  • the leakage detection circuit 10 includes resistors 21 to 25 and a detection circuit 5a.
  • the detection circuit 5a has a reference voltage source terminal VR, a detection terminal In1, a detection terminal In2, a ground terminal GND, a reference voltage source 50, an AD converter 51, an AD converter 52, and a control circuit 53.
  • the terminal on the negative electrode side is called one end
  • the terminal on the positive electrode side is called the other end.
  • a resistor 21 is a resistor connected between the negative electrode of the battery 1 and the chassis 11 as a vehicle body ground. That is, one end of resistor 21 is connected to the negative electrode of battery 1 . The other end of resistor 21 is connected to chassis 11 . Let the resistance value of the resistor 21 be r1.
  • a resistor 22 is a resistor connected between the detection terminal In1 and the chassis 11 as the vehicle body ground. That is, one end of the resistor 22 is connected to the chassis 11 . The other end of resistor 22 is connected to one end of resistor 23 and detection terminal In1. Assume that the resistance value of the resistor 22 is r2.
  • a resistor 23 is a resistor connected between the reference voltage source terminal VR and the detection terminal In1. That is, one end of the resistor 23 is connected to the other end of the resistor 22 and the detection terminal In1. The other end of resistor 23 is connected to reference voltage source terminal VR. Assume that the resistance value of the resistor 23 is r3.
  • a resistor 24 is a resistor connected between the negative electrode of the battery 1 and the detection terminal In2. That is, one end of resistor 24 is connected to the negative electrode of battery 1 . The other end of resistor 24 is connected to one end of resistor 25 and detection terminal In2. Assume that the resistance value of the resistor 24 is r4.
  • a resistor 25 is a resistor connected between the reference voltage source terminal VR and the detection terminal In2. That is, one end of the resistor 25 is connected to the other end of the resistor 24 and the detection terminal In2. Assume that the resistance value of the resistor 25 is r5.
  • the detection circuit 5a is configured such that the positive electrode of the battery 1 is at zero potential. That is, the ground terminal GND of the detection circuit 5 a is connected to the positive electrode of the battery 1 .
  • the detection circuit 5a detects the voltage of the detection terminal In1 as the detection voltage Vx, and detects the presence or absence of electric leakage based on the detection voltage Vx.
  • a reference voltage source terminal VR is connected to the other end of the resistor 23 and the other end of the resistor 25 .
  • the detection terminal In1 is connected to the connection point between the resistors 22 and 23 .
  • the detection terminal In2 is connected to the connection point between the resistors 24 and 25 .
  • a reference voltage source 50 is a voltage source that outputs a reference voltage Vr.
  • the reference voltage source 50 is, for example, a regulator circuit that stabilizes a DC power supply voltage supplied from an external power supply to a constant voltage and outputs it as a reference voltage Vr.
  • a reference voltage Vr is supplied from the reference voltage source 50 to the other end of the resistor 23 and the other end of the resistor 25 via the reference voltage source terminal VR. Also, the reference voltage Vr is used as a power source for the AD converter 51 , the AD converter 52 , and the control circuit 53 .
  • the AD converter 51 converts the voltage applied to the detection terminal In1 from analog to digital.
  • the AD converter 52 converts the voltage applied to the detection terminal In2 from analog to digital.
  • the control circuit 53 determines the presence or absence of electric leakage based on the output of the AD converter 51, and detects the voltage of the battery 1 based on the output of the AD converter 52.
  • the control circuit 53 is composed of, for example, a microcomputer.
  • the detection voltage applied to the detection terminal In1 is Vx
  • the detection voltage applied to the detection terminal In2 is Vy.
  • Vb be the voltage of the battery 1
  • Vgnd be the potential of the vehicle ground as seen from the negative electrode of the battery 1.
  • FIG. The detection voltage Vy applied to the detection terminal In2 corresponds to the battery voltage Vb.
  • the relationship between the detected voltage Vy and the battery voltage Vb is represented by (Formula 1a) and (Formula 1b).
  • the detected voltage Vx corresponds to the vehicle body ground Vgnd.
  • the relationship between the detected voltage Vx and the vehicle ground Vgnd is represented by (Equation 2a) and (Equation 2b).
  • Vgnd is also expressed as in (Equation 3) using each resistance value.
  • FIG. 2 is a diagram showing a characteristic example of the leakage detection circuit of FIG. 1A.
  • Vb 400 V
  • Vr 5 V
  • r1 1 M ⁇
  • r2 0.9875 M ⁇
  • r3 0.0125 M ⁇ .
  • FIG. 2 shows the case where R1 is fixed at 10 M ⁇ and R2 is changed from 0.1 M ⁇ to 10 M ⁇ , and the case where R2 is fixed at 10 M ⁇ and R1 is changed from 0.1 M ⁇ to 10 M ⁇ (Formula 3) are used to calculate (a) the vehicle body chassis potential Vgnd, and (b) the detection voltage Vx is calculated using (Equation 2a) and (Equation 2b).
  • the control circuit 53 can detect insulation failure by determining whether or not the detection voltage Vx is out of the predetermined range. Also, the control circuit 53 may calculate the battery voltage Vb from the detected voltage Vy using (Equation 1b).
  • FIG. 1B is a diagram showing a modification of the leakage detection circuit of FIG. 1A.
  • Leakage detection circuit 10 of FIG. 1B differs from that of FIG. 1A in that switches 41 and 42 are added and detection circuit 5a1 is provided instead of detection circuit 5a.
  • the description will focus on the points of difference to avoid duplication of description.
  • the switch 41 is connected in series with the resistor 21 and connected between the resistor 21 and the negative electrode of the battery 1 . That is, one end of switch 41 is connected to the negative electrode of battery 1 . The other end of switch 41 is connected to one end of resistor 21 .
  • the switch 41 has a control terminal to which the control signal Con from the control circuit 53 is input.
  • the switch 42 is connected between the resistor 22 and the first detection terminal In1. That is, one end of the switch 42 is connected to the other end of the resistor 22 and the other end of the switch 42 is connected to the detection terminal In1 and one end of the resistor 23 .
  • the switch 42 has a control terminal to which the control signal Con from the control circuit 53 is input.
  • the control circuit 53 in the detection circuit 5a1 has an added function of generating a control signal Con for controlling the ON/OFF of the switches 41 and 42.
  • the control circuit 53 turns on the switches 41 and 42 during the period in which the leakage is detected, and turns off the switches 41 and 42 in periods other than the period in which the leakage is detected.
  • the current flowing through the voltage dividing resistors of the leakage detection circuit 10 can be made zero during periods other than the period during which the leakage is detected.
  • FIG. 1C is a diagram showing another modification of the leakage detection circuit of FIG. 1A.
  • Leakage detection circuit 10 of FIG. 1C is different from FIG. 1A in that resistor 24, resistor 25, AD converter 52 and detection terminal In2 are eliminated, and detection circuit 5a2 is provided instead of detection circuit 5a. ing. In the following, the different points will be mainly described.
  • the removed resistors 24, 25, AD converter 52, and detection terminal In2 are circuit parts for calculating the battery voltage Vb based on the voltage Vy. Therefore, the detection circuit 5a2 of FIG. 1C shows a minimum configuration example for detecting the presence or absence of electric leakage without calculating the battery voltage Vb.
  • FIG. 3A is a diagram showing a circuit configuration example of an earth leakage detection circuit in which the detection circuit 5a of FIG. 1A is configured with the negative electrode of the battery 1 set to zero potential. 3A, the ground terminal GND of the detection circuit 5a is connected to the negative electrode of the battery 1. In FIG.
  • the leakage detection circuit 10 of FIG. 3A includes resistors 26 to 30 and a detection circuit 5a.
  • a resistor 26 is a resistor connected between the negative electrode of the battery 1 and the detection terminal In1. That is, one end of resistor 26 is connected to the negative electrode of battery 1 . The other end of the resistor 26 is connected to the detection terminal In1 and one end of the resistor 27 . Assume that the resistance value of the resistor 26 is r6.
  • a resistor 27 is a resistor connected between the detection terminal In1 and the chassis 11, which is the vehicle body ground. That is, one end of the resistor 27 is connected to the detection terminal In1 and the other end of the resistor 26 . The other end of resistor 27 is connected to chassis 11 and one end of resistor 28 . Let the resistance value of the resistor 27 be r7.
  • a resistor 28 is a resistor connected between the positive electrode of the battery 1 and the vehicle body ground. That is, one end of resistor 28 is connected to chassis 11 and the other end of resistor 27 . Assume that the resistance value of the resistor 28 is r8.
  • a resistor 29 is a resistor connected between the negative electrode of the battery 1 and the detection terminal In2. That is, one end of resistor 29 is connected to the negative electrode of battery 1 . The other end of resistor 29 is connected to the detection terminal In2 and one end of resistor 30 . Assume that the resistance value of the resistor 29 is r9.
  • a resistor 30 is connected between the positive electrode of the battery 1 and the detection terminal In2. That is, one end of the resistor 30 is connected to the detection terminal In2 and the other end of the resistor 29 . The other end of resistor 30 is connected to the positive electrode of battery 1 . Assume that the resistance value of the resistor 30 is r10.
  • the configuration of the detection circuit 5a is the same as in FIG. 1A. However, the reference voltage source terminal VR of the detection circuit 5a is not connected to the voltage dividing resistor.
  • the reference voltage source terminal VR is not connected to the voltage dividing resistor.
  • the zero potential of the detection circuit 5a is the positive electrode of the battery 1
  • the reference voltage source terminal VR is connected to the other end of the resistor 23.
  • the detection circuit 5a detects the divided voltage value of the resistors 26 to 28 without increasing the potential of the other end of the resistor 28. can be detected.
  • the detected voltage Vy corresponds to the battery voltage Vb.
  • the relationship between the detected voltage Vy and the battery voltage Vb is represented by (Formula 4a) and (Formula 4b).
  • the detected voltage Vx corresponds to the vehicle body ground Vgnd.
  • the relationship between the detected voltage Vx and the vehicle ground Vgnd is represented by (Equation 5a) and (Equation 5b).
  • Vgnd is also expressed as in (Equation 6) using each resistance value.
  • FIG. 4 is a diagram showing a characteristic example of the leakage detection circuit of FIG. 3A.
  • Vb 400V
  • Vr 5V
  • r6 0.0125M ⁇
  • r7 0.9875M ⁇
  • r8 1M ⁇ .
  • Figure 4 shows the case where R1 is fixed at 10 M ⁇ and R2 is changed from 0.1 M ⁇ to 10 M ⁇ , and the case where R2 is fixed at 10 M ⁇ and R1 is changed from 0.1 M ⁇ to 10 M ⁇
  • (a) Body chassis Potential Vgnd and (b) detection voltage Vx are shown. If the insulation resistances R1 and R2 are both as high as 10 M ⁇ , the potential Vgnd of the vehicle body ground is almost determined by the voltage division by the resistors 6-8.
  • the detection voltage Vx can also be set to around 2.5V.
  • the control circuit 53 can detect insulation failure by determining whether or not the detection voltage Vx is out of the predetermined range. Also, the control circuit 53 may calculate the battery voltage Vb from the detected voltage Vy using (Equation 4b).
  • the leakage detection circuit can detect insulation failure of the battery 1 whether the same detection circuit 5a is set as the positive electrode reference or the negative electrode reference of the battery 1.
  • FIG. 3B is a diagram showing a modification of the leakage detection circuit of FIG. 3A.
  • the leakage detection circuit 10 of FIG. 3B differs from that of FIG. 3A in that switches 47 and 48 are added and a detection circuit 5a1 is provided instead of the detection circuit 5a.
  • switches 47 and 48 are added and a detection circuit 5a1 is provided instead of the detection circuit 5a.
  • the description will focus on the points of difference to avoid duplication of description.
  • the switch 47 is connected between the resistor 27 and the first detection terminal In1. That is, one end of the switch 47 is connected to the detection terminal In1 and the other end of the resistor 26 . The other end of switch 47 is connected to one end of resistor 27 .
  • the switch 47 has a control terminal to which the control signal Con from the control circuit 53 is input.
  • the switch 48 is connected in series with the resistor 28 and connected between the resistor 28 and the positive electrode of the battery 1 . That is, one end of the switch 48 is connected to the other end of the resistor 28 . The other end of switch 48 is connected to the positive electrode of battery 1 .
  • the switch 48 has a control terminal to which the control signal Con from the control circuit 53 is input.
  • the control circuit 53 in the detection circuit 5a1 has an added function of generating a control signal Con for controlling the ON/OFF of the switches 47 and 48.
  • the control circuit 53 turns on the switches 47 and 48 during the period in which the electric leakage is detected, and turns off the switches 47 and 48 in periods other than the period in which the electric leakage is detected.
  • the current flowing through the voltage dividing resistors of the leakage detection circuit 10 can be made zero during periods other than the period during which the leakage is detected.
  • FIG. 3C is a diagram showing another modification of the leakage detection circuit of FIG. 3A.
  • Leakage detection circuit 10 of FIG. 3C is different from FIG. 3A in that resistor 29, resistor 30, AD converter 52 and detection terminal In2 are omitted, and detection circuit 5a2 is provided instead of detection circuit 5a. ing. In the following, the different points will be mainly described.
  • the removed resistors 29, 30, AD converter 52, and detection terminal In2 are circuit parts for calculating the battery voltage Vb based on the voltage Vy. Therefore, the detection circuit 5a2 in FIG. 3C shows a minimum configuration example for detecting the presence or absence of electric leakage without calculating the battery voltage Vb.
  • Each of the switches 41, 42, 47, and 48 may be a normally-off switch, and may be composed of, for example, an NMOS transistor, a PMOS transistor, a bipolar transistor, a relay, or a combination thereof.
  • the leakage detection circuit 10 detects leakage from the battery 1, which has a first electrode having a positive or negative polarity and a second electrode having a polarity opposite to the first electrode, to the chassis. and a detection circuit 5 having a reference voltage source terminal VR for outputting a reference voltage Vr, a first detection terminal In1, and a ground terminal GND connected to the first electrode. , a first resistor (21/28) connected between the second electrode and the chassis, and a second resistor (22/27) connected between the chassis and the first sensing terminal In1.
  • the detection circuit 5 detects the voltage of the first detection terminal In1, and based on the detected voltage to detect the presence or absence of electric leakage.
  • the leakage detection circuit 10 corresponds to FIGS. 1A to 1C.
  • the leakage detection circuit 10 corresponds to FIGS. 3A to 3C.
  • the first resistor corresponds to resistor 21 in FIGS. 1A-1C and resistor 28 in FIGS. 3A-3C.
  • the second resistor corresponds to resistor 22 in FIGS. 1A-1C and resistor 27 in FIGS. 3A-3C.
  • a third resistor corresponds to resistor 23 in FIGS. 1A-1C and resistor 26 in FIGS. 3A-3C.
  • Sensing circuit 5 is any of, or collectively, sensing circuits 5a, 5a1, 5a2 of FIGS. 1A-1C and FIGS. 3A-3C.
  • the zero potential of the leakage detection circuit 10 can be based on the positive electrode of the battery 1 or the negative electrode.
  • the detection circuit 5 may determine that an electric leak has occurred when the voltage of the first detection terminal In1 deviates from a predetermined range.
  • the sensing circuit 5 has a second sensing terminal In2, a fourth resistor (24/30) connected between the second electrode and the second sensing terminal In2, and a second A fifth resistor (25/29) connected between the detection terminal In2 and a predetermined terminal and the detection circuit 5 detect the voltage of the second detection terminal In2, and based on the detected voltage, detect the battery voltage. 1 voltage Vb may be calculated.
  • the fourth resistor corresponds to resistor 24 in FIGS. 1A to 1C and resistor 30 in FIGS. 3A to 3C.
  • a fifth resistor corresponds to resistor 25 in FIGS. 1A-1C and resistor 29 in FIGS. 3A-3C.
  • the voltage of the battery 1 can also be calculated as one of the indicators indicating the state of the battery 1.
  • a first switch (41/48) connected in series with the first resistor (21/28) and connected between the first resistor (21/28) and the second electrode and before
  • a second switch (42/47) connected in series with the second resistor (22/27) and connected between the second resistor (22/27) and the first sensing terminal In1;
  • the sensing circuit 5 may control the on and off of the first switch and the second switch.
  • the first switch corresponds to the switch 41 in FIG. 1B and the switch 48 in FIG. 3B.
  • the second switch corresponds to switch 42 in FIG. 1B and to switch 47 in FIG. 3B.
  • the first switch and the second switch are turned on during the period for detecting electric leakage, and the first switch and the second switch are turned off for periods other than the period for detecting electric leakage.
  • the current flowing through the voltage dividing resistors of the leakage detection circuit 10 can be set to zero during periods other than the leakage detection period.
  • the detection circuit 5 has a first AD converter 51 connected to the first detection terminal In1, and a control circuit 53 that determines the presence or absence of electric leakage based on the first data output from the first AD converter. You may have
  • the voltage value of the first detection terminal In1 can be acquired as digital first data, so it is suitable for electric leakage determination by digital processing using a microcomputer.
  • the detection circuit 5 includes a first AD converter 51 connected to the first detection terminal In1, a second AD converter 52 connected to the second detection terminal In2, and first data output from the first AD converter. , and a control circuit 53 that determines the presence or absence of electrical leakage based on the second data output from the second AD converter and calculates the voltage value of the battery 1 .
  • FIG. 5 is a diagram showing a circuit configuration example of the leakage detection circuit of the second embodiment.
  • FIG. 5 differs from FIG. 1A, which is the leakage detection circuit of the first embodiment, in that a series circuit of a resistor 31 and a PMOS transistor 32 is provided between the vehicle body ground and the reference voltage source terminal VR, and the detection 5b to distinguish the circuit from FIG. 1A.
  • the different points will be mainly described below.
  • a resistor 31 is connected between the chassis 11 and the PMOS transistor 32 . That is, one end of the resistor 31 is connected to the chassis 11 . The other end of resistor 31 is connected to one end of PMOS transistor 32 . Assume that the resistance value of the resistor 31 is r11.
  • the PMOS transistor 32 is connected between the resistor 31 and the reference voltage source terminal VR. That is, one end (that is, drain) of the PMOS transistor 32 is connected to the other end of the resistor 31 . The other end (that is, source) of the PMOS transistor 32 is connected to the reference voltage source terminal VR. A gate of the PMOS transistor 32 is connected to the drive terminal Out1.
  • the detection circuit 5b differs from the detection circuit 5a of FIG. 1A in that it has a drive terminal Out1 for outputting a drive signal to the PMOS transistor 32 according to a command from the internal control circuit 53. This drive signal controls the ON and OFF states of the PMOS transistor 32 .
  • FIG. 6 is a diagram showing an example of characteristics of the leakage detection circuit of FIG.
  • Vb 400V
  • Vr 5V
  • r3 0.9875M ⁇
  • r4 0.0125M ⁇ .
  • Vgnd and (b) detection voltage Vx are shown when changing from 0.1 M ⁇ to 10 M ⁇ .
  • a solid line indicates that the PMOS transistor 32 is off, and a broken line indicates that the PMOS transistor 32 is on.
  • the process is the same as in FIG.
  • the change in Vx also becomes small, making it difficult to detect electric leakage.
  • the ground potential Vgnd is biased toward the positive electrode side of the battery due to the resistor 31 under normal conditions when the insulation resistances R1 and R2 are high, and changes as the insulation resistance decreases.
  • the manner of change does not change depending on whether the PMOS transistor 32 is on or off. For example, when the insulation resistance R1 drops, the vehicle ground potential Vgnd drops, and the detection voltage Vx accordingly drops. Conversely, when the insulation resistance R2 decreases, the vehicle ground potential Vgnd increases, and the detected voltage Vx also increases accordingly.
  • the leakage is detected by comparing the detected voltage Vx with a predetermined threshold value, but if the detection circuit has an arithmetic function, the insulation resistances R1 and R2 can also be calculated.
  • the potentials Vg1 and Vg2 of the vehicle ground are obtained from the detected voltages Vx1 and Vx2 from (Equation 8b) and (Equation 10b).
  • the insulation resistances R1 and R2 can be calculated as shown in (Equation 12) and (Equation 13).
  • the voltage Vb of the battery 1 may be calculated from (Equation 4b) or (Equation 7b), or obtained from the outside. good too. For example, if there is an external measurement circuit that measures the voltage Vb of the battery 1, the voltage Vb may be acquired from the measurement circuit.
  • the leakage detection circuit can be configured by setting the negative electrode of the battery 1 to zero potential in the detection circuit.
  • FIG. 7 is a diagram showing a circuit configuration example of a leakage detection circuit in which the detection circuit 5b of FIG. 5 is configured with the negative electrode of the battery 1 set to zero potential. 7 differs from FIG. 3A in that a series circuit of an NMOS transistor 33 and a resistor 34 is provided between the vehicle body ground and the negative electrode of the battery 1, and the detection circuit is denoted by 5b to distinguish it from FIG. 1A. It is the point that I did. The different points will be mainly described below.
  • a resistor 34 is connected between the chassis 11 and the NMOS transistor 33 . That is, one end of the resistor 34 is connected to the other end of the NMOS transistor 33 . The other end of resistor 34 is connected to chassis 11 . Assume that the resistance value of the resistor 34 is r14.
  • the NMOS transistor 33 is connected between the negative electrode of the battery 1 and the resistor 34 . That is, one end (that is, source) of the NMOS transistor 33 is connected to the negative electrode of the battery 1 . The other end (ie drain) of the NMOS transistor 33 is connected to one end of the resistor 34 . A gate of the NMOS transistor 33 is connected to the drive terminal Out1.
  • a ground terminal 5g of the detection circuit 5b is connected to the negative electrode of the battery 1.
  • a drive terminal Out1 outputs a drive signal for driving the NMOS transistor 33 . This drive signal controls the ON state and OFF state of the NMOS transistor 33 .
  • FIG. 8 is a diagram showing an example of characteristics of the leakage detection circuit of FIG.
  • Vb 400 V
  • Vr 5 V
  • r6 0.0125 M ⁇
  • r7 0.9875 M ⁇
  • Vgnd and (b) detection voltage Vx are shown when changing from 0.1 M ⁇ to 10 M ⁇ .
  • a solid line indicates that the NMOS transistor 33 is off, and a broken line indicates that the NMOS transistor 33 is on.
  • the ground potential Vgnd is biased toward the battery negative electrode side by the resistor 11 during normal operation when the insulation resistors R1 and R2 have high resistance. Except for this point, how the vehicle ground potential Vgnd and the detected voltage Vx change due to the insulation resistances R1 and R2 are the same as in FIG. That is, normally, the detected voltage when the NMOS transistor 33 is off is determined by the resistors 26, 27, and 28, and when the NMOS transistor 33 is on, the detected voltage drops due to the influence of the resistor 34. As R1 or R2 decreases, the difference between the ON state detection voltage and the OFF state detection voltage becomes smaller. An insulation failure can be detected when the difference between the detected voltages becomes equal to or less than a predetermined value. Of course, as in the first embodiment, it is also possible to determine that an insulation failure has occurred when the detected voltage is out of the predetermined range.
  • the leakage is detected by comparing the detected voltage Vx with a predetermined threshold value. Resistances R1 and R2 can also be calculated. From (Equation 14b) and (Equation 16b), the vehicle ground potentials Vg3 and Vg4 are obtained from the detected voltages Vx3 and Vx4. By forming and solving simultaneous equations regarding R1 and R2 from these, (Equation 15) and (Equation 17), the insulation resistances R1 and R2 can be calculated as shown in (Equation 18) and (Equation 19).
  • the same detection circuit 5b can be set on both the positive electrode side and the negative electrode side of the battery 1.
  • the leakage detection circuit 10 can further calculate the resistance values of the insulation resistors R1 and R2 by connecting different resistance loads between the battery and the vehicle body ground using switch elements.
  • a plurality of conditions are created using switch elements in order to obtain simultaneous equations for calculating insulation resistance, but the method is not limited to such a method.
  • the earth leakage detection circuit 10 includes resistance elements (31/34) and switch elements (32/33) connected between the chassis and predetermined terminals. Having a series circuit, the detection circuit 5 has a drive terminal Out1 for driving the switching of the switch element (32/33) between open and closed states.
  • the resistive element corresponds to the resistor 31 in FIG. 5 and the resistor 34 in FIG.
  • the switch element corresponds to the PMOS transistor 32 in FIG. 5 and the NMOS transistor 33 in FIG.
  • the detection circuit 5 detects the voltage at the first detection terminal when the switch element (32/33) is in the open state as the first voltage, and detects the voltage at the first detection terminal when the switch element (32/33) is in the closed state.
  • the voltage of one detection terminal may be detected as the second voltage, and if the difference between the first voltage and the second voltage is equal to or less than a predetermined value, it may be determined that there is a leak.
  • the first voltage corresponds to voltage Vx in equations 8a and 8b with respect to FIG. 5 and voltage Vx2 in equations 10a and 10b with respect to FIG.
  • the second voltage corresponds to voltage Vx3 in equations 14a and 14b with respect to FIG. 5 and voltage Vx4 in equations 16a and 16b with respect to FIG.
  • the detection circuit detects the voltage of the first detection terminal when the switch element is in the open state as the first voltage, and detects the voltage of the first detection terminal when the switch element is in the closed state as the second voltage.
  • a resistance value between the positive electrode of the battery 1 and the chassis and a resistance value between the negative electrode of the battery 1 and the chassis may be calculated based on the detected first voltage and the second voltage.
  • two insulation resistance values R1 and R2 that is, the resistance value between the positive electrode of the battery 1 and the chassis and the resistance value between the negative electrode of the battery 1 and the chassis are calculated, so that equivalent Even if the insulation resistances R1 and R2 happen to drop in the same way, the leakage can be determined quantitatively. In addition, it can be determined whether the current leakage is occurring on the positive electrode side or the negative electrode side.
  • the sensing circuit includes a second sensing terminal In2, a fourth resistor (24/30) connected between the second electrode and the second sensing terminal In2, and the second sensing terminal In2. a fifth resistor (25/29) connected between In2 and a predetermined terminal, the sensing circuit sensing the voltage at the second sensing terminal In2 and based on the sensed voltage
  • the voltage (Vb) of the battery is calculated, the voltage at the first detection terminal when the switch element is open is detected as the first voltage, and the voltage at the first detection terminal when the switch element is closed is detected as the first voltage.
  • a resistance value R2 between the positive electrode of the battery 1 and the chassis and a resistance value R1 between the negative electrode of the battery 1 and the chassis are detected. and may be calculated.
  • FIG. 9 is a diagram showing a circuit configuration example of a battery state detection circuit 100 in which a battery current detection circuit is added to the earth leakage detection circuit of the second embodiment as a third embodiment.
  • FIG. 9 differs from FIG. 5, which is the earth leakage detection circuit of the second embodiment, in that a resistor 35 is provided between the positive electrode of the battery and a load (not shown), and that the detection circuit is provided, and an amplifier 54 is provided for detecting and amplifying and outputting to the control circuit 53.
  • the detection circuit is a detection circuit 5c to distinguish it from FIGS.
  • a resistor 35 is a current detection resistor connected between the positive electrode of the battery 1 and the load.
  • the amplifier 54 detects the voltage across the resistor 35 as a signal indicating the current value of the battery 1 .
  • FIG. 10 shows the configuration of a battery state detection circuit 100 in which the detection circuit 5c is provided on the negative electrode side of the battery.
  • FIG. 10 differs from FIG. 7 of the second embodiment in that a resistor 36 is provided between the negative electrode of the battery and a load (not shown), and the amplifier 54 of the detection circuit 5c is detected, amplified and output to the control circuit 53.
  • a resistor 36 is a current detection resistor connected between the negative electrode of the battery 1 and the load.
  • the amplifier 54 detects the voltage across the resistor 36 as a signal indicating the current value of the battery 1 . This current value indicates the magnitude of the discharging current or charging current of the battery 1 .
  • the leakage detection circuit can be set to either the positive electrode side or the negative electrode side of the battery depending on the installation position of the current detection circuit.
  • the whole can be simplified by, for example, forming an integrated circuit as a battery state detection circuit for detecting the voltage, current, presence or absence of electric leakage, etc. of the battery.
  • the battery state detection circuit 100 includes the leakage detection circuit 10, the current detection resistors 35/36 connected between the first electrode and the load, and the current detection resistors 35/36 connected between the first electrode and the load. and an amplifier circuit 54 for detecting the voltage across the detection resistors 35/36 as a signal indicating the current value of the battery 1.
  • the battery state determination circuit can reference the zero potential with the positive electrode of the battery 1 or with the negative electrode.
  • the battery state determination circuit can detect the current value at which the battery 1 is charged or discharged and the presence or absence of electric leakage as indicators of the battery state.
  • the battery state detection circuit 100 includes the leakage detection circuit 10, the current detection resistors 35/36 connected between the first electrode and the load, and the current detection resistors 35/36 connected between the first electrode and the load. 36 as a signal indicating the current value of the battery 1, and the detection circuit includes a first AD converter 51 connected to the first detection terminal In1 and a second detection terminal In1. Based on the second AD converter 52 connected to the terminal In2, the first data output from the first AD converter 51, and the second data output from the second AD converter 52, the presence or absence of electric leakage is determined, and the voltage of the battery is determined. and a control circuit 53 for calculating the value and the current value.
  • the current detection resistor corresponds to the resistor 35 in FIG. 9 and the resistor 36 in FIG.
  • the battery state determination circuit can reference the zero potential with the positive electrode or the negative electrode of the battery.
  • the battery state determination circuit can detect the voltage value of the battery, the current value at which the battery is charged or discharged, and the presence or absence of electric leakage as indicators of the battery state.
  • the amplifier circuit 54 may be included in the detection circuit.
  • the detection circuit As a function of the detection circuit, it is possible to detect the current value with which the battery is charged or discharged, in addition to the determination of the presence or absence of electric leakage.
  • the detection circuit may be an integrated circuit.
  • the detection circuit can be miniaturized as an IC chip, the cost can be reduced, and the usability can be improved.
  • an NMOS transistor may be provided instead of the PMOS transistor 32 in the leakage detection circuit 10 of FIG. In that case, the control circuit 53 may invert the logic level of the drive signal. 5, instead of the PMOS transistor 32, a switch circuit in which a PMOS transistor and an NMOS transistor are combined in parallel may be provided.
  • the switch 41 and the switch 42 may be added as in FIG. 1B, and the control circuit 53 may control the switch 41 and the switch 42.
  • the resistor 24, the resistor 25, and the detection terminal In2 may be omitted in the same manner as in FIG. 1C.
  • a PMOS transistor may be provided instead of the NMOS transistor 33 in the leakage detection circuit 10 of FIG. In that case, the control circuit 53 may invert the logic level of the drive signal. 7, instead of the NMOS transistor 33, a switch circuit in which a PMOS transistor and an NMOS transistor are combined in parallel may be provided.
  • switches 47 and 48 may be added in the same manner as in FIG. 3B, and the control circuit 53 may be configured to control the switches 47 and 48.
  • the leakage detection circuit 10 of FIG. 7 may have a configuration in which the resistor 29, the resistor 30, and the detection terminal In2 are eliminated, as in FIG. 3C.
  • the switches 41 and 42 may be added as in FIG. 1B, and the control circuit 53 may be configured to control the switches 41 and 42.
  • the switches 47 and 48 may be added as in FIG. 3B, and the control circuit 53 may be configured to control the switches 47 and 48.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

第1電極および逆極性の第2電極を有するバッテリからシャーシへの漏電を検出する漏電検出回路(10)であって、基準電圧源端子(VR)、第1の検出端子(In1)、および、第1電極に接続されるグランド端子(GND)を有する検知回路(5a)と、第2電極とシャーシとの間に接続される第1の抵抗器(21)(または(28))と、シャーシと第1の検出端子(In1)との間に接続される第2の抵抗器(22)(または(27))と、第1の検出端子(In1)と所定の端子との間に接続される第3の抵抗器(23)(または(26))とを備え、第1電極の極性が正である場合、所定の端子は基準電圧源端子(VR)であり、第1電極の極性が負である場合、所定の端子は第1電極であり、検知回路(5a)は、第1の検出端子(In1)の電圧に基づいて漏電の有無を検出する。

Description

漏電検出回路およびバッテリ状態検出回路
 本開示は、漏電検出回路およびバッテリ状態検出回路に関する。
 電気自動車等の電動車両には、モータに直流電力を供給する高電圧・大容量のバッテリが搭載されている。このような高圧バッテリは、リチウムイオン電池等からなる電池セルを直列に複数接続して構成され、安全上グランドとしての車体シャーシから絶縁されている。
 高圧バッテリと車体シャーシ間の漏電の有無を検出する漏電検出回路が、例えば特許文献1に開示されている。
特開2007-256114号公報
 一般に漏電検出回路は検出抵抗を車体シャーシに接続するため、漏電検出回路が車体シャーシをゼロ電位とする車体シャーシ電位基準で構成されている。一方、バッテリの状態検出回路はバッテリ電圧や充放電電流を監視するために、バッテリの正極電位基準で構成される場合がある。バッテリの状態検出回路の機能の一つとして、バッテリの漏電の有無を検出する漏電検出回路を設ける場合、漏電検出回路もバッテリの正極電位基準で構成することにも有用性がある。特許文献1はバッテリ電位基準で構成された漏電検出回路の一例であるが、バッテリの負極を漏電検出回路のゼロ電位として構成されている。このため、バッテリの状態検出回路がバッテリの正極側で電流検出するような、正極をゼロ電位として構成される場合には適用できない。
 本開示は、漏電検出回路のゼロ電位をバッテリの正極を基準にすることにも負極を基準することも可能な漏電検出回路を提供する。
 上記課題を解決ために本開示の一態様に係る漏電検出回路は、正または負の極性を有する第1電極および前記第1電極と逆極性の第2電極を有するバッテリからシャーシへの漏電を検出する漏電検出回路であって、基準電圧を出力するための基準電圧源端子と、第1の検出端子と、前記第1電極に接続されるグランド端子を有する検知回路と、前記第2電極と前記シャーシとの間に接続される第1の抵抗器と、前記シャーシと前記第1の検出端子との間に接続される第2の抵抗器と、前記第1の検出端子と所定の端子との間に接続される第3の抵抗器と、を備え、前記第1電極の極性が正である場合、前記所定の端子は前記基準電圧源端子であり、前記第1電極の極性が負である場合、前記所定の端子は前記第1電極であり、前記検知回路は、前記第1の検出端子の電圧を検出し、検出した電圧に基づいて漏電の有無を検出する。
 また、本開示の一態様に係るバッテリ状態検出回路は、上記の漏電検出回路と、前記第1電極と負荷との間に接続される電流検出抵抗と、前記電流検出抵抗の両端電圧を、前記バッテリの電流値を示す信号として検出する増幅回路と、を有する。
 本開示の漏電検出回路によれば、漏電検出回路のゼロ電位をバッテリの正極を基準にすることにも負極を基準することも可能である。
図1Aは、第1の実施形態に係る漏電検出回路をバッテリ正極側で構成した場合の回路構成例を示す図である。 図1Bは、図1Aの漏電検出回路の変形例を示す図である。 図1Cは、図1Aの漏電検出回路の他の変形例を示す図である。 図2は、第1の実施形態に係る漏電検出回路の特性例を示す図である。 図3Aは、第1の実施形態に係る漏電検出回路をバッテリ負極側で構成した場合の回路構成例を示す図である。 図3Bは、図3Aの漏電検出回路の検知回路の変形例を示す図である。 図3Cは、図3Aの漏電検出回路の他の変形例を示す図である。 図4は、図3Aに示した漏電検出回路の特性例を示す図である。 図5は、第2の実施形態に係る漏電検出回路をバッテリ正極側で構成した場合の回路構成例を示す図である。 図6は、第2の実施形態に係る漏電検出回路の特性例を示す図である。 図7は、第2の実施形態に係る漏電検出回路をバッテリ負極側で構成した場合の回路構成例を示す図である。 図8は、図7に示した漏電検出回路の特性例を示す図である。 図9は、第3の実施形態に係る漏電検出回路をバッテリの正極側に設けたバッテリ状態検出回路の回路構成例を示す図である。 図10は、第3の実施形態に係る漏電検出回路をバッテリの負極側に設けたバッテリ状態検出回路の回路構成例を示す図である。
 以下、本開示の一態様に係る漏電検出回路およびバッテリ状態検出回路を、図面を参照して具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも本開示の一包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (第1の実施形態)
 第1の実施の形態に係る漏電検出回路は、漏電検出回路のゼロ電位をバッテリの正極を基準にすることも負極を基準することも可能であるように構成されている。まず、バッテリの正極をゼロ電位として構成した漏電検出回路について、図1Aから図1Cおよび図2を用いて説明する。
 [1.1 バッテリの正極基準にした漏電検出回路の構成例]
 図1Aは第1の実施形態の漏電検出回路をバッテリ正極側で構成した場合の回路構成例を示す図である。図1Aにはバッテリ1も図示してある。バッテリ1は、例えば電気自動車に搭載されてモータに数百ボルトの電圧を供給するため、複数のバッテリセルが直列接続された構成を有する。高圧であるため安全上車体グランドからは絶縁されており、通常、その絶縁抵抗は数MΩ以上の高抵抗である。図1Aでは、等価的に負極-車体グランド間及び正極-車体グランド間にそれぞれ絶縁抵抗R1、R2を有するものとみなす。なお、バッテリ1および漏電検出回路10は、電気自動車以外のものに搭載されてもよい。バッテリ1および漏電検出回路10は、例えば、自動車、蓄電システム、航空機、船舶、サーバー装置、AGV(Automatic Guided Vehicle、無人搬送車とも呼ばれる)等に搭載されてもよい。漏電検出回路10は、バッテリ1を搭載する機器または装置のシャーシグランドとバッテリ1との絶縁が要求される機器および装置において、バッテリ1の漏電の検出に適用される。
 図1Aにおいて漏電検出回路10は、抵抗21から25と、検知回路5aとを備える。検知回路5aは、基準電圧源端子VR、検出端子In1、検出端子In2、グランド端子GND、基準電圧源50、ADコンバータ51、ADコンバータ52、および制御回路53を有する。以下では、抵抗21から25のそれぞれにおいて、2つの端子のうちの負極側の端子を一端、正極側の端子を他端と呼ぶ。
 抵抗21はバッテリ1の負極と車体グランドとしてのシャーシ11との間に接続された抵抗である。つまり、抵抗21の一端はバッテリ1の負極に接続される。抵抗21の他端は、シャーシ11に接続される。抵抗21の抵抗値をr1とする。
 抵抗22は検出端子In1と車体グランドとしてのシャーシ11との間に接続された抵抗である。つまり、抵抗22の一端は、シャーシ11に接続される。抵抗22の他端は、抵抗23の一端および検出端子In1に接続される。抵抗22の抵抗値をr2とする。
 抵抗23は基準電圧源端子VRと検出端子In1との間に接続された抵抗である。つまり、抵抗23の一端は、抵抗22の他端および検出端子In1に接続される。抵抗23の他端は、基準電圧源端子VRに接続される。抵抗23の抵抗値をr3とする。
 抵抗24はバッテリ1の負極と検出端子In2との間に接続された抵抗である。つまり、抵抗24の一端はバッテリ1の負極に接続される。抵抗24の他端は、抵抗25の一端および検出端子In2に接続される。抵抗24の抵抗値をr4とする。
 抵抗25は基準電圧源端子VRと検出端子In2との間に接続された抵抗である。つまり、抵抗25の一端は、抵抗24の他端および検出端子In2に接続される。抵抗25の抵抗値をr5とする。
 検知回路5aは、バッテリ1の正極をゼロ電位として構成される。つまり、検知回路5aのグランド端子GNDは、バッテリ1の正極に接続される。検知回路5aは、検出端子In1の電圧を検出電圧Vxとして検出し、検出電圧Vxに基づいて漏電の有無を検出する。
 基準電圧源端子VRは、抵抗23の他端と、抵抗25の他端とに接続される。
 検出端子In1は、抵抗22と抵抗23との接続点に接続される。
 検出端子In2は、抵抗24と抵抗25との接続点に接続される。
 基準電圧源50は、基準電圧Vrを出力する電圧源である。基準電圧源50は、例えば、外部電源から供給される直流電源電圧を定電圧に安定化し、基準電圧Vrとして出力するレギュレータ回路である。基準電圧Vrは、基準電圧源50から基準電圧源端子VRを介して抵抗23の他端および抵抗25の他端に供給される。また、基準電圧Vrは、ADコンバータ51、ADコンバータ52、制御回路53の電源として利用される。
 ADコンバータ51は、検出端子In1に印加される電圧をアナログからデジタルに変換する。
 ADコンバータ52は、検出端子In2に印加される電圧をアナログからデジタルに変換する。
 制御回路53は、ADコンバータ51の出力に基づいて漏電の有無を判定し、ADコンバータ52の出力に基づいてバッテリ1の電圧を検出する。制御回路53は、例えばマイコンで構成される。
 以上のような構成において、検出端子In1に印加される検出電圧をVx、検出端子In2に印加される検出電圧をVyとする。また、バッテリ1の電圧をVb、バッテリ1の負極からみた車体グランドの電位をVgndとする。検出端子In2に印加される検出電圧Vyはバッテリ電圧Vbに対応する。検出電圧Vyとバッテリ電圧Vbとの関係は、(式1a)および(式1b)で表される。また、検出電圧Vxは車体グランドVgndに対応する。検出電圧Vxと車体グランドVgndの関係は(式2a)および(式2b)で表される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 一方、車体グランドの電位Vgndはまた、各抵抗値を用いて(式3)のようにも表される。
Figure JPOXMLDOC01-appb-M000003
 図2は、図1Aの漏電検出回路の特性例を示す図である。図2では、Vb=400Vとし、Vr=5V、r1=1MΩ、r2=0.9875MΩ、r3=0.0125MΩに設定されている。図2は、R1=10MΩに固定してR2を0.1MΩ~10MΩに変化させた場合と、R2=10MΩに固定してR1を0.1MΩ~10MΩに変化させた場合について、(式3)を用いて(a)車体シャーシ電位Vgndと、(式2a)および(式2b)を用いて(b)検出電圧Vxの算出結果を示す。
 絶縁抵抗R1とR2がともに10MΩと高抵抗であれば、車体グランドの電位Vgndは抵抗21~23による分圧でほぼ決まり、上記のようにr1=r2+r3とした場合、Vgnd=(Vb+Vr)/2 となり、検出電圧Vxも2.5V付近に設定できる。ところが、何らかの原因で絶縁不良つまり漏電が起こり、例えば絶縁抵抗R1が低下すると、車体グランドの電位Vgndは低下し、これに従って検出電圧Vxも低下する。逆に絶縁抵抗R2が低下すると、車体グランドの電位Vgndは上昇し、これに従って検出電圧Vxも上昇する。従って、制御回路53は、検出電圧Vxが所定の範囲から外れたか否かを判定することによって絶縁不良を検出することができる。また、制御回路53は、(式1b)を用いて検出電圧Vyからバッテリ電圧Vbを算出してもよい。
 [1.11 バッテリの正極基準にした漏電検出回路の変形例]
 次に、漏電検出回路10の変形例について説明する。
 図1Bは、図1Aの漏電検出回路の変形例を示す図である。図1Bの漏電検出回路10は、図1Aと比べて、スイッチ41とスイッチ42とが追加されている点と、検知回路5aの代わりに検知回路5a1を備える点とが異なっている。以下、説明の重複を避けて異なる点を中心に説明する。
 スイッチ41は、抵抗器21に直列に接続され、抵抗器21とバッテリ1の負極との間に接続される。つまり、スイッチ41の一端はバッテリ1の負極に接続される。スイッチ41の他端は、抵抗21の一端に接続される。スイッチ41は、制御回路53からの制御信号Conが入力される制御端子を有する。
 スイッチ42は、抵抗器22と第1の検出端子In1との間に接続される。つまり、スイッチ42の一端は、抵抗22の他端に接続され、スイッチ42の他端は、検出端子In1および抵抗23の一端に接続される。スイッチ42は、制御回路53からの制御信号Conが入力される制御端子を有する。
 検知回路5a1内の制御回路53は、スイッチ41およびスイッチ42のオンおよびオフを制御するための制御信号Conを生成する機能が追加されている。制御回路53は、漏電を検知する期間ではスイッチ41およびスイッチ42のオンにし、漏電を検知する期間以外の期間ではスイッチ41およびスイッチ42のオフにする。
 これによれば、例えば、漏電を検知する期間以外の期間では漏電検出回路10の分圧用抵抗に流れる電流をゼロにすることができる。
 [1.12 バッテリの正極基準にした漏電検出回路の他の変形例]
 図1Cは、図1Aの漏電検出回路の他の変形例を示す図である。図1Cの漏電検出回路10は、図1Aと比べて、抵抗24、抵抗25、ADコンバータ52および検出端子In2が削除された点と、検知回路5aの代わりに検知回路5a2を備える点とが異なっている。以下、異なる点を中心に説明する。
 削除された抵抗24、抵抗25、ADコンバータ52および検出端子In2は、電圧Vyに基づいてバッテリ電圧Vbを算出するための回路部分である。したがって、図1Cの検知回路5a2は、バッテリ電圧Vbを算出しないで、漏電の有無を検出する必要最小限の構成例を示している。
 [1.2 バッテリの負極基準にした漏電検出回路の構成例]
 次に、バッテリの負極をゼロ電位として構成した漏電検出回路について、図3Aから、図3Cおよび図4を用いて説明する。
 図3Aは、図1Aの検知回路5aをバッテリ1の負極をゼロ電位として構成した漏電検出回路の回路構成例を示す図である。図3Aにおいて、検知回路5aのグランド端子GNDはバッテリ1の負極に接続される。
 図3Aの漏電検出回路10は、抵抗26から抵抗30と、検知回路5aとを備える。
 抵抗26はバッテリ1の負極と検出端子In1との間に接続された抵抗である。つまり、抵抗26の一端は、バッテリ1の負極に接続される。抵抗26の他端は、検出端子In1および抵抗27の一端に接続される。抵抗26の抵抗値をr6とする。
 抵抗27は検出端子In1と車体グランドであるシャーシ11との間に接続された抵抗である。つまり、抵抗27の一端は、検出端子In1および抵抗26の他端に接続される。抵抗27の他端は、シャーシ11および抵抗28の一端に接続される。抵抗27の抵抗値をr7とする。
 抵抗28はバッテリ1の正極と車体グランドとの間に接続された抵抗である。つまり、抵抗28の一端はシャーシ11および抵抗27の他端に接続される。抵抗28の抵抗値をr8とする。
 抵抗29はバッテリ1の負極と検出端子In2との間に接続された抵抗である。つまり、抵抗29の一端は、バッテリ1の負極に接続される。抵抗29の他端は、検出端子In2および抵抗30の一端に接続される。抵抗29の抵抗値をr9とする。
 抵抗30はバッテリ1の正極と検出端子In2との間に接続された抵抗である。つまり、抵抗30の一端は、検出端子In2および抵抗29の他端に接続される。抵抗30の他端は、バッテリ1の正極に接続される。抵抗30の抵抗値をr10とする。
 検知回路5aの構成は、図1Aと同じである。ただし、検知回路5aの基準電圧源端子VRは、分圧用の抵抗に接続されない。図1Aでは、検知回路5aのゼロ電位がバッテリ1の正極であるので、抵抗21から抵抗23の分圧値を検出可能にするため、抵抗23の他端に基準電圧源端子VRを接続している。これに対して、図3Aでは、検知回路5aのゼロ電位がバッテリ1の負極であるので、抵抗28の他端の電位を上げなくても、検知回路5aは、抵抗26から28の分圧値を検出可能である。
 以上のような構成においても、検出電圧Vyはバッテリ電圧Vbに対応する。検出電圧Vyとバッテリ電圧Vbとの関係は、(式4a)および(式4b)で表される。また、検出電圧Vxは車体グランドVgndに対応する。検出電圧Vxと車体グランドVgndとの関係は(式5a)および(式5b)で表される。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 一方、車体グランドの電位Vgndはまた、各抵抗値を用いて(式6)のようにも表される。
Figure JPOXMLDOC01-appb-M000006
 図4は、図3Aの漏電検出回路の特性例を示す図である。図4では、Vb=400V、Vr=5V、r6=0.0125MΩ、r7=0.9875MΩ、r8=1MΩに設定されている。図4は、R1=10MΩに固定してR2を0.1MΩ~10MΩに変化させた場合と、R2=10MΩに固定してR1を0.1MΩ~10MΩに変化させた場合の(a)車体シャーシ電位Vgndと(b)検出電圧Vxを示す。絶縁抵抗R1とR2がともに10MΩと高抵抗であれば、車体グランドの電位Vgndは抵抗6~8による分圧でほぼ決まる。上記のように、r6+r7=r8とした場合、Vgnd=Vb/2 となり、検出電圧Vxも2.5V付近に設定できる。ところが、何らかの原因で絶縁不良つまり漏電が起こり、例えば絶縁抵抗R1が低下すると、車体グランドの電位Vgndは低下し、これに従って検出電圧Vxも低下する。逆に絶縁抵抗R2が低下すると、車体グランドの電位Vgndは上昇し、これに従って検出電圧Vxも上昇する。従って、制御回路53は、検出電圧Vxが所定の範囲から外れたか否かを判定することによって絶縁不良を検出することができる。また、制御回路53は、(式4b)を用いて検出電圧Vyからバッテリ電圧Vbを算出してもよい。
 以上のように、漏電検出回路は同じ検知回路5aをバッテリ1の正極基準に設定しても負極基準に設定してもバッテリ1の絶縁不良を検出することができる。
 [1.21 バッテリの負極準にした漏電検出回路の変形例]
 次に、図3Aの漏電検出回路10の変形例について説明する。
 図3Bは、図3Aの漏電検出回路の変形例を示す図である。図3Bの漏電検出回路10は、図3Aと比べて、スイッチ47とスイッチ48とが追加されている点と、検知回路5aの代わりに検知回路5a1を備える点とが異なっている。以下、説明の重複を避けて異なる点を中心に説明する。
 スイッチ47は、抵抗器27と第1の検出端子In1との間に接続される。つまり、スイッチ47の一端は、検出端子In1および抵抗26の他端に接続される。スイッチ47の他端は、抵抗27の一端に接続される。スイッチ47は、制御回路53からの制御信号Conが入力される制御端子を有する。
 スイッチ48は、抵抗器28に直列に接続され、抵抗器28とバッテリ1の正極との間に接続される。つまり、スイッチ48の一端は抵抗28の他端に接続される。スイッチ48の他端は、バッテリ1の正極に接続される。スイッチ48は、制御回路53からの制御信号Conが入力される制御端子を有する。
 検知回路5a1内の制御回路53は、スイッチ47およびスイッチ48のオンおよびオフを制御するための制御信号Conを生成する機能が追加されている。制御回路53は、漏電を検知する期間ではスイッチ47およびスイッチ48のオンにし、漏電を検知する期間以外の期間ではスイッチ47およびスイッチ48のオフにする。
 これによれば、例えば、漏電を検知する期間以外の期間では漏電検出回路10の分圧用抵抗に流れる電流をゼロにすることができる。
 [1.22 バッテリの負極基準にした漏電検出回路の他の変形例]
 図3Cは、図3Aの漏電検出回路の他の変形例を示す図である。図3Cの漏電検出回路10は、図3Aと比べて、抵抗29、抵抗30、ADコンバータ52および検出端子In2が削除された点と、検知回路5aの代わりに検知回路5a2を備える点とが異なっている。以下、異なる点を中心に説明する。
 削除された抵抗29、抵抗30、ADコンバータ52および検出端子In2は、電圧Vyに基づいてバッテリ電圧Vbを算出するための回路部分である。したがって、図3Cの検知回路5a2は、バッテリ電圧Vbを算出しないで、漏電の有無を検出する必要最小限の構成例を示している。
 なお、上記のスイッチ41、42、47、48のそれぞれは、ノーマリオフ型のスイッチでよく、例えばNMOSトランジスタ、PMOSトランジスタ、バイポーラトランジスタ、リレー、または、これらの組み合わせで構成してもよい。
 以上説明してきたように第1の実施の形態に係る漏電検出回路10は、正または負の極性を有する第1電極および第1電極と逆極性の第2電極を有するバッテリ1からシャーシへの漏電を検出する漏電検出回路10であって、基準電圧Vrを出力するための基準電圧源端子VRと、第1の検出端子In1と、第1電極に接続されるグランド端子GNDを有する検知回路5と、第2電極とシャーシとの間に接続される第1の抵抗器(21/28)と、シャーシと第1の検出端子In1との間に接続される第2の抵抗器(22/27)と、第1の検出端子In1と所定の端子との間に接続される第3の抵抗器(23/26)と、を備え、第1電極の極性が正である場合、所定の端子は基準電圧源端子VRであり、第1電極の極性が負である場合、所定の端子は第1電極であり、検知回路5は、第1の検出端子In1の電圧を検出し、検出した電圧に基づいて漏電の有無を検出する。
 ここで、第1電極の極性が正である場合、漏電検出回路10は、図1Aから図1Cに対応する。第1電極の極性が負である場合、漏電検出回路10は、図3Aから図3Cに対応する。また、第1の抵抗器は、図1Aから図1Cの抵抗21に対応し、図3Aから図3Cの抵抗28に対応する。第2の抵抗器は、図1Aから図1Cの抵抗22に対応し、図3Aから図3Cの抵抗27に対応する。第3の抵抗器は、図1Aから図1Cの抵抗23に対応し、図3Aから図3Cの抵抗26に対応する。検知回路5は、図1Aから図1Cおよび図3Aから図3Cの検知回路5a、5a1、5a2の何れか、または総称である。
 これによれば、漏電検出回路10のゼロ電位をバッテリ1の正極を基準にすることも負極を基準することも可能である。
 ここで、検知回路5は、第1の検出端子In1の電圧が所定の範囲から外れると、漏電していると判定してもよい。
 これによれば、絶縁不良の発生つまり漏電の発生を容易に判定することができる。
 ここで、検知回路5は、第2の検出端子In2を有し、第2電極と第2の検出端子In2との間に接続された第4の抵抗器(24/30)と、第2の検出端子In2と所定の端子との間に接続された第5の抵抗器(25/29)と、検知回路5は、第2の検出端子In2の電圧を検出し、検出した電圧に基づいてバッテリ1の電圧Vbを算出してもよい。
 ここで、第4の抵抗器は、図1Aから図1Cの抵抗24に対応し、図3Aから図3Cの抵抗30に対応する。第5の抵抗器は、図1Aから図1Cの抵抗25に対応し、図3Aから図3Cの抵抗29に対応する。
 これによれば、漏電の有無の判定に加えて、バッテリ1の状態を示す指標の1つとしてバッテリ1の電圧も算出することができる。
 ここで、第1の抵抗器(21/28)に直列に接続され、第1の抵抗器(21/28)と第2電極と前の間に接続された第1スイッチ(41/48)と、第2の抵抗器(22/27)に直列に接続され、第2の抵抗器(22/27)と第1の検出端子In1との間に接続された第2スイッチ(42/47)と、を備え、検知回路5は、第1スイッチおよび第2スイッチのオンおよびオフを制御してもよい。
 ここで、第1スイッチは、図1Bのスイッチ41に対応し、図3Bのスイッチ48に対応する。第2スイッチは、図1Bのスイッチ42に対応し、図3Bのスイッチ47に対応する。
 これによれば、例えば、漏電を検知する期間で第1スイッチおよび第2スイッチのオンにし、漏電を検知する期間以外の期間では第1スイッチおよび第2スイッチのオフにする。漏電を検知する期間以外の期間では漏電検出回路10の分圧用抵抗に流れる電流をゼロにすることができる。
 ここで、検知回路5は、第1の検出端子In1に接続された第1ADコンバータ51と、第1ADコンバータから出力される第1データに基づいて、漏電の有無を判定する制御回路53とを有していてもよい。
 これによれば、第1の検出端子In1の電圧値をデジタルの第1データとして取得できるので、マイコンを用いたデジタル処理による漏電判定に適している。
 ここで、検知回路5は、第1の検出端子In1に接続された第1ADコンバータ51と、第2の検出端子In2に接続された第2ADコンバータ52と、第1ADコンバータから出力される第1データ、および、第2ADコンバータからの出力される第2データに基づいて、漏電の有無を判定し、バッテリ1の電圧値を算出する制御回路53とを有していてもよい。
 これによれば、第1データに基づいて漏電の有無を判定することに加えて、第2データに基づいてバッテリ1の電圧を検出することができる。
 (第2の実施形態)
 [2.1 バッテリの正極基準にした漏電検出回路の構成例]
 図5は第2の実施形態の漏電検出回路の回路構成例を示す図である。図5において、第1の実施形態の漏電検出回路である図1Aと異なるのは、車体グランドと基準電圧源端子VRとの間に抵抗31とPMOSトランジスタ32の直列回路を設けた点と、検知回路を図1Aと区別するために5bとした点とである。以下異なる点を中心に説明する。
 抵抗31はシャーシ11とPMOSトランジスタ32との間に接続される。つまり、抵抗31の一端は、シャーシ11に接続される。抵抗31の他端は、PMOSトランジスタ32の一端に接続される。抵抗31の抵抗値をr11とする。
 PMOSトランジスタ32は、抵抗31と基準電圧源端子VRとの間に接続される。つまり、PMOSトランジスタ32の一端(つまりドレイン)は、抵抗31の他端に接続される。PMOSトランジスタ32の他端(つまりソース)は、基準電圧源端子VRに接続される。PMOSトランジスタ32のゲートは、駆動端子Out1に接続される。
 検知回路5bが図1Aの検知回路5aと異なるのは、内部の制御回路53からの指令でPMOSトランジスタ32に駆動信号を出力する駆動端子Out1を有する点である。この 駆動信号は、PMOSトランジスタ32のオン状態およびオフ状態を制御する。
 まず、駆動端子Out1が基準電圧Vr相当のハイレベルの駆動信号を出力してPMOSトランジスタ32をオフ状態にしている場合、図1Aと等価の回路構成になるので、各部電圧は(式1a)~(式3)と同様で、(式7a)~(式9)のようになる。尚、後述のPMOSトランジスタ32をオン状態にしている場合と区別するために、PMOSトランジスタ32をオフ状態にしている場合の車体グランドの電位VgndをVg1、検出電圧VxをVx1とする。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 次に、駆動端子Out1がゼロ電位相当のローレベルの駆動信号を出力してPMOSトランジスタ32をオン状態にしている場合、車体グランドと基準電圧源端子VRとの間に抵抗31が並列接続される。このため車体グランドの電位はPMOSトランジスタ32がオフ状態の場合より上昇する。この場合の車体グランドの電位VgndをVg2、検出電圧VxをVx2とすると、Vg2、Vx2は(式10a)から(式11)で表される。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 図6は、図5の漏電検出回路の特性例を示す図である。図6では、Vb=400V、Vr=5V、r2=r10=1MΩ、r3=0.9875MΩ、r4=0.0125MΩに設定されている。図6は、R1=10MΩに固定してR2を0.1MΩ~10MΩに変化させた場合と、R2=10MΩに固定してR1を0.1MΩ~10MΩに変化させた場合と、R1=R2として0.1MΩ~10MΩに変化させた場合の(a)車体シャーシ電位Vgndと(b)検出電圧Vxを示す。また、PMOSトランジスタ32がオフ状態の場合を実線、PMOSトランジスタ32がオン状態の場合を破線で示す。
 PMOSトランジスタ32がオフ状態の場合は、図2と同様であるが、R1=R2のように正極側と負極側の等価絶縁抵抗が同様に小さくなるような場合には、グランド電位Vgndや検出電圧Vxの変化も小さくなって漏電検出が困難となる。一方、PMOSトランジスタ32がオン状態の場合、絶縁抵抗R1及びR2が高抵抗である正常時には、抵抗31によってグランド電位Vgndはバッテリ正極側に偏り、絶縁抵抗の低下と共に変化する。変化の仕方はPMOSトランジスタ32のオン状態やオフ状態で変わらず、例えば絶縁抵抗R1が低下すると、車体グランドの電位Vgndは低下し、これに従って検出電圧Vxも低下する。逆に絶縁抵抗R2が低下すると、車体グランドの電位Vgndは上昇し、これに従って検出電圧Vxも上昇する。そしてR1=R2の場合は車体グランドの電位VgndはVb/2に漸近していく。以上のように、正常時には、PMOSトランジスタ32のオフ状態での検出電圧が抵抗21,22,23で決まり、オン状態では抵抗31の影響で検出電圧が上昇するが、何らかの原因で絶縁不良が起こり、絶縁抵抗R1またはR2が低下すると、オン状態の検出電圧とオフ状態の検出電圧の差が小さくなる。この検出電圧の差が所定値以下になることによって絶縁不良を検出することができる。もちろん、第1の実施形態のように検出電圧Vxが所定の範囲を外れることによって絶縁不良と判断することと併用しても構わない。
 以上の説明では、検出電圧Vxを所定の閾値との比較によって漏電を検出したが、検知回路に演算機能があれば、絶縁抵抗R1及びR2を算出することもできる。まず、(式8b)及び(式10b)より、検出電圧Vx1及びVx2から車体グランドの電位Vg1及びVg2を求める。これらと、(式9)と(式11)からR1及びR2に関する連立方程式を立てて解くと、(式12)および(式13)のように絶縁抵抗R1及びR2が算出できる。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 なお、(式12)および(式13)から絶縁抵抗R1及びR2を算出するにおいて、バッテリ1の電圧Vbは、(式4b)または(式7b)から算出してもいし、外部から取得してもよい。例えば、外部にバッテリ1の電圧Vbを測定する測定回路が存在する場合には、当該測定回路から電圧Vbを取得してもよい。
 [2.2 バッテリの負極基準にした漏電検出回路の構成例]
 本実施の形態においても、検知回路をバッテリ1の負極をゼロ電位として漏電検出回路を構成することができる。図7は、図5の検知回路5bをバッテリ1の負極をゼロ電位として構成した漏電検出回路の回路構成例を示す図である。図7において、図3Aと異なるのは、車体グランドとバッテリ1の負極との間にNMOSトランジスタ33と抵抗34との直列回路を設けた点と、検知回路を図1Aと区別するために5bとした点とである。以下異なる点を中心に説明する。
 抵抗34は、シャーシ11とNMOSトランジスタ33との間に接続される。つまり、抵抗34の一端は、NMOSトランジスタ33の他端に接続される。抵抗34の他端は、シャーシ11に接続される。抵抗34の抵抗値をr14とする。
 NMOSトランジスタ33は、バッテリ1の負極と抵抗34の間に接続される。つまり、NMOSトランジスタ33の一端(つまりソース)は、バッテリ1の負極に接続される。NMOSトランジスタ33の他端(つまりドレイン)は、抵抗34の一端に接続される。NMOSトランジスタ33のゲートは、駆動端子Out1に接続される。
 検知回路5bのグランド端子5gはバッテリ1の負極に接続される。駆動端子Out1はNMOSトランジスタ33を駆動する駆動信号を出力する。この駆動信号は、NMOSトランジスタ33のオン状態およびオフ状態を制御する。
 まず、スイッチ端子5sがゼロ電位のローレベルの駆動信号を出力してNMOSトランジスタ33をオフ状態にしている場合、図3Aと等価の回路構成になるので、各部電圧は(式4a)~(式6)と同様で、(式14a)および(式17)のようになる。尚、後述のNMOSトランジスタ33をオン状態にしている場合と区別するために、NMOSトランジスタ33をオフ状態にしている場合の車体グランドの電位VgndをVg3、検出電圧VxをVx3とすると、Vx3、Vg3は(式14a)、(式14b)および(式15)で表される。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 次に、駆動端子Out1が基準電圧Vr相当のハイレベルの駆動信号を出力してNMOSトランジスタ33をオン状態にしている場合、車体グランドとグランド端子GNDとの間に抵抗34が並列接続される。このため車体グランドの電位はNMOSトランジスタ33のオフ状態の場合より低下する。この場合の車体グランドの電位VgndをVg4、検出電圧VxをVx4とすると、Vx4、Vg4は(式16a)、(式16b)で表される。
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 図8は、図7の漏電検出回路の特性例を示す図である。図8では、Vb=400V、Vr=5V、r6=0.0125MΩ、r7=0.9875MΩ、r8=r14=1MΩに設定されている。図8は、R1=10MΩに固定してR2を0.1MΩ~10MΩに変化させた場合と、R2=10MΩに固定してR1を0.1MΩ~10MΩに変化させた場合と、R1=R2として0.1MΩ~10MΩに変化させた場合の(a)車体シャーシ電位Vgndと(b)検出電圧Vxを示す。また、NMOSトランジスタ33がオフ状態の場合が実線、NMOSトランジスタ33がオン状態の場合を破線で示す。
 NMOSトランジスタ33がオン状態の場合、絶縁抵抗R1及びR2が高抵抗である正常時には、抵抗11によってグランド電位Vgndはバッテリ負極側に偏る。この点を除き、車体グランドの電位Vgndと検出電圧Vxの絶縁抵抗R1及びR2による変化の仕方は図6と同様である。即ち、正常時には、NMOSトランジスタ33がオフ状態での検出電圧が抵抗26,27,28で決まり、オン状態では抵抗34の影響で検出電圧が低下するが、何らかの原因で絶縁不良が起こり、絶縁抵抗R1またはR2が低下すると、オン状態の検出電圧とオフ状態の検出電圧の差が小さくなる。この検出電圧の差が所定値以下になることによって絶縁不良を検出することができる。もちろん、第1の実施形態のように検出電圧が所定の範囲を外れることによって絶縁不良と判断することと併用しても構わない。
 以上の説明では、検出電圧Vxを所定の閾値との比較によって漏電を検出したが、本実施の形態においても図3A、図4での説明と同様に、検知回路に演算機能があれば、絶縁抵抗R1及びR2を算出することもできる。(式14b)及び(式16b)より、検出電圧Vx3及びVx4から車体グランドの電位Vg3及びVg4を求める。これらと、(式15)と(式17)からR1及びR2に関する連立方程式を立てて解くと、(式18)、(式19)のように絶縁抵抗R1及びR2が算出できる。
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
 以上のように本実施形態による漏電検出回路10は、同じ検知回路5bをバッテリ1の正極側にも負極側にも設定することができる。漏電検出回路10は、さらにスイッチ素子を用いて異なる抵抗負荷をバッテリ-車体グランド間に接続することによって、絶縁抵抗R1、R2の抵抗値を算出することができる。
 尚、本実施形態では絶縁抵抗を算出するための連立方程式を得るためにスイッチ素子を用いて複数条件を創出したが、そのような方法に限定されるものではない。
 以上説明してきたように第2の実施の形態に係る漏電検出回路10は、シャーシと所定の端子との間に接続される、抵抗素子(31/34)とスイッチ素子(32/33)との直列回路を有し、検知回路5は、スイッチ素子(32/33)の開状態と閉状態との切り換えを駆動する駆動端子Out1を有する。
 ここで、抵抗素子は、図5の抵抗31に対応し、図7の抵抗34に対応する。スイッチ素子は、図5のPMOSトランジスタ32に対応し、図7のNMOSトランジスタ33に対応する。
 これによれば、漏電の発生を容易に判定することができる。
 ここで、検知回路5は、スイッチ素子(32/33)が開状態のときの第1の検出端子の電圧を第1電圧として検出し、スイッチ素子(32/33)が閉状態のときの第1の検出端子の電圧を第2電圧として検出し、第1電圧と第2電圧との差が所定値以下であると、漏電していると判定してもよい。
 ここで、第1電圧は、図5に関する式8aおよび式8bの電圧Vxに対応し、図7に関する式10aおよび式10bの電圧Vx2に対応する。第2電圧は、図5に関する式14aおよび式14bの電圧Vx3に対応し、図7に関する式16aおよび式16bの電圧Vx4に対応する。
 これによれば、漏電の発生を容易に判定することができる。
 ここで、検知回路は、スイッチ素子が開状態のときの第1の検出端子の電圧を第1電圧として検出し、スイッチ素子が閉状態のときの第1の検出端子の電圧を第2電圧として検出し、第1電圧および第2電圧に基づいて、バッテリ1の正極とシャーシとの間の抵抗値とバッテリ1の負極とシャーシとの間の抵抗値とを算出してもよい。
 これによれば、2つの絶縁抵抗値R1およびR2、すなわち、バッテリ1の正極とシャーシとの間の抵抗値とバッテリ1の負極とシャーシとの間の抵抗値とを算出するので、等価的な絶縁抵抗R1とR2とが偶然同じように低下した場合であっても、漏電を定量的に判定することができる。また、漏電が正極側で発生しているか負極側で発生しているのかを判定することができる。
 ここで、検知回路は、第2の検出端子In2と、第2電極と第2の検出端子In2との間に接続された第4の抵抗器(24/30)と、記第2の検出端子In2と所定の端子との間に接続された第5の抵抗器(25/29)と、を有し、検知回路は、第2の検出端子In2の電圧を検出し、検出した電圧に基づいてバッテリの電圧(Vb)を算出し、スイッチ素子が開状態のときの第1の検出端子の電圧を第1電圧として検出し、スイッチ素子が閉状態のときの第1の検出端子の電圧を第2電圧として検出し、バッテリ1の電圧Vb、第1電圧および第2電圧に基づいて、バッテリ1の正極とシャーシとの間の抵抗値R2とバッテリ1の負極とシャーシとの間の抵抗値R1とを算出してもよい。
 これによっても、等価的な絶縁抵抗R1とR2とが偶然同じように低下した場合であっても、漏電を定量的に判定することができる。また、漏電が正極側で発生しているか負極側で発生しているのかを判定することができる。
 (第3の実施形態)
 [3.1 バッテリの正極基準にした漏電検出回路の構成例]
 図9は第3の実施形態として、第2の実施形態の漏電検出回路にバッテリ電流検出回路を加えたバッテリ状態検出回路100の回路構成例を示す図である。図9において、第2の実施形態の漏電検出回路である図5と異なるのは、バッテリ正極と負荷(図示していない)との間に抵抗35を設けた点と、検知回路がその両端電圧を検出して増幅して制御回路53へ出力するアンプ54を有している点とであり、検知回路を図1及び図5と区別するために検知回路5cとした。
 抵抗35は、バッテリ1の正極と負荷との間に接続される電流検出用抵抗である。
 アンプ54は、抵抗35の両端電圧を、バッテリ1の電流値を示す信号として検出する。
 [3.2 バッテリの負極基準にした漏電検出回路の構成例]
 また、図10は検知回路5cをバッテリ負極側に設けたバッテリ状態検出回路100の構成を示す。図10において、第2の実施の形態の図7と異なるのは、バッテリ負極と負荷(図示していない)との間に抵抗36を設けた点と、検知回路5cのアンプ54がその両端電圧を検出して増幅して制御回路53へ出力する点とである。
 抵抗36は、バッテリ1の負極と負荷との間に接続される電流検出用抵抗である。
 アンプ54は、抵抗36の両端電圧を、バッテリ1の電流値を示す信号として検出する。この電流値は、バッテリ1の放電電流または充電電流の大きさを示す。
 以上のように、漏電検出回路は、その検知回路を電流検出回路の設置位置に応じてバッテリの正極側にも負極側にも設定できる。このことにより、バッテリの電圧、電流、漏電の有無等を検出するバッテリ状態検出回路として集積回路化するなどして全体を簡素化することができる。
 以上説明してきたように第3の実施の形態に係るバッテリ状態検出回路100は、上記の漏電検出回路10と、第1電極と負荷との間に接続される電流検出抵抗35/36と、電流検出抵抗35/36の両端電圧を、バッテリ1の電流値を示す信号として検出する増幅回路54と、を有する。
 これによれば、バッテリ状態判定回路は、ゼロ電位をバッテリ1の正極を基準にすることも負極を基準することも可能である。また、バッテリ状態判定回路は、バッテリ状態を示す指標として、バッテリ1が充電または放電する電流値、漏電の有無を検知することができる。
 また、第3の実施の形態に係るバッテリ状態検出回路100は、上記の漏電検出回路10と、第1電極と負荷との間に接続される電流検出抵抗35/36と、電流検出抵抗35/36の両端電圧を、バッテリ1の電流値を示す信号として検出する増幅回路54と、を有し、検知回路は、第1の検出端子In1に接続された第1ADコンバータ51と、第2の検出端子In2に接続された第2ADコンバータ52と、第1ADコンバータ51から出力される第1データ、第2ADコンバータ52からの出力される第2データに基づいて、漏電の有無を判定し、バッテリの電圧値および電流値を算出する制御回路53とを有する。
 ここで、電流検出抵抗は、図9の抵抗35に対応し、図10の抵抗36に対応する。
 これによれば、バッテリ状態判定回路は、ゼロ電位をバッテリの正極を基準にすることも負極を基準することも可能である。また、バッテリ状態判定回路は、バッテリ状態を示す指標として、バッテリの電圧値、バッテリが充電または放電する電流値、漏電の有無を検知することができる。
 ここで、増幅回路54は、検知回路に含まれてもよい。
 これによれば、検知回路の機能として、漏電の有無の判定に加えて、バッテリが充電または放電する電流値を検知することができる。
 ここで、検知回路は集積回路化されていてもよい。
 これによれば、検知回路はICチップとして小型化でき、コストを低減し、使い勝手を向上させることができる。
 なお、図5の漏電検出回路10において、PMOSトランジスタ32の代わりにNMOSトランジスタを備えてもよい。その場合、制御回路53は、駆動信号の論理レベルを反転すればよい。また、図5の漏電検出回路10において、PMOSトランジスタ32の代わりに、PMOSトランジスタとNMOSトランジスタとを並列に組み合わせたスイッチ回路を備えてもよい。
 また、図5の漏電検出回路10において、図1Bと同様にスイッチ41およびスイッチ42を追加し、制御回路53がスイッチ41およびスイッチ42を制御するように構成してもよい。また、図5の漏電検出回路10において、図1Cと同様に抵抗24、抵抗25、検出端子In2を削除した構成としてもよい。
 なお、図7の漏電検出回路10において、NMOSトランジスタ33の代わりにPMOSトランジスタを備えてもよい。その場合、制御回路53は、駆動信号の論理レベルを反転すればよい。また、図7の漏電検出回路10において、NMOSトランジスタ33の代わりに、PMOSトランジスタとNMOSトランジスタとを並列に組み合わせたスイッチ回路を備えてもよい。
 また、図7の漏電検出回路10において、図3Bと同様にスイッチ47およびスイッチ48を追加し、制御回路53がスイッチ47およびスイッチ48を制御するように構成してもよい。また、図7の漏電検出回路10は、図3Cと同様に抵抗29、抵抗30、検出端子In2を削除した構成としてもよい。
 なお、図9のバッテリ状態検出回路100において、図1Bと同様にスイッチ41およびスイッチ42を追加し、制御回路53がスイッチ41およびスイッチ42を制御するように構成してもよい。
 また、図10のバッテリ状態検出回路100において、図3Bと同様にスイッチ47およびスイッチ48を追加し、制御回路53がスイッチ47およびスイッチ48を制御するように構成してもよい。
 本開示のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、本開示の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、本開示の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1   バッテリ
21~31  抵抗
32  PMOSトランジスタ
33  NMOSトランジスタ
34~36  抵抗
5a、5b、5c   検知回路
50  基準電圧源
51、52  ADコンバータ
53   制御回路
54   アンプ

Claims (14)

  1.  正または負の極性を有する第1電極および前記第1電極と逆極性の第2電極を有するバッテリからシャーシへの漏電を検出する漏電検出回路であって、
     基準電圧を出力するための基準電圧源端子、第1の検出端子、および、前記第1電極に接続されるグランド端子を有する検知回路と、
     前記第2電極と前記シャーシとの間に接続される第1の抵抗器と、
     前記シャーシと前記第1の検出端子との間に接続される第2の抵抗器と、
     前記第1の検出端子と所定の端子との間に接続される第3の抵抗器と、を備え、
     前記第1電極の極性が正である場合、前記所定の端子は前記基準電圧源端子であり、
     前記第1電極の極性が負である場合、前記所定の端子は前記第1電極であり、
     前記検知回路は、前記第1の検出端子の電圧を検出し、検出した電圧に基づいて漏電の有無を検出する
    漏電検出回路。
  2.  前記検知回路は、前記第1の検出端子の電圧が所定の範囲から外れると、漏電していると判定する
    請求項1に記載の漏電検出回路。
  3.  前記シャーシと前記所定の端子との間に接続される、抵抗素子とスイッチ素子との直列回路を有し、
     前記検知回路は、前記スイッチ素子の開状態と閉状態との切り換えを駆動する駆動端子を有する
    請求項1または2に記載の漏電検出回路。
  4.  前記検知回路は、前記スイッチ素子が開状態のときの前記第1の検出端子の電圧を第1電圧として検出し、前記スイッチ素子が閉状態のときの前記第1の検出端子の電圧を第2電圧として検出し、前記第1電圧と前記第2電圧との差が所定値以下であると、漏電していると判定する
    請求項3に記載の漏電検出回路。
  5.  前記検知回路は、前記スイッチ素子が開状態のときの前記第1の検出端子の電圧を第1電圧として検出し、
     前記スイッチ素子が閉状態のときの前記第1の検出端子の電圧を第2電圧として検出し、
     前記第1電圧および前記第2電圧に基づいて、前記バッテリの正極と前記シャーシとの間の抵抗値と前記バッテリの負極と前記シャーシとの間の抵抗値とを算出する
    請求項3に記載の漏電検出回路。
  6.  前記検知回路は、第2の検出端子と、
     前記第2電極と前記第2の検出端子との間に接続された第4の抵抗器と、
     前記第2の検出端子と前記所定の端子との間に接続された第5の抵抗器と、を有し、
     前記検知回路は、前記第2の検出端子の電圧を検出し、検出した電圧に基づいて前記バッテリの電圧を算出する
    請求項1から5のいずれか1項に記載の漏電検出回路。
  7.  前記検知回路は、第2の検出端子と、
     前記第2電極と前記第2の検出端子との間に接続された第4の抵抗器と、
     前記第2の検出端子と前記所定の端子との間に接続された第5の抵抗器と、を有し、
     前記検知回路は、
     前記第2の検出端子の電圧を検出し、検出した電圧に基づいて前記バッテリの電圧を算出し、
     前記スイッチ素子が開状態のときの前記第1の検出端子の電圧を第1電圧として検出し、
     前記スイッチ素子が閉状態のときの前記第1の検出端子の電圧を第2電圧として検出し、
     前記バッテリの電圧、前記第1電圧および前記第2電圧に基づいて、前記バッテリの正極と前記シャーシとの間の抵抗値と前記バッテリの負極と前記シャーシとの間の抵抗値とを算出する
    請求項3に記載の漏電検出回路。
  8.  前記第1の抵抗器に直列に接続され、前記第1の抵抗器と前記第2電極との間に接続された第1スイッチと、
     前記第2の抵抗器に直列に接続され、前記第2の抵抗器と前記第1の検出端子との間に接続された第2スイッチと、を備え、
     前記検知回路は、前記第1スイッチおよび前記第2スイッチのオンおよびオフを制御する
    請求項1から7のいずれか1項に記載の漏電検出回路。
  9.  前記検知回路は、
     前記第1の検出端子に接続された第1ADコンバータと、
     前記第1ADコンバータから出力される第1データに基づいて、漏電の有無を判定する制御回路とを有する
    請求項1から8のいずれか1項に記載の漏電検出回路。
  10.  前記検知回路は、
     前記第1の検出端子に接続された第1ADコンバータと、
     前記第2の検出端子に接続された第2ADコンバータと、
     前記第1ADコンバータから出力される第1データ、および、前記第2ADコンバータからの出力される第2データに基づいて、漏電の有無を判定し、前記バッテリの電圧値を算出する制御回路とを有する
    請求項6または7に記載の漏電検出回路。
  11.  請求項1から請求項10のいずれか1項に記載の漏電検出回路と、
     前記第1電極と負荷との間に接続される電流検出抵抗と、
     前記電流検出抵抗の両端電圧を、前記バッテリの電流値を示す信号として検出する増幅回路と、を有する
    バッテリ状態検出回路。
  12.  請求項6または7に記載の漏電検出回路と、
     前記第1電極と負荷との間に接続される電流検出抵抗と、
     前記電流検出抵抗の両端電圧を、前記バッテリの電流値を示す信号として検出する増幅回路と、を有し、
     前記検知回路は、
     前記第1の検出端子に接続された第1ADコンバータと、
     前記第2の検出端子に接続された第2ADコンバータと、
     前記第1ADコンバータから出力される第1データ、前記第2ADコンバータからの出力される第2データに基づいて、漏電の有無を判定し、前記バッテリの電圧値および電流値を算出する制御回路とを有する
    バッテリ状態検出回路。
  13.  前記増幅回路は、前記検知回路に含まれる
    請求項11または12に記載のバッテリ状態検出回路。
  14.  前記検知回路は集積回路化されている
    請求項13に記載のバッテリ状態検出回路。
PCT/JP2022/015337 2021-03-31 2022-03-29 漏電検出回路およびバッテリ状態検出回路 WO2022210668A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280023796.5A CN117043615A (zh) 2021-03-31 2022-03-29 漏电检测电路及电池状态检测电路
EP22780879.7A EP4317997A1 (en) 2021-03-31 2022-03-29 Earth leakage detecting circuit, and battery state detecting circuit
JP2023511353A JPWO2022210668A1 (ja) 2021-03-31 2022-03-29
US18/471,834 US20240012069A1 (en) 2021-03-31 2023-09-21 Current leakage detection circuit, and battery state detection circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021062232 2021-03-31
JP2021-062232 2021-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/471,834 Continuation US20240012069A1 (en) 2021-03-31 2023-09-21 Current leakage detection circuit, and battery state detection circuit

Publications (1)

Publication Number Publication Date
WO2022210668A1 true WO2022210668A1 (ja) 2022-10-06

Family

ID=83459332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015337 WO2022210668A1 (ja) 2021-03-31 2022-03-29 漏電検出回路およびバッテリ状態検出回路

Country Status (5)

Country Link
US (1) US20240012069A1 (ja)
EP (1) EP4317997A1 (ja)
JP (1) JPWO2022210668A1 (ja)
CN (1) CN117043615A (ja)
WO (1) WO2022210668A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189370A1 (ja) * 2022-03-28 2023-10-05 ヌヴォトンテクノロジージャパン株式会社 測定装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08320352A (ja) * 1995-03-20 1996-12-03 Matsushita Electric Ind Co Ltd 漏電検出装置
JP2002325302A (ja) * 2001-04-27 2002-11-08 Sanyo Electric Co Ltd 電動車両の漏電検出装置と漏電検出方法
JP2007256114A (ja) 2006-03-23 2007-10-04 Keihin Corp 漏電検出回路およびバッテリ電子制御装置
JP2010019603A (ja) * 2008-07-08 2010-01-28 Hitachi Ltd 電源装置
JP2013092396A (ja) * 2011-10-24 2013-05-16 Keihin Corp 漏電検出装置
JP2014029293A (ja) * 2012-07-31 2014-02-13 Keihin Corp 漏電検出装置
JP2015215163A (ja) * 2012-09-03 2015-12-03 パナソニック株式会社 漏電検出回路、電池用回路基板、及び電池電源装置
US20170326986A1 (en) * 2014-10-02 2017-11-16 Ford Global Technologies, Llc Bus leakage resistance estimation for electrical isolation testing and diagnostics

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08320352A (ja) * 1995-03-20 1996-12-03 Matsushita Electric Ind Co Ltd 漏電検出装置
JP2002325302A (ja) * 2001-04-27 2002-11-08 Sanyo Electric Co Ltd 電動車両の漏電検出装置と漏電検出方法
JP2007256114A (ja) 2006-03-23 2007-10-04 Keihin Corp 漏電検出回路およびバッテリ電子制御装置
JP2010019603A (ja) * 2008-07-08 2010-01-28 Hitachi Ltd 電源装置
JP2013092396A (ja) * 2011-10-24 2013-05-16 Keihin Corp 漏電検出装置
JP2014029293A (ja) * 2012-07-31 2014-02-13 Keihin Corp 漏電検出装置
JP2015215163A (ja) * 2012-09-03 2015-12-03 パナソニック株式会社 漏電検出回路、電池用回路基板、及び電池電源装置
US20170326986A1 (en) * 2014-10-02 2017-11-16 Ford Global Technologies, Llc Bus leakage resistance estimation for electrical isolation testing and diagnostics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189370A1 (ja) * 2022-03-28 2023-10-05 ヌヴォトンテクノロジージャパン株式会社 測定装置

Also Published As

Publication number Publication date
EP4317997A1 (en) 2024-02-07
US20240012069A1 (en) 2024-01-11
JPWO2022210668A1 (ja) 2022-10-06
CN117043615A (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
JP6057506B2 (ja) 電池の充電用および放電電流保護の能力を備えた電力トポロジ
KR0128731B1 (ko) 차동 증폭기와 전류 감지 회로 및 직접 회로
KR102052956B1 (ko) 배터리 팩의 릴레이 진단장치 및 배터리 제어 시스템
JP6268712B2 (ja) 保護ic及び保護回路及び電池電圧監視方法
US10288694B2 (en) Secondary battery monitoring device and method for diagnosing failure
WO2022210668A1 (ja) 漏電検出回路およびバッテリ状態検出回路
EP1262784B1 (en) Battery voltage detection device
US7075464B2 (en) Circuit for current measurement and current monitoring
CN108226794B (zh) 二次电池监视装置及故障诊断方法
JP5823098B2 (ja) セルバランスシステム
JP6016754B2 (ja) 組電池電圧検出装置
US10495697B2 (en) Magnetic sensor and magnetic sensor device
JP5757833B2 (ja) スイッチ回路
CN110462964A (zh) 车辆用蓄电装置
JPWO2022210668A5 (ja)
JP2006288049A (ja) 負荷制御回路、電流制御回路、及び、負荷制御システム
JP5379612B2 (ja) バッテリ状態監視回路及びバッテリ装置
EP3754843B1 (en) Voltage-current conversion circuit and charge-discharge control device
JP6797035B2 (ja) 磁気センサ及び磁気センサ装置
JP6621325B2 (ja) 半導体装置、電池監視システム、及び半導体装置の診断方法
JP2019002855A (ja) 静電検出装置
US20090121774A1 (en) Monolithic integrated circuit and use of a semiconductor switch
JP6815849B2 (ja) 入力装置
JP2006246585A (ja) 電池保護回路
JP2022189105A (ja) 電圧監視回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780879

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280023796.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023511353

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022780879

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022780879

Country of ref document: EP

Effective date: 20231031

NENP Non-entry into the national phase

Ref country code: DE