WO2022209417A1 - 玉軸受 - Google Patents
玉軸受 Download PDFInfo
- Publication number
- WO2022209417A1 WO2022209417A1 PCT/JP2022/006892 JP2022006892W WO2022209417A1 WO 2022209417 A1 WO2022209417 A1 WO 2022209417A1 JP 2022006892 W JP2022006892 W JP 2022006892W WO 2022209417 A1 WO2022209417 A1 WO 2022209417A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- retainer
- ball
- inner ring
- ball bearing
- outer ring
- Prior art date
Links
- 230000002093 peripheral effect Effects 0.000 claims abstract description 31
- 239000000314 lubricant Substances 0.000 description 15
- 230000036316 preload Effects 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/14—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
- F16C19/16—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
- F16C19/163—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/38—Ball cages
- F16C33/3837—Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages
- F16C33/3843—Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/38—Ball cages
- F16C33/3887—Details of individual pockets, e.g. shape or ball retaining means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/66—Special parts or details in view of lubrication
- F16C33/6637—Special parts or details in view of lubrication with liquid lubricant
- F16C33/664—Retaining the liquid in or near the bearing
- F16C33/6651—Retaining the liquid in or near the bearing in recesses or cavities provided in retainers, races or rolling elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2240/00—Specified values or numerical ranges of parameters; Relations between them
- F16C2240/30—Angles, e.g. inclinations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2240/00—Specified values or numerical ranges of parameters; Relations between them
- F16C2240/30—Angles, e.g. inclinations
- F16C2240/34—Contact angles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2300/00—Application independent of particular apparatuses
- F16C2300/20—Application independent of particular apparatuses related to type of movement
- F16C2300/22—High-speed rotation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2314/00—Personal or domestic articles, e.g. household appliances such as washing machines, dryers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2316/00—Apparatus in health or amusement
- F16C2316/10—Apparatus in health or amusement in medical appliances, e.g. in diagnosis, dentistry, instruments, prostheses, medical imaging appliances
- F16C2316/13—Dental machines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2360/00—Engines or pumps
- F16C2360/23—Gas turbine engines
- F16C2360/24—Turbochargers
Definitions
- the present invention relates to ball bearings.
- a ball bearing such as an angular contact ball bearing is provided with a retainer that is guided by an outer ring inner diameter surface or an inner ring outer diameter surface.
- a retainer that is guided by an outer ring inner diameter surface or an inner ring outer diameter surface.
- an object of the present invention is to provide a ball bearing capable of suppressing deterioration in bearing performance by securing sufficient lubricant in the contact portions between the cylindrical surfaces of the pockets of the retainer and the balls.
- the present invention consists of the following configurations. an inner ring having an inner ring raceway surface on its outer periphery; an outer ring having an outer ring raceway surface on its inner circumference; a plurality of balls arranged rollably between the inner ring raceway surface and the outer ring raceway surface; a retainer in which a plurality of pockets having cylindrical surfaces for holding the balls so that they can roll freely are formed at intervals in the circumferential direction, and which has a peripheral surface guided by the inner diameter surface of the outer ring or the outer diameter surface of the inner ring; ,
- a ball bearing comprising The pocket has an inclination angle ⁇ of the cylindrical surface greater than 0° and smaller than the contact angle ⁇ of the ball bearing, and is positioned in the thickness direction of the cage from a position where the rotation axis of the ball intersects the cylindrical surface. 2.
- a ball bearing in which a space is formed from the contact position to the cage peripheral surface on the intersecting position side by the contact between the ball and the cylindrical surface in the inner
- FIG. 1 is a partial cross-sectional view along the axial direction of a ball bearing in a configuration example of the present invention
- FIG. It is a figure which shows a retainer, (A) is a perspective view, (B) is sectional drawing along an axial direction.
- FIG. 10 is a diagram showing how balls are held by the retainer, where (A) is a perspective view of a pocket portion viewed from the outer peripheral side of the retainer in cross section along the axial direction, and (B) is the X direction in (A). It is an arrow view.
- 4 is a schematic cross-sectional view along the axial direction of a retainer showing how balls are held in pockets of the ball bearing according to Reference Example 1.
- FIG. 10 is a diagram showing the ball holding state of the cage according to Reference Example 1, where (A) is a perspective view of the pocket portion viewed from the outer peripheral side of the cage in cross section along the axial direction, and (B) is ( It is a Y-direction arrow directional view in A).
- FIG. 11 is a schematic cross-sectional view along the axial direction of a retainer showing how balls are held in pockets of a ball bearing according to Reference Example 2; It is a figure which shows the holder
- FIG. 1 is a partial sectional view along the axial direction of a ball bearing 100 of a configuration example of the present invention.
- the ball bearing 100 includes an inner ring 11, an outer ring 13, balls 15, and a retainer 17.
- This ball bearing 100 is suitably used as a bearing for a shaft rotated at high speed in, for example, dental air turbines, cleaners, turbochargers, and the like.
- the inner ring 11 has an inner ring raceway surface 21 on its outer circumference
- the outer ring 13 has an outer ring raceway surface 23 on its inner circumference.
- a plurality of balls 15 are arranged between the inner ring raceway surface 21 and the outer ring raceway surface 23 .
- the retainer 17 has multiple pockets 25 . The balls 15 are accommodated in these pockets 25 and the balls 15 are held within the pockets 25 so as to be free to roll. The balls 15 held in the pockets 25 of the retainer 17 can freely roll with a contact angle ⁇ between the inner ring raceway surface 21 and the outer ring raceway surface 23 when axial preload is applied.
- the contact angle ⁇ of the ball bearing 100 is the angle formed by the normal line at the contact point between the ball 15 and the outer ring 13 (or the inner ring 11 ) and the plane perpendicular to the axis of the ball bearing 100 .
- outer diameter surface 11a of the inner ring 11 has the same outer diameter on both sides in the axial direction across the inner ring raceway surface 21, that is, on one side and the other side.
- the retainer 17 is formed in an annular shape, and a plurality of pockets 25 are formed at intervals in the circumferential direction.
- the retainer 17 is made of metal or synthetic resin, for example.
- the retainer 17 is a retainer in which cylindrical pockets 25 are penetrated from front to back, and each pocket 25 has a cylindrical surface 27 .
- the retainer 17 may be a machined die in which the pocket 25 is formed by machining, a stamped die in which a metal plate is punched out, or a molded die in which resin is poured into a die. If the inner diameter of the pocket 25 of the retainer 17 is 1.03 to 1.2 times the outer diameter of the balls 15, it is possible to satisfy high-speed rotation performance.
- the inner peripheral surface 17a of the retainer 17 has the same inner diameter on one axial side 31 and on the other axial side 33.
- the radial thickness Ta on one axial side 31 and the radial thickness Tb on the other axial side 33 are the same size.
- the retainer 17 of this example may be an inner ring guide type retainer in which the inner peripheral surface 17a is guided by the outer diameter surfaces 11a on both sides of the inner ring raceway surface 21 of the inner ring 11 in the axial direction.
- the inner peripheral surface 17a of the retainer 17 is guided by the outer diameter surface 11a of the inner ring 11 having the same outer diameter on both sides in the axial direction with the inner ring raceway surface 21 interposed therebetween.
- the inner peripheral surface 17a of the retainer 17 guided by the outer diameter surface 11a of the inner ring 11 has the same inner diameter on the one axial side 31 and the other axial side 33. As shown in FIG.
- the retainer 17 guided by the outer diameter surface 11 a of the inner ring 11 is made less inclined with respect to the inner ring 11 .
- the retainer 17 has a radial thickness Ta on one axial side 31 and a radial thickness Tb on the other axial side 33 of the same dimension.
- the retainer 17 guided by the outer diameter surface 11 a of the inner ring 11 has an even balance in the axial direction, and is less likely to tilt with respect to the inner ring 11 .
- the retainer 17 may be an outer ring guide type retainer in which the outer peripheral surface 17b is guided by the inner diameter surface 13a of the shoulder portion of the outer ring 13. Further, although not shown, the inner peripheral surface of the outer ring has the same diameter on both sides in the axial direction across the outer ring raceway surface, and the retainer 17 is an outer ring guide type retainer guided by the inner peripheral surface of the outer ring.
- a crown-shaped retainer may be used, the difference between the diameter of the outer ring raceway surface 23 and the diameter of the inner diameter surface 13a of the shoulder portion of the outer ring 13 may be reduced, or the inner ring raceway surface 21 may be By reducing the difference between the diameter of the inner ring 11 and the diameter of one or both sides of the outer diameter surface 11a of the inner ring 11, the assembly of the ball bearing 100 is facilitated. This also applies to the retainer described below.
- each pocket 25 is inclined at an inclination angle ⁇ greater than 0 degrees.
- the ball 15 in the pocket 25 has a contact point CA at a point where a plane passing through the center of the ball 15 with respect to the cylindrical surface 27 and perpendicular to the inclination angle ⁇ intersects with the cylindrical surface 27 .
- the inclination angle ⁇ of this cylindrical surface 27 is the same for all pockets 25 .
- the inclination angle ⁇ of the cylindrical surface 27 is smaller than the contact angle ⁇ of the balls 15 when axial preload is applied. That is, the inclination angle ⁇ of the cylindrical surface 27 of the pocket 25 is an angle that satisfies the following formula (1).
- the inclination angle ⁇ of the cylindrical surface 27 of the pocket 25 (the angle formed by the radial direction of the retainer 17 in the axial cross section of the bearing and the central axis of the cylindrical surface 27) is greater than 0°.
- the contact point CA between the ball 15 and the cylindrical surface 27 becomes close to the rotation axis R of the ball 15, so that the ball 15 comes into contact with the pocket 25 at a point where the circumferential speed of rotation of the ball 15 is relatively low.
- the retainer 17 has a ratio Ct/Db between the dimension Ct between the contact point CA and the closest end E of the pocket 25 and the diameter Db of the ball 15 of 0.05 or more and 0.4 or less.
- the dimension Ct represents the length of the cylindrical surface 27 along the central axis. That is, the ratio Ct/Db between the dimension Ct between the contact point CA and the closest end E of the pocket 25 and the diameter Db of the ball 15 preferably satisfies the following equation (2). 0.05 ⁇ Ct/Db ⁇ 0.4 (2) As in the above formula (2), the ratio Ct/Db between the dimension Ct between the contact point CA and the nearest edge E of the pocket 25 and the diameter Db of the ball is 0.05 or more and 0.4. In the case of the following, it is possible to secure an area where the distance between the ball 15 and the cylindrical surface 27 of the pocket 25 is narrow around the contact point CA where the ball 15 and the cylindrical surface 27 of the pocket 25 contact. Therefore, sufficient lubricant can be secured at the contact point CA where the ball 15 and the cylindrical surface 27 of the pocket 25 contact each other.
- the retainer 17 has the cylindrical surface 27 of the pocket 25 inclined with respect to the radial direction of the retainer 17 at an inclination angle ⁇ . Therefore, as shown in FIG. 3B, both sides of the contact portion CB between the pocket 25 and the ball 15 when viewed from the outer peripheral side or the inner peripheral side along the running line L of the ball 15 inclined at the contact angle ⁇ is provided with a balanced gap G.
- a ball bearing 201 according to Reference Example 1 shown in FIG. 4 is a general ball bearing in which the center axis of the pocket 25 of the retainer 17 is parallel to the center axis of the retainer 17 along the radial direction.
- the contact point CA between the cylindrical surface 27 of the pocket 25 and the ball 15 is located at a large distance from the rotation axis R.
- the ball 15 and the cylindrical surface 27 of the pocket 25 of the retainer 17 come into contact with each other at a position where the rotation speed is high.
- the contact point CA between the ball 15 and the cylindrical surface 27 becomes Since it is close to the rotation axis R, it is a location where the rotation peripheral speed of the ball 15 is relatively low (see FIG. 1). Therefore, the sliding friction between the balls 15 and the cage 17 is reduced, the reduction of the rotational torque is suppressed, the heat generation between the balls 15 and the cage 17 is reduced, the life of the lubricant is extended by the heat reduction, and the cage 17 It is possible to obtain a higher effect of improving the bearing performance such as reduction of wear of the bearing and reduction of vibration of the cage. In order to obtain a greater effect of improving bearing performance, 3° ⁇ is preferable, and 5° ⁇ is more preferable.
- the retainer 17 has the central axis P of the pocket 25 parallel to the central axis Q along the radial direction of the retainer 17 (see FIG. 5A). 5 is a match). Therefore, as shown in FIG. 5B, both sides of the contact portion CB between the pocket 25 and the ball 15 when viewed from the outer peripheral side or the inner peripheral side along the running line L of the ball 15 inclined at the contact angle ⁇ are different. As a result, lubrication by the lubricant between the balls 15 and the cylindrical surfaces 27 of the pockets 25 of the retainer 17 becomes unstable, and there is a risk that the retainer 17 will vibrate and the rotational balance of the retainer 17 will be lost. be.
- the inclination angle ⁇ of the cylindrical surface 27 of the pocket 25 is smaller than the contact angle ⁇ , so that the contact angle between the cylindrical surface 27 of the pocket 25 of the retainer 17 and the balls 15 A space S from the contact point CA to the peripheral surface on the near side of the retainer 17 is widened (see FIG. 1).
- the structure provided with the retainer 17 through which the cylindrical pocket 25 penetrates from front to back was exemplified, but the shape of the retainer 17 is not limited to one having the cylindrical pocket 25 penetrating from front to back. .
- a crown-shaped retainer 17A having pockets 25 open at one peripheral edge may be used as the retainer.
- the cylindrical surface 27 of the pocket 25 is inclined at an angle of inclination .beta. It is a mold retainer.
- the ball bearing 100 of this configuration example is not limited in type, size, internal specifications, such as a deep groove ball bearing or an angular contact bearing.
- the present invention is not limited to the above-described embodiments, and those skilled in the art can make modifications and applications by combining each configuration of the embodiments with each other, based on the description of the specification and well-known techniques. It is also contemplated by the present invention that it falls within the scope of protection sought.
- an inner ring having an inner ring raceway surface on its outer periphery; an outer ring having an outer ring raceway surface on its inner circumference; a plurality of balls arranged rollably between the inner ring raceway surface and the outer ring raceway surface; a retainer in which a plurality of pockets having cylindrical surfaces for holding the balls so that they can roll freely are formed at intervals in the circumferential direction, and which has a peripheral surface guided by the inner diameter surface of the outer ring or the outer diameter surface of the inner ring; a ball bearing comprising The pocket has an inclination angle ⁇ of the cylindrical surface greater than 0° and smaller than the contact angle ⁇ of the ball bearing, and is positioned in the thickness direction of the cage from a position where the rotation axis of the ball intersects the cylindrical surface.
- a ball bearing in which a space is formed between the contact position and the cage peripheral surface on the crossing position side by contact between the ball and the cylindrical surface on the inner side in the above.
- the ball bearing since the inclination angle ⁇ of the cylindrical surface of the pocket is greater than 0°, the ball and the pocket come into contact with each other at a location where the rotational circumferential speed of the ball is relatively low.
- the angle of inclination ⁇ of the cylindrical surface of the pocket is smaller than the contact angle ⁇ of the ball when axial preload is applied, the space from the contact portion between the ball and the cage to the nearest peripheral surface of the cage is widened. , a sufficient amount of lubricant can be secured at the contact portion between the balls and the cage.
- the inner diameter surface of the outer ring or the outer diameter surface of the inner ring that guides the retainer has the same diameter on both sides in the axial direction sandwiching the outer ring raceway surface or the inner ring raceway surface;
- the outer peripheral surface guided by the inner diameter surface of the outer ring or the inner peripheral surface guided by the outer diameter surface of the inner ring have the same diameter on one axial side and the other axial side. , (1).
- the retainer guided by the inner diameter surface of the outer ring or the outer diameter surface of the inner ring is less likely to tilt with respect to the outer ring or the inner ring.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Rolling Contact Bearings (AREA)
Abstract
Description
しかし、特許文献1に記載の玉軸受のように、保持器のポケットの軸方向と軸受径方向とがなす傾斜角と、軸受へのアキシャル予圧の付与時における接触角とが同等であると、保持器のポケットの円筒面と玉との接触部分に十分な潤滑剤が確保されず、軸受性能の低下を招くおそれがある。
外周に内輪軌道面を有する内輪と、
内周に外輪軌道面を有する外輪と、
前記内輪軌道面と前記外輪軌道面との間に転動自在に配置される複数の玉と、
前記玉を転動自在に保持する円筒面を有する複数のポケットが周方向に間隔をあけて形成され、前記外輪の内径面または前記内輪の外径面に案内される周面を有する保持器と、
を備える玉軸受であって、
前記ポケットは、前記円筒面の傾斜角βが、0°より大きく、かつ、前記玉軸受の接触角αより小さくされ、前記玉の回転軸が前記円筒面と交差する位置よりも保持器厚み方向において内側で前記玉と前記円筒面とが接触することにより、当該接触位置から前記交差する位置側の保持器周面までの間に空間が形成される、玉軸受。
図1は、本発明の構成例の玉軸受100の軸方向に沿う一部の断面図である。
0.05≦Ct/Db≦0.4 …(2)
上式(2)のように、前記接触点CAとポケット25の最近傍の端部Eとの間の寸法Ctと、玉の径Dbとの比Ct/Dbが、0.05以上0.4以下とされている場合、玉15とポケット25の円筒面27とが接触する接触点CAの周辺に、玉15とポケット25の円筒面27との間隔が狭い部分の領域を確保できる。したがって、玉15とポケット25の円筒面27とが接触する接触点CAにおける潤滑剤を十分に確保できる。
図4に示す参考例1に係る玉軸受201は、保持器17のポケット25の中心軸が保持器17の径方向に沿う中心軸に平行とされた一般的な玉軸受である。この玉軸受201では、ポケット25の円筒面27と玉15との接触点CAは、回転軸Rより大きく離れた位置となる。つまり、玉15と保持器17のポケット25の円筒面27とが、自転周速が速い位置で接触することになる。
図6に示すように、参考例2に係る玉軸受202では、アキシャル予圧の付与時における接触角αに対して保持器17のポケット25の傾斜角βが同等とされている。この玉軸受202では、玉15と保持器17との接触点CAから保持器17の近い側の周面までの空間Sが狭くなる。すると、保持器17のポケット25の円筒面27と玉15との接触部分に十分な潤滑剤が確保されず、軸受性能の低下を招くおそれがある。
(1) 外周に内輪軌道面を有する内輪と、
内周に外輪軌道面を有する外輪と、
前記内輪軌道面と前記外輪軌道面との間に転動自在に配置される複数の玉と、
前記玉を転動自在に保持する円筒面を有する複数のポケットが周方向に間隔をあけて形成され、前記外輪の内径面または前記内輪の外径面に案内される周面を有する保持器と、を備える玉軸受であって、
前記ポケットは、前記円筒面の傾斜角βが、0°より大きく、かつ、前記玉軸受の接触角αより小さくされ、前記玉の回転軸が前記円筒面と交差する位置よりも保持器厚み方向において内側で前記玉と前記円筒面とが接触することにより、当該接触位置から前記交差する位置側の保持器周面までの間に空間が形成される、玉軸受。
この玉軸受によれば、ポケットの円筒面の傾斜角βが0°より大きいことにより、玉の自転周速が相対的に小さい箇所で玉とポケットとが接触される。
しかも、ポケットの円筒面の傾斜角βがアキシャル予圧の付与時における玉の接触角αより小さいことにより、玉と保持器との接触部分から保持器における最近傍の周面までの空間が広くなり、玉と保持器との接触部分に十分な潤滑剤を確保できる。
これにより、玉と保持器との間の滑り摩擦の低減、回転トルクの減少の抑制、玉と保持器との間の発熱低減、発熱低減による潤滑剤の寿命の延長、保持器の摩耗の低減、保持器の振動の低減などの軸受性能の向上効果が得られる。
前記保持器は、前記外輪の前記内径面に案内される外周面または前記内輪の前記外径面に案内される内周面が、軸方向の一方側及び軸方向の他方側で同一径である、(1)に記載の玉軸受。
この玉軸受によれば、外輪の内径面または内輪の外径面によって案内される保持器を外輪または内輪に対して傾き難くなる。
この玉軸受によれば、外輪の内径面または内輪の外径面によって案内される保持器の軸方向のバランスを均等にし、外輪または内輪に対してより傾き難くなる。
11a 外径面
13 外輪
13a 内径面
15 玉
17,17A,17B 保持器
17a 内周面
17b 外周面
21 内輪軌道面
23 外輪軌道面
25 ポケット
27 円筒面
31 一方側
33 他方側
100 玉軸受
Ta,Tb 厚み
α 接触角
β 傾斜角
Claims (3)
- 外周に内輪軌道面を有する内輪と、
内周に外輪軌道面を有する外輪と、
前記内輪軌道面と前記外輪軌道面との間に転動自在に配置される複数の玉と、
前記玉を転動自在に保持する円筒面を有する複数のポケットが周方向に間隔をあけて形成され、前記外輪の内径面または前記内輪の外径面に案内される周面を有する保持器と、
を備える玉軸受であって、
前記ポケットは、前記円筒面の傾斜角βが、0°より大きく、かつ、前記玉軸受の接触角αより小さくされ、前記玉の回転軸が前記円筒面と交差する位置よりも保持器厚み方向において内側で前記玉と前記円筒面とが接触することにより、当該接触位置から前記交差する位置側の保持器周面までの間に空間が形成される、
玉軸受。 - 前記保持器を案内する前記外輪の前記内径面または前記内輪の前記外径面は、前記外輪軌道面または前記内輪軌道面を挟んだ軸方向の両側で同一径であり、
前記保持器は、前記外輪の前記内径面に案内される外周面または前記内輪の前記外径面に案内される内周面が、軸方向の一方側及び軸方向の他方側で同一径である、
請求項1に記載の玉軸受。 - 前記保持器は、軸方向の一方側の径方向の厚みと軸方向の他方側における径方向の厚みとが同一である、
請求項2に記載の玉軸受。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22779644.8A EP4317719A4 (en) | 2021-03-31 | 2022-02-21 | BALL BEARING |
US18/270,952 US20240052881A1 (en) | 2021-03-31 | 2022-02-21 | Ball bearing |
CN202280024503.5A CN117083467A (zh) | 2021-03-31 | 2022-02-21 | 滚珠轴承 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-062335 | 2021-03-31 | ||
JP2021062335A JP2022157867A (ja) | 2021-03-31 | 2021-03-31 | 玉軸受 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022209417A1 true WO2022209417A1 (ja) | 2022-10-06 |
Family
ID=83456013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/006892 WO2022209417A1 (ja) | 2021-03-31 | 2022-02-21 | 玉軸受 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240052881A1 (ja) |
EP (1) | EP4317719A4 (ja) |
JP (1) | JP2022157867A (ja) |
CN (1) | CN117083467A (ja) |
WO (1) | WO2022209417A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0320723U (ja) * | 1989-07-10 | 1991-02-28 | ||
JP2001140870A (ja) | 1999-11-19 | 2001-05-22 | Nsk Ltd | アンギュラ玉軸受 |
JP2016118294A (ja) * | 2014-12-18 | 2016-06-30 | 日本精工株式会社 | アンギュラ玉軸受 |
JP2021025613A (ja) * | 2019-08-07 | 2021-02-22 | 日本精工株式会社 | 深溝玉軸受 |
JP2021062335A (ja) | 2019-10-11 | 2021-04-22 | 昭和電工マテリアルズ株式会社 | 反応生成物の製造方法及び製造装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU518583A1 (ru) * | 1972-07-11 | 1976-06-25 | Предприятие П/Я А-1586 | Радиально-упорный шарикоподшипник с посто нным углом контакта |
DE2612272A1 (de) * | 1976-03-19 | 1977-09-22 | Universal Kugellager Gmbh | Axial-schraegkugellager |
-
2021
- 2021-03-31 JP JP2021062335A patent/JP2022157867A/ja active Pending
-
2022
- 2022-02-21 CN CN202280024503.5A patent/CN117083467A/zh active Pending
- 2022-02-21 WO PCT/JP2022/006892 patent/WO2022209417A1/ja active Application Filing
- 2022-02-21 US US18/270,952 patent/US20240052881A1/en active Pending
- 2022-02-21 EP EP22779644.8A patent/EP4317719A4/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0320723U (ja) * | 1989-07-10 | 1991-02-28 | ||
JP2001140870A (ja) | 1999-11-19 | 2001-05-22 | Nsk Ltd | アンギュラ玉軸受 |
JP2016118294A (ja) * | 2014-12-18 | 2016-06-30 | 日本精工株式会社 | アンギュラ玉軸受 |
JP2021025613A (ja) * | 2019-08-07 | 2021-02-22 | 日本精工株式会社 | 深溝玉軸受 |
JP2021062335A (ja) | 2019-10-11 | 2021-04-22 | 昭和電工マテリアルズ株式会社 | 反応生成物の製造方法及び製造装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4317719A4 |
Also Published As
Publication number | Publication date |
---|---|
CN117083467A (zh) | 2023-11-17 |
EP4317719A1 (en) | 2024-02-07 |
EP4317719A4 (en) | 2024-10-16 |
JP2022157867A (ja) | 2022-10-14 |
US20240052881A1 (en) | 2024-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8985860B2 (en) | Prong type resin cage for double row roller bearing and double row roller bearing | |
WO2012099120A1 (ja) | 転がり軸受 | |
WO2018034240A1 (ja) | 玉軸受、主軸装置及び工作機械 | |
EP3848602B1 (en) | Rolling bearing and spindle device equipped with rolling bearing | |
WO2022209417A1 (ja) | 玉軸受 | |
JP7142629B2 (ja) | アンギュラ玉軸受保持器およびアンギュラ玉軸受 | |
JP2009275722A (ja) | 転がり軸受 | |
JP2008267400A (ja) | 玉軸受 | |
US10119568B2 (en) | Rolling bearing | |
JP2003042160A (ja) | アンギュラ玉軸受及び主軸装置 | |
JPH074439A (ja) | 高速アンギュラ玉軸受 | |
CN112013019A (zh) | 一种滚子轴承组件和航空发动机 | |
WO2018225720A1 (ja) | 転がり軸受用保持器および転がり軸受 | |
JP4122474B2 (ja) | 保持器 | |
JP7314701B2 (ja) | 深溝玉軸受 | |
US20170122368A1 (en) | Tapered Roller Bearing | |
WO2019151456A1 (ja) | 玉軸受及び軸受ユニット | |
JP2007170470A (ja) | アンギュラ玉軸受用の合成樹脂製保持器およびアンギュラ玉軸受 | |
JPH1082424A (ja) | 転がり軸受用保持器 | |
WO2019146768A1 (ja) | アンギュラ玉軸受 | |
US20150043852A1 (en) | Rolling Bearing With Reduced Friction Torque | |
EP4291792B1 (en) | Skew limiting bearing cage | |
JP5985684B2 (ja) | スラスト軸受及びその保持器 | |
JP7481851B2 (ja) | アンギュラ玉軸受 | |
JP2014043900A (ja) | 転がり軸受 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22779644 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18270952 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280024503.5 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022779644 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022779644 Country of ref document: EP Effective date: 20231031 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |