WO2022210646A1 - ポリプロピレン系樹脂押出発泡粒子 - Google Patents

ポリプロピレン系樹脂押出発泡粒子 Download PDF

Info

Publication number
WO2022210646A1
WO2022210646A1 PCT/JP2022/015294 JP2022015294W WO2022210646A1 WO 2022210646 A1 WO2022210646 A1 WO 2022210646A1 JP 2022015294 W JP2022015294 W JP 2022015294W WO 2022210646 A1 WO2022210646 A1 WO 2022210646A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypropylene resin
polypropylene
resin
extruded
branched
Prior art date
Application number
PCT/JP2022/015294
Other languages
English (en)
French (fr)
Inventor
俊介 大谷
高之 合田
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2023511335A priority Critical patent/JPWO2022210646A1/ja
Priority to EP22780857.3A priority patent/EP4317276A1/en
Publication of WO2022210646A1 publication Critical patent/WO2022210646A1/ja
Priority to US18/374,160 priority patent/US20240026107A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/22Expandable microspheres, e.g. Expancel®
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/05Open cells, i.e. more than 50% of the pores are open
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to polypropylene-based resin extruded expanded particles.
  • a polypropylene resin foam molded product obtained using polypropylene resin expanded particles has the advantages of foam molded products such as arbitrariness of shape, cushioning properties, light weight, and heat insulating properties.
  • Examples of methods for producing expanded polypropylene resin particles include a batch foaming method, which is a discontinuous process, and an extrusion foaming method, which is a continuous process. Extrusion foaming has many advantages, such as efficiency and environmental aspects.
  • Patent Documents 1 and 2 are examples of techniques for obtaining expanded polypropylene resin particles by extrusion foaming.
  • Patent Document 1 discloses a curve showing that the Z-average molecular weight Mz is at least 2.0 ⁇ 10 6 or more, Mz/Mw (weight average molecular weight) is 3.0 or more, and the polymer region contains a branched polymer.
  • a base resin mainly composed of a polypropylene resin having a camel-shaped molecular weight distribution curve with an overhang, a cross-linking aid and a foaming agent are melt-kneaded in an extruder, extruded and foamed from the extruder, and cut to obtain.
  • Polypropylene-based resin foamed particles are disclosed.
  • Patent Document 2 contains a specific amount of polypropylene resin (A) and a specific amount of crosslinked polypropylene (B) obtained by electron beam irradiation, and satisfies the following requirements (a) and (b) A polypropylene-based resin composition is disclosed: (a) a melt flow rate (MFR) at 230° C. and a load of 2160 g is 0.5 to 10 g/10 minutes, and (b) a gel fraction is 0.05 to 20%.
  • MFR melt flow rate
  • One embodiment of the present invention has been made in view of the above problems, and an object thereof is to provide novel extruded polypropylene resin expanded particles that have a low open cell rate and can be obtained at low cost. be.
  • the extruded polypropylene resin particles according to one embodiment of the present invention are obtained by extruding and foaming a resin composition containing a polypropylene resin (A) having a branched structure and a polypropylene resin (B) having no branched structure.
  • the polypropylene resin (B) into which the branched structure is not introduced has a weight average molecular weight of 500,000 or more and a bending elastic modulus of 950 MPa or more.
  • the structural units include a structural unit derived from the X1 monomer, a structural unit derived from the X2 monomer, ... and an Xn monomer (where n is Integer of 3 or more) is also referred to as "X 1 /X 2 /.../X n copolymer".
  • the X 1 /X 2 /.../X n copolymer is not particularly limited in its polymerization mode unless otherwise specified, and may be a random copolymer or an alternating copolymer. It may be a block copolymer or a graft copolymer.
  • a polypropylene-based resin having a branched structure can be obtained, for example, by a modification treatment that introduces a branched structure into a polypropylene-based resin that has not been introduced with a branched structure.
  • modification treatment requires high raw material costs and processing fees, and therefore, the polypropylene resin having a branched structure is more expensive than the polypropylene resin without the branched structure. Therefore, as a market need, there is a demand for the development of polypropylene-based resin extruded expanded particles that have a low open cell content and can be obtained at low cost.
  • the present inventors have made extensive studies to provide extruded polypropylene-based resin foamed particles that have a low open cell content and can be obtained at low cost. As a result, the present inventors surprisingly independently found the following new findings (1) and (2): (1) Using a polypropylene resin (A) having a branched structure and a polypropylene resin (B) having no branched structure and having a weight-average molecular weight and a flexural modulus within specific ranges.
  • extruded polypropylene resin particles having an open cell rate similar to that of the extruded polypropylene resin particles obtained by using only the polypropylene resin (A) having a branched structure; and (2) ) Part of the polypropylene resin (A) having a branched structure, which is a raw material, is combined with a polypropylene resin (B) having no branched structure and having a weight average molecular weight and a flexural modulus within a specific range. can be replaced. Therefore, the obtained extruded polypropylene resin particles are less expensive than extruded polypropylene resin particles obtained by using only the polypropylene resin (A) having a branched structure.
  • the extruded polypropylene resin particles according to one embodiment of the present invention are obtained by extruding and foaming a resin composition containing a polypropylene resin (A) having a branched structure and a polypropylene resin (B) having no branched structure. Become.
  • the polypropylene-based resin (B) into which the branched structure is not introduced has a weight average molecular weight of 500,000 or more and a bending elastic modulus of 950 MPa or more.
  • extruded polypropylene resin particles can be made into a polypropylene resin foamed product by molding the extruded polypropylene resin particles (for example, in-mold expansion molding).
  • extruded polypropylene resin expanded particles may be referred to as “extruded expanded particles”
  • extruded polypropylene resin expanded particles according to one embodiment of the present invention may be referred to as “extruded expanded particles”.
  • the "polypropylene-based resin foam-molded article” may be referred to as the "foam-molded article”
  • the "polypropylene-based resin foam-molded article according to one embodiment of the present invention” may be referred to as the "present foam-molded article”.
  • the extruded foam particles have the above-described structure, they have the advantage of having a low open cell rate and being inexpensive to obtain.
  • the resin composition contains a polypropylene-based resin (A) having a branched structure and a polypropylene-based resin (B) having no branched structure, and may optionally contain additives such as cell nucleating agents.
  • polypropylene resin having a branched structure refers to (a) a polypropylene resin obtained by partially cross-linking the molecules of a polypropylene resin to which no branched structure has been introduced, and (b) A polypropylene resin in which a diene compound other than (poly)propylene or the like is introduced as a branched chain is intended for a polypropylene resin in which no branched structure is introduced.
  • polypropylene-based resin into which no branched structure is introduced may be referred to as "linear polypropylene-based resin", and the "polypropylene-based resin having a branched structure” is referred to as "branched polypropylene-based resin”.
  • linear polypropylene resin and branched polypropylene resin may be collectively referred to as “polypropylene resin”.
  • the linear polypropylene-based resin can also be said to be a raw material for the branched polypropylene-based resin.
  • the polypropylene-based resin means a resin containing 50 mol% or more of structural units derived from a propylene monomer out of 100 mol% of all structural units contained in the resin.
  • the "structural unit derived from a propylene monomer” may be referred to as "propylene unit”.
  • a polypropylene-based resin (A) having a branched structure (branched polypropylene-based resin (A)) can be obtained by introducing a branched structure into a linear polypropylene-based resin.
  • the structure derived from the raw material linear polypropylene-based resin is also referred to as "main chain”.
  • the main chain of the branched polypropylene resin (A) may be (a) a propylene homopolymer, (b) a block copolymer or alternating copolymer of propylene and a monomer other than propylene, It may be a random copolymer or a graft copolymer, or (c) a mixture of two or more thereof.
  • the main chain of the branched polypropylene resin (A) may have one or more structural units derived from a monomer other than the propylene monomer, and may have one or more types.
  • a monomer other than a propylene monomer may be referred to as a "comonomer”
  • a structural unit derived from a "monomer other than a propylene monomer” contained in the main chain of the branched polypropylene resin (A) ” may be referred to as a “comonomer unit”.
  • a branched polypropylene resin (A) having propylene units and comonomer units is obtained by using a linear polypropylene resin obtained by using propylene and a comonomer as a raw material for the branched polypropylene resin (A). can be obtained.
  • Comonomers include monomers such as: (a) ethylene, 1-butene, isobutene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, ⁇ -olefins having 2 or 4 to 12 carbon atoms such as 3,4-dimethyl-1-butene, 1-heptene, 3-methyl-1-hexene, 1-octene, 1-decene, (b) cyclopentene, norbornene, Cyclic olefins such as tetracyclo[6,2,11,8,13,6]-4-dodecene, (c) 5-methylene-2-norbornene, 5-ethylidene-2-norbornene, 1,4-hexadiene, methyl- dienes such as 1,4-hexadiene, 7-methyl-1,6-octadiene, and (d) vinyl chloride, vinylidene chloride, acrylonitrile, meth
  • Acrylic esters include methyl acrylate, ethyl acrylate, butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, stearyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate and and glycidyl acrylate.
  • Methacrylates include methyl methacrylate, ethyl methacrylate, butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, stearyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate and and glycidyl methacrylate.
  • Styrenic monomers include styrene, methylstyrene, dimethylstyrene, alphamethylstyrene, paramethylstyrene, ethylstyrene, diethylstyrene, isopropylstyrene, t-butylstyrene, bromostyrene, dibromostyrene, tribromostyrene, chlorostyrene. , dichlorostyrene and trichlorostyrene.
  • the main chain of the branched polypropylene resin (A) preferably has a structural unit derived from an ⁇ -olefin having 2 or 4 to 12 carbon atoms as a comonomer unit, such as ethylene, 1-butene, isobutene, 1-pentene.
  • 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3,4-dimethyl-1-butene, 1-heptene, 3-methyl-1-hexene, 1-octene and/or 1 -It is more preferable to have a structural unit derived from decene or the like, derived from ethylene, 1-butene, isobutene, 1-pentene, 3-methyl-1-butene, 1-hexene and/or 4-methyl-1-pentene It is more preferable to have a structural unit derived from ethylene, 1-butene, isobutene and/or 1-pentene, and it is even more preferable to have a structural unit derived from ethylene and/or 1-butene.
  • the branched polypropylene resin (A) has the advantage of (a) having a high melt tension and a low gel fraction, and (b) the advantage of being able to provide extruded polypropylene resin expanded particles with excellent moldability.
  • the main chain of the branched polypropylene resin (A) is preferably a propylene homopolymer, a polypropylene block copolymer, a polypropylene alternating copolymer and/or a polypropylene random copolymer. and/or a polypropylene-based random copolymer is more preferable.
  • the polypropylene-based random copolymer is preferably a copolymer containing propylene units and ethylene units as comonomer units (propylene/ethylene random copolymer).
  • the amount of ethylene units contained in 100% by weight of the polypropylene-based random copolymer (ethylene content) is preferably 0 to 5.5% by weight, more preferably 0 to 4.0% by weight, 0 to 3.0% by weight is more preferred.
  • the branched polypropylene resin (A) has the advantage of (a) having a high melt tension and a low gel fraction, and (b) can provide extruded polypropylene resin expanded particles having excellent moldability. have advantages.
  • the branched polypropylene resin (A) preferably contains 90 mol% or more of the propylene unit in 100 mol% of the total structural units contained in the branched polypropylene resin (A), and more preferably contains 93 mol% or more. It is preferably contained in an amount of 94 mol% or more, more preferably 95 mol% or more, and particularly preferably in an amount of 95 mol% or more.
  • This configuration has the advantage that the branched polypropylene-based resin (A) has a high melt tension and a low gel fraction.
  • melt tension of the branched polypropylene-based resin (A) can be higher than the melt tension of the linear polypropylene-based resin.
  • melt tension of branched polypropylene resin (A) means melt tension of branched polypropylene resin (A) at 200°C.
  • the melt tension of the branched polypropylene resin (A) is not particularly limited, but is preferably 1.00 cN or more, more preferably 1.00 cN to 15.00 cN, and 3.00 cN to 15.00 cN. more preferably 6.00 cN to 15.00 cN, particularly preferably 6.00 cN to 12.00 cN.
  • the melt tension of the branched polypropylene resin (A) is 1.00 cN or more
  • the tension of the composition is sufficient. and can prevent cell breakage in the resulting extruded foamed particles.
  • the extruded expanded beads obtained have the advantage of being excellent in moldability
  • the extruded expanded beads have the advantage of being able to provide a foam molded article having excellent resistance to breakage.
  • the melt tension of the branched polypropylene resin (A) is 15.00 cN or less
  • the resin pressure is not too high.
  • the discharge rate can be relatively high. As a result, there is an advantage that extruded foamed particles can be obtained with high productivity.
  • melt tension of the branched polypropylene resin (A) is measured using Capilograph 1D (manufactured by Toyo Seiki Seisakusho Co., Ltd., Japan).
  • (1) to (5) are as follows: (1) A sample resin for measurement (branched polypropylene resin ( (2) then heat the sample resin for 10 minutes in a barrel heated to the test temperature (200° C.); (3) then a capillary die (1.0 mm diameter, 10 mm length ) at a constant piston descent speed (10 mm/min), the sample resin is drawn out in the form of a string, and the string is passed through a tension detection pulley located 350 mm below the capillary die.
  • the winding speed of the string is increased from 1.0 m/min to 200 m/min in 4 minutes.
  • the load applied to the pulley with a load cell when the string breaks is measured as the melt tension.
  • the melting point of the branched polypropylene resin (A) is not particularly limited, but for example, it is preferably 125°C to 170°C, more preferably 130°C to 170°C, and 135°C to 170°C. It is more preferably 140°C to 165°C, even more preferably 140°C to 160°C, and particularly preferably 145°C to 155°C.
  • the branched polypropylene resin (A) may have a melting point of 150° C. or lower.
  • the melting point of the branched polypropylene-based resin (A) is within the range described above, there is an advantage that the extruded expanded particles have a low open cell content.
  • the melting point of the branched polypropylene resin (A) is (a) 125° C. or higher, there is no risk of deterioration in the dimensional stability of the foam-molded product, and there is a risk of insufficient heat resistance of the foam-molded product.
  • the temperature is 170° C. or less, extruded foam particles can be molded at a relatively low steam pressure. , has the advantage that extruded foamed particles can be molded using general-purpose molding machines for polypropylene-based resin foamed particles.
  • the melting point of the branched polypropylene-based resin (A) is a value obtained by measuring with a differential scanning calorimeter method (hereinafter referred to as "DSC method").
  • DSC method differential scanning calorimeter method
  • the specific operating procedure is as follows: (1) The temperature of 5 mg to 6 mg of the branched polypropylene resin (A) is increased from 40° C. to 220° C. at a rate of 10° C./min. (2) Then, the temperature of the melted branched polypropylene resin (A) is lowered from 220° C. to 40° C. at a rate of 10° C./min. (3) Then, the temperature of the crystallized branched polypropylene resin (A) is increased from 40° C. to 220° C.
  • the temperature of the peak (melting peak) of the DSC curve of the branched polypropylene resin (A) obtained during the second heating (that is, at the time of (3)) is taken as the melting point of the branched polypropylene resin (A).
  • the peak (melting peak) with the maximum amount of heat of fusion is the melting point of the branched polypropylene resin (A).
  • the differential scanning calorimeter for example, DSC6200 type manufactured by Seiko Instruments Inc. can be used.
  • MFR of branched polypropylene resin (A) The melt flow rate (MFR) of the branched polypropylene resin (A) is not particularly limited.
  • MFR of branched polypropylene resin (A) intends MFR at 230°C of branched polypropylene resin (A).
  • the MFR of the branched polypropylene resin (A) at 230° C. is, for example, preferably 0.50 g/10 min to 20.00 g/10 min, and 1.00 g/10 min to 15.00 g/10 min.
  • the MFR at 230° C. of the branched polypropylene resin (A) may be 3.00 g/10 min or more, 3.50 g/10 min or more, or 4.00 g/10 min or more. may be 4.50 g/10 minutes or more, or 5.00 g/10 minutes or more.
  • the MFR of the branched polypropylene-based resin (A) is within the range described above, (a) the advantage that the extruded expanded particles have a low open cell rate, (b) the advantage that the extruded expanded particles have excellent moldability, and (b) The extruded foamed particles have the advantage of being able to provide foamed molded articles with excellent breakage resistance.
  • the MFR of the branched polypropylene resin (A) is (a) 0.5 g/10 minutes or more, the extruded expanded particles obtained from the branched polypropylene resin have little deformation and good surface properties (beautiful). ), and (b) when it is 20.0 g/10 min or less, the composition containing the extruded expanded particles obtained from the branched polypropylene resin is extruded and foamed , has the advantage of good foamability.
  • the MFR of the branched polypropylene resin (A) is a value obtained by measuring under conditions of a temperature of 230°C and a load of 2.16 kg according to ISO 1133.
  • a branched polypropylene-based resin (A) can be obtained by introducing a branched structure into a linear polypropylene-based resin.
  • the method for introducing a branched structure into the linear polypropylene resin is not particularly limited, but for example, (a1) a method of irradiating the linear polypropylene resin, and (a2) a linear polypropylene resin and a conjugated diene compound and a method of melt kneading a mixture containing a radical polymerization initiator.
  • the method (a2) will be further explained.
  • the following (i) to (iv) are performed in order to obtain a branched polypropylene resin (A): (i) a linear polypropylene resin, a conjugated diene compound, and a radical (ii) extruding the obtained melt-kneaded material from the die; (iii) extruded melt-kneaded material (also referred to as a strand). and (iv) chopping the strands simultaneously with and after cooling the strands.
  • Specific examples of the method (a2) include the method described in WO2020/004429.
  • the method (a2) has the advantage that (i) a branched structure can be stably introduced into a linear polypropylene resin and the reproducibility of the introduction of the branched structure is high, and/or (ii) complicated equipment is required. It has the advantage that the branched polypropylene-based resin (A) can be obtained with high productivity. Therefore, in one embodiment of the present invention, the branched polypropylene resin (A) is preferably a branched polypropylene resin obtained by the above method (a2).
  • the branched polypropylene resin (A) is a branched polypropylene obtained by melt-kneading a mixture containing a linear polypropylene resin, a conjugated diene compound and a radical polymerization initiator. It is preferably a system resin.
  • the polypropylene-based resin (B) into which no branched structure is introduced can also be said to be a linear polypropylene-based resin (B).
  • the polypropylene-based resin (B) into which no branched structure is introduced may have the same structure as the main chain of the branched polypropylene-based resin (A) described above.
  • the linear polypropylene-based resin (B) may be (a) a homopolymer of propylene, or (b) a block copolymer, alternating copolymer, or random copolymer of propylene and a monomer other than propylene. It may be a copolymer or graft copolymer, or (c) a mixture of two or more thereof.
  • the linear polypropylene resin (B) may have comonomer units in addition to propylene units.
  • examples of the comonomer include the comonomers described in the above section (Polypropylene-based resin (A) having a branched structure).
  • Linear polypropylene resin (B), as a comonomer unit, preferably has a structural unit derived from an ⁇ -olefin having 2 or 4 to 12 carbon atoms, ethylene, 1-butene, isobutene, 1-pentene, 3- methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3,4-dimethyl-1-butene, 1-heptene, 3-methyl-1-hexene, 1-octene and/or 1-decene, etc.
  • Structural units derived from ethylene, 1-butene, isobutene, 1-pentene, 3-methyl-1-butene, 1-hexene and/or 4-methyl-1-pentene are more preferable.
  • This configuration has the advantage of being able to provide extruded polypropylene-based resin expanded particles with excellent moldability.
  • the linear polypropylene resin (B) is preferably a propylene homopolymer, a polypropylene block copolymer, a polypropylene alternating copolymer and/or a polypropylene random copolymer, and a propylene homopolymer and/or More preferably, it is a polypropylene-based random copolymer.
  • the polypropylene-based random copolymer is preferably a copolymer containing propylene units and ethylene units as comonomer units (propylene/ethylene random copolymer), and the ethylene unit content is 0.5 to 5.0% by weight.
  • a containing copolymer (propylene/ethylene random copolymer) is more preferable.
  • the polypropylene-based random copolymer is, for example, a propylene/ethylene random copolymer containing 0.5 to 5.0% by weight of ethylene units in 100% by weight of the copolymer.
  • the linear polypropylene resin (B) preferably contains 90 mol% or more of the propylene unit in 100 mol% of the total structural units contained in the linear polypropylene resin (B), and more preferably contains 93 mol% or more. It is preferably contained in an amount of 94 mol% or more, more preferably 95 mol% or more, and particularly preferably in an amount of 95 mol% or more.
  • the weight average molecular weight of the linear polypropylene-based resin (B) is 500,000 or more, preferably 520,000 or more, more preferably 550,000 or more, more preferably 570,000 or more, and 590,000 or more. is more preferable, 610,000 or more is more preferable, and 630,000 or more is particularly preferable.
  • the weight average molecular weight of the linear polypropylene-based resin (B) is 500,000 or more, the linear polypropylene-based resin (B) is entangled with the branched polypropylene-based resin (A), resulting in (i) a branched polypropylene-based resin ( It has the advantage of being able to provide extruded foamed particles with (ii) a low open cell content without impairing the strain hardening property of A).
  • the upper limit of the weight-average molecular weight of the linear polypropylene-based resin (B) is not particularly limited. It is more preferably 750,000 or less, particularly preferably 700,000 or less.
  • the weight average molecular weight of the linear polypropylene resin (B) is 1000000 or less, the viscosity of the resin composition containing the branched polypropylene resin (A) and the linear polypropylene resin (B) does not become too high. Therefore, there is an advantage that the productivity is good and extruded foamed particles can be obtained.
  • the weight average molecular weight of the linear polypropylene resin (B) is the value obtained by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • Apparatuses used for GPC include, for example, Viscotek Triple HT-GPC model-SG system (manufactured by Malvern Instruments).
  • the specific measurement method is as follows; (1) Dissolve the linear polypropylene resin (B) in an eluent (ortho-dichlorobenzene (containing 0.05% butylated hydroxytoluene)), A sample solution containing 0.1% (weight/weight) of resin (B) is prepared; (2) 200 ⁇ l of the sample solution is applied to a column (manufactured by Waters Inc., HR , 3, 4, 6E) and perform GPC measurement.
  • polystyrene is used as a standard sample, and the weight average molecular weight of the linear polypropylene resin (B) is obtained by comparative conversion.
  • Detection is performed by a reference flow method using a differential refractometer.
  • the flexural modulus of the linear polypropylene-based resin (B) is 950 MPa or more, preferably 980 MPa or more, more preferably 1000 MPa or more, further preferably 1030 MPa or more, and 1050 MPa or more. is particularly preferred.
  • the linear polypropylene-based resin (B) has a flexural modulus of 950 MPa or more, there is an advantage that the compression strength of the obtained foam molded article is high.
  • the upper limit of the flexural modulus of the linear polypropylene resin (B) is not particularly limited, for example, it is preferably 1400 MPa or less, more preferably 1350 MPa or less, more preferably 1300 MPa or less, and 1250 MPa. It is more preferably 1200 MPa or less, still more preferably 1150 MPa or less, and particularly preferably 1100 MPa or less.
  • the linear polypropylene-based resin (B) has a flexural modulus of 1400 MPa or less, there is an advantage that the resulting foam molded article is less likely to crack.
  • the flexural modulus of the linear polypropylene resin (B) is the value obtained by the method according to JIS K 7171.
  • the tensile modulus of the linear polypropylene resin (B) is not particularly limited, but is preferably 900 MPa or more, more preferably 925 MPa or more, more preferably 950 MPa or more, and 975 MPa or more. is more preferable, 1000 MPa or more is more preferable, and 1025 MPa or more is particularly preferable.
  • the linear polypropylene-based resin (B) has a tensile modulus of 900 MPa or more, there is an advantage that the tensile strength of the obtained foam molded article is high.
  • the upper limit of the tensile modulus of the linear polypropylene resin (B) is not particularly limited, for example, it is preferably 1300 MPa or less, more preferably 1250 MPa or less, more preferably 1200 MPa or less, and 1150 MPa. It is more preferably 1100 MPa or less, and particularly preferably 1100 MPa or less.
  • the linear polypropylene-based resin (B) has a tensile modulus of 1300 MPa or less, there is an advantage that the resulting foamed molded article is less likely to crack.
  • the tensile modulus of the linear polypropylene resin (B) is the value obtained by the method according to JIS K 7161.
  • the deflection temperature under load of the linear polypropylene resin (B) is not particularly limited, but is preferably 82°C or higher, more preferably 84°C or higher, more preferably 86°C or higher, and 88°C. It is more preferably 90° C. or higher, and particularly preferably 90° C. or higher.
  • the linear polypropylene-based resin (B) has a deflection temperature under load of 82° C. or higher, there is an advantage that the obtained foam molded article can maintain high compressive strength even in a high-temperature environment.
  • the upper limit of the deflection temperature under load of the linear polypropylene resin (B) is not particularly limited, for example, it is preferably 125° C. or less, more preferably 120° C. or less, and more preferably 115° C. or less. It is preferably 110° C. or lower, more preferably 105° C. or lower, even more preferably 100° C. or lower, and particularly preferably 95° C. or lower.
  • the linear polypropylene-based resin (B) has a deflection temperature under load of 125° C. or less, there is an advantage that the resulting foamed molded article is less likely to crack.
  • the deflection temperature under load of the linear polypropylene resin (B) is the value obtained by the method according to JIS K 7191.
  • the melting point of the linear polypropylene resin (B) is not particularly limited, but for example, it is preferably 125° C. to 170° C., more preferably 130° C. to 170° C., and 135° C. to 170° C. It is more preferably 140°C to 165°C, more preferably 140°C to 160°C, more preferably 140°C to 155°C, even more preferably 140°C to 150°C. , 143° C. to 150° C. is particularly preferred.
  • the melting point of the linear polypropylene-based resin (B) is within the range described above, there is an advantage that the extruded foamed particles have a low open cell content.
  • the melting point of the linear polypropylene-based resin (B) is (a) 125° C. or higher, there is no risk of deterioration in the dimensional stability of the foam-molded product, and there is a risk of insufficient heat resistance of the foam-molded product.
  • the temperature is 170° C. or less, extruded foam particles can be molded at a relatively low steam pressure. , has the advantage that extruded foamed particles can be molded using general-purpose molding machines for polypropylene-based resin foamed particles.
  • the melting point of the linear polypropylene-based resin (B) is a value obtained by measuring by the DSC method.
  • the specific operating procedure for the DSC method of the linear polypropylene resin (B) is the above-described branched polypropylene resin (A ) is the same as the operating procedure of the DSC method.
  • the temperature of the peak (melting peak) of the DSC curve of the linear polypropylene resin (B) obtained during the second temperature rise (that is, in (3)) is determined as the melting point of the linear polypropylene resin (B). be able to.
  • the peak (melting peak) with the maximum amount of heat of fusion is the melting point of the linear polypropylene-based resin (B).
  • the MFR of the linear polypropylene resin (B) is not particularly limited.
  • MFR of linear polypropylene resin (B) intends MFR at 230°C of linear polypropylene resin (B). MFR at 230 ° C.
  • the linear polypropylene resin (B) is, for example, preferably 0.20 g / 10 minutes to 20.00 g / 10 minutes, 0.20 g / 10 minutes to 15.00 g / 10 minutes more preferably 0.20 g / 10 minutes to 12.00 g / 10 minutes, more preferably 0.20 g / 10 minutes to 10.00 g / 10 minutes, 0.20 g / It is more preferably 10 minutes to 8.00 g/10 minutes, more preferably 0.20 g/10 minutes to 6.00 g/10 minutes, and 0.20 g/10 minutes to 4.00 g/10 minutes. more preferably 0.20 g/10 min to 2.00 g/10 min, more preferably 0.20 g/10 min to 1.50 g/10 min, and 0.20 g/10 min.
  • MFR(B) is preferably lower than MFR(A).
  • the difference between MFR (A) and MFR (B) is preferably 0.50 g/10 minutes or more, and 1.00 g /10 min or more, more preferably 1.50 g/10 min or more, still more preferably 2.00 g/10 min or more, and 2.30 g/10 min or more. Especially preferred.
  • the difference between MFR (A) and MFR (B) may be 2.50 g/10 minutes or more, 2.80 g/10 minutes or more, or 3.00 g/10 minutes or more. may be 3.30 g/10 min or more, may be 3.50 g/10 min or more, may be 3.80 g/10 min or more, may be 4.00 g/10 min or more , 4.30 g/10 minutes or more, 4.50 g/10 minutes or more, or 4.80 g/10 minutes or more.
  • This configuration has the advantage that the linear polypropylene resin (B) is entangled with the branched polypropylene resin (A), so that the strain hardening property of the branched polypropylene resin (A) is less likely to be impaired.
  • the MFR of the linear polypropylene resin (B) is a value obtained by measuring under conditions of a temperature of 230°C and a load of 2.16 kg according to ISO 1133.
  • the weight ratio of the branched polypropylene resin (A) and the linear polypropylene resin (B) in the resin composition is Although not particularly limited, 20:80 to 80:20 is preferable, 30:70 to 70:30 is more preferable, 40:60 to 60:40 is more preferable, and 45:55 to 55:45 is particularly preferable. Within the above range, extruded expanded polypropylene resin particles can be obtained inexpensively without losing the strain hardening characteristic of the branched polypropylene resin (A).
  • the resin composition is a resin other than the branched polypropylene resin (A) and the linear polypropylene resin (B) (sometimes referred to as "other resin") within a range that does not impair the effects of one embodiment of the present invention. ) and/or may further include rubber. Other resins and rubbers may be collectively referred to as "other resins and the like".
  • Other resins other than the branched polypropylene resin (A) and the linear polypropylene resin (B) include (a) a linear polypropylene resin other than the linear polypropylene resin (B) (e.g., weight average linear polypropylene-based resin having a molecular weight of less than 500,000 or a flexural modulus of less than 950 MPa), (b) high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, linear ultra-linear Ethylene-based resins such as low density polyethylene, ethylene/vinyl acetate copolymers, ethylene/acrylic acid copolymers, and ethylene/methacrylic acid copolymers, and (c) polystyrene, styrene/maleic anhydride copolymers, and styrene-based resins such as styrene/ethylene copolymers.
  • the rubber examples include olefin rubbers such as ethylene/propylene rubber, ethylene/butene rubber, ethylene/hexene rubber, and ethylene/octene rubber.
  • the total content of other resins and rubber in the resin composition is not particularly limited.
  • the total content of other resins and rubber in the resin composition is, for example, 1 part by weight to 10 parts by weight with respect to a total of 100 parts by weight of the branched polypropylene resin (A) and the linear polypropylene resin (B). parts by weight, more preferably 2 to 5 parts by weight.
  • the resin composition may contain a cell nucleating agent.
  • cell nucleating agents may be used in making the extruded foam particles. By using a cell nucleating agent, it is possible to control the number of cells and the shape of cells in the obtained extruded polypropylene resin expanded particles.
  • Bubble nucleating agents include sodium bicarbonate-citric acid mixture, monosodium citrate, talc, and calcium carbonate. One of these cell nucleating agents may be used alone, or two or more thereof may be used in combination.
  • the content of the cell nucleating agent in the resin composition is not particularly limited.
  • the content of the cell nucleating agent is, for example, preferably 0.01 to 5.00 parts by weight, preferably 0.01 to 3.50 parts by weight, with respect to 100 parts by weight of the polypropylene resin. more preferably 0.01 to 1.00 parts by weight, particularly preferably 0.01 to 0.50 parts by weight. According to this configuration, the average cell diameter and cell shape of the extruded foam particles become uniform, and as a result, there is an advantage that the foamability during extrusion foaming tends to be stable.
  • the resin composition may contain other components such as (a) an antioxidant, a metal deactivator, a phosphorus-based processing stabilizer, an ultraviolet absorber, an ultraviolet stabilizer, a fluorescent whitening agent, a metallic soap, and an antacid. stabilizers such as adsorbents and/or (b) additives such as crosslinkers, chain transfer agents, lubricants, plasticizers, fillers, reinforcements, flame retardants, colorants, hydrous agents, and antistatic agents; may further include These other components may be used individually by 1 type, and may be used in combination of 2 or more type. The total content of other components in the resin composition is not particularly limited.
  • the total content of other components in the resin composition is, for example, 0.01 parts by weight to 50.00 parts by weight with respect to a total of 100 parts by weight of the branched polypropylene resin (A) and the linear polypropylene resin (B). parts are preferred, and 0.05 to 30.00 parts by weight are more preferred.
  • the extruded expanded particles preferably have a lower open cell ratio.
  • the extruded expanded beads preferably have an open cell rate of 44.0% or less, more preferably 42.0% or less, more preferably 40.0% or less, and 38.0% or less. is more preferably 36.0% or less, and particularly preferably 34.0% or less.
  • the lower limit of the open cell content of the extruded polypropylene-based resin particles is not particularly limited, and is, for example, 0.0% or more.
  • the open cell ratio of the extruded expanded beads is within the range described above, (a) when the extruded expanded beads are molded, the cells (bubbles) are hardly broken and shrinkage, so that the extruded expanded beads have good moldability. and (b) the advantage that features such as shape arbitrariness, cushioning properties, light weight, compressive strength and heat insulating properties are exhibited more effectively in the foamed molded article obtained using the extruded expanded particles.
  • the open cell ratio of the extruded polypropylene resin expanded particles is described in ASTM D2856-87 Procedure C (PROCEDURE C) using an air comparison type hydrometer [manufactured by Tokyo Science Co., Ltd., model 1000].
  • the expansion ratio of the extruded expanded beads is preferably 3 to 40 times, more preferably 3 to 35 times, more preferably 3 to 30 times, and 3 to 28 times. It is more preferably 1, more preferably 3 to 28 times, and particularly preferably 3 to 25 times. According to the above configuration, the polypropylene-based resin foam molded article obtained using the extruded foamed particles has the advantage that features such as shape flexibility, cushioning properties, light weight, and heat insulating properties are more exhibited. .
  • the expansion ratio of the extruded polypropylene resin expanded beads is calculated by the following method: (1) measuring the weight w (g) of the extruded expanded beads; The extruded foamed particles used are submerged in ethanol contained in a graduated cylinder, and the volume v (cm 3 ) of the extruded foamed particles is measured based on the amount of rise in the liquid level of the graduated cylinder; (3) Weight w ( g) is divided by the volume v (cm 3 ) to calculate the density ⁇ 1 of the extruded foamed beads; (4) the density ⁇ 2 of the base resin of the extruded foamed beads is divided by the density ⁇ 1 of the extruded foamed beads ( ⁇ 2 / ⁇ 1 ), and the obtained value is taken as the foaming ratio.
  • the base resin can also be said to be a resin component that substantially constitutes the extruded expanded beads.
  • the density ⁇ 2 of the base resin the density 0.9 g/cm 3 of a general polypropylene-based resin can be adopted.
  • a method for producing the present extruded foamed particles is not particularly limited, and a known extrusion foaming method can be employed.
  • One aspect of the method for producing the present extruded expanded particles includes, for example, the following aspect: A polypropylene resin (A) having a branched structure and a polypropylene resin (B) not having a branched structure introduced therein are included.
  • a second step wherein the polypropylene resin (B) into which the branched structure is not introduced has a weight-average molecular weight of 500,000 or more and a bending elastic modulus of 950 MPa or more. manufacturing method.
  • the method for producing extruded expanded polypropylene resin particles according to one embodiment of the present invention has the structure described above, so that extruded expanded particles having a low open cell rate can be provided at a low cost.
  • the first step will be specifically described.
  • a resin composition containing a branched polypropylene-based resin (A), a linear polypropylene-based resin (B), and a foaming agent is melted in a manufacturing apparatus to form a resin composition.
  • a step of dissolving the foaming agent may be mentioned.
  • the first step can also be said to be a step of preparing a melt-kneaded product containing a resin composition and a foaming agent.
  • the foaming agent that can be used in the present method for producing extruded foamed particles is not particularly limited as long as it is a foaming agent generally used for extrusion foaming.
  • the blowing agent include (a) (a-1) aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, and hexane; (a-2) alicyclic compounds such as cyclopentane and cyclobutane formula hydrocarbons; (a-3) ethers such as dimethyl ether, diethyl ether, and methyl ethyl ether; (a-4) alcohols such as methanol and ethanol; (a-5) air, nitrogen, inorganic gases such as carbon dioxide gas; and (a-6) physical blowing agents such as water, and (b) chemical blowing agents including thermal decomposition blowing agents such as sodium bicarbonate, azodicarbonamide, dinitrosopentamethylenetetramine
  • inorganic gas and water are preferable as the foaming agent, and carbon dioxide gas is more preferable, because the production cost and environmental load are small.
  • the amount of the foaming agent used is not particularly limited, and may be appropriately adjusted according to the type of the foaming agent and/or the target expansion ratio of the extruded polypropylene-based resin expanded particles.
  • the amount of the foaming agent used may be 0.50 parts by weight to 7.00 parts by weight, or 0.50 parts by weight to 6.00 parts by weight, with respect to 100.00 parts by weight of the resin mixture. parts, may be 0.50 parts by weight to 5.00 parts by weight, may be 0.50 parts by weight to 4.00 parts by weight, and may be 0.50 parts by weight to 3.00 parts by weight It may be a weight part.
  • bubble nucleating agents e.g., stabilizers, metal deactivators, phosphorus-based processing stabilizers, UV absorbers, UV stabilizers, fluorescent brighteners, metal soaps, and antacid adsorbents, etc.
  • additives e.g., inorganic colorants, organic colorants, cross-linking agents, chain transfer agents, lubricants, plasticizers, fillers, reinforcing agents, pigments, dyes, flame retardants, hydrous agents , and antistatic agents
  • inorganic colorants e.g., antioxidants, metal deactivators, phosphorus-based processing stabilizers, UV absorbers, UV stabilizers, fluorescent brighteners, metal soaps, and antacid adsorbents, etc.
  • additives e.g., inorganic colorants, organic colorants, cross-linking agents, chain transfer agents, lubricants, plasticizers, fillers, reinforcing agents, pigments, dyes, flame retardants, hydrous agents
  • the resin composition, the foaming agent, and optionally other components may be mixed before being supplied to the manufacturing equipment, or may be mixed within the manufacturing equipment.
  • the resin composition may be supplied to the manufacturing apparatus, or the resin composition may be prepared (completed) within the manufacturing apparatus.
  • the method and order of mixing the resin composition and blowing agent, and optionally other ingredients, or (ii) the resin composition and blowing agent, and optionally The method and order of supplying the other ingredients to the manufacturing equipment are not particularly limited.
  • the melt-kneaded product obtained in the first step may be cooled before extruding it into the low-pressure region.
  • the second step is a step of extruding the melt-kneaded product obtained in the first step through a die into a region having a lower pressure than the internal pressure of the manufacturing apparatus, and shredding the extruded melt-kneaded product.
  • the second step provides extruded foam particles. Therefore, the second step can also be said to be a granulation step of granulating the extruded polypropylene-based resin expanded particles.
  • the region in which the melt-kneaded product obtained in the first step is extruded is not particularly limited as long as the pressure is lower than the internal pressure of the manufacturing apparatus.
  • the melt-kneaded product obtained in the first step may be extruded into the gas phase or the liquid phase.
  • the melt-kneaded material during foaming may be shredded, or the melt-kneaded material that has finished foaming may be shredded. If the melt kneaded material is shredded during foaming, the shredded melt kneaded material may complete foaming in the region beyond which it was extruded.
  • the second step can be broadly divided into two methods, a cold cut method and a die face cut method, depending on the region where the melt-kneaded product obtained in the first step is extruded and the method of shredding the extruded melt-kneaded product. can be separated.
  • the cold cut method include a method of foaming a melt-kneaded product containing a foaming agent extruded from a die, taking off a strand-like foam while cooling, and then shredding it (strand cut method).
  • the die face cut method is a method in which the molten kneaded material extruded from the die hole is cut by a rotating cutter while being in contact with the surface of the die or ensuring a slight gap.
  • the die face cutting method can be further divided into the following three methods according to the difference in cooling method. That is, they are an underwater cut (hereinafter also referred to as UWC) method, a water ring cut (hereinafter sometimes referred to as WRC) method, and a hot cut (hereinafter sometimes referred to as HC) method.
  • UWC underwater cut
  • WRC water ring cut
  • HC hot cut
  • a chamber attached to the tip of the die is filled with cooling water adjusted to a predetermined pressure so as to come in contact with the resin discharge surface of the die, and the molten kneaded material extruded from the die hole is cut underwater.
  • a cooling drum in which cooling water flows along the inner peripheral surface of the cooling drum connected to the die is arranged downstream from the die, and the melted and kneaded material cut by the cutter foams in the air. It is a method of cooling in the cooling water while or after foaming.
  • the HC method is a method in which a melt-kneaded material is cut in air with a cutter, and the cut melt-kneaded material is cooled in air while or after foaming.
  • the HC method also includes a mist cut method further including a step of spraying mixed mist of water and air.
  • polypropylene resin foam molded product The polypropylene-based resin foam molded article according to one embodiment of the present invention is described in [2. Extruded Polypropylene Resin Expanded Particles].
  • the method for molding the extruded foamed particles is not particularly limited, but an example thereof includes in-mold foam molding using a mold equipped with a fixed mold that cannot be driven and a movable mold that can be driven.
  • the in-mold foam molding method is not particularly limited, and a known method can be employed.
  • extruded Polypropylene Resin Expanded Particles and Polypropylene Resin Foam Molds INDUSTRIAL APPLICABILITY
  • the extruded polypropylene resin particles and the foamed polypropylene resin article according to one embodiment of the present invention can be suitably used in the fields of automobile interior parts, cushioning materials, packaging materials, heat insulating materials, and the like.
  • An embodiment of the present invention may have the following configuration.
  • a polypropylene-based resin obtained by extruding and foaming a resin composition containing a polypropylene-based resin (A) having a branched structure and a polypropylene-based resin (B) not having a branched structure introduced, and having the branched structure not introduced.
  • (B) has a weight average molecular weight of 500,000 or more and 1,000,000 or less and a bending elastic modulus of 950 MPa or more and 1,400 MPa or less.
  • the weight ratio of the polypropylene resin (A) and the polypropylene resin (B) in the resin composition is , 20:80 to 80:20.
  • the main chain of the polypropylene-based resin (A) is one or more selected from the group consisting of a propylene homopolymer, a polypropylene-based block copolymer and a polypropylene-based random copolymer, [1] to [ 9].
  • the polypropylene-based resin (A) is a polypropylene-based resin having a branched structure obtained by melt-kneading a mixture containing a polypropylene-based resin to which no branched structure has been introduced, a conjugated diene compound, and a radical polymerization initiator.
  • the extruded polypropylene-based resin expanded particles according to any one of [1] to [10].
  • the polypropylene resin (B) is one or more selected from the group consisting of propylene homopolymers, polypropylene block copolymers and polypropylene random copolymers of [1] to [11].
  • the polypropylene-based resin extruded expanded particles according to any one of the above.
  • MFR (A) is the MFR of the polypropylene resin (A) at 230°C and MFR (B) is the MFR of the polypropylene resin (B) at 230°C, MFR (A) and MFR Any one of [1] to [12], wherein the difference from (B) (value obtained by subtracting the value of MFR (B) from the value of MFR (A)) is 0.50 g/10 min or more Polypropylene-based resin extruded expanded particles according to .
  • the main chain of the polypropylene-based resin (A) is one or more selected from the group consisting of a propylene homopolymer, a polypropylene-based block copolymer and a polypropylene-based random copolymer, [17]-[ 26].
  • the polypropylene-based resin (A) is a polypropylene-based resin having a branched structure obtained by melt-kneading a mixture containing a polypropylene-based resin to which no branched structure has been introduced, a conjugated diene compound, and a radical polymerization initiator. The method for producing extruded polypropylene resin expanded particles according to any one of [17] to [27].
  • the polypropylene resin (B) is one or more selected from the group consisting of propylene homopolymers, polypropylene block copolymers and polypropylene random copolymers of [17] to [28]. A method for producing extruded expanded polypropylene resin particles according to any one of the above.
  • MFR (A) is the MFR of the polypropylene resin (A) at 230°C and MFR (B) is the MFR of the polypropylene resin (B) at 230°C, MFR (A) and MFR Any one of [17] to [29], wherein the difference from (B) (value obtained by subtracting the value of MFR (B) from the value of MFR (A)) is 0.50 g/10 min or more 3.
  • Test method The test methods used for measuring and evaluating various physical properties in Examples and Comparative Examples are as follows.
  • melting point (°C) The melting points of the branched polypropylene resin (A) and the linear polypropylene resin (B) were determined by differential scanning calorimetry using each of the branched polypropylene resin (A) and the linear polypropylene resin (B) as samples. Measured and sought. As a differential scanning calorimeter, DSC6200 type manufactured by Seiko Instruments Inc. was used.
  • the method of measuring the melting point of the sample (branched polypropylene resin (A) or linear polypropylene resin (B)) by differential scanning calorimetry was as follows: (1) the temperature of the sample was changed to 10 ° C./ The sample was melted by increasing the temperature from 40°C to 220°C at a rate of 10°C/min; (3) Then, the temperature of the crystallized sample was further increased from 40°C to 220°C at a heating rate of 10°C/min. The temperature of the peak (melting peak) of the DSC curve of the sample obtained during the second temperature increase (that is, at (3)) is the sample (branched polypropylene resin (A) or linear polypropylene resin ( B)) was taken as the melting point. The results are listed in Table 1.
  • MFR g/10 min
  • the MFRs of the branched polypropylene resin (A) and the linear polypropylene resin (B) are described in ISO 1133 (1997) using each of the branched polypropylene resin (A) and the linear polypropylene resin (B) as samples. It was obtained by measuring in accordance with the provisions of B Law. Melt Indexer S-01 (manufactured by Toyo Seiki Seisakusho) was used as an apparatus, and the measurement was carried out under conditions of a temperature of 230° C. and a load of 2.16 kg.
  • the MFR of the sample (branched polypropylene resin (A) or linear polypropylene resin (B)) was obtained by measuring the distance that the piston of the melt indexer S-01 moved within a certain period of time. and the density of the sample at the measurement temperature was converted into the weight of the sample extruded from the orifice in 10 minutes.
  • the fixed time is 120 seconds when the melt flow rate is more than 0.1 g/10 minutes and 1.0 g/10 minutes or less, and more than 1.0 g/10 minutes and 3.5 g/10 minutes or less. In the case of , it was 60 seconds, over 3.5 g/10 minutes, and 30 seconds in the case of 30.0 g/10 minutes or less.
  • melt tension (cN) The melt tension of the branched polypropylene-based resin (A) was measured using Capilograph 1D (manufactured by Toyo Seiki Seisakusho Co., Ltd., Japan). Specifically, (1) to (5) were as follows: (1) A barrel with a diameter of 9.55 mm heated to 200° C.
  • the branched polypropylene resin (A) was filled with the branched polypropylene resin (A); (2) The branched polypropylene resin (A) was then heated for 10 minutes in a barrel heated to 200°C; At a descending speed (10 mm/min), the branched polypropylene resin (A) was drawn out in a string, and the string was passed through a tension detection pulley located 350 mm below the capillary die, and then wound. (4) After stabilizing the take-up of the string-like material, the winding speed of the string-like material was kept constant from an initial speed of 1.0 m/min until reaching a speed of 200 m/min in 4 minutes. (5) The load applied to the pulley with a load cell when the string broke was measured as melt tension.
  • Weight average molecular weight (Mw) The weight average molecular weight (Mw) of the linear polypropylene resin (B) was determined by gel permeation chromatography (GPC). As an apparatus used for GPC, Viscotek Triple HT-GPC model-SG system (manufactured by Malvern Instruments) was used.
  • the specific measurement method was as follows; (1) The linear polypropylene resin (B) was dissolved in an eluent (ortho-dichlorobenzene (containing 0.05% butylated hydroxytoluene)), and the linear polypropylene A sample solution containing 0.1% (weight/weight) of the system resin (B) was prepared; (2) 200 ⁇ l of the sample solution was applied to a column (manufactured by HR, 3, 4, 6E) and subjected to GPC measurement.
  • polystyrene was used as a standard sample, and the weight average molecular weight of the linear polypropylene resin (B) was obtained by comparative conversion. Detection was performed by a reference flow method using a differential refractometer.
  • the deflection temperature under load (°C) of the linear polypropylene resin (B) was measured according to JIS K 7191.
  • the expansion ratio of the extruded polypropylene resin expanded beads was calculated by the following method: (1) the weight w (g) of the extruded expanded beads was measured; , immersed in ethanol contained in a graduated cylinder, and the volume v (cm 3 ) of the extruded foamed particles was measured based on the rise in the liquid level of the graduated cylinder; (3) weight w (g) was converted to volume v ( cm 3 ) to calculate the density ⁇ 1 of the extruded foamed beads; (4) Divide the density ⁇ 2 of the base resin of the extruded foamed beads by the density ⁇ 1 of the extruded foamed beads ( ⁇ 2 / ⁇ 1 ) , and foaming ratio. As the density ⁇ 2 of the base resin, the density 0.9 g/cm 3 of a general polypropylene-based resin was adopted.
  • Branched polypropylene resin (A) A branched polypropylene resin (A) (PP-A1) produced according to the following production examples was used. The physical properties of PP-A1 were measured by the methods described above. Table 1 shows the results.
  • PP-B1 to PP-B5 were propylene/ethylene random copolymers containing 0.5 to 5.0% by weight of ethylene units per 100% by weight of copolymer. The physical properties of each resin were measured by the methods described above. Table 1 shows the results.
  • the raw material in the extruder is melt-kneaded at a cylinder temperature of 220° C. and a rotation speed of 230 rpm, and isoprene, which is a conjugated diene as a monomer, is added to 100 wt.
  • the mixture was prepared (finished) in the extruder at a ratio of 0.38 part by weight to 0.38 part by weight using a metering pump.
  • the mixture in the extruder was further melt-kneaded to obtain a melt-kneaded product of the mixture, that is, a branched polypropylene resin.
  • a melt-kneaded product of the mixture that is, a branched polypropylene resin.
  • the branched polypropylene resin (melt-kneaded product) was discharged in a strand through a die provided in the apparatus.
  • the extruded strand-shaped branched polypropylene resin (PP-A1) was cooled and shredded to obtain pellets of the branched polypropylene resin.
  • the raw material in the extruder is melt-kneaded at a cylinder temperature of 220° C. and a rotation speed of 230 rpm, and isoprene, which is a conjugated diene as a monomer, is added to 100 wt.
  • the mixture was prepared (finished) in the extruder by feeding using a metering pump at a ratio of 0.39 parts by weight to 0.39 parts by weight.
  • the mixture in the extruder was further melt-kneaded to obtain a melt-kneaded product of the mixture, that is, a branched polypropylene resin.
  • the branched polypropylene-based resin was discharged in a strand through a die provided in the apparatus.
  • the extruded strand-shaped branched polypropylene resin was cooled and shredded to obtain pellets of the branched polypropylene resin.
  • Example 1 (First step) Branched polypropylene resin (A) (PP-A1) 50 parts by weight, linear polypropylene resin (B) (PP-B1) 50 parts by weight, and talc (PK-S manufactured by Hayashi Kasei) 0.02 parts by weight were mixed to obtain a resin composition.
  • carbon dioxide gas which is a foaming agent
  • A branched polypropylene resin
  • B linear polypropylene resin
  • Parts by weight were supplied using metering pumps.
  • the resin composition containing the foaming agent was further melt-kneaded to obtain a melt-kneaded product of the resin composition.
  • melt-kneaded product of the resin composition was passed through a melt cooler connected to the tip of the twin-screw extruder and set to the temperature shown in Table 2, and cooled. After that, the melt-kneaded product was extruded under atmospheric pressure from a die (set at the temperature shown in Table 2) having two holes with a diameter of 0.7 mm and attached to the tip of the melt cooler to foam it. The resulting strand-like foam was cut with a razor into 5 mm width to obtain foamed polypropylene resin particles.
  • Example 2 Example 2 and Comparative Examples 1 to 3
  • the linear polypropylene resin (B) the resin shown in Table 2 was used instead of PP-B1
  • the temperatures of the melt cooler and the die (die) were shown.
  • Polypropylene-based resin extruded expanded particles were obtained in the same manner as in Example 1, except that the temperature was changed to that shown in 2.
  • Example 4 (Comparative Example 4) In Example 1, (a) only the branched polypropylene resin (A) (PP-A2) was used and the linear polypropylene resin (B) was not used, and (b) the melt cooler and die (dice) Extruded expanded polypropylene resin particles were obtained in the same manner as in Example 1, except that the temperature of was changed to the temperature shown in Table 2.
  • the extruded foamed particles of Examples 1 and 2 used a linear polypropylene resin (B) having a structure within the scope of one embodiment of the present application in addition to the branched polypropylene resin (A) as the polypropylene resin. It was obtained by On the other hand, the extruded expanded particles of Comparative Example 4 were obtained by using only the branched polypropylene-based resin (A) as the polypropylene-based resin. It can be seen from Table 2 that the extruded foam beads of Examples 1 and 2 have similar, ie lower, open cell contents than the extruded foam beads of Comparative Example 4.
  • the extruded expanded particles of Comparative Examples 1 to 3 used, as the polypropylene resin, a linear polypropylene resin (B) having a configuration outside the scope of one embodiment of the present application in addition to the branched polypropylene resin (A). It was obtained by From Table 2, it can be seen that the extruded expanded beads of Comparative Examples 1 to 3 have significantly higher open cell ratios than the extruded expanded beads of Comparative Example 4.
  • one embodiment of the present invention it is possible to provide extruded polypropylene-based resin expanded particles capable of providing a polypropylene-based resin foam-molded article having excellent breakage resistance. Therefore, one embodiment of the present invention can be suitably used in fields such as automobile interior parts, cushioning materials, packaging materials, and heat insulating materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

低い連続気泡率を有し、かつ安価に得られるポリプロピレン系樹脂押出発泡粒子を提供することを課題とする。分岐構造を有するポリプロピレン系樹脂、および、特定の重量平均分子量と特定の曲げ弾性率とを有し、分岐構造が導入されていないポリプロピレン系樹脂を含む樹脂組成物を押出発泡してなる、ポリプロピレン系樹脂押出発泡粒子、とする。

Description

ポリプロピレン系樹脂押出発泡粒子
 本発明は、ポリプロピレン系樹脂押出発泡粒子に関する。
 ポリプロピレン系樹脂発泡粒子を用いて得られるポリプロピレン系樹脂発泡成形体は、発泡成形体の長所である形状の任意性、緩衝性、軽量性、および断熱性などの特徴を有する。
 ポリプロピレン系樹脂発泡粒子の製造方法としては、不連続プロセスであるバッチ発泡法、および連続プロセスである押出発泡法等が挙げられる。押出発泡法は、効率面および環境面等において多くの利点を有する。
 押出発泡法にてポリプロピレン系樹脂発泡粒子を得る技術として、特許文献1および2に記載の技術が挙げられる。
 特許文献1には、Z平均分子量Mzが少なくとも2.0×10以上で、Mz/Mw(重量平均分子量)が3.0以上で、かつ高分子領域に分岐ポリマーを含むことを示すカーブの張りだしがあるキャメル型の分子量分布カーブを有するポリプロピレン系樹脂を主成分とする基材樹脂、架橋助剤および発泡剤を押出機中で溶融混練し、押出機より押出発泡させ、切断して得られるポリプロピレン系樹脂発泡粒子、が開示されている。
 特許文献2には、ポリプロピレン系樹脂(A)の特定量と、電子線照射によって得られた架橋ポリプロピレン(B)の特定量とからなり、かつ以下の(a)及び(b)の要件を満たすポリプロピレン系樹脂組成物、が開示されている:(a)230℃、2160g荷重におけるメルトフローレート(MFR)が0.5~10g/10分である、(b)ゲル分率が0.05~20%である。
日本国公開特許公報特開平9-249763号公報 日本国公開特許公報特開2000-159950号公報
 しかしながら、上述の従来技術は、低い連続気泡率を有し、かつ安価に得られるポリプロピレン系樹脂押出発泡粒子、という観点からは、十分なものでなく、さらなる改善の余地があった。
 本発明の一実施形態は、前記問題点に鑑みなされたものであり、その目的は、低い連続気泡率を有し、かつ安価に得られる新規のポリプロピレン系樹脂押出発泡粒子、を提供することである。
 すなわち本発明の一実施形態に係るポリプロピレン系樹脂押出発泡粒子は、分岐構造を有するポリプロピレン系樹脂(A)および分岐構造が導入されていないポリプロピレン系樹脂(B)を含む樹脂組成物を押出発泡してなり、前記分岐構造が導入されていないポリプロピレン系樹脂(B)は、重量平均分子量が50万以上であり、かつ曲げ弾性率が950MPa以上である。
 本発明の一実施形態によれば、低い連続気泡率を有し、かつ安価に得られるポリプロピレン系樹脂押出発泡粒子を提供することができるという効果を奏する。
 本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、請求の範囲に示した範囲で種々の変更が可能である。また、異なる実施形態または実施例にそれぞれ開示された技術的手段を組み合わせて得られる実施形態または実施例についても、本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。なお、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考文献として援用される。また、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意図する。
 また、本明細書において特記しない限り、構造単位として、X単量体に由来する構造単位と、X単量体に由来する構造単位と、・・・およびX単量体(nは3以上の整数)とを含む共重合体を、「X/X/・・・/X共重合体」とも称する。X/X/・・・/X共重合体としては、明示されている場合を除き、重合様式は特に限定されず、ランダム共重合体であってもよく、交互共重合体であってもよく、ブロック共重合体であってもよく、グラフト共重合体であってもよい。
 〔1.本発明の一実施形態の技術的思想〕
 押出発泡法にてポリプロピレン系樹脂押出発泡粒子を製造する場合、完全溶融状態の樹脂組成物を発泡する必要がある。それ故、分岐構造が導入されていないポリプロピレン系樹脂(線状ポリプロピレン系樹脂)を用いて押出発泡法にてポリプロピレン系樹脂押出発泡粒子を製造する場合、発泡時の樹脂組成物の粘度が低く、樹脂組成物が発泡力に耐えられないため、セル(気泡)が破泡し得る。そして、得られる押出発泡粒子の連続気泡率が高いため、成形時に押出発泡粒子が収縮し、良品の発泡成形体が得られない場合がある。この問題を解決するための技術として、例えば特許文献1および2に記載のように、分岐構造を有するポリプロピレン系樹脂を使用する方法が提案されている。分岐構造が導入されていないポリプロピレン系樹脂と比較して、分岐構造を有するポリプロピレン系樹脂は、ひずみ硬化性を有し得るため、連続気泡率が比較的低い押出発泡粒子を提供することができる。
 分岐構造を有するポリプロピレン系樹脂は、例えば、分岐構造が導入されていないポリプロピレン系樹脂に分岐構造を導入する変性処理により得られる。しかしながら、かかる変性処理は原料費および加工賃が高く、それ故、分岐構造が導入されていないポリプロピレン系樹脂と比較して、分岐構造を有するポリプロピレン系樹脂は高価となる。そのため、市場のニーズとして、低い連続気泡率を有し、かつ安価に得られるポリプロピレン系樹脂押出発泡粒子の開発が求められている。
 そこで、本発明者らは、低い連続気泡率を有し、かつ安価に得られるポリプロピレン系樹脂押出発泡粒子を提供するため、鋭意検討を行った。その結果、本発明者らは、驚くべきことに、以下の(1)および(2)の新規知見を独自に見出した:
(1)分岐構造を有するポリプロピレン系樹脂(A)とともに、分岐構造が導入されておらず、かつ重量平均分子量および曲げ弾性率が特定の範囲内であるポリプロピレン系樹脂(B)を使用する。これにより、分岐構造を有するポリプロピレン系樹脂(A)のみを使用して得られるポリプロピレン系樹脂押出発泡粒子と同程度の連続気泡率を有するポリプロピレン系樹脂押出発泡粒子を得ることができる;および
(2)原料である分岐構造を有するポリプロピレン系樹脂(A)の一部を、分岐構造が導入されておらず、かつ重量平均分子量および曲げ弾性率が特定の範囲内であるポリプロピレン系樹脂(B)と置き換えることができる。そのため、得られるポリプロピレン系樹脂押出発泡粒子は、分岐構造を有するポリプロピレン系樹脂(A)のみを使用して得られるポリプロピレン系樹脂押出発泡粒子と比較して、安価である。
 〔2.ポリプロピレン系樹脂押出発泡粒子〕
 本発明の一実施形態に係るポリプロピレン系樹脂押出発泡粒子は、分岐構造を有するポリプロピレン系樹脂(A)および分岐構造が導入されていないポリプロピレン系樹脂(B)を含む樹脂組成物を押出発泡してなる。前記分岐構造が導入されていないポリプロピレン系樹脂(B)は、重量平均分子量が50万以上であり、かつ曲げ弾性率が950MPa以上である。
 ポリプロピレン系樹脂押出発泡粒子は、当該ポリプロピレン系樹脂押出発泡粒子を成形(例えば、型内発泡成形)することにより、ポリプロピレン系樹脂発泡成形体とすることができる。本明細書において、「ポリプロピレン系樹脂押出発泡粒子」を「押出発泡粒子」と称する場合があり、「本発明の一実施形態に係るポリプロピレン系樹脂押出発泡粒子」を「本押出発泡粒子」と称する場合があり、「ポリプロピレン系樹脂発泡成形体」を「発泡成形体」と称する場合があり、「本発明の一実施形態に係るポリプロピレン系樹脂発泡成形体」を「本発泡成形体」と称する場合がある。
 本押出発泡粒子は、上述した構成を有するため、低い連続気泡率を有し、かつ安価に得られるという利点を有する。
 (2-1.樹脂組成物)
 樹脂組成物は、分岐構造を有するポリプロピレン系樹脂(A)および分岐構造が導入されていないポリプロピレン系樹脂(B)を含み、さらに任意で気泡核形成剤等の添加剤を含み得る。
 本明細書において、「分岐構造を有するポリプロピレン系樹脂」とは、(a)分岐構造が導入されていないポリプロピレン系樹脂の分子同士を分子間で一部架橋させたポリプロピレン系樹脂、および(b)分岐構造が導入されていないポリプロピレン系樹脂に対して、(ポリ)プロピレン以外のジエン化合物等を分岐鎖として導入したポリプロピレン系樹脂を意図する。本明細書において、「分岐構造が導入されていないポリプロピレン系樹脂」を「線状ポリプロピレン系樹脂」と称する場合があり、「分岐構造を有するポリプロピレン系樹脂」を「分岐状ポリプロピレン系樹脂」と称する場合があり、「線状ポリプロピレン系樹脂」および「分岐状ポリプロピレン系樹脂」をまとめて「ポリプロピレン系樹脂」と称する場合がある。線状ポリプロピレン系樹脂は、分岐状ポリプロピレン系樹脂の原料ともいえる。
 本明細書において、ポリプロピレン系樹脂とは、樹脂に含まれる全構造単位100モル%中、プロピレン単量体に由来する構造単位を50モル%以上含む樹脂を意図する。本明細書において、「プロピレン単量体に由来する構造単位」を「プロピレン単位」と称する場合もある。
 (分岐構造を有するポリプロピレン系樹脂(A))
 分岐構造を有するポリプロピレン系樹脂(A)(分岐状ポリプロピレン系樹脂(A))は、線状ポリプロピレン系樹脂に分岐構造を導入することによって得ることができる。分岐状ポリプロピレン系樹脂(A)において、原料である線状ポリプロピレン系樹脂に由来する構造を「主鎖」とも称する。
 分岐状ポリプロピレン系樹脂(A)の主鎖は、(a)プロピレンの単独重合体であってもよく、(b)プロピレンとプロピレン以外の単量体とのブロック共重合体、交互共重合体、ランダム共重合体もしくはグラフト共重合体であってもよく、または(c)これらの2種以上の混合物であってもよい。
 分岐状ポリプロピレン系樹脂(A)の主鎖は、プロピレン単位に加えて、プロピレン単量体以外の単量体に由来する構造単位を1単位以上有していてもよく、1種以上有していてもよい。「プロピレン単量体以外の単量体」を「コモノマー」と称する場合もあり、分岐状ポリプロピレン系樹脂(A)の主鎖に含まれる「プロピレン単量体以外の単量体に由来する構造単位」を「コモノマー単位」と称する場合もある。分岐状ポリプロピレン系樹脂(A)の原料として、プロピレンとコモノマーとを使用して得られた線状ポリプロピレン系樹脂を使用することにより、プロピレン単位とコモノマー単位とを有する分岐状ポリプロピレン系樹脂(A)を得ることができる。
 コモノマーとしては、以下のような単量体が挙げられる:(a)エチレン、1-ブテン、イソブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3,4-ジメチル-1-ブテン、1-ヘプテン、3-メチル-1-ヘキセン、1-オクテン、1-デセンなどの炭素数2または4~12のα-オレフィン、(b)シクロペンテン、ノルボルネン、テトラシクロ[6,2,11,8,13,6]-4-ドデセンなどの環状オレフィン、(c)5-メチレン-2-ノルボルネン、5-エチリデン-2-ノルボルネン、1,4-ヘキサジエン、メチル-1,4-ヘキサジエン、7-メチル-1,6-オクタジエンなどのジエン、並びに(d)塩化ビニル、塩化ビニリデン、アクリロニトリル、メタクリロニトリル、酢酸ビニル、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、マレイン酸、無水マレイン酸、スチレン系単量体、ビニルトルエン、ジビニルベンゼンなどのビニル系単量体、など。
 アクリル酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸ラウリル、アクリル酸ステアリル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピルおよびアクリル酸グリシジルなどが挙げられる。
 メタクリル酸エステルとしては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸ヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸ラウリル、メタクリル酸ステアリル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピルおよびメタクリル酸グリシジルなどが挙げられる。
 スチレン系単量体としては、スチレン、メチルスチレン、ジメチルスチレン、アルファメチルスチレン、パラメチルスチレン、エチルスチレン、ジエチルスチレン、イソプロピルスチレン、t-ブチルスチレン、ブロモスチレン、ジブロモスチレン、トリブロモスチレン、クロロスチレン、ジクロロスチレンおよびトリクロロスチレンなどが挙げられる。
 分岐状ポリプロピレン系樹脂(A)の主鎖は、コモノマー単位として、炭素数2または4~12のα-オレフィンに由来する構造単位を有することが好ましく、エチレン、1-ブテン、イソブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3,4-ジメチル-1-ブテン、1-ヘプテン、3-メチル-1-ヘキセン、1-オクテンおよび/または1-デセンなどに由来する構造単位を有することがより好ましく、エチレン、1-ブテン、イソブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセンおよび/または4-メチル-1-ペンテンに由来する構造単位を有することがより好ましく、エチレン、1-ブテン、イソブテンおよび/または1-ペンテンに由来する構造単位を有することがよりさらに好ましく、エチレンおよび/または1-ブテンに由来する構造単位を有することがより特に好ましい。当該構成によると、分岐状ポリプロピレン系樹脂(A)が、(a)高い溶融張力および低いゲル分率を有するという利点、並びに(b)成形性に優れるポリプロピレン系樹脂押出発泡粒子を提供できるという利点を有する。
 分岐状ポリプロピレン系樹脂(A)の主鎖は、プロピレン単独重合体、ポリプロピレン系ブロック共重合体、ポリプロピレン系交互共重合体および/またはポリプロピレン系ランダム共重合体であることが好ましく、プロピレン単独重合体および/またはポリプロピレン系ランダム共重合体であることがより好ましい。ポリプロピレン系ランダム共重合体としては、プロピレン単位と、コモノマー単位としてエチレン単位を含む共重合体(プロピレン/エチレンランダム共重合体)であることが好ましい。ポリプロピレン系ランダム共重合体100重量%中に含まれるエチレン単位の量(エチレン含量)は、0~5.5重量%であることが好ましく、0~4.0重量%であることがより好ましく、0~3.0重量%がさらに好ましい。これらの構成によると、分岐状ポリプロピレン系樹脂(A)が、(a)高い溶融張力および低いゲル分率を有するという利点、並びに(b)成形性に優れるポリプロピレン系樹脂押出発泡粒子を提供できるという利点を有する。
 分岐状ポリプロピレン系樹脂(A)は、当該分岐状ポリプロピレン系樹脂(A)に含まれる全構造単位100モル%中、プロピレン単位を90モル%以上含むことが好ましく、93モル%以上含むことがより好ましく、94モル%以上含むことがさらに好ましく、95モル%以上含むことが特に好ましい。当該構成によると、分岐状ポリプロピレン系樹脂(A)が高い溶融張力および低いゲル分率を有するという利点を有する。
 (溶融張力(メルトテンション))
 分岐状ポリプロピレン系樹脂(A)の溶融張力は、線状ポリプロピレン系樹脂の溶融張力と比較して高くなり得る。本明細書において、「分岐状ポリプロピレン系樹脂(A)の溶融張力」は、分岐状ポリプロピレン系樹脂(A)の200℃における溶融張力を意図する。分岐状ポリプロピレン系樹脂(A)の溶融張力は、特に限定されないが、1.00cN以上であることが好ましく、1.00cN~15.00cNであることがより好ましく、3.00cN~15.00cNであることがより好ましく、6.00cN~15.00cNであることがさらに好ましく、6.00cN~12.00cNであることが特に好ましい。分岐状ポリプロピレン系樹脂(A)の溶融張力が1.00cN以上である場合、分岐状ポリプロピレン系樹脂(A)および発泡剤を含む組成物を完全溶融させて発泡するとき、組成物の張力が十分に高くなり、得られる押出発泡粒子におけるセルの破泡を防ぐことができる。その結果、(a)得られる押出発泡粒子が成形性に優れるという利点、および(b)当該押出発泡粒子は耐破断性に優れる発泡成形体を提供できるという利点、を有する。分岐状ポリプロピレン系樹脂(A)の溶融張力が15.00cN以下である場合、押出発泡工程において、樹脂圧力(溶融混練物が、製造装置に設置された圧力計を押す力)が高くなりすぎず、吐出量を比較的高くすることができる。その結果、生産性が良く押出発泡粒子を得ることができるという利点を有する。
 本明細書において、分岐状ポリプロピレン系樹脂(A)の溶融張力は、キャピログラフ1D(日本 株式会社東洋精機製作所製)を用いて測定する。具体的には、以下(1)~(5)の通りである:(1)試験温度(200℃)に加熱された径9.55mmのバレルに測定用の試料樹脂(分岐状ポリプロピレン系樹脂(A))を充填する;(2)次いで、試料樹脂を10分間、試験温度(200℃)に加熱されたバレル内で加熱する;(3)次いで、キャピラリーダイ(口径1.0mm、長さ10mm)から、一定に保持したピストン降下速度(10mm/分)にて、試料樹脂を紐状に出しながら、この紐状物を前記キャピラリーダイの下方350mmに位置する張力検出のプーリーに通過させた後、巻取りロールを用いる巻取りを開始する;(4)紐状物の引き取りが安定した後、紐状物の巻取り速度を初速1.0m/分から、4分間で200m/分の速度に達するまで一定の割合で増加させる;(5)紐状物が破断したときのロードセル付きプーリーにかかる荷重を溶融張力として測定する。
 (分岐状ポリプロピレン系樹脂(A)の融点)
 分岐状ポリプロピレン系樹脂(A)の融点は特に限定されないが、例えば、125℃~170℃であることが好ましく、130℃~170℃であることがより好ましく、135℃~170℃であることがより好ましく、140℃~165℃であることがより好ましく、140℃~160℃であることがさらに好ましく、145℃~155℃であることが特に好ましい。分岐状ポリプロピレン系樹脂(A)の融点は150℃以下であってもよい。分岐状ポリプロピレン系樹脂(A)の融点が上述した範囲内である場合、押出発泡粒子が低い連続気泡率を有するという利点を有する。また、分岐状ポリプロピレン系樹脂(A)の融点が、(a)125℃以上である場合、発泡成形体の寸法安定性が低下する虞がなく、発泡成形体の耐熱性が不十分となる虞がなく、かつ発泡成形体の圧縮強度が高くなる傾向があるという利点を有し、(b)170℃以下である場合、押出発泡粒子を比較的低い蒸気圧で成形することが可能となるため、ポリプロピレン系樹脂発泡粒子用の汎用成形機を使用して押出発泡粒子を成形できるという利点を有する。
 本明細書において、分岐状ポリプロピレン系樹脂(A)の融点は、示差走査熱量計法(以降、「DSC法」と称する)により測定して求められる値である。具体的な操作手順は以下の通りである:(1)分岐状ポリプロピレン系樹脂(A)5mg~6mgの温度を10℃/分の昇温速度で40℃から220℃まで昇温することにより当該分岐状ポリプロピレン系樹脂(A)を融解させる;(2)その後、融解された分岐状ポリプロピレン系樹脂(A)の温度を10℃/分の降温速度で220℃から40℃まで降温することにより当該分岐状ポリプロピレン系樹脂(A)を結晶化させる;(3)その後、さらに、結晶化された分岐状ポリプロピレン系樹脂(A)の温度を10℃/分の昇温速度で40℃から220℃まで昇温する。2回目の昇温時(すなわち(3)のとき)に得られる当該分岐状ポリプロピレン系樹脂(A)のDSC曲線のピーク(融解ピーク)の温度を当該分岐状ポリプロピレン系樹脂(A)の融点として求めることができる。なお、上述の方法により、2回目の昇温時に得られる、分岐状ポリプロピレン系樹脂(A)のDSC曲線において、ピーク(融解ピーク)が複数存在する場合、融解熱量が最大のピーク(融解ピーク)の温度を、分岐状ポリプロピレン系樹脂(A)の融点とする。示差走査熱量計としては、例えば、セイコーインスツルメンツ(株)製、DSC6200型を用いることができる。
 (分岐状ポリプロピレン系樹脂(A)のMFR)
 分岐状ポリプロピレン系樹脂(A)のメルトフローレート(Melt Flow Rate;MFR)は、特に限定されない。本明細書において、「分岐状ポリプロピレン系樹脂(A)のMFR」は、分岐状ポリプロピレン系樹脂(A)の230℃におけるMFRを意図する。分岐状ポリプロピレン系樹脂(A)の230℃におけるMFRは、例えば、0.50g/10分~20.00g/10分であることが好ましく、1.00g/10分~15.00g/10分であることがより好ましく、2.00g/10分~12.00g/10分であることがより好ましく、2.00g/10分~10.00g/10分であることがより好ましく、2.50g/10分~8.00g/10分であることがより好ましく、2.50g/10分~7.00g/10分であることがさらに好ましく、2.50g/10分~6.00g/10分であることが特に好ましい。分岐状ポリプロピレン系樹脂(A)の230℃におけるMFRは、3.00g/10分以上であってもよく、3.50g/10分以上であってもよく、4.00g/10分以上であってもよく、4.50g/10分以上であってもよく、5.00g/10分以上であってもよい。分岐状ポリプロピレン系樹脂(A)のMFRが上述した範囲内である場合、(a)押出発泡粒子が低い連続気泡率を有するという利点、(b)押出発泡粒子が成形性に優れるという利点、および(b)当該押出発泡粒子は耐破断性に優れる発泡成形体を提供できるという利点、を有する。分岐状ポリプロピレン系樹脂(A)のMFRが、(a)0.5g/10分以上である場合、当該分岐状ポリプロピレン系樹脂から得られる押出発泡粒子は、変形が少なく、表面性が良好(美麗)である発泡成形体を提供できるという利点を有し、(b)20.0g/10分以下である場合、当該分岐状ポリプロピレン系樹脂から得られる押出発泡粒子を含む組成物は、押出発泡時、発泡性が良好になるという利点を有する。
 本明細書において、分岐状ポリプロピレン系樹脂(A)のMFRは、ISO 1133に従い、温度230℃および荷重2.16kgの条件で測定して求められる値である。
 (分岐状ポリプロピレン系樹脂(A)の調製方法)
 分岐状ポリプロピレン系樹脂(A)は、線状ポリプロピレン系樹脂に分岐構造を導入することによって得ることができる。線状ポリプロピレン系樹脂に分岐構造を導入する方法としては、特に限定されないが、例えば、(a1)線状ポリプロピレン系樹脂に放射線を照射する方法、および(a2)線状ポリプロピレン系樹脂と共役ジエン化合物とラジカル重合開始剤とを含む混合物を溶融混練する方法などが挙げられる。
 前記(a1)の方法の具体的な方法としては、例えば特表2002-542360に記載の方法が挙げられる。
 前記(a2)の方法についてさらに説明する。前記(a2)の方法では、例えば、以下(i)~(iv)を順に行い、分岐状ポリプロピレン系樹脂(A)を得ることができる:(i)線状ポリプロピレン系樹脂と共役ジエン化合物とラジカル重合開始剤とを含む混合物を、ダイを備える装置で溶融混練する;(ii)得られた溶融混練物をダイから押出す;(iii)押出された溶融混練物(ストランドとも称される。)を冷却する;および(iv)ストランドの冷却と同時にまた、冷却後に、ストランドを細断する。前記(a2)の方法の具体的な方法としては、例えばWO2020/004429に記載の方法が挙げられる。
 前記(a2)の方法は、(i)線状ポリプロピレン系樹脂に分岐構造を安定して導入でき、かつ分岐構造の導入の再現性が高いという利点、および/または(ii)複雑な設備を必要とせず、かつ高い生産性で分岐状ポリプロピレン系樹脂(A)を得ることができるという利点を有する。それ故、本発明の一実施形態において、分岐状ポリプロピレン系樹脂(A)は、上述の(a2)の方法によって得られる分岐状ポリプロピレン系樹脂であることが好ましい。換言すれば、本発明の一実施形態において、分岐状ポリプロピレン系樹脂(A)は、線状ポリプロピレン系樹脂と共役ジエン化合物とラジカル重合開始剤とを含む混合物を溶融混練して得られる分岐状ポリプロピレン系樹脂であることが好ましい。
 (分岐構造が導入されていないポリプロピレン系樹脂(B))
 分岐構造が導入されていないポリプロピレン系樹脂(B)は、線状ポリプロピレン系樹脂(B)ともいえる。分岐構造が導入されていないポリプロピレン系樹脂(B)(線状ポリプロピレン系樹脂(B))は、上述した分岐状ポリプロピレン系樹脂(A)の主鎖と同じ構成を有していてもよい。例えば、線状ポリプロピレン系樹脂(B)は、(a)プロピレンの単独重合体であってもよく、(b)プロピレンとプロピレン以外の単量体とのブロック共重合体、交互共重合体、ランダム共重合体もしくはグラフト共重合体であってもよく、または(c)これらの2種以上の混合物であってもよい。
 線状ポリプロピレン系樹脂(B)は、プロピレン単位に加えて、コモノマー単位を有していてもよい。コモノマーとしては、前記(分岐構造を有するポリプロピレン系樹脂(A))の項に記載のコモノマーが挙げられる。線状ポリプロピレン系樹脂(B)は、コモノマー単位として、炭素数2または4~12のα-オレフィンに由来する構造単位を有することが好ましく、エチレン、1-ブテン、イソブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3,4-ジメチル-1-ブテン、1-ヘプテン、3-メチル-1-ヘキセン、1-オクテンおよび/または1-デセンなどに由来する構造単位を有することがより好ましく、エチレン、1-ブテン、イソブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセンおよび/または4-メチル-1-ペンテンに由来する構造単位を有することがより好ましく、エチレン、1-ブテン、イソブテンおよび/または1-ペンテンに由来する構造単位を有することがよりさらに好ましく、エチレンおよび/または1-ブテンに由来する構造単位を有することがより特に好ましい。当該構成によると、成形性に優れるポリプロピレン系樹脂押出発泡粒子を提供できるという利点を有する。
 線状ポリプロピレン系樹脂(B)は、プロピレン単独重合体、ポリプロピレン系ブロック共重合体、ポリプロピレン系交互共重合体および/またはポリプロピレン系ランダム共重合体であることが好ましく、プロピレン単独重合体および/またはポリプロピレン系ランダム共重合体であることがより好ましい。ポリプロピレン系ランダム共重合体としては、プロピレン単位と、コモノマー単位としてエチレン単位を含む共重合体(プロピレン/エチレンランダム共重合体)であることが好ましく、エチレン単位を0.5~5.0重量%含有する共重合体(プロピレン/エチレンランダム共重合体)であることがより好ましい。ポリプロピレン系ランダム共重合体としては、例えば、共重合体100重量%中エチレン単位を0.5~5.0重量%含有するプロピレン/エチレンランダム共重合体であることがさらに好ましい。これらの構成によると、成形性に優れる押出発泡粒子を提供できるという利点を有する。
 線状ポリプロピレン系樹脂(B)は、当該線状ポリプロピレン系樹脂(B)に含まれる全構造単位100モル%中、プロピレン単位を90モル%以上含むことが好ましく、93モル%以上含むことがより好ましく、94モル%以上含むことがさらに好ましく、95モル%以上含むことが特に好ましい。
 (線状ポリプロピレン系樹脂(B)の重量平均分子量)
 線状ポリプロピレン系樹脂(B)の重量平均分子量は、500000以上であり、520000以上であることが好ましく、550000以上であることがより好ましく、570000以上であることがより好ましく、590000以上であることがより好ましく、610000以上であることがさらに好ましく、630000以上であることが特に好ましい。線状ポリプロピレン系樹脂(B)の重量平均分子量が500000以上である場合、線状ポリプロピレン系樹脂(B)が分岐状ポリプロピレン系樹脂(A)と絡み合うことにより、(i)分岐状ポリプロピレン系樹脂(A)の歪硬化性を損ねることがなく、かつ(ii)低い連続気泡率を有する押出発泡粒子を提供できるという利点を有する。線状ポリプロピレン系樹脂(B)の重量平均分子量の上限値は特に限定されないが、例えば、1000000以下であることが好ましく、900000以下であることがより好ましく、850000以下であることがより好ましく、800000以下であることがより好ましく、750000以下であることがさらに好ましく、700000以下であることが特に好ましい。線状ポリプロピレン系樹脂(B)の重量平均分子量が1000000以下である場合、分岐状ポリプロピレン系樹脂(A)と線状ポリプロピレン系樹脂(B)を含む樹脂組成物の粘度が高くなりすぎることがないため、生産性が良く押出発泡粒子を得ることができるという利点を有する。
 本明細書において、線状ポリプロピレン系樹脂(B)の重量平均分子量は、ゲル浸透クロマトグラフィー(Gel permeation chromatography、GPC)の方法により得られた値とする。GPCに用いる装置としては、例えば、Viscotek Triple HT-GPC model-SG system(Malvern Instruments製)が挙げられる。具体的な測定方法は以下の通りである;(1)線状ポリプロピレン系樹脂(B)を溶離液(オルトジクロロベンゼン(0.05%ブチル化ヒドロキシトルエン含有))に溶解し、線状ポリプロピレン系樹脂(B)を0.1%(重量/重量)含む試料溶液を作製する;(2)流量0.3ml/min、温度140℃の条件で200μlの試料溶液をカラム(Waters(株)製 HR,3,4、6E)に通し、GPC測定を行う。ここで、標準試料にポリスチレンを用い、比較換算により線状ポリプロピレン系樹脂(B)の重量平均分子量を求める。検出は示差屈折率計を用いたリファレンスフロー方式で実施する。
 (線状ポリプロピレン系樹脂(B)の曲げ弾性率)
 線状ポリプロピレン系樹脂(B)の曲げ弾性率は、950MPa以上であり、980MPa以上であることが好ましく、1000MPa以上であることがより好ましく、1030MPa以上であることがさらに好ましく、1050MPa以上であることが特に好ましい。線状ポリプロピレン系樹脂(B)の曲げ弾性率が950MPa以上である場合、得られる発泡成形体の圧縮強度が高いという利点を有する。線状ポリプロピレン系樹脂(B)の曲げ弾性率の上限値は特に限定されないが、例えば、1400MPa以下であることが好ましく、1350MPa以下であることがより好ましく、1300MPa以下であることがより好ましく、1250MPa以下であることがより好ましく、1200MPa以下であることがより好ましく、1150MPa以下であることがさらに好ましく、1100MPa以下であることが特に好ましい。線状ポリプロピレン系樹脂(B)の曲げ弾性率が1400MPa以下である場合、得られる発泡成形体が割れにくいという利点を有する。
 本明細書において、線状ポリプロピレン系樹脂(B)の曲げ弾性率は、JIS K 7171に従った方法により得られた値とする。
 (線状ポリプロピレン(B)の引張弾性率)
 線状ポリプロピレン系樹脂(B)の引張弾性率は、特に限定されないが、900MPa以上であることが好ましく、925MPa以上であることがより好ましく、950MPa以上であることがより好ましく、975MPa以上であることがより好ましく、1000MPa以上であることがさらに好ましく、1025MPa以上であることが特に好ましい。線状ポリプロピレン系樹脂(B)の引張弾性率が900MPa以上である場合、得られる発泡成形体の引張強度が強いという利点を有する。線状ポリプロピレン系樹脂(B)の引張弾性率の上限値は特に限定されないが、例えば、1300MPa以下であることが好ましく、1250MPa以下であることがより好ましく、1200MPa以下であることがより好ましく、1150MPa以下であることがさらに好ましく、1100MPa以下であることが特に好ましい。線状ポリプロピレン系樹脂(B)の引張弾性率が1300MPa以下である場合、得られる発泡成形体が割れにくいという利点を有する。
 本明細書において、線状ポリプロピレン系樹脂(B)の引張弾性率は、JIS K 7161に従った方法により得られた値とする。
 (線状ポリプロピレン(B)の荷重たわみ温度)
 線状ポリプロピレン系樹脂(B)の荷重たわみ温度は、特に限定されないが、82℃以上であることが好ましく、84℃以上であることがより好ましく、86℃以上であることがより好ましく、88℃以上であることがさらに好ましく、90℃以上であることが特に好ましい。線状ポリプロピレン系樹脂(B)の荷重たわみ温度が82℃以上である場合、得られる発泡成形体が高温の環境下においても高い圧縮強度を維持できるという利点を有する。線状ポリプロピレン系樹脂(B)の荷重たわみ温度の上限値は特に限定されないが、例えば、125℃以下であることが好ましく、120℃以下であることがより好ましく、115℃以下であることがより好ましく、110℃以下であることがより好ましく、105℃以下であることがより好ましく、100℃以下であることがさらに好ましく、95℃以下であることが特に好ましい。線状ポリプロピレン系樹脂(B)の荷重たわみ温度が125℃以下である場合、得られる発泡成形体が割れにくいという利点を有する。
 本明細書において、線状ポリプロピレン系樹脂(B)の荷重たわみ温度はJIS K 7191に従った方法により得られた値とする。
 線状ポリプロピレン系樹脂(B)の融点は特に限定されないが、例えば、125℃~170℃であることが好ましく、130℃~170℃であることがより好ましく、135℃~170℃であることがより好ましく、140℃~165℃であることがより好ましく、140℃~160℃であることがより好ましく、140℃~155℃であることがより好ましく、140℃~150℃であることがさらに好ましく、143℃~150℃であることが特に好ましい。線状ポリプロピレン系樹脂(B)の融点が上述した範囲内である場合、押出発泡粒子が低い連続気泡率を有するという利点を有する。また、線状ポリプロピレン系樹脂(B)の融点が、(a)125℃以上である場合、発泡成形体の寸法安定性が低下する虞がなく、発泡成形体の耐熱性が不十分となる虞がなく、かつ発泡成形体の圧縮強度が高くなる傾向があるという利点を有し、(b)170℃以下である場合、押出発泡粒子を比較的低い蒸気圧で成形することが可能となるため、ポリプロピレン系樹脂発泡粒子用の汎用成形機を使用して押出発泡粒子を成形できるという利点を有する。
 本明細書において、線状ポリプロピレン系樹脂(B)の融点は、DSC法により測定して求められる値である。線状ポリプロピレン系樹脂(B)のDSC法の具体的な操作手順は、分岐状ポリプロピレン系樹脂(A)を線状ポリプロピレン系樹脂(B)に代える以外は、上述した分岐状ポリプロピレン系樹脂(A)のDSC法の操作手順と同じである。2回目の昇温時(すなわち(3)のとき)に得られる線状ポリプロピレン系樹脂(B)のDSC曲線のピーク(融解ピーク)の温度を当該線状ポリプロピレン系樹脂(B)の融点として求めることができる。なお、上述の方法により、2回目の昇温時に得られる、線状ポリプロピレン系樹脂(B)のDSC曲線において、ピーク(融解ピーク)が複数存在する場合、融解熱量が最大のピーク(融解ピーク)の温度を、線状ポリプロピレン系樹脂(B)の融点とする。
 線状ポリプロピレン系樹脂(B)のMFRは、特に限定されない。本明細書において、「線状ポリプロピレン系樹脂(B)のMFR」は、線状ポリプロピレン系樹脂(B)の230℃におけるMFRを意図する。線状ポリプロピレン系樹脂(B)の230℃におけるMFRは、例えば、0.20g/10分~20.00g/10分であることが好ましく、0.20g/10分~15.00g/10分であることがより好ましく、0.20g/10分~12.00g/10分であることがさらに好ましく、0.20g/10分~10.00g/10分であることがより好ましく、0.20g/10分~8.00g/10分であることがより好ましく、0.20g/10分~6.00g/10分であることがより好ましく、0.20g/10分~4.00g/10分であることがより好ましく、0.20g/10分~2.00g/10分であることがより好ましく、0.20g/10分~1.50g/10分であることがさらに好ましく、0.20g/10分~1.00g/10分であることが特に好ましい。線状ポリプロピレン系樹脂(B)のMFRが上述した範囲内である場合、表面性が良好(美麗)である発泡成形体を得ることができるという利点を有する。
 ここで、「分岐状ポリプロピレン系樹脂(A)の230℃におけるMFR」を「MFR(A)」とし、「線状ポリプロピレン系樹脂(B)の230℃におけるMFR」を「MFR(B)」とする。MFR(B)は、MFR(A)よりも低いことが好ましい。MFR(A)とMFR(B)との差(MFR(A)の値からMFR(B)の値を引いて得られる値)は0.50g/10分以上であることが好ましく、1.00g/10分以上であることがより好ましく、1.50g/10分以上であることがより好ましく、2.00g/10分以上であることがさらに好ましく、2.30g/10分以上であることが特に好ましい。MFR(A)とMFR(B)との前記差は、2.50g/10分以上であってもよく、2.80g/10分以上であってもよく、3.00g/10分以上であってもよく、3.30g/10分以上であってもよく、3.50g/10分以上であってもよく、3.80g/10分以上であってもよく、4.00g/10分以上であってもよく、4.30g/10分以上であってもよく、4.50g/10分以上であってもよく、4.80g/10分以上であってもよい。当該構成によると、線状ポリプロピレン系樹脂(B)が分岐状ポリプロピレン系樹脂(A)と絡み合うことにより、分岐状ポリプロピレン系樹脂(A)の歪硬化性を損ねにくいという利点を有する。
 本明細書において、線状ポリプロピレン系樹脂(B)のMFRは、ISO 1133に従い、温度230℃および荷重2.16kgの条件で測定して求められる値である。
 樹脂組成物中の分岐状ポリプロピレン系樹脂(A)と線状ポリプロピレン系樹脂(B)との重量比率(分岐状ポリプロピレン系樹脂(A)の重量:線状ポリプロピレン系樹脂(B)の重量)は、特に限定されないが、20:80~80:20が好ましく、30:70~70:30がより好ましく40:60~60:40がさらに好ましく、45:55~55:45が特に好ましい。前記範囲内であると、分岐状ポリプロピレン系樹脂(A)の特徴である歪硬化性を失わず、かつ安価にポリプロピレン系樹脂押出発泡粒子を得ることができる。また、樹脂組成物中の分岐状ポリプロピレン系樹脂(A)の比率が少ないほど、換言すれば線状ポリプロピレン系樹脂(B)の比率が多いほど安価にポリプロピレン系樹脂押出発泡粒子を得ることができる。
 (その他の樹脂およびゴム)
 樹脂組成物は、本発明の一実施形態に係る効果を損なわない範囲で、分岐状ポリプロピレン系樹脂(A)および線状ポリプロピレン系樹脂(B)以外の樹脂(「その他の樹脂」と称する場合がある。)および/またはゴムをさらに含んでいてもよい。その他の樹脂およびゴムを総称して「その他の樹脂等」と称する場合もある。分岐状ポリプロピレン系樹脂(A)および線状ポリプロピレン系樹脂(B)以外のその他の樹脂としては、(a)線状のポリプロピレン系樹脂(B)以外の線状のポリプロピレン系樹脂(例えば、重量平均分子量が50万未満である、もしくは曲げ弾性率が950MPa未満である線状ポリプロピレン系樹脂)、(b)高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、直鎖状超低密度ポリエチレン、エチレン/酢酸ビニル共重合体、エチレン/アクリル酸共重合体、およびエチレン/メタアクリル酸共重合体などのエチレン系樹脂、並びに(c)ポリスチレン、スチレン/無水マレイン酸共重合体、およびスチレン/エチレン共重合体などのスチレン系樹脂、などが挙げられる。前記ゴムとしては、エチレン/プロピレンゴム、エチレン/ブテンゴム、エチレン/ヘキセンゴム、エチレン/オクテンゴムなどのオレフィン系ゴムが挙げられる。樹脂組成物における、その他の樹脂およびゴムの合計含有量は特に限定されない。樹脂組成物における、その他の樹脂およびゴムの合計含有量は、例えば、分岐状ポリプロピレン系樹脂(A)および線状ポリプロピレン系樹脂(B)の合計100重量部に対して、1重量部~10重量部であることが好ましく、2重量部~5重量部であることがさらに好ましい。
 (気泡核形成剤)
 樹脂組成物は、気泡核形成剤を含んでいてもよい。換言すれば、本押出発泡粒子の製造において気泡核形成剤を使用してもよい。気泡核形成剤を使用することにより、得られるポリプロピレン系樹脂押出発泡粒子の気泡数および気泡の形状をコントロールすることができる。
 気泡核形成剤としては、重炭酸ソーダ-クエン酸混合物、クエン酸モノナトリウム塩、タルク、および炭酸カルシウムなどを挙げることができる。これら気泡核形成剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 樹脂組成物における気泡核形成剤の含有量、換言すれば押出発泡粒子の製造における気泡核形成剤の使用量、は特に限定されない。気泡核形成剤の含有量は、例えば、ポリプロピレン系樹脂100重量部に対して、0.01重量部~5.00重量部であることが好ましく、0.01重量部~3.50重量部であることがより好ましく、0.01重量部~1.00重量部であることがさらに好ましく、0.01重量部~0.50重量部であることが特に好ましい。当該構成によると、押出発泡粒子の平均気泡径および気泡の形状が均一になり、その結果、押出発泡時の発泡性が安定しやすい傾向があるという利点を有する。
 (その他成分)
 樹脂組成物は、必要に応じてその他成分として、(a)酸化防止剤、金属不活性剤、燐系加工安定剤、紫外線吸収剤、紫外線安定剤、蛍光増白剤、金属石鹸、および制酸吸着剤などの安定剤、並びに/または、(b)架橋剤、連鎖移動剤、滑剤、可塑剤、充填材、強化材、難燃剤、着色剤、含水剤、および帯電防止剤などの添加剤、をさらに含んでいてもよい。これらその他成分は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。樹脂組成物におけるその他成分の合計含有量は特に限定されない。樹脂組成物におけるその他成分の合計含有量は、例えば、分岐状ポリプロピレン系樹脂(A)および線状ポリプロピレン系樹脂(B)の合計100重量部に対して、0.01重量部~50.00重量部が好ましく、0.05重量部~30.00重量部であることがさらに好ましい。
 (ポリプロピレン系樹脂押出発泡粒子の連続気泡率)
 本押出発泡粒子は、連続気泡率が低いほど好ましい。本押出発泡粒子は、連続気泡率が44.0%以下であることが好ましく、42.0%以下であることがより好ましく、40.0%以下であることがより好ましく、38.0%以下であることがより好ましく、36.0%以下であることがさらに好ましく、34.0%以下であることが特に好ましい。本ポリプロピレン系樹脂押出発泡粒子の連続気泡率の下限値は特に限定されず、例えば0.0%以上である。押出発泡粒子の連続気泡率が上述した範囲内である場合、(a)押出発泡粒子の成形時に、セル(気泡)が破泡して収縮することがほとんどないため、当該押出発泡粒子が成形性に優れるという利点、および(b)当該押出発泡粒子を用いて得られた発泡成形体において、形状の任意性、緩衝性、軽量性、圧縮強度および断熱性などの特徴がより発揮されるという利点を有する。
 本明細書において、ポリプロピレン系樹脂押出発泡粒子の連続気泡率は、空気比較式比重計[東京サイエンス(株)製、モデル1000]を用いて、ASTM D2856-87の手順C(PROCEDURE C)に記載の方法に従って、測定して求められる値である。押出発泡粒子の連続気泡率は、具体的には、以下(1)~(3)を順に実施して算出される:(1)空気比較式比重計を用いて押出発泡粒子の体積Vc(cm)を測定する;(2)次いで、Vcを測定後の押出発泡粒子の全量を、メスシリンダーに入っているエタノール中に沈める;(3)その後、メスシリンダーにおけるエタノールの位置の上昇量から、押出発泡粒子の見かけ上の体積Va(cm)を求める;(4)以下の式により、押出発泡粒子の連続気泡率を算出する:連続気泡率(%)=((Va-Vc)×100)/Va。なお、体積Vaの測定の方法は水没法とも称される。
 (ポリプロピレン系樹脂押出発泡粒子の発泡倍率)
 本押出発泡粒子の発泡倍率は、3倍~40倍であることが好ましく、3倍~35倍であることがより好ましく、3倍~30倍であることがより好ましく、3倍~28倍であることがより好ましく、3倍~28倍であることがさらに好ましく、3倍~25倍であることが特に好ましい。前記構成によると、当該押出発泡粒子を用いて得られたポリプロピレン系樹脂発泡成形体において、形状の任意性、緩衝性、軽量性、および断熱性などの特徴がより発揮される、という利点を有する。
 本明細書において、ポリプロピレン系樹脂押出発泡粒子の発泡倍率は、以下の方法によって算出される:(1)押出発泡粒子の重量w(g)を測定する;(2)次に、重量の測定に用いた押出発泡粒子を、メスシリンダー中に入っているエタノール中に沈め、メスシリンダーの液面位置の上昇分に基づき押出発泡粒子の体積v(cm)を測定する;(3)重量w(g)を体積v(cm)で除し、押出発泡粒子の密度ρを算出する;(4)押出発泡粒子の基材樹脂の密度ρを押出発泡粒子の密度ρで除し(ρ/ρ)、得られた値を発泡倍率とする。本明細書において、基材樹脂とは、押出発泡粒子を実質的に構成している樹脂成分であるともいえる。基材樹脂の密度ρとしては、一般的なポリプロピレン系樹脂の密度0.9g/cmを採用することができる。
 (ポリプロピレン系樹脂押出発泡粒子の製造方法)
 本押出発泡粒子の製造方法としては、特に限定されず、公知の押出発泡方法を採用できる。本押出発泡粒子の製造方法の一態様としては、例えば、以下のような態様が挙げられる:分岐構造を有するポリプロピレン系樹脂(A)および分岐構造が導入されていないポリプロピレン系樹脂(B)を含む樹脂組成物と発泡剤とを製造装置内で溶融混練する第一の工程、および第一の工程で得られた溶融混練物を、ダイを通して前記製造装置の内圧よりも低圧である領域に吐出する第二の工程、を含み、前記分岐構造が導入されていないポリプロピレン系樹脂(B)は、重量平均分子量が50万以上であり、かつ曲げ弾性率が950MPa以上である、ポリプロピレン系樹脂押出発泡粒子の製造方法。
 本発明の一実施形態に係るポリプロピレン系樹脂押出発泡粒子の製造方法は、前述した構成であるため、低い連続気泡率を有する押出発泡粒子を、安価に提供することができる。
 (第一の工程)
 第一の工程について、具体的に説明する。第一の工程の具体例としては、製造装置にて、分岐状ポリプロピレン系樹脂(A)と線状ポリプロピレン系樹脂(B)と発泡剤とを含む樹脂組成物を溶融させて、樹脂組成物に発泡剤を溶解させる工程が挙げられる。第一の工程は、樹脂組成物と発泡剤とを含む溶融混練物を調製する工程ともいえる。
 (発泡剤)
 本押出発泡粒子の製造方法において使用可能な発泡剤としては、押出発泡で使用される一般的に使用される発泡剤であれば特に限定されない。前記発泡剤としては、例えば、(a)(a-1)プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ヘキサン等の脂肪族炭化水素類;(a-2)シクロペンタン、シクロブタン等の脂環式炭化水素類;(a-3)ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル等のエーテル類;(a-4)メタノール、エタノール等のアルコール類;(a-5)空気、窒素、炭酸ガス等の無機ガス;並びに(a-6)水などの物理系発泡剤、並びに、(b)重炭酸ナトリウム、アゾジカルボンアミド、ジニトロソペンタメチレンテトラミンなどの熱分解型発泡剤を含む化学系発泡剤、などが挙げられる。
 本製造方法において、生産コストおよび環境負荷が小さいことから、発泡剤としては、無機ガスおよび水が好ましく、炭酸ガスがより好ましい。
 発泡剤の使用量は、特に限定されず、発泡剤の種類に応じて、および/または、目標とするポリプロピレン系樹脂押出発泡粒子の発泡倍率に応じて適宜調整すればよい。一例として、発泡剤の使用量は、樹脂混合物の重量100.00重量部に対して、0.50重量部~7.00重量部であってもよく、0.50重量部~6.00重量部であってもよく、0.50重量部~5.00重量部であってもよく、0.50重量部~4.00重量部であってもよく、0.50重量部~3.00重量部であってもよい。
 第一の工程において、必要に応じて、気泡核形成剤、安定剤(例えば、酸化防止剤、金属不活性剤、燐系加工安定剤、紫外線吸収剤、紫外線安定剤、蛍光増白剤、金属石鹸、および制酸吸着剤など)および添加剤(例えば、無機着色剤、有機着色剤、架橋剤、連鎖移動剤、滑剤、可塑剤、充填材、強化材、顔料、染料、難燃剤、含水剤、および帯電防止剤など)などをさらに使用してもよい。
 第一の工程において、樹脂組成物および発泡剤、並びに、任意で使用され得るその他の成分は、製造装置に供給される前に混合されていてもよく、製造装置内で混合されてもよい。換言すれば、前記第一の工程において、樹脂組成物が製造装置に供給されてもよく、製造装置内で樹脂組成物が調製(完成)されてもよい。前記第一の工程において、(i)樹脂組成物および発泡剤、並びに、任意で使用され得るその他の成分を混合する方法および順序、または(ii)樹脂組成物および発泡剤、並びに、任意で使用され得るその他の成分を製造装置へ供給する方法および順序、は特に限定されない。
 第一の工程で得られた溶融混練物を低圧領域に押出す前に、溶融混練物を冷却してもよい。
 (第二の工程)
 第二の工程は、第一の工程で得られた溶融混練物を、ダイを通して製造装置の内圧よりも低圧である領域に押出し、押し出された溶融混練物を細断する工程である。第二の工程により、押出発泡粒子が得られる。そのため、第二の工程は、ポリプロピレン系樹脂押出発泡粒子を造粒する造粒工程ともいえる。
 第二工程において、第一工程で得られた溶融混練物を押出す領域は、製造装置の内圧よりも低圧である限り特に限定されない。例えば、第二工程において、第一工程で得られた溶融混練物は、気相中に押出されてもよく、液相中に押出されてもよい。
 第二工程において製造装置の内圧よりも低圧である領域に押出された溶融混練物は、直ちに発泡し始める。第二工程では、発泡中の溶融混練物を細断してもよく、発泡し終えた溶融混練物を細断してもよい。発泡中の溶融混練物を細断する場合、細断された溶融混練物は、押出された先の領域中で発泡を完了し得る。
 第一工程で得られた溶融混練物を押出す領域および押出された溶融混練物の細断方法によって、第二工程(造粒工程)は、コールドカット法およびダイフェースカット法の2つに大別され得る。コールドカット法としては、ダイから押出された発泡剤を含有する溶融混練物を発泡させ、冷却しながらストランド状の発泡体を引き取った後に細断する方法(ストランドカット法)が挙げられる。ダイフェースカット法はダイの孔から押出された溶融混練物をダイの表面に接触しながら又は僅かに隙間を確保しながら回転するカッターで切断する方法である。
 ダイフェースカット法は、さらに冷却方法の違いから次の3方式に分けられる。すなわち、アンダーウォーターカット(以下、UWCと称する場合もある)法、ウォーターリングカット(以下、WRCと称する場合もある)法、およびホットカット(以下、HCと称する場合もある)法である。UWC法は、ダイ先端に取り付けたチャンバー内に所定圧力に調整された冷却水をダイの樹脂吐出面に接するように充満し、ダイの孔から押出された溶融混練物を水中で切断する方法である。また、WRC法は、ダイに連結された冷却ドラムの内周面に沿って冷却水が流れる冷却ドラムをダイから下流側に配置し、空気中にて前記カッターで切断された溶融混練物が発泡しながら、もしくは発泡後に前記冷却水中で冷却される方法である。HC法は、空気中にて溶融混練物をカッターで切断し、切断された溶融混練物が発泡しながら、もしくは発泡後に、空気中にて冷却される方法である。前記HC法としては、水及び空気の混合ミストを噴霧する工程をさらに含むミストカット法も挙げられる。
 〔3.ポリプロピレン系樹脂発泡成形体〕
 本発明の一実施形態に係るポリプロピレン系樹脂発泡成形体は、〔2.ポリプロピレン系樹脂押出発泡粒子〕の項に記載のポリプロピレン系樹脂押出発泡粒子を成形してなる。
 以下に詳説した事項以外(例えば基材樹脂および連続気泡率など)は、適宜、〔2.ポリプロピレン系樹脂押出発泡粒子〕の項の記載を援用する。
 押出発泡粒子の成形方法は特に限定されないが、例えば、駆動し得ない固定型と駆動し得る移動型とを備える金型を使用する、型内発泡成形が挙げられる。型内発泡成形方法としては特に限定されず、公知の方法を採用できる。
 〔4.ポリプロピレン系樹脂押出発泡粒子およびポリプロピレン系樹脂発泡成形体の用途〕
 本発明の一実施形態に係るポリプロピレン系樹脂押出発泡粒子、およびポリプロピレン系樹脂発泡成形体は、自動車内装部材、緩衝材、包装材、および断熱材等の分野等において好適に利用できる。
 本発明の一実施形態は、以下のような構成であってもよい。
〔1〕分岐構造を有するポリプロピレン系樹脂(A)および分岐構造が導入されていないポリプロピレン系樹脂(B)を含む樹脂組成物を押出発泡してなり、前記分岐構造が導入されていないポリプロピレン系樹脂(B)は、重量平均分子量が50万以上100万以下であり、かつ曲げ弾性率が950MPa以上1400MPa以下である。
〔2〕前記ポリプロピレン系樹脂(B)の引張弾性率は900MPa以上1300MPa以下である、〔1〕に記載のポリプロピレン系樹脂押出発泡粒子。
〔3〕前記ポリプロピレン系樹脂(B)の荷重たわみ温度は82℃以上125℃以下である、〔1〕または〔2〕に記載のポリプロピレン系樹脂押出発泡粒子。
〔4〕前記ポリプロピレン系樹脂(A)の200℃における溶融張力は1.00cN以上15.00cN以下である、〔1〕~〔3〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔5〕前記ポリプロピレン系樹脂(A)の融点は125℃~170℃である、〔1〕~〔4〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔6〕前記ポリプロピレン系樹脂(A)の230℃におけるMFRは、0.50g/10分~20.00g/10分である、〔1〕~〔5〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔7〕前記ポリプロピレン系樹脂(B)の融点は125℃~170℃である、〔1〕~〔6〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔8〕前記ポリプロピレン系樹脂(B)の230℃におけるMFRは、0.20g/10分~20.00g/10分である、〔1〕~〔7〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔9〕前記樹脂組成物中の前記ポリプロピレン系樹脂(A)と前記ポリプロピレン系樹脂(B)との重量比率(前記ポリプロピレン系樹脂(A)の重量:前記ポリプロピレン系樹脂(B)の重量)は、20:80~80:20である、〔1〕~〔8〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔10〕前記ポリプロピレン系樹脂(A)の主鎖は、プロピレン単独重合体、ポリプロピレン系ブロック共重合体およびポリプロピレン系ランダム共重合体からなる群から選ばれる1つ以上である、〔1〕~〔9〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔11〕前記ポリプロピレン系樹脂(A)は、分岐構造が導入されていないポリプロピレン系樹脂と共役ジエン化合物とラジカル重合開始剤とを含む混合物を溶融混練して得られる、分岐構造を有するポリプロピレン系樹脂である、〔1〕~〔10〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔12〕前記ポリプロピレン系樹脂(B)は、プロピレン単独重合体、ポリプロピレン系ブロック共重合体およびポリプロピレン系ランダム共重合体からなる群から選ばれる1つ以上である、〔1〕~〔11〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔13〕前記ポリプロピレン系樹脂(A)の230℃におけるMFRをMFR(A)とし、前記ポリプロピレン系樹脂(B)の230℃におけるMFRをMFR(B)とした場合に、MFR(A)とMFR(B)との差(MFR(A)の値からMFR(B)の値を引いて得られる値)は0.50g/10分以上である、〔1〕~〔12〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔14〕前記ポリプロピレン系樹脂押出発泡粒子の連続気泡率は、44.0%以下である〔1〕~〔13〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔15〕前記ポリプロピレン系樹脂押出発泡粒子の発泡倍率は、3倍~24倍である〔1〕~〔14〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔16〕〔1〕~〔15〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子を成形してなるポリプロピレン系樹脂発泡成形体。
〔17〕分岐構造を有するポリプロピレン系樹脂(A)および分岐構造が導入されていないポリプロピレン系樹脂(B)を含む樹脂組成物と発泡剤とを製造装置内で溶融混練する第一の工程、および前記第一の工程で得られた溶融混練物を、ダイを通して前記製造装置の内圧よりも低圧である領域に吐出する第二の工程、を含み、前記分岐構造が導入されていないポリプロピレン系樹脂(B)は、重量平均分子量が50万以上であり、かつ曲げ弾性率が950MPa以上である、ポリプロピレン系樹脂押出発泡粒子の製造方法。
〔18〕前記ポリプロピレン系樹脂(B)の引張弾性率は900MPa以上である、〔17〕に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
〔19〕前記ポリプロピレン系樹脂(B)の荷重たわみ温度は82℃以上である、〔17〕または〔18〕に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
〔20〕前記ポリプロピレン系樹脂(A)の200℃における溶融張力は1.00cN以上である、〔17〕~〔19〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
〔21〕前記ポリプロピレン系樹脂(A)の融点は125℃~170℃である、〔17〕~〔20〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
〔22〕前記ポリプロピレン系樹脂(A)の230℃におけるMFRは、0.50g/10分~20.00g/10分である、〔17〕~〔21〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
〔23〕前記ポリプロピレン系樹脂(B)の融点は125℃~170℃である、〔17〕~〔22〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
〔24〕前記ポリプロピレン系樹脂(B)の230℃におけるMFRは、0.20g/10分~20.00g/10分である、〔17〕~〔23〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
〔25〕前記樹脂組成物中の前記ポリプロピレン系樹脂(A)と前記ポリプロピレン系樹脂(B)との重量比率(前記ポリプロピレン系樹脂(A)の重量:前記ポリプロピレン系樹脂(B)の重量)は、20:80~80:20である、〔17〕~〔24〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
〔26〕前記発泡剤が炭酸ガスである、〔17〕~〔25〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
〔27〕前記ポリプロピレン系樹脂(A)の主鎖は、プロピレン単独重合体、ポリプロピレン系ブロック共重合体およびポリプロピレン系ランダム共重合体からなる群から選ばれる1つ以上である、〔17〕~〔26〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
〔28〕前記ポリプロピレン系樹脂(A)は、分岐構造が導入されていないポリプロピレン系樹脂と共役ジエン化合物とラジカル重合開始剤とを含む混合物を溶融混練して得られる、分岐構造を有するポリプロピレン系樹脂である、〔17〕~〔27〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
〔29〕前記ポリプロピレン系樹脂(B)は、プロピレン単独重合体、ポリプロピレン系ブロック共重合体およびポリプロピレン系ランダム共重合体からなる群から選ばれる1つ以上である、〔17〕~〔28〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
〔30〕前記ポリプロピレン系樹脂(A)の230℃におけるMFRをMFR(A)とし、前記ポリプロピレン系樹脂(B)の230℃におけるMFRをMFR(B)とした場合に、MFR(A)とMFR(B)との差(MFR(A)の値からMFR(B)の値を引いて得られる値)は0.50g/10分以上である、〔17〕~〔29〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
〔31〕前記ポリプロピレン系樹脂押出発泡粒子の連続気泡率は、44.0%以下である〔17〕~〔30〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
〔32〕前記ポリプロピレン系樹脂押出発泡粒子の発泡倍率は、3倍~24倍である〔17〕~〔31〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
 以下、実施例および比較例によって本発明の一実施形態をより詳細に説明する。本発明は以下の実施例に限定されるものではない。
 (試験方法)
 実施例および比較例において、各種物性の測定および評価に用いられた試験方法は以下の通りである。
 [融点(℃)]
 分岐状ポリプロピレン系樹脂(A)および線状ポリプロピレン系樹脂(B)の融点は、分岐状ポリプロピレン系樹脂(A)および線状ポリプロピレン系樹脂(B)のそれぞれを試料として、示差走査熱量計法により測定して求めた。示差走査熱量計としては、セイコーインスツルメンツ(株)製、DSC6200型を用いた。示差走査熱量計法による試料(分岐状ポリプロピレン系樹脂(A)または線状ポリプロピレン系樹脂(B))の融点の測定方法は、以下の通りであった:(1)試料の温度を10℃/分の昇温速度で40℃から220℃まで昇温することにより当該試料を融解させた;(2)その後、得られた試料の温度を10℃/分の降温速度で220℃から40℃まで降温することにより当該試料を結晶化させた;(3)その後、さらに、結晶化された試料の温度を10℃/分の昇温速度で40℃から220℃まで昇温した。2回目の昇温時(すなわち(3)のとき)に得られる当該試料のDSC曲線のピーク(融解ピーク)の温度を、当該試料(分岐状ポリプロピレン系樹脂(A)または線状ポリプロピレン系樹脂(B))の融点とした。結果を表1に記載した。
 [MFR(g/10分)]
 分岐状ポリプロピレン系樹脂(A)および線状ポリプロピレン系樹脂(B)のMFRは、分岐状ポリプロピレン系樹脂(A)および線状ポリプロピレン系樹脂(B)のそれぞれを試料として、ISO 1133(1997)記載のB法の規定に準拠して測定して求めた。装置としてはメルトインデクサーS-01(東洋精機製作所製)を用い、温度230℃および荷重2.16kgの条件下で測定を行った。また、試料(分岐状ポリプロピレン系樹脂(A)または線状ポリプロピレン系樹脂(B))のMFRは、メルトインデクサーS-01のピストンが一定時間内に移動する距離を測定し、得られた距離と測定温度における前記試料の密度から、10分間にオリフィスから押し出される前記試料の重量に換算した値とした。なお、前記一定時間とは、メルトフローレートが0.1g/10分を超え、1.0g/10分以下の場合は120秒間、1.0g/10分を超え、3.5g/10分以下の場合は、60秒間、3.5g/10分を超え、30.0g/10分以下の場合は30秒間とした。
 [溶融張力(cN)]
 分岐状ポリプロピレン系樹脂(A)の溶融張力を、キャピログラフ1D(日本 株式会社東洋精機製作所製)を用いて測定した。具体的には、以下(1)~(5)の通りであった:(1)200℃に加熱された径9.55mmのバレルに分岐状ポリプロピレン系樹脂(A)を充填した;(2)次いで、分岐状ポリプロピレン系樹脂(A)を10分間、200℃に加熱されたバレル内で加熱した;(3)次いで、キャピラリーダイ(口径1.0mm、長さ10mm)から、一定に保持したピストン降下速度(10mm/分)にて、分岐状ポリプロピレン系樹脂(A)を紐状に出しながら、この紐状物を前記キャピラリーダイの下方350mmに位置する張力検出のプーリーに通過させた後、巻取りロールを用いる巻取りを開始した;(4)紐状物の引き取りが安定した後、紐状物の巻取り速度を初速1.0m/分から、4分間で200m/分の速度に達するまで一定の割合で増加させた;(5)紐状物が破断したときのロードセル付きプーリーにかかる荷重を溶融張力として測定した。
 [重量平均分子量(Mw)]
 線状ポリプロピレン系樹脂(B)の重量平均分子量(Mw)は、ゲル浸透クロマトグラフィー(Gel permeation chromatography、GPC)の方法により求めた。GPCに用いる装置としては、Viscotek Triple HT-GPC model-SG system(Malvern Instruments製)を使用した。具体的な測定方法は以下の通りであった;(1)線状ポリプロピレン系樹脂(B)を溶離液(オルトジクロロベンゼン(0.05%ブチル化ヒドロキシトルエン含有))に溶解し、線状ポリプロピレン系樹脂(B)を0.1%(重量/重量)含む試料溶液を作製した;(2)流量0.3ml/min、温度140℃の条件で200μlの試料溶液をカラム(Waters(株)製 HR,3,4、6E)に通し、GPC測定を行った。ここで、標準試料にポリスチレンを用い、比較換算により線状ポリプロピレン系樹脂(B)の重量平均分子量を求めた。検出は示差屈折率計を用いたリファレンスフロー方式で実施した。
 [曲げ弾性率(MPa)]
 線状ポリプロピレン系樹脂(B)の曲げ弾性率(MPa)は、JIS K 7171に従った方法により測定した。
 [引張弾性率(MPa)]
 線状ポリプロピレン系樹脂(B)の引張弾性率(MPa)は、JIS K 7161に従った方法により測定した。
 [荷重たわみ温度(℃)]
 線状ポリプロピレン系樹脂(B)の荷重たわみ温度(℃)は、JIS K 7191に従った方法により測定した。
 [連続気泡率]
 ポリプロピレン系樹脂押出発泡粒子の連続気泡率は、空気比較式比重計[東京サイエンス(株)製、モデル1000]を用いて、ASTM D2856-87の手順C(PROCEDURE C)に記載の方法に従って、測定して求めた。より具体的には、押出発泡粒子の連続気泡率は、以下(1)~(3)を順に実施して算出した:(1)空気比較式比重計を用いて押出発泡粒子の体積Vc(cm)を測定した;(2)次いで、Vcを測定後の押出発泡粒子の全量を、メスシリンダーに入っているエタノール中に沈めた;(3)その後、メスシリンダーにおけるエタノールの位置の上昇量から、押出発泡粒子の見かけ上の体積Va(cm)を求めた;(4)以下の式により、押出発泡粒子の連続気泡率を算出した:
連続気泡率(%)=((Va-Vc)×100)/Va。
 [発泡倍率]
 以下の方法によって、ポリプロピレン系樹脂押出発泡粒子の発泡倍率を算出した:(1)押出発泡粒子の重量w(g)を測定した;(2)次に、重量の測定に用いた押出発泡粒子を、メスシリンダー中に入っているエタノール中に沈め、メスシリンダーの液面位置の上昇分に基づき押出発泡粒子の体積v(cm)を測定した;(3)重量w(g)を体積v(cm)で除し、押出発泡粒子の密度ρを算出した;(4)押出発泡粒子の基材樹脂の密度ρを押出発泡粒子の密度ρで除し(ρ/ρ)、発泡倍率とした。基材樹脂の密度ρとしては、一般的なポリプロピレン系樹脂の密度0.9g/cmを採用した。
 (材料)
 実施例および比較例では、以下の材料を使用した。
 (分岐状ポリプロピレン系樹脂(A))
 以下の製造例に基づき製造された分岐状ポリプロピレン系樹脂(A)(PP-A1)を使用した。PP-A1の物性を上述の方法により測定した。その結果を表1に示す。
 (線状ポリプロピレン系樹脂(B))
PP-B1;プライムポリマー社製ランダムポリプロピレン(B221WC)
PP-B2;サンアロマー社製ランダムポリプロピレン(PB222A)
PP-B3;日本ポリプロ社製ランダムポリプロピレン(EG8B)
PP-B4;プライムポリマー社製ランダムポリプロピレン(E222)
PP-B5;プライムポリマー製ランダムポリプロピレン(B241)。
PP-B1~PP-B5は、共重合体100重量%中エチレン単位を0.5~5.0重量%含有するプロピレン/エチレンランダム共重合体であった。
各樹脂の物性を上述の方法により測定した。その結果を表1に示す。
 (気泡核調整剤)
タルク(林化成製PK-S)。
 (製造例1;分岐状ポリプロピレン系樹脂(PP-A1)の製造)
 原料樹脂として、線状ポリプロピレン系樹脂であるプライムポリマー社製プロピレン/エチレンランダム共重合体(エチレン含量2.0%、MFR7.0g/10分、融点:144℃)を使用した。ラジカル重合開始剤として、t-ブチルパーオキシイソプロピルモノカーボネート(日油製、パーブチル(登録商標)I)と2,2-ジ-t-ブチルパーオキシブタン(化薬アグゾ製、トリゴノックスD-T50)とを重量比で2:1で混合して得られた混合物(ラジカル重合開始剤混合物)を使用した。前記線状ポリプロピレン系樹脂100重量部と、前記ラジカル重合開始剤混合物0.7重量部との混合物を、ホッパーから70kg/時で45mmφ二軸押出機(L/D=40)に供給した。次いで、押出機内の原料を、シリンダ温度220℃、回転数230rpmで溶融混練するとともに、押出機途中に設けた圧入部より、単量体として共役ジエンであるイソプレンを、線状ポリプロピレン系樹脂100重量部に対し、0.38重量部となる比率で、定量ポンプを用いて供給し、押出機内で混合物を調製した(完成させた)。次いで、押出機内の混合物をさらに溶融混練し、上記混合物の溶融混練物、すなわち分岐状ポリプロピレン系樹脂を得た。その後、分岐状ポリプロピレン系樹脂(溶融混練物)を装置に備えられたダイを通してストランド状に吐出した。次いで、吐出されたストランド状の分岐状ポリプロピレン系樹脂(PP-A1)を、冷却および細断して分岐状ポリプロピレン系樹脂のペレットを得た。
 (製造例2;分岐状ポリプロピレン系樹脂(PP-A2)の製造)
 原料樹脂として、線状ポリプロピレン系樹脂であるBorouge社製プロピレン/エチレンランダム共重合体(エチレン含量1.9%、MFR8.0g/10分、融点:150℃)を使用した。ラジカル重合開始剤としては、製造例1(PP-A1の製造)で使用したラジカル重合開始剤混合物を使用した。前記線状ポリプロピレン系樹脂100重量部と、前記ラジカル重合開始剤混合物0.7重量部との混合物を、ホッパーから70kg/時で45mmφ二軸押出機(L/D=40)に供給した。次いで、押出機内の原料を、シリンダ温度220℃、回転数230rpmで溶融混練するとともに、押出機途中に設けた圧入部より、単量体として共役ジエンであるイソプレンを、線状ポリプロピレン系樹脂100重量部に対し、0.39重量部となる比率で、定量ポンプを用いて供給し、押出機内で混合物を調製した(完成させた)。次いで、押出機内の混合物をさらに溶融混練し、上記混合物の溶融混練物、すなわち分岐状ポリプロピレン系樹脂を得た。その後、分岐状ポリプロピレン系樹脂を装置に備えられたダイを通してストランド状に吐出した。次いで、吐出されたストランド状の分岐状ポリプロピレン系樹脂を、冷却および細断して分岐状ポリプロピレン系樹脂のペレットを得た。
Figure JPOXMLDOC01-appb-T000001
 (実施例1)
 (第一の工程)
 分岐状ポリプロピレン系樹脂(A)(PP-A1)50重量部と、線状ポリプロピレン系樹脂(B)(PP-B1)50重量部と、タルク(林化成製PK-S)0.02重量部とを混合して樹脂組成物を得た。得られた樹脂組成物を、ホッパーから1.0kg/時で15mmφの二軸押出機(L/D=30)に供給した。次いで、押出機内の樹脂組成物を、シリンダ温度180℃、回転数80rpmで溶融混練した。かかる溶融混練とともに、押出機途中に設けた圧入部より、発泡剤である炭酸ガスを、分岐状ポリプロピレン系樹脂(A)および線状ポリプロピレン系樹脂(B)の合計100重量部に対し6.25重量部の比率で、定量ポンプを用いて供給した。次いで、発泡剤を含む樹脂組成物をさらに溶融混練し、樹脂組成物の溶融混練物を得た。
 さらに、樹脂組成物の溶融混練物を、二軸押出機先端に接続され、表2に記載の温度に設定されたメルトクーラーを通過させて冷却した。その後、メルトクーラーの先端に装着された直径0.7mmの細孔2穴が配されたダイ(表2に記載の温度に設定した)より、当該溶融混練物を大気圧下に押出して発泡させて得たストランド状の発泡体を剃刀で5mm幅に切断することにより、ポリプロピレン系樹脂発泡粒子を得た。
 得られた押出発泡粒子について、前記した方法により、連続気泡率を評価した。結果を表2に示す。
 (実施例2および比較例1~3)
 実施例1において、(a)線状ポリプロピレン系樹脂(B)として、PP-B1に代えて表2に示された樹脂を使用し、かつ(b)メルトクーラーおよびダイ(ダイス)の温度を表2に示された温度に変更した以外は、実施例1と同じ方法により、ポリプロピレン系樹脂押出発泡粒子を得た。
 (比較例4)
 実施例1において、(a)分岐状ポリプロピレン系樹脂(A)(PP-A2)のみを使用し、線状ポリプロピレン系樹脂(B)を使用せず、かつ(b)メルトクーラーおよびダイ(ダイス)の温度を表2に示された温度に変更した以外は、実施例1と同じ方法により、ポリプロピレン系樹脂押出発泡粒子を得た。
Figure JPOXMLDOC01-appb-T000002
 実施例1および2の押出発泡粒子は、ポリプロピレン系樹脂として、分岐状ポリプロピレン系樹脂(A)に加えて、本願の一実施形態の範囲内の構成を有する線状ポリプロピレン系樹脂(B)を使用して得られたものである。一方、比較例4の押出発泡粒子は、ポリプロピレン系樹脂として、分岐状ポリプロピレン系樹脂(A)のみを使用して得られたものである。表2により、実施例1および2の押出発泡粒子は、比較例4の押出発泡粒子と同程度の、すなわち低い連続気泡率を有することが分かる。
 比較例1~3の押出発泡粒子は、ポリプロピレン系樹脂として、分岐状ポリプロピレン系樹脂(A)に加えて、本願の一実施形態の範囲外の構成を有する線状ポリプロピレン系樹脂(B)を使用して得られたものである。表2により、比較例1~3の押出発泡粒子は、比較例4の押出発泡粒子と比較して、顕著に高い連続気泡率を有することが分かる。
 本発明の一実施形態によれば、耐破断性に優れるポリプロピレン系樹脂発泡成形体を提供し得るポリプロピレン系樹脂押出発泡粒子を提供することができる。そのため、本発明の一実施形態は、自動車内装部材、緩衝材、包装材、および断熱材等の分野等において好適に利用できる。

Claims (15)

  1.  分岐構造を有するポリプロピレン系樹脂(A)および分岐構造が導入されていないポリプロピレン系樹脂(B)を含む樹脂組成物を押出発泡してなり、
     前記分岐構造が導入されていないポリプロピレン系樹脂(B)は、重量平均分子量が50万以上であり、かつ曲げ弾性率が950MPa以上である、ポリプロピレン系樹脂押出発泡粒子。
  2.  前記ポリプロピレン系樹脂(B)の引張弾性率は900MPa以上である、請求項1に記載のポリプロピレン系樹脂押出発泡粒子。
  3.  前記ポリプロピレン系樹脂(B)の荷重たわみ温度は82℃以上である、請求項1または2に記載のポリプロピレン系樹脂押出発泡粒子。
  4.  前記ポリプロピレン系樹脂(A)の200℃における溶融張力は1.00cN以上である、請求項1~3のいずれか1項に記載のポリプロピレン系樹脂押出発泡粒子。
  5.  前記ポリプロピレン系樹脂(A)の融点は125℃~170℃である、請求項1~4のいずれか1項に記載のポリプロピレン系樹脂押出発泡粒子。
  6.  前記ポリプロピレン系樹脂(A)の230℃におけるMFRは、0.50g/10分~20.00g/10分である、請求項1~5のいずれか1項に記載のポリプロピレン系樹脂押出発泡粒子。
  7.  前記ポリプロピレン系樹脂(B)の融点は125℃~170℃である、請求項1~6のいずれか1項に記載のポリプロピレン系樹脂押出発泡粒子。
  8.  前記ポリプロピレン系樹脂(B)の230℃におけるMFRは、0.20g/10分~20.00g/10分である、請求項1~7のいずれか1項に記載のポリプロピレン系樹脂押出発泡粒子。
  9.  前記樹脂組成物中の前記ポリプロピレン系樹脂(A)と前記ポリプロピレン系樹脂(B)との重量比率(前記ポリプロピレン系樹脂(A)の重量:前記ポリプロピレン系樹脂(B)の重量)は、20:80~80:20である、請求項1~8のいずれか1項に記載のポリプロピレン系樹脂押出発泡粒子。
  10.  前記ポリプロピレン系樹脂押出発泡粒子の連続気泡率は、44.0%以下である請求項1~9のいずれか1項に記載のポリプロピレン系樹脂押出発泡粒子。
  11.  前記ポリプロピレン系樹脂押出発泡粒子の発泡倍率は、3倍~24倍である請求項1~10のいずれか1項に記載のポリプロピレン系樹脂押出発泡粒子。
  12.  請求項1~11のいずれか1項に記載のポリプロピレン系樹脂押出発泡粒子を成形してなるポリプロピレン系樹脂発泡成形体。
  13.  分岐構造を有するポリプロピレン系樹脂(A)および分岐構造が導入されていないポリプロピレン系樹脂(B)を含む樹脂組成物と発泡剤とを製造装置内で溶融混練する第一の工程、および
     前記第一の工程で得られた溶融混練物を、ダイを通して前記製造装置の内圧よりも低圧である領域に吐出する第二の工程、を含み、
     前記分岐構造が導入されていないポリプロピレン系樹脂(B)は、重量平均分子量が50万以上であり、かつ曲げ弾性率が950MPa以上である、ポリプロピレン系樹脂押出発泡粒子の製造方法。
  14.  前記ポリプロピレン系樹脂(B)の引張弾性率は900MPa以上である、請求項13に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
  15.  前記ポリプロピレン系樹脂(B)の荷重たわみ温度は82℃以上である、請求項13または14に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
PCT/JP2022/015294 2021-03-29 2022-03-29 ポリプロピレン系樹脂押出発泡粒子 WO2022210646A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023511335A JPWO2022210646A1 (ja) 2021-03-29 2022-03-29
EP22780857.3A EP4317276A1 (en) 2021-03-29 2022-03-29 Polypropylene resin extruded foam particles
US18/374,160 US20240026107A1 (en) 2021-03-29 2023-09-28 Polypropylene resin extruded foam particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021055661 2021-03-29
JP2021-055661 2021-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/374,160 Continuation US20240026107A1 (en) 2021-03-29 2023-09-28 Polypropylene resin extruded foam particles

Publications (1)

Publication Number Publication Date
WO2022210646A1 true WO2022210646A1 (ja) 2022-10-06

Family

ID=83459392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015294 WO2022210646A1 (ja) 2021-03-29 2022-03-29 ポリプロピレン系樹脂押出発泡粒子

Country Status (4)

Country Link
US (1) US20240026107A1 (ja)
EP (1) EP4317276A1 (ja)
JP (1) JPWO2022210646A1 (ja)
WO (1) WO2022210646A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249763A (ja) 1996-03-15 1997-09-22 Sekisui Plastics Co Ltd ポリプロピレン系樹脂発泡粒子
JP2000159950A (ja) 1998-11-27 2000-06-13 Tosoh Corp ポリプロピレン系樹脂組成物及びそれを用いてなる発泡体
US20020151611A1 (en) * 2000-12-22 2002-10-17 Thoen Johan A. Propylene copolymer foams
JP2002542360A (ja) 1999-04-19 2002-12-10 バセル テクノロジー カンパニー ベスローテン フェンノートシャップ 高い溶融強度を持つ軟質プロピレンポリマーブレンド
JP2009256460A (ja) * 2008-04-16 2009-11-05 Kaneka Corp ポリプロピレン系樹脂予備発泡粒子および該ポリプロピレン系樹脂予備発泡粒子より得られるポリプロピレン系樹脂型内発泡成形体
WO2014084165A1 (ja) * 2012-11-27 2014-06-05 株式会社カネカ ポリプロピレン系樹脂発泡粒子およびポリプロピレン系樹脂型内発泡成形体ならびにそれらの製造方法
WO2021172016A1 (ja) * 2020-02-25 2021-09-02 株式会社カネカ ポリプロピレン系樹脂発泡粒子、その製造方法及びポリプロピレン系樹脂発泡成形体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249763A (ja) 1996-03-15 1997-09-22 Sekisui Plastics Co Ltd ポリプロピレン系樹脂発泡粒子
JP2000159950A (ja) 1998-11-27 2000-06-13 Tosoh Corp ポリプロピレン系樹脂組成物及びそれを用いてなる発泡体
JP2002542360A (ja) 1999-04-19 2002-12-10 バセル テクノロジー カンパニー ベスローテン フェンノートシャップ 高い溶融強度を持つ軟質プロピレンポリマーブレンド
US20020151611A1 (en) * 2000-12-22 2002-10-17 Thoen Johan A. Propylene copolymer foams
JP2009256460A (ja) * 2008-04-16 2009-11-05 Kaneka Corp ポリプロピレン系樹脂予備発泡粒子および該ポリプロピレン系樹脂予備発泡粒子より得られるポリプロピレン系樹脂型内発泡成形体
WO2014084165A1 (ja) * 2012-11-27 2014-06-05 株式会社カネカ ポリプロピレン系樹脂発泡粒子およびポリプロピレン系樹脂型内発泡成形体ならびにそれらの製造方法
WO2021172016A1 (ja) * 2020-02-25 2021-09-02 株式会社カネカ ポリプロピレン系樹脂発泡粒子、その製造方法及びポリプロピレン系樹脂発泡成形体

Also Published As

Publication number Publication date
JPWO2022210646A1 (ja) 2022-10-06
EP4317276A1 (en) 2024-02-07
US20240026107A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
EP2072207B1 (en) Expanded polypropylene resin beads and foamed molded article thereof
EP2161298B1 (en) Polypropylene resin foam particle and molding thereof
JP4999462B2 (ja) プロピレン系樹脂押出発泡体
WO2021172016A1 (ja) ポリプロピレン系樹脂発泡粒子、その製造方法及びポリプロピレン系樹脂発泡成形体
JP2022152955A (ja) ポリプロピレン系樹脂押出発泡粒子の製造方法
WO2022203036A1 (ja) ポリプロピレン系樹脂押出発泡粒子およびその製造方法、並びに発泡成形体
CN114341237A (zh) 聚丙烯系树脂发泡颗粒、其制造方法及聚丙烯系树脂发泡成型体
WO2021131933A1 (ja) ポリプロピレン系樹脂組成物、その製造方法、予備発泡粒子の製造方法及び発泡成形体の製造方法
JP5503123B2 (ja) スチレン改質ポリオレフィン系樹脂粒子、発泡性樹脂粒子、予備発泡粒子及び発泡成形体
WO2022210647A1 (ja) ポリプロピレン系樹脂押出発泡粒子の製造方法
WO2022191181A1 (ja) 押出発泡用ポリプロピレン系樹脂組成物、押出発泡粒子および発泡成形体
WO2022163627A1 (ja) 分岐構造を有するポリプロピレン系樹脂の製造方法、押出発泡粒子の製造方法、および、発泡成形体の製造方法
JP5749039B2 (ja) ポリプロピレン系樹脂発泡粒子、ポリプロピレン系樹脂型内発泡成形体、およびポリプロピレン系樹脂発泡粒子の製造方法
JP2004339365A (ja) 改質ポリプロピレン系樹脂組成物およびその発泡体
WO2022154070A1 (ja) ポリプロピレン系樹脂押出発泡粒子およびその製造方法、並びに発泡成形体
WO2022210646A1 (ja) ポリプロピレン系樹脂押出発泡粒子
KR20010033980A (ko) 개질 폴리프로필렌계 수지 및 폴리스티렌계 수지의혼합수지 압출발포 보드
JP5347368B2 (ja) ポリプロピレン系樹脂発泡粒子、および型内発泡成形体
WO2022210645A1 (ja) ポリプロピレン系樹脂押出発泡粒子およびその製造方法、並びに発泡成形体
WO2023127914A1 (ja) ポリプロピレン系樹脂押出発泡粒子の製造方法
WO2023054223A1 (ja) ポリプロピレン系樹脂押出発泡粒子、ポリプロピレン系樹脂発泡成形体および積層発泡体
WO2023176911A1 (ja) ポリプロピレン系樹脂押出発泡粒子の製造方法
WO2024176975A1 (ja) ポリプロピレン系樹脂二段発泡粒子の製造方法、発泡成形体の製造方法、及びポリプロピレン系樹脂二段発泡粒子
WO2022210648A1 (ja) ポリプロピレン系樹脂押出発泡粒子の製造方法
WO2022181762A1 (ja) ポリプロピレン系樹脂押出発泡粒子およびポリプロピレン系樹脂発泡成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780857

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023511335

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022780857

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022780857

Country of ref document: EP

Effective date: 20231030