WO2022208861A1 - 耐熱合金部材およびその製造方法ならびに高温装置およびその製造方法 - Google Patents

耐熱合金部材およびその製造方法ならびに高温装置およびその製造方法 Download PDF

Info

Publication number
WO2022208861A1
WO2022208861A1 PCT/JP2021/014268 JP2021014268W WO2022208861A1 WO 2022208861 A1 WO2022208861 A1 WO 2022208861A1 JP 2021014268 W JP2021014268 W JP 2021014268W WO 2022208861 A1 WO2022208861 A1 WO 2022208861A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
heat
layer
resistant alloy
resistant
Prior art date
Application number
PCT/JP2021/014268
Other languages
English (en)
French (fr)
Inventor
敏夫 成田
泰道 加藤
拓郎 成田
元博 大塚
真由美 荒
Original Assignee
株式会社ディ・ビー・シー・システム研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ディ・ビー・シー・システム研究所 filed Critical 株式会社ディ・ビー・シー・システム研究所
Priority to PCT/JP2021/014268 priority Critical patent/WO2022208861A1/ja
Priority to JP2023510128A priority patent/JP7369499B2/ja
Publication of WO2022208861A1 publication Critical patent/WO2022208861A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/48Aluminising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants

Definitions

  • the present invention relates to a heat-resistant alloy member, a method for manufacturing the same, a high-temperature device, and a method for manufacturing the same, and in particular, incinerators, boilers, gas turbines, and jet engines used in an environment where heating and cooling are repeated in a high-temperature oxidizing atmosphere. , exhaust gas system members, and the like.
  • Thermal Barrier Coating is applied to heat-resistant alloy substrates used in various combustion equipment, turbines, jet engines, and the like.
  • a thermally grown oxide (TGO) mainly composed of Al 2 O 3 is formed at the interface between the top layer and the bond layer to suppress oxidation of the heat resistant alloy base material.
  • the top layer and the bond layer are sometimes called a thermal barrier layer (TBC).
  • the element of the substrate diffuses to the bond layer side and the Al of the bond layer diffuses to the substrate side during use, so the Al concentration in the bond layer decreases, forming a non-protective TGO.
  • the top layer (YSZ) is peeled off at an early stage due to growth, and a solution to this problem is desired.
  • Japanese Patent No. 5905336 Japanese Patent No. 5905354
  • Japanese Patent No. 5905355 Japanese Patent No. 3857689 Japanese Patent No. 3857690 Japanese Patent No. 3910588 Japanese Patent No. 4753720
  • the diffusion barrier layer prevents elements of the base material from diffusing to the bond layer side and Al of the bond layer from diffusing to the base material side during use.
  • the blade base material contains 4.9% or more of Al by weight. Since it is made of a Ni-based single crystal superalloy containing 0.2% or less, protective Al 2 O 3 is formed on the surface of the blade base material during high-temperature oxidation, and oxidation resistance can be ensured.
  • the problem to be solved by the present invention is that even when a heat-resistant alloy base material containing no Al or having a low Al concentration is used, it can be used in an environment in which a heating and cooling cycle is added in a high-temperature oxidizing atmosphere.
  • a heat-resistant alloy member that can maintain the high-temperature properties of a heat-resistant alloy substrate for a long period of time, and is sufficient to provide a top layer in a minimum necessary area, a method for manufacturing the same, and such a heat-resistant alloy member. It is to provide a high temperature device including and a method of manufacturing the same.
  • the present invention a heat-resistant alloy base material; a Re-based, W-based, or Cr-based multi-purpose alloy layer provided in a region including at least a region where heat insulation is to be performed on the surface of the heat-resistant alloy base; a bond layer made of an Al-containing alloy provided on the multi-purpose alloy layer in a region including at least the region where the heat insulation is to be performed; a top layer made of heat-shielding ceramics provided only in the region where the heat-shielding is to be performed on the bond layer; It is a heat-resistant alloy member having
  • the Re-based, W-based or Cr-based multi-purpose layer has, in addition to the diffusion barrier ability, oxidation resistance, improvement of the mechanical properties of the heat-resistant alloy substrate, and improvement of the top layer. It means an alloy layer that has multi-functionality such as improvement of peeling resistance and can be used for many purposes.
  • the Re-based, W-based, or Cr-based multi-purpose alloy layers contain Re, W, and Cr, respectively.
  • the multi-purpose alloy layer is Re-based or W-based
  • the multi-purpose alloy layer, the bond layer and the top layer are provided only in the heat shielding region of the surface of the heat-resistant alloy substrate.
  • the Re-based or W-based multi-purpose alloy layer, bond layer and top layer are provided only in the heat-shielding region of the surface of the heat-resistant alloy substrate, and are provided in areas other than the heat-shielding region.
  • An Al-containing alloy film is provided so as to cover the surface of the heat-resistant alloy base material of the part.
  • a protective Al 2 O 3 film is formed by oxidizing the Al-containing alloy film during oxidation at high temperature, and the high-temperature oxidation resistance of the heat-resistant alloy substrate can be ensured.
  • the Al-containing alloy film is generally a Ni-based alloy having an Al concentration of 50 atomic % (at %) or less and 30 atomic % or more, and preferably has an Al concentration of 40 atomic % or less.
  • the Al-containing alloy coating is typically made of ⁇ -NiAl, but is not limited to this.
  • the multi-purpose alloy layer may be formed by laminating two different layers selected from a Re-based multi-purpose alloy layer and a W-based multi-purpose alloy layer.
  • a Cr-based multi-purpose alloy layer and an Al-containing alloy coating on the multi-purpose alloy layer are provided so as to cover the entire surface of the heat-resistant alloy substrate, and the bond layer and the top layer are formed on the Al-containing alloy coating. It is provided only in areas where heat insulation is to be performed.
  • the multi-purpose alloy layer, the bond layer and the top layer are provided only in the heat-insulating region of the surface of the heat-resistant alloy substrate so as to cover the surface of the heat-resistant alloy substrate other than the heat-insulating region.
  • a multi-purpose alloy layer and an Al-containing alloy coating on the multi-purpose alloy layer are provided.
  • a Cr-based multi-purpose alloy layer and an Al-containing alloy film that also serves as a bond layer are provided on the multi-purpose alloy layer so as to cover the entire surface of the heat-resistant alloy substrate, and the top layer is on the Al-containing alloy film. It is provided only in areas where heat insulation is to be performed.
  • the heat-resistant alloy base material is selected as necessary, and may or may not be particularly limited. Unless otherwise specified, the heat-resistant alloy base material is made of conventionally known alloys such as Fe-based alloys, Co-based alloys, and Ni-based alloys having a Cr content of 20 atomic % or less.
  • the heat-resistant alloy substrate is preferably composed of one or more metals containing at least Cr selected from the group consisting of Cr, Mo, Nb and W. It consists of a Ni-based alloy containing more than 24.5 atomic %.
  • the Ni-based alloy contains 18.7 atomic % or more of Cr, and a total of 5.7 atomic % of one or more metals selected from the group consisting of Mo, Nb and W.
  • the total content of Fe and Nb is 13.1 atomic % or less.
  • the heat-resistant alloy substrate may be made of a Ni-based single crystal superalloy.
  • the shape of the heat-resistant alloy base material is not particularly limited, and is selected according to the application.
  • the heat shielding ceramics constituting the top layer are, for example, oxide ceramics containing zirconium, yttrium and oxygen (typically YSZ), oxide ceramics containing aluminum, yttrium and oxygen, aluminum, lanthanum and oxygen at least selected from the group consisting of oxide ceramics containing and, oxide ceramics containing aluminum, samarium and oxygen, oxide ceramics containing cerium and oxygen, and oxide ceramics containing thorium and oxygen consist of one kind.
  • oxide ceramics containing zirconium, yttrium and oxygen typically YSZ
  • oxide ceramics containing aluminum, yttrium and oxygen, aluminum, lanthanum and oxygen at least selected from the group consisting of oxide ceramics containing and, oxide ceramics containing aluminum, samarium and oxygen, oxide ceramics containing cerium and oxygen, and oxide ceramics containing thorium and oxygen consist of one kind.
  • the heat-resistant alloy member is not particularly limited, but specific examples include gas turbine members, jet engine members, exhaust system members, and the like.
  • this invention forming a Re-, W-, or Cr-based multi-purpose alloy layer on a surface of a heat-resistant alloy base material, including at least a region where heat insulation is to be performed; forming a bond layer made of an Al-containing alloy on a region including at least the region where the heat shield is to be performed on the multi-purpose alloy layer; a step of forming a top layer made of heat-shielding ceramics only on the region where the heat-shielding is to be performed on the bond layer; A method for manufacturing a heat-resistant alloy member having
  • a multi-purpose alloy layer is formed only on the heat-insulating region of the surface of the heat-resistant alloy substrate, and then a bond layer and a top layer are sequentially formed on the multi-purpose alloy layer.
  • thermal spraying, electron beam evaporation, or the like can be used to form the bond layer and the top layer.
  • a multi-purpose alloy layer is formed only on the area of the surface of the heat-resistant alloy base material that should be heat-insulated, and the surface of the heat-resistant alloy base material other than the area that should be heat-insulated is covered by performing Al diffusion treatment. After forming an Al-containing alloy film on the multi-purpose alloy layer, a bond layer and a top layer are sequentially formed on the multi-purpose alloy layer.
  • the heat-resistant alloy base material is made of a Ni-based alloy containing more than 24.5 atomic percent in total of one or more metals containing at least Cr selected from the group consisting of Cr, Mo, Nb and W.
  • oxidation is performed at a high temperature to form a Cr-based layer between the heat-resistant alloy base material and the Al-containing alloy coating due to the reaction between the heat-resistant alloy base material and the Al-containing alloy coating.
  • the heat-resistant alloy base material is made of a Ni-based alloy containing more than 24.5 atomic percent in total of one or more metals containing at least Cr selected from the group consisting of Cr, Mo, Nb and W,
  • An Al-containing alloy film is formed on the entire surface of the heat-resistant alloy substrate by applying Al diffusion treatment, and after sequentially forming a bond layer and a top layer only in the region where heat shielding is to be performed, heat treatment is performed at a high temperature.
  • a Cr-based multi-purpose alloy layer is formed between the heat-resistant alloy substrate and the Al-containing alloy film by reaction between the heat-resistant alloy substrate and the Al-containing alloy film.
  • the heat-resistant alloy base material is made of a Ni-based alloy containing more than 24.5 atomic percent in total of one or more metals containing at least Cr selected from the group consisting of Cr, Mo, Nb and W.
  • this invention a heat-resistant alloy base material; a Re-based, W-based, or Cr-based multi-purpose alloy layer provided in a region including at least a region where heat insulation is to be performed on the surface of the heat-resistant alloy base; a bond layer made of an Al-containing alloy provided on the multi-purpose alloy layer in a region including at least the region where the heat insulation is to be performed; and a top layer made of heat-shielding ceramics provided only on the region where the heat-shielding is to be performed on the bond layer.
  • the high-temperature device may be of various types that partially or wholly contain the above-mentioned heat-resistant alloy member, and specifically includes, for example, a gas turbine, a jet engine, an exhaust gas device, and the like.
  • this invention forming a Re-, W-, or Cr-based multi-purpose alloy layer on a surface of a heat-resistant alloy base material, including at least a region where heat insulation is to be performed; forming a bond layer made of an Al-containing alloy on a region including at least the region where the heat shield is to be performed on the multi-purpose alloy layer; and forming a top layer made of heat-shielding ceramics only on the heat-insulating region on the bond layer, and manufacturing a heat-resistant alloy member.
  • the diffusion barrier In addition to the function and peeling resistance of the top layer of the heat shield layer, excellent high-temperature oxidation resistance can be obtained, and furthermore, the mechanical strength of the heat-resistant alloy substrate can be improved.
  • the high-temperature properties can be maintained for a long period of time, and it is sufficient to provide the top layer in the minimum required area.
  • FIG. 1 is a cross-sectional view showing a heat-resistant alloy member according to a first embodiment of the invention
  • FIG. FIG. 4 is a cross-sectional view showing a heat-resistant alloy member according to a second embodiment of the invention
  • FIG. 5 is a cross-sectional view showing a heat-resistant alloy member according to a third embodiment of the invention
  • FIG. 4 is a cross-sectional view showing a heat-resistant alloy member according to a fourth embodiment of the invention
  • FIG. 5 is a cross-sectional view showing a heat-resistant alloy member according to a fifth embodiment of the present invention
  • FIG. 6 is a cross-sectional view showing a heat-resistant alloy member according to a sixth embodiment of the invention
  • FIG. 11 is a cross-sectional view showing a heat-resistant alloy member according to a seventh embodiment of the present invention
  • FIG. 2 is a perspective view showing a test piece used for high temperature cycle oxidation test
  • FIG. 2 is a cross-sectional view showing a test piece used for creep testing
  • 1 is a cross-sectional view showing the structure of a test piece of Example 1.
  • FIG. 4 is a drawing-substituting photograph showing the cross-sectional structure of the test piece of Example 1.
  • FIG. FIG. 4 is a cross-sectional view showing the structure of a test piece of Example 2; 4 is a drawing-substituting photograph showing the cross-sectional structure of the test piece of Example 2.
  • FIG. 10 is a cross-sectional view showing the structure of a test piece of Example 3; 10 is a drawing-substituting photograph showing the cross-sectional structure of the test piece of Example 3.
  • FIG. FIG. 10 is a cross-sectional view showing the structure of a test piece of Example 4;
  • FIG. 10 is a cross-sectional view showing the structure of a test piece of Example 5;
  • FIG. 10 is a cross-sectional view showing the structure of a test piece of Example 6;
  • 10 is a drawing-substituting photograph showing the cross-sectional structure of the test piece of Example 6.
  • FIG. FIG. 11 is a cross-sectional view showing the structure of a test piece of Example 7;
  • FIG. 10 is a cross-sectional view showing the structure of a test piece of Example 8;
  • FIG. 4 is a cross-sectional view showing the structure of a test piece of a comparative example;
  • FIG. 4 is a drawing-substituting photograph showing a cross-sectional structure of a test piece of a comparative example;
  • FIG. 4 is a schematic diagram showing the dependence of the amount of oxidation on the number of cycles of test pieces of Examples 1 to 8 and a comparative example subjected to heating and cooling cycle oxidation.
  • FIG. 5 is a schematic diagram showing the cycle number dependence of the Al concentration of the bond layers of the test pieces of Examples 1 to 8 and Comparative Example.
  • FIG. 10 is a drawing-substituting photograph showing the cross-sectional structure of a test piece after Al is diffused into an ALLOY X base material;
  • FIG. Fig. 10 is a drawing-substituting photograph showing the cross-sectional structure of a test piece after Al diffusion was performed on an ALLOY 601 base material;
  • 2 is a drawing-substituting photograph showing a cross-sectional structure of a test piece after Al diffusion was performed on an ALLOY 20 base material.
  • FIG. 10 is a drawing-substituting photograph showing the cross-sectional structure of a test piece after Al diffusion was performed on an ALLOY 825 base material;
  • FIG. 10 is a drawing-substituting photograph showing the cross-sectional structure of a test piece after Al diffusion was performed on an ALLOY 800HT base material; 2 is a drawing-substitute photograph showing the cross-sectional structure of a test piece after Al diffusion was performed on an ALLOY 625 base material.
  • FIG. 10 is a drawing-substituting photograph showing the cross-sectional structure of a test piece after Al diffusion was performed on an ALLOY 718 base material;
  • FIG. 2 is a drawing-substituting photograph showing the cross-sectional structure of a test piece after Al diffusion was performed on an ALLOY B2 base material.
  • FIG. 10 is a drawing-substituting photograph showing the cross-sectional structure of a test piece after Al diffusion was performed on an ALLOY 22 base material
  • FIG. Fig. 10 is a drawing-substituting photograph showing the cross-sectional structure of a test piece after Al diffusion was performed on an ALLOY C276 base material
  • Fig. 10 is a drawing-substituting photograph showing a cross-sectional structure of a test piece of an ALLOY 22 base material after four-cycle oxidation
  • Fig. 10 is a drawing-substituting photograph showing a cross-sectional structure of a test piece of an ALLOY 625 base material after four-cycle oxidation.
  • Fig. 10 is a drawing-substituting photograph showing the cross-sectional structure of a test piece after Al diffusion was performed on an ALLOY 22 base material
  • FIG. Fig. 10 is a drawing-substituting photograph showing the cross-sectional structure of a test piece after Al diffusion was
  • FIG. 10 is a drawing-substituting photograph showing a cross-sectional structure of a test piece of an ALLOY C276 base material after four-cycle oxidation; 2 is a drawing-substituting photograph showing a cross-sectional structure of a test piece of an ALLOY X base material after four-cycle oxidation.
  • Fig. 10 is a drawing-substituting photograph showing a cross-sectional structure of a test piece of an ALLOY 718 base material after four-cycle oxidation.
  • Fig. 10 is a drawing-substituting photograph showing the cross-sectional structure of a test piece of an ALLOY 825 base material after four-cycle oxidation.
  • FIG. 10 is a drawing-substituting photograph showing a cross-sectional structure of a test piece of an ALLOY 20 base material after four-cycle oxidation.
  • 1 is a drawing-substituting photograph showing a cross-sectional structure of a test piece of an ALLOY 601 substrate after four-cycle oxidation.
  • Fig. 10 is a drawing-substituting photograph showing a cross-sectional structure of a test piece of an ALLOY 800HT substrate after four-cycle oxidation.
  • FIG. 10 is a drawing-substituting photograph showing the cross-sectional structure of a test piece of an ALLOY B2 base material after four-cycle oxidation;
  • 1 is a drawing-substituting photograph showing a cross-sectional structure of a test piece of an ALLOY 22 base material after 100 cycles of oxidation.
  • 1 is a drawing-substituting photograph showing a cross-sectional structure of a test piece of an ALLOY 625 substrate after 100 cycles of oxidation.
  • Fig. 10 is a drawing-substituting photograph showing the cross-sectional structure of a test piece of an ALLOY C276 base material after 100 cycles of oxidation.
  • 1 is a drawing-substituting photograph showing a cross-sectional structure of a test piece of an ALLOY X base material after 100 cycles of oxidation.
  • 10 is a drawing-substituting photograph showing a cross-sectional structure of a test piece of an ALLOY 718 base material after 100 cycles of oxidation.
  • 1 is a drawing-substituting photograph showing a cross-sectional structure of a test piece of an ALLOY 825 base material after 100 cycles of oxidation.
  • 1 is a drawing-substituting photograph showing a cross-sectional structure of a test piece of an ALLOY 20 substrate after 100 cycles of oxidation.
  • 1 is a drawing-substituting photograph showing a cross-sectional structure of a test piece of an ALLOY 601 substrate after 100 cycles of oxidation.
  • FIG. 1 is a drawing-substituting photograph showing a cross-sectional structure of a test piece of an ALLOY 800HT substrate after 100 cycles of oxidation.
  • 1 is a drawing-substituting photograph showing a cross-sectional structure of a test piece of an ALLOY B2 base material after 100 cycles of oxidation.
  • FIG. 4 is a schematic diagram showing the results of investigation of creep behavior of test pieces of ALLOY X base material on which various multi-purpose alloy layers are formed.
  • FIG. 3 is a schematic diagram showing a creep curve (strain) of a test piece of an ALLOY X substrate on which a Re-based multi-purpose alloy layer is formed;
  • FIG. 3 is a schematic diagram showing a creep curve (strain rate) of a test piece of an ALLOY X substrate on which a Re-based multi-purpose alloy layer is formed.
  • 1 is a drawing-substituting photograph showing the result of observation of the surface of a test piece of an ALLOY X substrate on which a Re-based multi-purpose alloy layer is formed.
  • FIG. 34B is a drawing-substituting photograph showing an enlarged part of FIG. 34A.
  • 34B is a drawing-substituting photograph showing the result of observation of the cross-sectional structure of the test piece shown in FIG. 34A.
  • FIG. 34C is a photograph substituting for a drawing and showing an enlarged portion of the Re-based multi-purpose alloy layer/ ⁇ -NiAl coating in the cross-sectional structure shown in FIG. 34C.
  • FIG. 35B is a schematic diagram showing the concentration distribution of each element in the direction indicated by the dotted line in FIG. 35A;
  • FIG. 4 is a schematic diagram showing the creep behavior of a test piece of SUS310 substrate on which a Re-based multi-purpose alloy layer is formed.
  • FIG. 10 is a drawing-substituting photograph showing the result of observing the cross-sectional structure of a test piece of a SUS310 base material after a creep test.
  • 37B is a drawing-substituting photograph showing an enlarged part of the cross-sectional structure shown in FIG. 37A.
  • 1 is a drawing-substituting photograph showing the result of observing a cross-sectional structure after a creep test of a test piece of a SUS310 substrate on which a Re-based multipurpose alloy layer having a thickness of 10 ⁇ m is formed.
  • 37C is a photograph substituting for a drawing and showing an enlarged part of the cross-sectional structure shown in FIG. 37C.
  • FIG. 1 is a drawing-substituting photograph showing the result of observing a cross-sectional structure after a creep test of a test piece of a SUS310 substrate on which a Re-based multipurpose alloy layer having a thickness of 20 ⁇ m is formed.
  • 37E is a photograph substituting for a drawing and showing an enlarged part of the cross-sectional structure shown in FIG. 37E.
  • FIG. 1 shows a heat-resistant alloy member according to a first embodiment.
  • a Re-based multi-purpose alloy layer 201, a bond layer 300 and a top layer 400 are sequentially laminated only in a specific region of the surface of a heat-resistant alloy substrate 100 where heat insulation is to be performed. , and the surface of the heat-resistant alloy base material 100 is exposed in other regions.
  • the Re-based multi-purpose alloy layer 201 is made of an alloy layer containing Re, and typically the upper portion is made of a Ni--Cr alloy layer 201a.
  • the alloy layer containing Re the one described in Patent Document 4 or the like is used.
  • the top layer 400 is made of heat insulating ceramics such as YSZ.
  • a TGO-Al 2 O 3 layer is formed between the bond layer 300 and the top layer 400 before or after the start of use.
  • the thickness of this TGO-Al 2 O 3 layer is, for example, about several ⁇ m.
  • the heat-resistant alloy base material 100 is selected as necessary, for example, selected from among those already listed.
  • the amount is 20 atomic % or more, and more than 24.5 atomic % in total of one or more metals containing at least Cr selected from the group consisting of Cr, Mo, Nb and W
  • metals containing at least Cr selected from the group consisting of Cr, Mo, Nb and W
  • Ni-based alloys containing a large amount those made of Ni-based single crystal superalloys, and the like.
  • the thickness of the bond layer 300 is, for example, 50 ⁇ m or more and 150 ⁇ m or less.
  • the thickness of the top layer 400 is, for example, 200 ⁇ m or more and 500 ⁇ m or less.
  • the heat-resistant alloy base material 100 is made of a Ni-based alloy, an Fe-based alloy, a Co-based alloy, or the like.
  • the surface of the heat-resistant alloy base material 100 is masked by covering it with an insulating tape or forming an insulating coating film on the area other than the specific area where the heat is to be shielded, and then only the specific area is plated. to form a Re-containing layer.
  • the Re-based multi-purpose alloy layer 201 is formed by the reaction between the heat-resistant alloy substrate 100 and the Re-containing layer.
  • a Ni—Cr layer 201 a is formed on the Re-based multi-purpose alloy layer 201 .
  • a bond layer 300 and a top layer 400 are sequentially formed on the Re-based multi-purpose alloy layer 201 by thermal spraying, electron beam deposition, or the like.
  • the TGO-Al 2 O 3 layer between the bond layer 300 and the top layer 400 is generally formed when the heat-resistant alloy member is used in a high-temperature oxidizing atmosphere. For example, after the bond layer 300 is formed, it is oxidized in a low oxygen partial pressure atmosphere.
  • the intended heat-resistant alloy member is manufactured.
  • the bond layer 300 and the top layer 400 are formed through the Re-based multi-purpose alloy layer 201 only in the specific region of the surface of the heat-resistant alloy substrate 100 where heat insulation is to be performed. is provided, when this heat-resistant alloy member is used in an environment where heating and cooling are repeated in a high-temperature oxidizing atmosphere, the Re-based multi-purpose alloy layer 201 transfers Al of the bond layer 300 to the heat-resistant alloy substrate 100.
  • the Al concentration of the bond layer 300 can be maintained sufficiently high, for example, 13 atomic % or more, and the bond layer 300
  • the TGO-Al 2 O 3 layer can be maintained between the top layer 400 and the top layer 400 for a long period of time, thereby obtaining excellent high temperature corrosion resistance, and the TGO-Al 2 O 3 layer Delamination of the top layer 400 can be effectively prevented by suppressing the formation of non-protective oxides other than the heat-resistant alloy substrate 100, thereby obtaining excellent delamination resistance.
  • This heat-resistant alloy member sufficiently satisfies the characteristics required for high-temperature members such as gas turbines, jet engines, exhaust system members, etc., whose operating temperatures tend to rise in recent years with the aim of increasing output. be.
  • FIG. 2 shows a heat-resistant alloy member according to a second embodiment.
  • a Re-based multi-purpose alloy layer 201, a bond layer 300, and a top layer 400 are sequentially laminated only on a specific region of the surface of a heat-resistant alloy substrate 100 where heat insulation is to be performed.
  • the Re-based multi-purpose alloy layer 201 is the same as in the first embodiment.
  • a portion of the surface of the heat-resistant alloy substrate 100 other than the specific region where heat shielding is to be performed is covered with an Al-containing alloy film 150 .
  • the Al-containing alloy coating 150 is typically made of ⁇ -NiAl or Fe-Al.
  • the heat-resistant alloy base material 100, bond layer 300 and top layer 400 are the same as in the first embodiment.
  • the heat-resistant alloy base material 100 is made of a Ni-based alloy, an Fe-based alloy, a Co-based alloy, or the like.
  • the Re-based multi-purpose alloy layer 201 is formed on a specific region of the surface of the heat-resistant alloy substrate 100 where heat insulation is to be performed, in the same manner as in the first embodiment.
  • an Al-containing alloy film 150 is formed on the surface of the heat-resistant alloy base material 100 at a portion other than the Re-based multi-purpose alloy layer 201 by performing an Al diffusion treatment.
  • the Al diffusion treatment is performed by embedding the heat-resistant alloy base material 100 in, for example, (Al+NH 4 Cl+Al 2 O 3 ) and heating in an Ar atmosphere at a temperature of 700 to 800° C.
  • the heat resistant alloy base material 100 is embedded in (FeAl+NH 4 Cl+Al 2 O 3 ) or (Al+Ni+NH 4 Cl+Al 2 O 3 ) and heated at a temperature of 900 to 1100° C. for 1 to 10 hours in an Ar+3 vol% H 2 atmosphere.
  • a bond layer 300 and a top layer 400 are sequentially formed on the Re-based multi-purpose alloy layer 201 by thermal spraying, electron beam deposition, or the like.
  • the TGO-Al 2 O 3 layer between the bond layer 300 and the top layer 400 is generally formed when the heat-resistant alloy member is used in a high-temperature oxidizing atmosphere. For example, after the bond layer 300 is formed, it is oxidized in a low oxygen partial pressure atmosphere.
  • the intended heat-resistant alloy member is manufactured.
  • the same advantages as those of the first embodiment can be obtained, and the surface of the heat-resistant alloy substrate 100 other than the Re-based multi-purpose alloy layer 201 is coated with an Al-containing alloy film.
  • a protective Al 2 O 3 film is formed and protected during high-temperature oxidation, so it is possible to obtain the advantage that excellent high-temperature oxidation resistance can be secured.
  • FIG. 3 shows a heat-resistant alloy member according to a third embodiment.
  • a W-based multi-purpose alloy layer 202, a bond layer 300, and a top layer 400 are sequentially laminated only on a specific region of the surface of the heat-resistant alloy substrate 100 where heat insulation is to be performed.
  • the W-based multi-purpose alloy layer 202 is made of an alloy layer containing W, and typically the upper portion is made of a Ni(Cr, Si) layer 202a.
  • a portion of the surface of the heat-resistant alloy substrate 100 other than the specific region where heat shielding is to be performed is covered with an Al-containing alloy film 150 .
  • the Al-containing alloy coating 150 is typically made of ⁇ -NiAl or Fe-Al.
  • the heat-resistant alloy base material 100, bond layer 300 and top layer 400 are the same as in the first embodiment.
  • the heat-resistant alloy base material 100 is made of a Ni-based alloy, an Fe-based alloy, a Co-based alloy, or the like.
  • a W-containing layer is formed by applying a slurry to a specific region of the surface of the heat-resistant alloy substrate 100 where heat insulation is to be performed. Specifically, for example, (25 to 50% by weight) W powder, (15 to 25% by weight) Cr powder, (15 to 30% by weight) Mo powder, and the balance Ni-based self-fluxing alloy (nominal composition (% by weight) ;Ni-15Cr-3Si-2B-5Fe) are dissolved in a slurry liquid. Next, heat treatment is performed at a temperature of, for example, 1100° C. or higher and 1200° C.
  • the W-based multi-purpose alloy layer 202 is formed by the reaction between the heat-resistant alloy substrate 100 and the W-containing layer.
  • a Ni(Cr, Si) layer 202 a is formed on the W-based multi-purpose alloy layer 202 .
  • an Al-containing alloy film 150 is formed on the surface of the heat-resistant alloy base material 100 at portions other than the W-based multi-purpose alloy layer 202 by performing Al diffusion treatment.
  • the Al diffusion treatment is performed by burying the heat-resistant alloy base material 100 in, for example, (Al+NH 4 Cl+Al 2 O 3 ) and heating in an Ar atmosphere at a temperature of 700-800° C. for 1-1.5 hours. Alternatively, it is buried in (FeAl+NH 4 Cl+Al 2 O 3 ) or (Al+Ni+NH 4 Cl+Al 2 O 3 ) and heated at a temperature of 900 to 1100° C. for 1 to 10 hours in an atmosphere of Ar+3 vol % H 2 . Next, a bond layer 300 and a top layer 400 are sequentially formed on the W-based multi-purpose alloy layer 202 by thermal spraying, electron beam deposition, or the like.
  • the TGO-Al 2 O 3 layer between the bond layer 300 and the top layer 400 is generally formed when the heat-resistant alloy member is used in a high-temperature oxidizing atmosphere. For example, after the bond layer 300 is formed, it is oxidized in a low oxygen partial pressure atmosphere.
  • the intended heat-resistant alloy member is manufactured.
  • the same advantages as in the first embodiment can be obtained, and the surface of the heat-resistant alloy substrate 100 other than the W-based multi-purpose alloy layer 202 is coated with an Al-containing alloy film.
  • a protective Al 2 O 3 film is formed and protected during high-temperature oxidation, so it is possible to obtain the advantage that excellent high-temperature oxidation resistance can be secured.
  • FIG. 4 shows a heat-resistant alloy member according to a fourth embodiment.
  • a Re-based multi-purpose alloy layer 201, a bond layer 300, and a top layer 400 are sequentially laminated only in a specific region of the surface of the heat-resistant alloy substrate 100 where heat insulation is to be performed.
  • the heat-resistant alloy base material 100 is preferably a Ni-based Ni-based material containing at least one or more Cr-containing metals selected from the group consisting of Cr, Mo, Nb and W in a total amount of more than 24.5 atomic %. Made of alloy.
  • a portion of the surface of the heat-resistant alloy substrate 100 other than the specific region where heat shielding is to be performed is covered with a Cr-based multi-purpose alloy layer 203 and an Al-containing alloy film 150 thereon.
  • the Cr-based multi-purpose alloy layer 203 is composed of an alloy layer containing ⁇ -Cr, and typically contains one or more elements selected from the group consisting of the constituent elements of the heat-resistant alloy base material 100, such as Mo, Nb and W. Contains metal.
  • the Al-containing alloy coating 150 is typically made of ⁇ -NiAl. Bond layer 300 and top layer 400 are the same as in the first embodiment. If necessary, a Cr-based multi-purpose alloy layer may be provided between the Re-based multi-purpose alloy layer 201 and the bond layer 300 .
  • a Re-based multi-purpose alloy layer 201 is formed on a specific region of the surface of the heat-resistant alloy substrate 100 where heat insulation is to be performed, in the same manner as in the first embodiment.
  • an Al-containing alloy film 150 is formed on the surface of the heat-resistant alloy base material 100 at a portion other than the Re-based multi-purpose alloy layer 201 by performing an Al diffusion treatment.
  • a Cr-based multi-purpose alloy layer 203 is formed between the heat-resistant alloy substrate 100 and the Al-containing alloy film 150 .
  • a bond layer 300 and a top layer 400 are sequentially formed on the Re-based multi-purpose alloy layer 201 by thermal spraying, electron beam deposition, or the like.
  • the TGO-Al 2 O 3 layer between the bond layer 300 and the top layer 400 is generally formed when the heat-resistant alloy member is used in a high-temperature oxidizing atmosphere. For example, after the bond layer 300 is formed, it is oxidized in a low oxygen partial pressure atmosphere.
  • the intended heat-resistant alloy member is manufactured.
  • FIG. 5 shows a heat-resistant alloy member according to a fifth embodiment.
  • a W-based multi-purpose alloy layer 202, a bond layer 300, and a top layer 400 are sequentially laminated only in a specific region of the surface of the heat-resistant alloy substrate 100 where heat insulation is to be performed.
  • the heat-resistant alloy base material 100 is preferably a Ni-based Ni-based material containing at least one or more Cr-containing metals selected from the group consisting of Cr, Mo, Nb and W in a total amount of more than 24.5 atomic %. Made of alloy.
  • the surface of the heat-resistant alloy base material 100 is covered with a Cr-based multi-purpose alloy layer 203 and an Al-containing alloy film 150 thereon, except for a specific area where heat insulation is to be performed.
  • the Cr-based multi-purpose alloy layer 203 is the same as in the fourth embodiment.
  • the Al-containing alloy coating 150 is typically made of ⁇ -NiAl. Bond layer 300 and top layer 400 are the same as in the first embodiment. If necessary, a Cr-based multi-purpose alloy layer may be provided between the W-based multi-purpose alloy layer 202 and the bond layer 300 .
  • a W-based multi-purpose alloy layer 202 is formed on a specific region of the surface of the heat-resistant alloy substrate 100 where heat insulation is to be performed, in the same manner as in the second embodiment.
  • the Cr-based multi-purpose alloy layer 203 and the Al-containing alloy film 150 are formed on the surface of the heat-resistant alloy base material 100 at portions other than the W-based multi-purpose alloy layer 202 by performing Al diffusion treatment.
  • a bond layer 300 and a top layer 400 are sequentially formed on the W-based multi-purpose alloy layer 202 by thermal spraying, electron beam deposition, or the like.
  • the TGO-Al 2 O 3 layer between the bond layer 300 and the top layer 400 is generally formed when the heat-resistant alloy member is used in a high-temperature oxidizing atmosphere. For example, after the bond layer 300 is formed, it is oxidized in a low oxygen partial pressure atmosphere.
  • the intended heat-resistant alloy member is manufactured.
  • FIG. 6 shows a heat-resistant alloy member according to a sixth embodiment.
  • a Cr-based multi-purpose alloy layer 203 and an Al-containing alloy film 150 are provided over the entire surface of a heat-resistant alloy base material 100 .
  • the heat-resistant alloy base material 100 is preferably a Ni-based Ni-based material containing at least one or more Cr-containing metals selected from the group consisting of Cr, Mo, Nb and W in a total amount of more than 24.5 atomic %.
  • the Al-containing alloy coating 150 is typically made of ⁇ -NiAl.
  • the Cr-based multi-purpose alloy layer 203 is the same as in the fourth embodiment.
  • a bond layer 300 and a top layer 400 are sequentially laminated on the Al-containing alloy film 150 only in a specific region of the heat-resistant alloy substrate 100 where heat insulation is to be performed.
  • the Al-containing alloy film 150 in the specific region where this heat shield should be performed constitutes a part of the bond layer 300 .
  • the top layer 400 is similar to that of the first embodiment.
  • the Cr-based multi-purpose alloy layer 203 and the Al-containing alloy film 150 are formed on the entire surface of the heat-resistant alloy base material 100 by performing Al diffusion treatment.
  • a bond layer 300 and a top layer 400 are sequentially formed on the Al-containing alloy film 150 by thermal spraying, electron beam deposition, or the like.
  • the TGO-Al 2 O 3 layer between the bond layer 300 and the top layer 400 is generally formed when the heat-resistant alloy member is used in a high-temperature oxidizing atmosphere. For example, after the bond layer 300 is formed, it is oxidized in a low oxygen partial pressure atmosphere.
  • the intended heat-resistant alloy member is manufactured.
  • FIG. 7 shows a heat-resistant alloy member according to a seventh embodiment.
  • a Cr-based multi-purpose alloy layer 203 and an Al-containing alloy film 150 are provided over the entire surface of a heat-resistant alloy base material 100 .
  • the heat-resistant alloy base material 100 is preferably a Ni-based Ni-based material containing at least one or more Cr-containing metals selected from the group consisting of Cr, Mo, Nb and W in a total amount of more than 24.5 atomic %.
  • the Al-containing alloy coating 150 is typically made of ⁇ -NiAl.
  • the Cr-based multi-purpose alloy layer 203 is the same as in the sixth embodiment.
  • a top layer 400 is laminated on the Al-containing alloy film 150 only in a specific region of the heat-resistant alloy substrate 100 where heat shielding is to be performed.
  • the Al-containing alloy film 150 in the specific region to be heat shielded also serves as the bond layer 300 .
  • the top layer 400 is similar to that of the first embodiment.
  • the Cr-based multi-purpose alloy layer 203 and the Al-containing alloy film 150 are formed on the entire surface of the heat-resistant alloy base material 100 by performing Al diffusion treatment.
  • a top layer 400 is formed on the Al-containing alloy film 150 by thermal spraying, electron beam deposition, or the like.
  • the TGO-Al 2 O 3 layer between the Al-containing alloy film 150 that also serves as the bond layer 300 and the top layer 400 is generally formed when the heat-resistant alloy member is used in a high-temperature oxidizing atmosphere.
  • oxidation treatment is performed in a low oxygen partial pressure atmosphere.
  • the intended heat-resistant alloy member is manufactured.
  • heat-resistant alloy base material 100 As the heat-resistant alloy base material 100, the following (1) and (2) were used.
  • Base material made of Ni-based heat-resistant alloy shown in Table 1 (excerpt from the catalog of Osaka Stainless Co., Ltd.)
  • ALLOY 201 corresponds to Ni (for industrial use).
  • Other alloys can be said to be Ni-based alloys.
  • SUS310 base material (composition (% by weight) is Cr: 25, Ni: 20, Fe: balance)
  • the bond layer 300 of the thermal barrier coating film was made of NiCrAlY (nominal composition (wt %); Ni-25Cr-10Al-0.5Y).
  • the NiCrAlY layer was formed by an HVOF (High Velocity Oxy-Fuel) thermal spraying process (high speed flame spraying method).
  • the thickness of the NiCrAlY layer was set to 100 ⁇ m.
  • the top layer 400 was made of YSZ (nominal composition (mol %); 8Y 2 O 3 -92ZrO 2 ).
  • the YSZ layer was deposited by an atmospheric plasma (APS) spray process.
  • the thickness of the YSZ layer was 300 ⁇ m.
  • Figs. 8 and 9 show the shape and size of the test piece for the cyclic oxidation test and the test piece for the creep test when (1) and (2) were used as the heat-resistant alloy base material 100.
  • the test piece was a multi-purpose alloy layer, a bond layer and a top layer (MPL for the multi-purpose alloy layer, and TBC for the bond layer and the top layer) on the upper end surface of a cylindrical substrate having a diameter of 20 mm and a height of 10 mm. ), and there are cases where the circumferential surface of the substrate is left as it is and cases where an Al-containing alloy film is formed.
  • the upper end surface of the base material is designated as a specific area to be heat-shielded.
  • Example 1 corresponds to the sixth embodiment.
  • a YSZ layer is formed thereon as a top layer 400 by APS thermal spraying.
  • a TGO-Al 2 O 3 layer was formed between the NiCrAlY layer and the YSZ layer during formation. Thus, a test piece was produced.
  • FIG. 11 shows a cross-sectional SEM photograph.
  • Example 2 corresponds to the seventh embodiment.
  • a test piece for a cyclic oxidation test was produced. First, in the same manner as in Example 1, as shown in FIG. 12, a Cr-based multi-purpose alloy layer 203 and an Al-containing alloy coating 150 ( ⁇ -NiAl coating) were formed on the entire surface of the test piece.
  • a YSZ layer was formed as the top layer 400 on the upper end surface of the test piece by APS thermal spraying, and a TGO-Al 2 O 3 layer was formed between the ⁇ -NiAl film and the YSZ layer during the formation of this YSZ layer.
  • FIG. 13 shows a cross-sectional SEM photograph.
  • Example 3 corresponds to the first embodiment.
  • a test piece for a cyclic oxidation test was produced. First, the surface of the test piece was polished smooth and degreased. Next, the lower end surface and the circumferential surface of the test piece were covered with an insulating tape for masking. Next, (Ni strike plating 1 ⁇ m) ⁇ (Ni Watt plating 1 ⁇ m) ⁇ (Re-Ni alloy plating 8 ⁇ m) ⁇ (Ni Watt plating 15 ⁇ m) ⁇ (Cr plating 7 ⁇ m) is performed in order, and the total thickness of the plating layer is 32 ⁇ m. formed. Next, heat treatment was performed at 1000° C. for 5 hours in vacuum. As a result, as shown in FIG. 14, a Re-based multi-purpose alloy layer 201 was formed on the top surface of the test piece. A Ni—Cr layer 201 a was formed on the Re-based multi-purpose alloy layer 201 .
  • a YSZ layer is formed thereon as a top layer 400 by APS thermal spraying.
  • a TGO-Al 2 O 3 layer was formed between the NiCrAlY layer and the YSZ layer to prepare a test piece.
  • FIG. 15 shows a cross-sectional SEM photograph.
  • Example 4 corresponds to the second embodiment.
  • a test piece for a cyclic oxidation test was produced. After forming the Re-based multi-purpose alloy layer 201 on the upper end surface of the test piece through the same treatment as in Example 3, Al-containing alloy coating 150 is formed on the lower end surface and the circumferential surface of the test piece by performing Al diffusion treatment. did. A Ni—Cr layer 201 a was formed on the Re-based multi-purpose alloy layer 201 .
  • a YSZ layer is formed thereon as a top layer 400 by APS thermal spraying.
  • a TGO-Al 2 O 3 layer was formed between the NiCrAlY layer and the YSZ layer during formation.
  • FIG. 16 shows the test piece thus produced.
  • Example 5 corresponds to the fourth embodiment in which a Cr-based multi-purpose alloy layer 203 is provided between the Re-based multi-purpose alloy layer 201 and the bond layer 300 .
  • Example 1 Using an ALLOY X base material as the heat-resistant alloy base material 100, a test piece for a cyclic oxidation test was produced. After forming the Re-based multi-purpose alloy layer 201 on the upper end surface of the test piece through the same treatment as in Example 3, the Cr-based multi-purpose alloy layer 203 and the Al-containing alloy coating 150 were formed in the same manner as in Example 1.
  • FIG. 17 shows the test piece thus produced.
  • Example 6 corresponds to the case where the W-based multi-purpose alloy layer 202 is used instead of the Re-based multi-purpose alloy layer 201 in the first embodiment.
  • a test piece for a cyclic oxidation test was produced.
  • a slurry was prepared by adding 25% by weight of W powder to a Ni-based self-fluxing alloy (nominal composition (wt%); Ni-15Cr-3Si-2B-5Fe), applied to the surface of the test piece, and then Ar + 3vol% H 2 Heat treatment was performed at 1150° C. for 6 hours in the atmosphere.
  • a W-based multi-purpose alloy layer 202 was formed on the surface of the heat-resistant alloy substrate 100 .
  • a Ni(Cr, Si) layer 202 a was formed on the W-based multi-purpose alloy layer 202 .
  • FIG. 18 shows the test piece thus produced.
  • FIG. 19 shows a cross-sectional SEM photograph.
  • Example 7 corresponds to the third embodiment.
  • Example 6 Using an ALLOY X base material as the heat-resistant alloy base material 100, a test piece for a cyclic oxidation test was produced. After forming the W-based multi-purpose alloy layer 202 on the surface of the heat-resistant alloy substrate 100 in the same manner as in Example 6, the Al-containing alloy coating 150 was formed on the lower end surface and the circumferential surface of the test piece in the same manner as in Example 1. did.
  • FIG. 20 shows the test piece thus produced.
  • Example 8 corresponds to the fifth embodiment in which a Cr-based multi-purpose alloy layer 203 is provided between the W-based multi-purpose alloy layer 202 and the bond layer 300 .
  • a test piece for a cyclic oxidation test was produced. After forming a W-based multi-purpose alloy layer 202 on the upper end surface of the test piece in the same manner as in Example 6, a Cr-based multi-purpose alloy layer 203 was formed on the entire surface of the test piece, and the lower end surface and the circumferential surface of the test piece were formed. An Al-containing alloy film 150 was formed on the .
  • FIG. 21 shows the test piece thus produced.
  • FIG. 23 shows a cross-sectional SEM photograph.
  • High temperature oxidation test High temperature oxidation tests were conducted in air under conditions of repeated heating and cooling. Specifically, the test piece was placed on a horizontally movable sample stage (alumina rod), inserted into an electric furnace controlled at 1100°C, and after 45 minutes had passed, it was cooled in the air for 15 minutes, and then put into the electric furnace again. This is a so-called cyclic oxidation test.
  • FIG. 24 summarizes the cycle number dependence of the amount of oxidation of the test pieces of Examples 1 to 8 and Comparative Example and the number of cycles (peeling cycle number) at which YSZ of the top layer is peeled off.
  • the weight change of the test piece was measured at room temperature, but the oxidation behavior differs between the MPL/TBC applied surface and other surfaces.
  • the amount of oxidation was measured as a value divided by the area of the entire test piece, and as a result, the amount of oxidation obtained strongly reflected the results of the other surface (surface without TBC).
  • FIG. 24 shows the cycle number dependence of the oxidation amount of the ALLOY X substrate.
  • the amount of oxidation begins to decrease around 200 cycles, and then decreases in proportion to the number of cycles.
  • the amount of oxidation begins to decrease around 200 cycles, which is similar to the dependence of the amount of oxidation on the ALLOY X substrate on the number of cycles.
  • the heat shield layer YSZ was peeled off after 600 to 700 cycles.
  • the peel resistance of the top layer 400 is is improved, and the formation of a protective oxide film by the Al-containing alloy film 150 formed on the surface of the heat-resistant alloy substrate 100 can simultaneously improve high-temperature oxidation resistance.
  • the test piece (substrate/TBC) of the comparative example was photographed after each cooling after 1 cycle, 217 cycles, 380 cycles, 450 cycles, and 593 cycles.
  • delamination of the YSZ layer occurred from the periphery of the test piece and progressed toward the center with the number of cycles.
  • the YSZ layer was entirely exfoliated in the course of cooling after 593 cycles.
  • Example 1 substrate/Cr-based MPL layer 203/TBC
  • the test piece of Example 1 was photographed after each cooling after 1 cycle, 656 cycles, 1002 cycles, 1476 cycles, 1674 cycles, 1791 cycles, and 1850 cycles.
  • the number of cycles exceeded 1000, it was found that the YSZ layer started to partially peel off from the periphery of the test piece and progressed toward the center as the number of cycles increased.
  • the YSZ layer was entirely peeled off during the holding at room temperature.
  • the Re-based multi-purpose alloy layer 201 by inserting the Re-based multi-purpose alloy layer 201, the W-based multi-purpose alloy layer 202, or the Cr-based multi-purpose alloy layer 203 between the heat-resistant alloy substrate 100 and the TBC, the separation of the YSZ layer is suppressed. Recognize.
  • the test piece of the comparative example (substrate/TBC) and the test piece of Examples 1 to 8 (substrate/MPL/TBC) were cut after a predetermined cycle, and the cross-sectional structure was observed and the concentration distribution of each element was measured. did FIG. 25 shows the cycle number dependency of the Al concentration (atomic %) of the bond layer 300 . From FIG. 25, in the substrate/TBC of the comparative example, the Al concentration of the bond layer 300 decreased from about 18 atomic % at the initial stage to several atomic % after 200 cycles, and then gradually decreased to 1 atomic % or less. The YSZ layer peeled off after about 600 cycles. On the other hand, in the base material/MPL/TBC of Examples 1 to 8, the Al concentration gradually decreased as the number of cycles increased, decreased to 1 atomic% or less around 1600 to 1800 cycles, and the YSZ layer was peeled off. .
  • oxides of Cr 2 O 3 and NiAl 2 O 4 are observed in the TGO in addition to Al 2 O 3 . , these oxides form from the perimeter of the bond layer 300 and progress toward the center so that when formed over the TGO, the YSZ layer exfoliates over the entire surface.
  • the MPL layer maintains a high Al concentration in the bond layer 300, forming and maintaining an Al 2 O 3 -based TGO, and Cr 2 O 3 from around 1000 cycles.
  • NiAl 2 O 4 and the like were formed on the periphery, and the delamination of the YSZ layer started from the periphery, propagated toward the center, and was completely delaminated at 1850 cycles.
  • the formation of the Cr-based multi-purpose alloy layer 203 by Al diffusion treatment in the case of using the base material composed of various Ni-based heat-resistant alloys including ALLOY X listed in Table 1 was investigated. Subsequently, 4-cycle and 100-cycle oxidation tests were performed, and the cross-sectional structure of the test piece was observed and the concentration distribution of each element was measured. The results obtained are described below.
  • Figure 26A (ALLOY X), Figure 26B (ALLOY 601), Figure 26C (ALLOY 20), Figure 26D (ALLOY 825), Figure 26E (ALLOY 800HT), Figure 27A ( ALLOY 625), FIG. 27B (ALLOY 718), FIG. 27C (ALLOY B2), FIG. 27D (ALLOY 22) and FIG. 27E (ALLOY C276). From these figures, formation of a layer corresponding to the Cr-based multi-purpose alloy layer 203 is not observed in any of the test pieces after the Al diffusion treatment.
  • Figure 28A ALLOY 22, 34.7 atomic %)
  • Figure 28B ALLOY 625, 32.7 atomic %)
  • Figure 28C ALLOY C276, 30.5 atomic %)
  • FIG. 28D ALLOY X, 30.1 atomic %)
  • FIG. 28E ALLOY 718, 26.2 atomic %)
  • FIG. 29A ALLOY 825, 25.2 atomic %)
  • FIG. 29B ALLOY 20, 23.4 atomic %)
  • FIG. 29C ALLOY 601, 24.5 atomic %)
  • FIG. 29D ALLOY 800HT, 21.7 atomic %)
  • FIG. 30A ALLOY 22, 34.7 atomic %)
  • Figure 30B ALLOY 625, 32.7 atomic %)
  • Figure 30C ALLOY C276, 30.5 atomic %)
  • FIG. 30D ALLOY X, 30.1 atomic %)
  • FIG. 30E ALLOY 718, 26.2 atomic %)
  • FIG. 31A ALLOY 825, 25.2 atomic %)
  • FIG. 31B ALLOY 20, 23.4 atomic %)
  • FIG. 31C ALLOY 601, 24.5 atomic %)
  • FIG. 31D ALLOY 800HT, 21.7 atomic %)
  • FIG. 31E ALLOY B2, 20.1 atomic %) shown.
  • These structural photographs are shown in the order of the total sum (atomic %) of the elements (Cr+Mo+Nb+W) contained in the substrate (Figs. 31B and 31C are exceptions).
  • Table 3 below shows the relationship between the sum of the concentrations of the elements Cr+Mo+Nb+W in the substrate and the Cr-based multi-purpose alloy layer. It is summarized as follows.
  • ALLOY 601, ALLOY 800HT The total concentration of Cr+Mo+Nb+W in these alloys is 24.5 atomic % or less.
  • the alloys forming the continuous layer of the Cr-based multi-purpose alloy layer are as follows. ALLOY 22, ALLOY 625, ALLOY C276 The total concentration of Cr+Mo+Nb+W in these alloys is 30.5 atomic % or more. Alloys in which the Cr-based multi-purpose alloy layer is discontinuously formed are as follows.
  • ALLOY X, ALLOY 718, ALLOY 825, ALLOY 20 The total concentration of Cr+Mo+Nb+W in these alloys is 23.4 atomic % or more and 30.1 atomic % or less.
  • the alloy base material on which the Cr-based multi-purpose alloy layer is not formed is as follows. ALLOY 601, ALLOY 800HT The total concentration of Cr+Mo+Nb+W in these alloys is 24.5 atomic % or less.
  • 31E (ALLOY B2, 2.1 at.%). represents the total sum (atomic %) of the elements (Fe + Nb) contained in the From these figures, the higher the concentration of Fe(+Nb), the less formation of the Cr-based multi-purpose alloy layer 203 is observed.
  • the concentration of Fe(+Nb) is desirably 29.9 atomic % or less.
  • Tables 4 and 5 show the elements and concentrations (atomic %) of the Re-based multi-purpose alloy layer 201 formed on the heat-resistant alloy substrate 100 made of each alloy shown in Table 1.
  • Al pack means after Al diffusion treatment, and 25cyc etc. means after 25 cycles of oxidation.
  • the Re-based multi-purpose alloy layer 201 is observed on all alloy substrates after Al diffusion treatment, after 4 cycles of oxidation, after 25 cycles of oxidation, and after 100 cycles of oxidation.
  • the total concentration of the elements (Re+Cr+Nb+Mo) contained in the Re-based multi-purpose alloy layer 201 is 51.8 atomic % to 73.5 atomic %.
  • the Re-based multi-purpose alloy layer 201 disappeared in ALLOY B2 and ALLOY 201. This is because ALLOY 201 is industrially pure Ni, and ALLOY B2 has an extremely low Cr concentration of 0.2 atomic %.
  • the breaking time of the ALLOY X substrate on which the Cr-based multi-purpose alloy layer 203 is formed is the same as that of the ALLOY X substrate, and the ALLOY X substrate on which the Re-based multi-purpose alloy layer 201 or the W-based multi-purpose alloy layer 202 is applied. is on the long side. That is, in the ALLOY X base material on which three types of multi-purpose alloy layers (Re-based, W-based, and Cr-based) were formed, no decrease in strength was observed. It became clear that it contributed to high strength.
  • FIGS. 33A and 33B The creep curve of the ALLOY X substrate on which the Re-based multi-purpose alloy layer 201 is formed (970°C; In air, stress 22.5 MPa, 27.5 MPa, 40 MPa) are shown in FIGS. 33A and 33B.
  • FIG. 33A shows the time course of strain
  • FIG. 33B shows the time course of strain rate. From FIGS. 33A and 33B, when comparing at a stress of 27.5 MPa, the rupture time of the ALLOY X substrate is 220 hours, while that of the substrate/Re-based multi-purpose alloy layer 201 is 380 hours. It was found that the steady creep rate is lower in the substrate/Re-based multi-purpose alloy layer 201 compared to the ALLOY X substrate.
  • FIGS. 34A and 34B the creep test at a stress of 22.5 MPa was interrupted at a strain of 3.5% for 190 hours, and the results of observing the surface and cross-sectional structure of the test piece are shown in FIGS. 34A and 34B. and FIG. 34C.
  • FIG. 34A shows the entire test piece
  • FIG. 34B shows an enlarged view of the region surrounded by the dashed line in FIG. 34A
  • FIG. 34C shows the structure of the cross section of the test piece.
  • 34A, 34B and 34C ⁇ -Al 2 O 3 is formed on the surface of the test piece, and longitudinal cracks (perpendicular to the stress axis) and partial delamination are observed.
  • 35A and 35B respectively show an enlarged photograph of the Re-based multi-purpose alloy layer 201/ ⁇ -NiAl coating and the concentration distribution of each element in the cross-sectional structure shown in FIG. 34C.
  • the composition (atomic %) of the Re-based multi-purpose alloy layer 201 is 25 atomic % Re-35 atomic % Cr-16 atomic % Ni-10 atomic % Fe-10 atomic % Mo.
  • Part of the ⁇ -Al 2 O 3 formed on the surface of the test piece is peeled off, but defects such as cracks are not observed in the Re-based multi-purpose alloy layer 201 and the ⁇ -NiAl coating.
  • Al in the ⁇ -NiAl film did not diffuse into the base material, and despite the creep deformation, the Re-based multi-purpose alloy layer 201 functions as an Al diffusion barrier.
  • FIG. 36 shows the results of investigating the creep behavior of the SUS310 base material on which the Re-based multi-purpose alloy layer 201 is formed at 900°C in the air at a stress of 22.5 MPa.
  • FIG. 36 also shows the results of investigating the creep behavior of the SUS310 base material. From FIG. 36, for example, when the strain (%) at a creep time of 200 hours is compared, the SUS310 substrate is 21%, while the SUS310 with the Re-based multi-purpose alloy layer 201 having a thickness of 10 ⁇ m and 20 ⁇ m. The base material is 11% and 8.5%, respectively. It can be seen that the creep resistance of the SUS310 substrate is improved by forming the Re-based multi-purpose alloy layer 201 .
  • FIGS. 37A, 37B, 37C, 37D, 37E and 37F show the cross-sectional structure of the test piece after fracture in the creep test shown in FIG.
  • FIGS. 37A and 37B show the cross-sectional structure of the SUS310 base material after the creep test
  • FIG. 37B is a partially enlarged view of FIG. 37A
  • FIGS. 37C and 37D show the cross-sectional structure after the creep test of the SUS310 substrate on which the Re-based multi-purpose alloy layer 201 having a thickness of 10 ⁇ m is formed
  • FIG. 37D is a partially enlarged view of FIG. 37C.
  • FIG. 37E and 37F show the cross-sectional structure after the creep test of the SUS310 substrate on which the 20 ⁇ m thick Re-based multi-purpose alloy layer 201 is formed, and FIG. 37F is a partially enlarged view of FIG. 37E. From these figures, many fine intergranular cracks are observed in the SUS310 substrate, whereas intergranular fractures occur less frequently in the substrate/Re-based multi-purpose alloy layer 201 .
  • a Cr-based multi-purpose alloy layer 203 or a Re-based multi-purpose alloy layer 201 was formed on an ALLOY X substrate, and their fatigue resistance properties were investigated under the conditions shown in Table 6.
  • the number of fatigue fracture cycles is 1.16 to 1.24 for the substrate/Cr-based multipurpose alloy layer 203 and 2.59 to 2 for the substrate/Re-based multipurpose alloy layer 201, as relative values to the alloy substrate. 0.75.
  • the substrate/Cr-based multi-purpose alloy layer 203 has almost the same fatigue resistance as the substrate, and the substrate/Re-based multi-purpose alloy layer 201 has improved by more than double.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

耐熱合金部材は、耐熱合金基材と、その表面の遮熱を行うべき領域を少なくとも含む領域に設けられたRe系、W系またはCr系の多目的合金層と、その上の遮熱を行うべき領域を少なくとも含む領域に設けられたAl含有合金からなるボンド層と、その上の遮熱を行うべき領域のみに設けられた遮熱性セラミックスからなるトップ層とを有する。耐熱合金基材は、Fe基合金、Co基合金、Cr含有量が20原子%以下のNi基合金、等からなるものを用いることができる。特にCr系の多目的合金層を用いる場合には、Cr、Mo、NbおよびWからなる群より選ばれた少なくともCrを含む一種または二種以上の金属を総和で24.5原子%より多く含有するNi基合金からなるものを用いる。

Description

耐熱合金部材およびその製造方法ならびに高温装置およびその製造方法
 この発明は、耐熱合金部材およびその製造方法ならびに高温装置およびその製造方法に関し、特に、高温酸化性雰囲気において加熱および冷却が繰り返される環境下で使用される、焼却炉、ボイラー、ガスタービン、ジェットエンジン、排ガス系部材、等に適用して好適なものである。
 各種燃焼機器、タービン、ジェットエンジン、等に使用される耐熱合金基材には遮熱コ-ティング皮膜 (Thermal Barrier Coating:TBC)が施工されている。代表的なTBCとして、耐熱合金基材の表面全体に、ボンド層として例えばMCrAlY(M=Co,Ni)が、トップ層としてセラミックス遮熱層(例えば、イットリア(Y)安定化ジルコニア(ZrO)(Yttria Stabilized Zirconia: YSZ))が、溶射、電子ビーム蒸着、等で施工される。トップ層とボンド層との界面にはAl主体の熱酸化物(Thermally Grown Oxides:TGO)を形成して、耐熱合金基材の酸化を抑制する。なお、トップ層とボンド層とを含めて、遮熱層(TBC)と呼ばれることもある。
 しかしながら、耐熱合金基材では、使用中に基材の元素がボンド層側に、ボンド層のAlが基材側にそれぞれ拡散するため、ボンド層のAl濃度は低下し、非保護的TGOを形成および成長することによって早期にトップ層(YSZ)の剥離が発生することから、その解決が求められている。
 従来、発電用ガスタービン翼において、上述の元素の相互拡散を抑制するために、C、B、Hf、Cr、Mo、W、Re、Ta、NbおよびCoに加えてAlを重量で4.9%以上5.2%以下含有し、残部がNiであるNi基単結晶超合金からなる翼基材の表面全体にRe等を含有する拡散バリア層を形成した後、その表面全体にボンド層およびトップ層を順次積層する技術が提案されている(特許文献1~3参照。)。拡散バリア層の詳細については特許文献4~7に記載されている。
特許第5905336号公報 特許第5905354号公報 特許第5905355号公報 特許第3857689号公報 特許第3857690号公報 特許第3910588号公報 特許第4753720号公報
 特許文献1~3に記載された発電用ガスタービン翼においては、使用中に基材の元素がボンド層側に、ボンド層のAlが基材側にそれぞれ拡散するのを拡散バリア層により防止することができ、非保護的TGOの形成および成長を抑制することができることによりトップ層(YSZ)の剥離を防止することができることに加えて、翼基材がAlを重量で4.9%以上5.2%以下含有するNi基単結晶超合金からなるため、高温酸化中に翼基材の表面に保護的Alが形成され、耐酸化性を確保することもできる。しかしながら、耐熱合金基材としてAlを含有しないものやAlを含有しても低Al濃度のものを用いる場合には、この技術をそのまま適用しても耐酸化性の確保とトップ層(YSZ)の剥離防止とを同時に達成することはできない。
 そこで、この発明が解決しようとする課題は、Alを含有しないか低Al濃度の耐熱合金基材を用いた場合においても、高温酸化性雰囲気において加熱および冷却サイクルが付加された環境下で使用された場合に、拡散バリア機能および遮熱層のトップ層の耐剥離性に加えて優れた耐高温酸化性を得ることができ、さらには耐熱合金基材の機械的強度の向上を図ることができ、耐熱合金基材の有する高温特性を長期に亘って維持することができ、さらにはトップ層を必要最小限の領域に設けることで足りる耐熱合金部材およびその製造方法ならびにそのような耐熱合金部材を含む高温装置およびその製造方法を提供することである。
 上記課題を解決するために、この発明は、
 耐熱合金基材と、
 上記耐熱合金基材の表面の遮熱を行うべき領域を少なくとも含む領域に設けられたRe系、W系またはCr系の多目的合金層と、
 上記多目的合金層上の上記遮熱を行うべき領域を少なくとも含む領域に設けられたAl含有合金からなるボンド層と、
 上記ボンド層上の上記遮熱を行うべき領域のみに設けられた遮熱性セラミックスからなるトップ層と、
を有する耐熱合金部材である。
 この発明において、Re系、W系またはCr系の多目的合金層(Multi-Purpose Layer;MPL)は、拡散バリア能に加えて、耐酸化性、耐熱合金基材の機械的特性の改善、トップ層の耐剥離性の向上、等の多機能性を有し、多目的に使用できる合金層を意味する。Re系、W系またはCr系の多目的合金層はそれぞれRe、W、Crを含有する。
 例えば、多目的合金層がRe系またはW系である場合、この多目的合金層、ボンド層およびトップ層は耐熱合金基材の表面の遮熱を行うべき領域のみに設けられる。典型的な一つの例では、Re系またはW系の多目的合金層、ボンド層およびトップ層は耐熱合金基材の表面の遮熱を行うべき領域のみに設けられ、遮熱を行うべき領域以外の部分の耐熱合金基材の表面を覆うようにAl含有合金皮膜が設けられる。この場合、高温での酸化中にはこのAl含有合金皮膜の酸化により保護的Al皮膜が形成され、耐熱合金基材の高温耐酸化性を確保することができる。Al含有合金皮膜は、一般的にはAl濃度は50原子%(at%)以下、30%原子以上のNi基合金であり、Al濃度は好適には40原子%以下である。Al含有合金皮膜は、典型的にはβ-NiAlからなるが、これに限定されるものではない。多目的合金層は、Re系の多目的合金層およびW系の多目的合金層から選ばれた互いに異なる2層が積層されたものからなるものであってもよい。他の例では、耐熱合金基材の表面全体を覆うようにCr系の多目的合金層および当該多目的合金層上のAl含有合金皮膜が設けられ、ボンド層およびトップ層はこのAl含有合金皮膜上の遮熱を行うべき領域のみに設けられる。あるいは、多目的合金層、ボンド層およびトップ層は耐熱合金基材の表面の遮熱を行うべき領域のみに設けられ、遮熱を行うべき領域以外の部分の耐熱合金基材の表面を覆うように多目的合金層および当該多目的合金層上のAl含有合金皮膜が設けられる。あるいは、耐熱合金基材の表面全体を覆うようにCr系の多目的合金層および当該多目的合金層上の、ボンド層を兼用するAl含有合金皮膜が設けられ、トップ層はこのAl含有合金皮膜上の遮熱を行うべき領域のみに設けられる。
 耐熱合金基材は、必要に応じて選択され、特に限定されない場合もあるし、限定される場合もある。特に限定されない場合、耐熱合金基材は、例えば、Fe基合金、Co基合金、Cr含有量が20原子%以下のNi基合金、等の従来公知の合金からなる。Cr系の多目的合金層を用いる場合には、耐熱合金基材は、好適には、Cr、Mo、NbおよびWからなる群より選ばれた少なくともCrを含む一種または二種以上の金属を総和で24.5原子%より多く含有するNi基合金からなる。この場合、より好適には、Ni基合金はCrを18.7原子%以上含有し、Mo、NbおよびWからなる群より選ばれた一種または二種以上の金属を総和で5.7原子%以上19.2原子%以下含有し、FeおよびNbを総和で13.1原子%以下含有する。また、Re系の多目的合金層を用いる場合には、耐熱合金基材はNi基単結晶超合金からなる場合もある。耐熱合金基材の形状は特に限定されず、用途等に応じて選ばれるが、例えば、平板状、棒状(角棒、丸棒、等)、管状、箱状、等である。
 ボンド層を構成するAl含有合金は、典型的にはMCrAlY(M=Co,Ni)であるが、これに限定されるものではなく、例えば、β-NiAl、γ’-NiAl、γ-Ni(Al,Cr)、等であってもよい。
 トップ層を構成する遮熱性セラミックスは、例えば、ジルコニウムとイットリウムと酸素とを含有する酸化物セラミックス(典型的にはYSZ)、アルミニウムとイットリウムと酸素とを含有する酸化物セラミックス、アルミニウムとランタンと酸素とを含有する酸化物セラミックス、アルミニウムとサマリウムと酸素とを含有する酸化物セラミックス、セリウムと酸素とを含有する酸化物セラミックスおよびトリウムと酸素とを含有する酸化物セラミックスからなる群より選ばれた少なくとも一種からなる。
 耐熱合金部材は、特に限定されないが、具体的には、例えば、ガスタービンの部材、ジェットエンジンの部材、排ガス系部材、等が挙げられる。
 また、この発明は、
 耐熱合金基材の表面の遮熱を行うべき領域を少なくとも含む領域にRe系、W系またはCr系の多目的合金層を形成する工程と、
 上記多目的合金層上の上記遮熱を行うべき領域を少なくとも含む領域にAl含有合金からなるボンド層を形成する工程と、
 上記ボンド層上の上記遮熱を行うべき領域のみに遮熱性セラミックスからなるトップ層を形成する工程と、
を有する耐熱合金部材の製造方法である。
 この発明においては、例えば、耐熱合金基材の表面の遮熱を行うべき領域のみに多目的合金層を形成した後、多目的合金層上にボンド層およびトップ層を順次形成する。ボンド層およびトップ層の形成には、例えば、溶射法、電子ビーム蒸着法、等を用いることができる。あるいは、耐熱合金基材の表面の遮熱を行うべき領域のみに多目的合金層を形成し、Al拡散処理を施すことにより遮熱を行うべき領域以外の部分の耐熱合金基材の表面を覆うようにAl含有合金皮膜を形成した後、多目的合金層上にボンド層およびトップ層を順次形成する。ここで、耐熱合金基材がCr、Mo、NbおよびWからなる群より選ばれた少なくともCrを含む一種または二種以上の金属を総和で24.5原子%より多く含有するNi基合金からなる場合には、ボンド層およびトップ層を順次形成した後、高温で酸化を行うことにより耐熱合金基材とAl含有合金皮膜との反応により耐熱合金基材とAl含有合金皮膜との間にCr系の多目的合金層を形成する。あるいは、耐熱合金基材はCr、Mo、NbおよびWからなる群より選ばれた少なくともCrを含む一種または二種以上の金属を総和で24.5原子%より多く含有するNi基合金からなり、Al拡散処理を施すことにより耐熱合金基材の表面全体にAl含有合金皮膜を形成し、遮熱を行うべき領域のみにボンド層およびトップ層を順次形成した後、高温での加熱処理を行う。高温に加熱することにより耐熱合金基材とAl含有合金皮膜との反応により耐熱合金基材とAl含有合金皮膜との間にCr系の多目的合金層を形成する。さらには、耐熱合金基材はCr、Mo、NbおよびWからなる群より選ばれた少なくともCrを含む一種または二種以上の金属を総和で24.5原子%より多く含有するNi基合金からなり、Al拡散処理を施すことにより耐熱合金基材の表面全体にボンド層を兼用するAl含有合金皮膜を形成し、Al含有合金皮膜上の遮熱を行うべき領域のみにトップ層を形成した後、高温での加熱処理を行う。高温に加熱することにより耐熱合金基材とAl含有合金皮膜との反応により耐熱合金基材とAl含有合金皮膜との間にCr系の多目的合金層を形成する。ボンド層およびトップ層の形成には、例えば、溶射法、電子ビーム蒸着法、等を用いることができる。
 この発明においては、上記以外のことについては、その性質に反しない限り、上記の耐熱合金部材の発明に関連して説明したことが成立する。
 また、この発明は、
 耐熱合金基材と、
 上記耐熱合金基材の表面の遮熱を行うべき領域を少なくとも含む領域に設けられたRe系、W系またはCr系の多目的合金層と、
 上記多目的合金層上の上記遮熱を行うべき領域を少なくとも含む領域に設けられたAl含有合金からなるボンド層と、
 上記ボンド層上の上記遮熱を行うべき領域のみに設けられた遮熱性セラミックスからなるトップ層と、を有する耐熱合金部材
を有する高温装置である。
 高温装置は、上記の耐熱合金部材を一部または全部に含む各種のものであってよいが、具体的には、例えば、ガスタービン、ジェットエンジン、排ガス装置、等である。
 また、この発明は、
 耐熱合金基材の表面の遮熱を行うべき領域を少なくとも含む領域にRe系、W系またはCr系の多目的合金層を形成する工程と、
 上記多目的合金層上の上記遮熱を行うべき領域を少なくとも含む領域にAl含有合金からなるボンド層を形成する工程と、
 上記ボンド層上の上記遮熱を行うべき領域のみに遮熱性セラミックスからなるトップ層を形成する工程と、を実行することにより耐熱合金部材を製造する工程を有する高温装置の製造方法である。
 上記の高温装置の発明および高温装置の製造方法の発明においては、上記以外のことは、特にその性質に反しない限り、上記の耐熱合金部材の発明および耐熱合金部材の製造方法の発明に関連して説明したことが成立する。
 この発明によれば、Alを含有しないか低Al濃度の耐熱合金基材を用いた場合においても、高温酸化性雰囲気において加熱および冷却サイクルが付加された環境下で使用された場合に、拡散バリア機能および遮熱層のトップ層の耐剥離性に加えて優れた耐高温酸化性を得ることができ、さらには耐熱合金基材の機械的強度の向上を図ることができ、耐熱合金基材の有する高温特性を長期に亘って維持することができ、さらにはトップ層を必要最小限の領域に設けることで足りる。
この発明の第1の実施の形態による耐熱合金部材を示す断面図である。 この発明の第2の実施の形態による耐熱合金部材を示す断面図である。 この発明の第3の実施の形態による耐熱合金部材を示す断面図である。 この発明の第4の実施の形態による耐熱合金部材を示す断面図である。 この発明の第5の実施の形態による耐熱合金部材を示す断面図である。 この発明の第6の実施の形態による耐熱合金部材を示す断面図である。 この発明の第7の実施の形態による耐熱合金部材を示す断面図である。 高温サイクル酸化試験に用いる試験片を示す斜視図である。 クリープ試験に用いる試験片を示す断面図である。 実施例1の試験片の構造を示す断面図である。 実施例1の試験片の断面組織を示す図面代用写真である。 実施例2の試験片の構造を示す断面図である。 実施例2の試験片の断面組織を示す図面代用写真である。 実施例3の試験片の構造を示す断面図である。 実施例3の試験片の断面組織を示す図面代用写真である。 実施例4の試験片の構造を示す断面図である。 実施例5の試験片の構造を示す断面図である。 実施例6の試験片の構造を示す断面図である。 実施例6の試験片の断面組織を示す図面代用写真である。 実施例7の試験片の構造を示す断面図である。 実施例8の試験片の構造を示す断面図である。 比較例の試験片の構造を示す断面図である。 比較例の試験片の断面組織を示す図面代用写真である。 加熱および冷却サイクル酸化を行った実施例1~8および比較例の試験片の酸化量のサイクル数依存性を示す略線図である。 実施例1~8および比較例の試験片のボンド層のAl濃度のサイクル数依存性を示す略線図である。 ALLOY X基材にAl拡散を行った後の試験片の断面組織を示す図面代用写真である。 ALLOY 601基材にAl拡散を行った後の試験片の断面組織を示す図面代用写真である。 ALLOY 20基材にAl拡散を行った後の試験片の断面組織を示す図面代用写真である。 ALLOY 825基材にAl拡散を行った後の試験片の断面組織を示す図面代用写真である。 ALLOY 800HT基材にAl拡散を行った後の試験片の断面組織を示す図面代用写真である。 ALLOY 625基材にAl拡散を行った後の試験片の断面組織を示す図面代用写真である。 ALLOY 718基材にAl拡散を行った後の試験片の断面組織を示す図面代用写真である。 ALLOY B2基材にAl拡散を行った後の試験片の断面組織を示す図面代用写真である。 ALLOY 22基材にAl拡散を行った後の試験片の断面組織を示す図面代用写真である。 ALLOY C276基材にAl拡散を行った後の試験片の断面組織を示す図面代用写真である。 4サイクル酸化後のALLOY 22基材の試験片の断面組織を示す図面代用写真である。 4サイクル酸化後のALLOY 625基材の試験片の断面組織を示す図面代用写真である。 4サイクル酸化後のALLOY C276基材の試験片の断面組織を示す図面代用写真である。 4サイクル酸化後のALLOY X基材の試験片の断面組織を示す図面代用写真である。 4サイクル酸化後のALLOY 718基材の試験片の断面組織を示す図面代用写真である。 4サイクル酸化後のALLOY 825基材の試験片の断面組織を示す図面代用写真である。 4サイクル酸化後のALLOY 20基材の試験片の断面組織を示す図面代用写真である。 4サイクル酸化後のALLOY 601基材の試験片の断面組織を示す図面代用写真である。 4サイクル酸化後のALLOY 800HT基材の試験片の断面組織を示す図面代用写真である。 4サイクル酸化後のALLOY B2基材の試験片の断面組織を示す図面代用写真である。 100サイクル酸化後のALLOY 22基材の試験片の断面組織を示す図面代用写真である。 100サイクル酸化後のALLOY 625基材の試験片の断面組織を示す図面代用写真である。 100サイクル酸化後のALLOY C276基材の試験片の断面組織を示す図面代用写真である。 100サイクル酸化後のALLOY X基材の試験片の断面組織を示す図面代用写真である。 100サイクル酸化後のALLOY 718基材の試験片の断面組織を示す図面代用写真である。 100サイクル酸化後のALLOY 825基材の試験片の断面組織を示す図面代用写真である。 100サイクル酸化後のALLOY 20基材の試験片の断面組織を示す図面代用写真である。 100サイクル酸化後のALLOY 601基材の試験片の断面組織を示す図面代用写真である。 100サイクル酸化後のALLOY 800HT基材の試験片の断面組織を示す図面代用写真である。 100サイクル酸化後のALLOY B2基材の試験片の断面組織を示す図面代用写真である。 各種多目的合金層を形成したALLOY X基材の試験片のクリープ挙動の調査結果を示す略線図である。 Re系多目的合金層を形成したALLOY X基材の試験片のクリープ曲線(歪)を示す略線図である。 Re系多目的合金層を形成したALLOY X基材の試験片のクリープ曲線(歪速度)を示す略線図である。 Re系多目的合金層を形成したALLOY X基材の試験片の表面を観察した結果を示す図面代用写真である。 図34Aの一部を拡大して示す図面代用写真である。 図34Aに示す試験片の断面組織を観察した結果を示す図面代用写真である。 図34Cに示す断面組織においてRe系多目的合金層/β-NiAl皮膜の部分を拡大して示す図面代用写真である。 図35Aの点線で示す方向の各元素の濃度分布を示す略線図である。 Re系多目的合金層を形成したSUS310基材の試験片のクリープ挙動を示す略線図である。 SUS310基材の試験片のクリープ試験後の断面組織を観察した結果を示す図面代用写真である。 図37Aに示す断面組織の一部を拡大して示す図面代用写真である。 厚さ10μmのRe系多目的合金層を形成したSUS310基材の試験片のクリープ試験後の断面組織を観察した結果を示す図面代用写真である。 図37Cに示す断面組織の一部を拡大して示す図面代用写真である。 厚さ20μmのRe系多目的合金層を形成したSUS310基材の試験片のクリープ試験後の断面組織を観察した結果を示す図面代用写真である。 図37Eに示す断面組織の一部を拡大して示す図面代用写真である。
 以下、発明を実施するための形態(以下、単に「実施の形態」という。)について説明する。
〈第1の実施の形態〉
[耐熱合金部材]
 図1は第1の実施の形態による耐熱合金部材を示す。図1に示すように、この耐熱合金部材においては、耐熱合金基材100の表面の遮熱を行うべき特定の領域のみにRe系多目的合金層201、ボンド層300およびトップ層400が順次積層されており、その他の領域は耐熱合金基材100の表面が露出している。Re系多目的合金層201はReを含有する合金層からなり、典型的には上部がNi-Cr合金層201aからなる。Reを含有する合金層については特許文献4等に記載されているものが用いられる。ボンド層300はMCrAlY(M=Ni,Co)、β-NiAl、γ’-NiAl、γ-Ni(Al,Cr)等のAl含有合金からなる。トップ層400はYSZ等の遮熱性セラミックスからなる。この耐熱合金部材においては、使用開始前または使用開始後の状態で、ボンド層300とトップ層400との間にTGO-Al層が形成される。このTGO-Al層の厚さは例えば数μm程度である。
 耐熱合金基材100は必要に応じて選ばれ、例えば、既に挙げたものの中から選ばれるが、具体的には、例えば、Ni基合金、Fe基合金、Co基合金、取り分けこれらの中でもCr含有量が20原子%以上のもの等からなるもの、さらには、Cr、Mo、NbおよびWからなる群より選ばれた少なくともCrを含む一種または二種以上の金属を総和で24.5原子%より多く含有するNi基合金からなるもの、Ni基単結晶超合金からなるもの、等である。
 ボンド層300の厚さは、例えば50μm以上150μm以下である。トップ層400の厚さは、例えば、200μm以上500μm以下である。
[耐熱合金部材の製造方法]
 この耐熱合金部材の製造方法について説明する。
 耐熱合金基材100がNi基合金、Fe基合金、Co基合金、等からなる場合を考える。まず、耐熱合金基材100の表面の遮熱を行うべき特定の領域以外の部分を絶縁テープで被覆したり、絶縁塗膜を形成したりすることによりマスキングした後、その特定の領域のみにめっきによりRe含有層を形成する。具体的には、例えば、Niめっき→Re-(30~40)原子%Niめっき→Niめっき→Crめっきの順またはNiめっき→Re-(30~40)原子%Niめっき→Ni(Co)めっき→Crめっきの順に行う。次に、真空中または不活性ガス雰囲気、好適にはAr+3vol%H雰囲気中において例えば900℃以上1100℃以下の温度で1~10時間、熱処理を行う。これによって、耐熱合金基材100とRe含有層との反応によりRe系多目的合金層201が形成される。このとき、Re系多目的合金層201の上部にはNi-Cr層201aが形成される。次に、溶射、電子ビーム蒸着、等によりRe系多目的合金層201の上にボンド層300およびトップ層400を順次形成する。ボンド層300とトップ層400との間のTGO-Al層は、一般的には耐熱合金部材を高温酸化性雰囲気で使用する際に形成されるが、予め形成しておく場合は、例えば、ボンド層300を形成した後、低酸素分圧雰囲気で酸化処理する。
 以上により、目的とする耐熱合金部材が製造される。
 以上のように、この第1の実施の形態によれば、耐熱合金基材100の表面の遮熱を行うべき特定の領域にのみRe系多目的合金層201を介してボンド層300およびトップ層400が設けられていることにより、この耐熱合金部材を高温酸化性雰囲気において加熱および冷却が繰り返される環境下で使用した場合、Re系多目的合金層201によりボンド層300のAlの耐熱合金基材100への拡散および耐熱合金基材100の元素のボンド層300への拡散を防止することができ、ボンド層300のAl濃度を十分に高く、例えば13原子%以上に維持することができ、ボンド層300とトップ層400との間に長期間に亘ってTGO-Al層を維持することができ、それによって優れた耐高温腐食性を得ることができるだけでなく、TGO-Al層以外の非保護的酸化物の形成を抑えることができることによりトップ層400の剥離を効果的に防止することができ、それによって優れた耐剥離性を得ることができ、さらには耐熱合金基材100の機械的強度の向上を図ることができる。この耐熱合金部材は、例えば、近年、高出力化を狙って動作温度が上昇する傾向にあるガスタービン、ジェットエンジン、排ガス系部材、等の高温用部材としての要求特性を十分に満足するものである。
〈第2の実施の形態〉
[耐熱合金部材]
 図2は第2の実施の形態による耐熱合金部材を示す。図2に示すように、この耐熱合金部材においては、耐熱合金基材100の表面の遮熱を行うべき特定の領域のみにRe系多目的合金層201、ボンド層300およびトップ層400が順次積層されている。Re系多目的合金層201は第1の実施の形態と同様である。耐熱合金基材100の表面の遮熱を行うべき特定の領域以外の部分はAl含有合金皮膜150で被覆されている。Al含有合金皮膜150は典型的にはβ-NiAlまたはFe-Alからなる。耐熱合金基材100、ボンド層300およびトップ層400は第1の実施の形態と同様である。
[耐熱合金部材の製造方法]
 この耐熱合金部材の製造方法について説明する。
 耐熱合金基材100がNi基合金、Fe基合金、Co基合金、等からなる場合を考える。まず、第1の実施の形態と同様にして耐熱合金基材100の表面の遮熱を行うべき特定の領域にRe系多目的合金層201を形成する。次に、Al拡散処理を行うことによりRe系多目的合金層201以外の部分の耐熱合金基材100の表面にAl含有合金皮膜150を形成する。Al拡散処理は、耐熱合金基材100を、例えば(Al+NHCl+Al)に埋設させ、Ar雰囲気中において700~800℃の温度で30分~1.5時間加熱することにより行う。あるいは、耐熱合金基材100を、(FeAl+NHCl+Al)または(Al+Ni+NHCl+Al)に埋設させ、Ar+3vol%H雰囲気中において900~1100℃の温度で1~10時間加熱することにより行う。次に、溶射、電子ビーム蒸着等によりRe系多目的合金層201上にボンド層300およびトップ層400を順次形成する。ボンド層300とトップ層400との間のTGO-Al層は、一般的には耐熱合金部材を高温酸化性雰囲気で使用する際に形成されるが、予め形成しておく場合は、例えば、ボンド層300を形成した後、低酸素分圧雰囲気で酸化処理する。
 以上により、目的とする耐熱合金部材が製造される。
 この第2の実施の形態によれば、第1の実施の形態と同様な利点を得ることができるとともに、Re系多目的合金層201以外の部分の耐熱合金基材100の表面がAl含有合金皮膜150で被覆されていることにより高温酸化時に保護的Al皮膜が形成されて保護されるため優れた高温耐酸化性を確保することができるという利点を得ることができる。
〈第3の実施の形態〉
[耐熱合金部材](6~7行目のβ-AlNiをβ-NiAlと修正しました)
 図3は第3の実施の形態による耐熱合金部材を示す。図3に示すように、この耐熱合金部材においては、耐熱合金基材100の表面の遮熱を行うべき特定の領域のみにW系多目的合金層202、ボンド層300およびトップ層400が順次積層されている。W系多目的合金層202はWを含有する合金層からなり、典型的には上部がNi(Cr,Si)層202aからなる。耐熱合金基材100の表面の遮熱を行うべき特定の領域以外の部分はAl含有合金皮膜150で被覆されている。Al含有合金皮膜150は典型的にはβ-NiAlまたはFe-Alからなる。耐熱合金基材100、ボンド層300およびトップ層400は第1の実施の形態と同様である。
[耐熱合金部材の製造方法]
 この耐熱合金部材の製造方法について説明する。
 耐熱合金基材100がNi基合金、Fe基合金、Co基合金、等からなる場合を考える。まず、耐熱合金基材100の表面の遮熱を行うべき特定の領域にスラリー塗布によりW含有層を形成する。具体的には、例えば、(25~50重量%)W粉末と(15~25重量%)Cr粉末と(15~30重量%)Mo粉末と残部Ni基自溶合金(公称組成(重量%);Ni-15Cr-3Si-2B-5Fe)とをスラリー液に溶解したスラリーを用いる。次に、真空中または不活性ガス雰囲気(例えば、Ar+3vol%H)中において例えば1100℃以上1200℃以下の温度で1~10時間熱処理を行う。これによって、耐熱合金基材100とW含有層との反応によりW系多目的合金層202が形成される。このとき、W系多目的合金層202の上部にはNi(Cr,Si)層202aが形成される。次に、Al拡散処理を行うことによりW系多目的合金層202以外の部分の耐熱合金基材100の表面にAl含有合金皮膜150を形成する。Al拡散処理は、耐熱合金基材100を例えば(Al+NHCl+Al)に埋没させ、Ar雰囲気中において700~800℃の温度で1~1.5時間加熱することにより行う。あるいは、(FeAl+NHCl+Al)または(Al+Ni+NHCl+Al)に埋没させ、Ar+3vol%H雰囲気中において900~1100℃の温度で1~10時間加熱することにより行う。次に、溶射、電子ビーム蒸着等によりW系多目的合金層202上にボンド層300およびトップ層400を順次形成する。ボンド層300とトップ層400との間のTGO-Al層は、一般的には耐熱合金部材を高温酸化性雰囲気で使用する際に形成されるが、予め形成しておく場合は、例えば、ボンド層300を形成した後、低酸素分圧雰囲気で酸化処理する。
 以上により、目的とする耐熱合金部材が製造される。
 この第3の実施の形態によれば、第1の実施の形態と同様な利点を得ることができるとともに、W系多目的合金層202以外の部分の耐熱合金基材100の表面がAl含有合金皮膜150で被覆されていることにより高温酸化時に保護的Al皮膜が形成されて保護されるため優れた高温耐酸化性を確保することができるという利点を得ることができる。
〈第4の実施の形態〉
[耐熱合金部材]
 図4は第4の実施の形態による耐熱合金部材を示す。図4に示すように、この耐熱合金部材においては、耐熱合金基材100の表面の遮熱を行うべき特定の領域のみに、Re系多目的合金層201、ボンド層300およびトップ層400が順次積層されている。耐熱合金基材100は、好適には、Cr、Mo、NbおよびWからなる群より選ばれた少なくともCrを含む一種または二種以上の金属を総和で24.5原子%より多く含有するNi基合金からなる。耐熱合金基材100の表面の遮熱を行うべき特定の領域以外の部分はCr系多目的合金層203およびその上のAl含有合金皮膜150で覆われている。Cr系多目的合金層203はα-Crを含有する合金層からなり、典型的には耐熱合金基材100の構成元素、例えばMo、NbおよびWからなる群より選ばれた一種または二種以上の金属を含有する。Al含有合金皮膜150は典型的にはβ-NiAlからなる。ボンド層300およびトップ層400は第1の実施の形態と同様である。必要に応じて、Re系多目的合金層201とボンド層300との間にCr系多目的合金層が設けられてもよい。
[耐熱合金部材の製造方法]
 この耐熱合金部材の製造方法について説明する。
 図4に示すように、まず、耐熱合金基材100の表面の遮熱を行うべき特定の領域に第1の実施の形態と同様にしてRe系多目的合金層201を形成する。次に、Al拡散処理を行うことによりRe系多目的合金層201以外の部分の耐熱合金基材100の表面にAl含有合金皮膜150を形成する。このとき、耐熱合金基材100とAl含有合金皮膜150との間にCr系多目的合金層203が形成される。次に、溶射、電子ビーム蒸着等によりRe系多目的合金層201上にボンド層300およびトップ層400を順次形成する。ボンド層300とトップ層400との間のTGO-Al層は、一般的には耐熱合金部材を高温酸化性雰囲気で使用する際に形成されるが、予め形成しておく場合は、例えば、ボンド層300を形成した後、低酸素分圧雰囲気で酸化処理する。
 以上により、目的とする耐熱合金部材が製造される。
 この第4の実施の形態によれば、第3の実施の形態と同様な利点を得ることができる。
〈第5の実施の形態〉
[耐熱合金部材]
 図5は第5の実施の形態による耐熱合金部材を示す。図5に示すように、この耐熱合金部材においては、耐熱合金基材100の表面の遮熱を行うべき特定の領域のみに、W系多目的合金層202、ボンド層300およびトップ層400が順次積層されている。耐熱合金基材100は、好適には、Cr、Mo、NbおよびWからなる群より選ばれた少なくともCrを含む一種または二種以上の金属を総和で24.5原子%より多く含有するNi基合金からなる。耐熱合金基材100の表面の遮熱を行うべき特定の領域以外の部分はCr系多目的合金層203およびその上のAl含有合金皮膜150で覆われている。Cr系多目的合金層203は第4の実施の形態と同様である。Al含有合金皮膜150は典型的にはβ-NiAlからなる。ボンド層300およびトップ層400は第1の実施の形態と同様である。必要に応じて、W系多目的合金層202とボンド層300との間にCr系多目的合金層が設けられてもよい。
[耐熱合金部材の製造方法]
 この耐熱合金部材の製造方法について説明する。
 まず、耐熱合金基材100の表面の遮熱を行うべき特定の領域に第2の実施の形態と同様にしてW系多目的合金層202を形成する。次に、第3の実施の形態と同様に、Al拡散処理を行うことによりW系多目的合金層202以外の部分の耐熱合金基材100の表面にCr系多目的合金層203およびAl含有合金皮膜150を形成する。次に、溶射、電子ビーム蒸着、等によりW系多目的合金層202上にボンド層300およびトップ層400を順次形成する。ボンド層300とトップ層400との間のTGO-Al層は、一般的には耐熱合金部材を高温酸化性雰囲気で使用する際に形成されるが、予め形成しておく場合は、例えば、ボンド層300を形成した後、低酸素分圧雰囲気で酸化処理する。
 以上により、目的とする耐熱合金部材が製造される。
 この第5の実施の形態によれば、第4の実施の形態と同様な利点を得ることができる。
〈第6の実施の形態〉
[耐熱合金部材]
 図6は第6の実施の形態による耐熱合金部材を示す。図6に示すように、この耐熱合金部材においては、耐熱合金基材100の表面の全体にCr系多目的合金層203およびその上のAl含有合金皮膜150が設けられている。耐熱合金基材100は、好適には、Cr、Mo、NbおよびWからなる群より選ばれた少なくともCrを含む一種または二種以上の金属を総和で24.5原子%より多く含有するNi基合金からなる。Al含有合金皮膜150は典型的にはβ-NiAlからなる。Cr系多目的合金層203は第4の実施の形態と同様である。耐熱合金基材100の遮熱を行うべき特定の領域のみのAl含有合金皮膜150上にボンド層300およびトップ層400が順次積層されている。この遮熱を行うべき特定の領域の部分のAl含有合金皮膜150はボンド層300の一部を構成する。トップ層400は第1の実施の形態と同様である。
[耐熱合金部材の製造方法]
 この耐熱合金部材の製造方法について説明する。
 まず、第4の実施の形態と同様に、Al拡散処理を行うことにより耐熱合金基材100の表面全体にCr系多目的合金層203およびAl含有合金皮膜150を形成する。次に、溶射、電子ビーム蒸着、等によりAl含有合金皮膜150上にボンド層300およびトップ層400を順次形成する。ボンド層300とトップ層400との間のTGO-Al層は、一般的には耐熱合金部材を高温酸化性雰囲気で使用する際に形成されるが、予め形成しておく場合は、例えば、ボンド層300を形成した後、低酸素分圧雰囲気で酸化処理する。
 以上により、目的とする耐熱合金部材が製造される。
 この第6の実施の形態によれば、第4の実施の形態と同様な利点を得ることができる。
〈第7の実施の形態〉
 図7は第7の実施の形態による耐熱合金部材を示す。図7に示すように、この耐熱合金部材においては、耐熱合金基材100の表面の全体にCr系多目的合金層203およびその上のAl含有合金皮膜150が設けられている。耐熱合金基材100は、好適には、Cr、Mo、NbおよびWからなる群より選ばれた少なくともCrを含む一種または二種以上の金属を総和で24.5原子%より多く含有するNi基合金からなる。Al含有合金皮膜150は典型的にはβ-NiAlからなる。Cr系多目的合金層203は第6の実施の形態と同様である。耐熱合金基材100の遮熱を行うべき特定の領域のみのAl含有合金皮膜150上にトップ層400が積層されている。この遮熱を行うべき特定の領域の部分のAl含有合金皮膜150はボンド層300を兼用する。トップ層400は第1の実施の形態と同様である。
[耐熱合金部材の製造方法]
 この耐熱合金部材の製造方法について説明する。
 まず、第6の実施の形態と同様に、Al拡散処理を行うことにより耐熱合金基材100の表面全体にCr系多目的合金層203およびAl含有合金皮膜150を形成する。次に、溶射、電子ビーム蒸着、等によりAl含有合金皮膜150上にトップ層400を形成する。ボンド層300を兼用するAl含有合金皮膜150とトップ層400との間のTGO-Al層は、一般的には耐熱合金部材を高温酸化性雰囲気で使用する際に形成されるが、予め形成しておく場合は、例えば、Al含有合金皮膜150を形成した後、低酸素分圧雰囲気で酸化処理する。
 以上により、目的とする耐熱合金部材が製造される。
 この第7の実施の形態によれば、第6の実施の形態と同様な利点を得ることができる。
 実施例について説明する。
 耐熱合金基材100として下記の(1)、(2)を用いた。
(1)表1(株式会社オーサカステンレスのカタログより抜粋)に示すNi基耐熱合金からなる基材
Figure JPOXMLDOC01-appb-T000001
 表1中、ALLOY 201はNi(工業用)に相当する。その他の合金はNi基合金と言える。
(2)SUS310基材(組成(重量%)はCr:25,Ni:20,Fe:残部)
 遮熱コーティング皮膜のボンド層300としてはNiCrAlY(公称組成(wt%); Ni-25Cr-10Al-0.5Y)からなるものを用いた。NiCrAlY層はHVOF(High Velocity Oxy-Fuel)の溶射プロセス(高速フレーム溶射法)で製膜した。NiCrAlY層の厚さは100μmとした。トップ層400としてはYSZ(公称組成(mol%); 8Y-92ZrO)からなるものを用いた。YSZ層は大気プラズマ(APS)溶射プロセスで製膜した。YSZ層の厚さは300μmとした。
 耐熱合金基材100として(1)、(2)を用いた場合のサイクル酸化試験用の試験片およびクリープ試験用の試験片の形状およびサイズをそれぞれ図8および図9に示す。図8に示すように、試験片は直径20mm、高さ10mmの円柱状の基材の上端面に多目的合金層、ボンド層およびトップ層(多目的合金層をMPL、ボンド層およびトップ層をTBCと表示している)を形成したものであり、基材の円周面はそのままの場合とAl含有合金皮膜が形成されている場合とがある。これらの試験片では、便宜上、基材の上端面を遮熱を行うべき特定の領域としている。
(実施例1)
 実施例1は第6の実施の形態に対応するものである。
 耐熱合金基材100として表1に示すALLOY Xからなる基材を用いてサイクル酸化試験用の試験片を作製した。この試験片の表面(上面、下面、円周面)の全体にAl拡散処理を施した。すなわち、この試験片をAl:Ni:NHCl:Al=3:2.5:2:60(重量比)の混合粉末に埋没させ、Ar+3vol%H雰囲気中において1000℃で4時間加熱することによりAl拡散処理を施した。次に、Ar+3vol%H雰囲気中において1000℃で4時間加熱することにより熱処理を行った。その結果、図10に示すように、耐熱合金基材100の表面にCr系多目的合金層203およびAl含有合金皮膜150(β-NiAl膜)が形成された。
 次に、図10に示すように、試験片の上端面にHVOF溶射によりボンド層300としてNiCrAlY層を形成した後、その上にAPS溶射でトップ層400としてYSZ層を形成し、このYSZ層の形成時にNiCrAlY層とYSZ層との間にTGO-Al層を形成した。こうして、試験片を作製した。
 試験片の基材100/Cr系多目的合金層203/ボンド層300/トップ層400施工面の一部を切断し、その断面組織観察と各元素の濃度分布の測定とをSEM-EDX装置(走査型電子顕微鏡-エネルギー分散分光装置)で行った。図11に断面SEM写真を示す。
(実施例2)
 実施例2は第7の実施の形態に対応するものである。
 耐熱合金基材100としてALLOY X基材を用いてサイクル酸化試験用の試験片を作製した。まず、実施例1と同様にして、図12に示すように、試験片の表面全体にCr系多目的合金層203およびAl含有合金皮膜150(β-NiAl膜)を形成した。
 次に、試験片の上端面にAPS溶射でトップ層400としてYSZ層を形成し、このYSZ層の形成時にβ-NiAl膜とYSZ層との間にTGO-Al層を形成した。
 試験片の基材100/Cr系多目的合金層203/Al含有合金皮膜150(β-NiAl膜)/トップ層400施工面の一部を切断し、その断面組織観察と各元素の濃度分布の測定とをSEM-EDX装置で行った。図13に断面SEM写真を示す。
(実施例3)
 実施例3は第1の実施の形態に対応するものである。
 耐熱合金基材100としてALLOY X基材を用いてサイクル酸化試験用の試験片を作製した。まず、試験片の表面を平滑研磨し、脱脂を行った。次に、試験片の下端面および円周面を絶縁テープで被覆し、マスキングを行った。次に、(Niストライクめっき
1μm)→(Niワットめっき 1μm)→(Re-Ni合金めっき 8μm)→(Niワットめっき 15μm)→(Crめっき 7μm)を順に行い、合計の厚さ32μmのめっき層を形成した。次に、真空中において1000℃で5時間熱処理を行った。その結果、図14に示すように、試験片の上端面にRe系多目的合金層201が形成された。Re系多目的合金層201の上部にはNi-Cr層201aが形成された。
 次に、実施例1と同様にして、Re系多目的合金層201上にボンド層300としてNiCrAlY層を形成した後、その上にAPS溶射でトップ層400としてYSZ層を形成し、このYSZ層の形成時にNiCrAlY層とYSZ層との間にTGO-Al層を形成し、試験片を作製した。
 試験片の基材100/Re系多目的合金層201/ボンド層300/トップ層400施工面の一部を切断し、その断面組織観察と各元素の濃度分布の測定とをSEM-EDX装置で行った。図15に断面SEM写真を示す。
(実施例4)
 実施例4は第2の実施の形態に対応するものである。
 耐熱合金基材100としてALLOY X基材を用いてサイクル酸化試験用の試験片を作製した。実施例3と同様の処理を経て試験片の上端面にRe系多目的合金層201を形成した後、Al拡散処理を施すことにより試験片の下端面および円周面にAl含有合金皮膜150を形成した。Re系多目的合金層201の上部にはNi-Cr層201aが形成された。
 次に、実施例1と同様にして、Re系多目的合金層201上にボンド層300としてNiCrAlY層を形成した後、その上にAPS溶射でトップ層400としてYSZ層を形成し、このYSZ層の形成時にNiCrAlY層とYSZ層との間にTGO-Al層を形成した。こうして作製された試験片を図16に示す。
(実施例5)
 実施例5は第4の実施の形態においてRe系多目的合金層201とボンド層300との間にCr系多目的合金層203が設けられたものに対応する。
 耐熱合金基材100としてALLOY X基材を用いてサイクル酸化試験用の試験片を作製した。実施例3と同様の処理を経て試験片の上端面にRe系多目的合金層201を形成した後、実施例1と同様にしてCr系多目的合金層203およびAl含有合金皮膜150を形成した。
 次に、実施例1と同様にして、Cr系多目的合金層203上にボンド層300としてNiCrAlY層、トップ層400としてYSZ層を形成した。こうして作製された試験片を図17に示す。
(実施例6)
 実施例6は第1の実施の形態においてRe系多目的合金層201の代わりにW系多目的合金層202を用いたものに対応する。
 耐熱合金基材100としてALLOY X基材を用いてサイクル酸化試験用の試験片を作製した。Ni基自溶合金(公称組成(wt%); Ni-15Cr-3Si-2B-5Fe)に25重量%W粉末を添加したスラリーを作製し、試験片の表面に塗布した後、Ar+3vol%H雰囲気中において1150℃で6時間熱処理を施した。その結果、耐熱合金基材100の表面にW系多目的合金層202が形成された。W系多目的合金層202の上部にはNi(Cr,Si)層202aが形成された。
 次に、実施例1と同様にして、試験片の上端面のW系多目的合金層202上にボンド層300としてNiCrAlY層、トップ層400としてYSZ層を形成した。こうして作製された試験片を図18に示す。
 試験片の基材100/W系多目的合金層202/ボンド層300/トップ層400施工面の一部を切断し、その断面組織観察と各元素の濃度分布の測定とをSEM-EDX装置で行った。図19に断面SEM写真を示す。
(実施例7)
 実施例7は第3の実施の形態に対応するものである。
 耐熱合金基材100としてALLOY X基材を用いてサイクル酸化試験用の試験片を作製した。実施例6と同様にして耐熱合金基材100の表面にW系多目的合金層202を形成した後、実施例1と同様にして試験片の下端面および円周面にAl含有合金皮膜150を形成した。
 次に、実施例1と同様にして、試験片の上端面のW系多目的合金層202上にボンド層300としてNiCrAlY層、トップ層400としてYSZ層を形成し、試験片を作製した。こうして作製された試験片を図20に示す。
(実施例8)
 実施例8は第5の実施の形態においてW系多目的合金層202とボンド層300との間にCr系多目的合金層203が設けられたものに対応する。
 耐熱合金基材100としてALLOY X基材を用いてサイクル酸化試験用の試験片を作製した。実施例6と同様にして試験片の上端面にW系多目的合金層202を形成した後、試験片の表面全体にCr系多目的合金層203を形成するとともに、試験片の下端面および円周面にAl含有合金皮膜150を形成した。
 次に、実施例1と同様にして、Cr系多目的合金層203上にボンド層300としてNiCrAlY層、トップ層400としてYSZ層を形成した。こうして作製された試験片を図21に示す。
(比較例)
 耐熱合金基材100としてALLOY X基材を用いてサイクル酸化試験用の試験片を作製した。耐熱合金基材100上に直接、ボンド層300としてNiCrAlY層、トップ層400としてYSZ層を形成し、試験片を作製した。こうして作製された試験片を図22に示す。
 試験片の基材100/ボンド層300/トップ層400施工面の一部を切断し、その断面組織観察と各元素の濃度分布の測定とをSEM-EDX装置で行った。図23に断面SEM写真を示す。
[高温酸化試験]
 高温酸化試験は、加熱および冷却繰り返しの条件下で、大気中で行った。具体的には、水平移動式試料台(アルミナ棒) に試験片を載せ、1100℃に制御した電気炉内に挿入し、45分経過後、大気中で15分間冷却した後、再び電気炉に挿入する、いわゆるサイクル酸化試験である。
 実施例1~8および比較例の試験片の酸化量のサイクル数依存性とトップ層のYSZの剥離が起こるサイクル数(剥離サイクル数)とをまとめて図24に示す。
 所定のサイクル数経過後、試験片の重量変化を室温で測定したが、MPL/TBC施工面とその他の面では酸化挙動は異なる。本件では、酸化量は試験片全体の面積で除した値として測定し、その結果、得られた酸化量はその他の面(TBC未施工面) の結果を強く反映したものとなっている。
 図24には、比較のため、ALLOY X基材の酸化量のサイクル数依存性を示す。酸化量は200サイクル前後から減少に転じ、その後サイクル数に比例して減少する。
 比較例では、酸化量は200サイクル前後から減少に転じ、ALLOY X基材の酸化量のサイクル数依存性と類似している。遮熱層YSZは600~700サイクル数で剥離した。
 実施例3、6では、酸化量は比較例と類似のサイクル数依存性に従って減少し、遮熱層YSZは1600~1800サイクルで剥離した。
 これらの結果から、従来の基材/TBC(比較例)に比較して、Re系多目的合金層を用いる実施例3~5およびW系多目的合金層を用いる実施例6~8では、YSZの耐剥離性は2倍以上に増大していることがわかる。
 実施例3、6では、MPL/TBCが未施工の部分ではALLOY X基材の酸化が進行し、サイクル数に比例して、酸化量の減少が観察される。これは、本実験の酸化条件(1100℃;45分⇔室温;15分、大気中) 下では、ALLOY X基材に形成したCrの酸化蒸発(CrO(g))と酸化物皮膜の剥離が重畳することによる。
 実施例1、2、4、5、7、8では、ALLOY X基材にAl含有合金皮膜150を形成した後、その特定の領域にMPL/TBCを形成した。サイクル酸化では、TBCを施工していない基材表面には保護皮膜としてAlが形成されていることから、サイクル数による酸化量の低下は僅少である。そして、遮熱層YSZの剥離は1600~1800サイクルであり、実施例3、6で観察された剥離数とほほ同じである。
 以上の結果から、本発明で提案した基材/MPL/TBCでは、Re系多目的合金層201、W系多目的合金層202およびCr系多目的合金層203のいずれにおいても、トップ層400の耐剥離性は改善され、耐熱合金基材100の表面に形成したAl含有合金皮膜150による保護的酸化物皮膜の形成により、耐高温酸化性もまた同時に向上させることができる、ことが明らかになった。
[YSZ層の亀裂および剥離のその場観察]
 電気炉から取り出して冷却する際の試験片の表面を写真撮影によって、観察した。その結果、YSZ層の破壊は、試験片の周辺角部から層間剥離として開始し、中心部に向かって進展している様子が観察される(層間剥離した個所は、より早期に暗黒化することで判別できる。
 比較例の試験片(基材/TBC)を1サイクル、217サイクル、380サイクル、450サイクル、593サイクル後の各冷却後に写真撮影によって観察した。その結果、217サイクルではYSZ層の剥離が試験片の周辺から発生し、サイクル数とともに中心に向かって進展している様子が見られた。593サイクル後の冷却の過程でYSZ層は全面剥離した。
 実施例1の試験片(基材/Cr系MPL層203/TBC)を1サイクル、656サイクル、1002サイクル、1476サイクル、1674サイクル、1791サイクル、1850サイクル後の各冷却後に写真撮影によって観察した。その結果、サイクル数が1000サイクルを超えると、試験片の周辺からYSZ層の部分剥離が始まり、サイクル数とともに中心に向かって進展している様子が見られた。1850サイクル終了後、室温に保持中にYSZ層は全面剥離した。
 同様の結果は実施例2~8の試験片においても観察された。
 すなわち、耐熱合金基材100とTBCとの間にRe系多目的合金層201、W系多目的合金層202またはCr系多目的合金層203を挿入することによって、YSZ層の剥離が抑制されていることがわかる。
 比較例の試験片(基材/TBC)と実施例1~8の試験片(基材/MPL/TBC)を所定のサイクル終了後に切断し、断面の組織観察と各元素の濃度分布の測定とを行った。図25はボンド層300のAl濃度(原子%)のサイクル数依存性を示す。図25より、比較例の基材/TBCでは、ボンド層300のAl濃度は初期の約18原子%から200サイクル後には数原子%に低下し、その後徐々に1原子%以下に減少して、約600サイクルでYSZ層は剥離した。一方、実施例1~8の基材/MPL/TBCでは、Al濃度はサイクル数の増加に対して徐々に低下し、1600~1800サイクル前後で1原子%以下に低下し、YSZ層は剥離した。
 ボンド層300のAl濃度が数原子%(図25の破線で示す) 以下になると、TGOはAlのほかにCr、NiAlの酸化物が観察されるようになり、これら酸化物はボンド層300の周辺から形成し、中心側に進展して、TGO全体に形成されたとき、YSZ層は全面に亘って剥離する。
 実施例1~8の基材/MPL/TBCでは、MPL層によってボンド層300のAl濃度が高く維持され、Al主体のTGOが形成および維持され、1000サイクル前後から、Cr、NiAl等が周辺に形成されるようになり、YSZ層の剥離は周辺から始まり、中心側へと伝播し、1850サイクルで全面剥離した。
 表1に記載の、ALLOY Xを含む各種Ni基耐熱合金からなる基材を用いた場合におけるAl拡散処理によるCr系多目的合金層203の形成について検討した。続いて、4サイクル、100サイクルの酸化試験を行い、試験片の断面組織観察と各元素の濃度分布の測定とを行った。得られた結果を以下に説明する。
 各試験片のAl拡散処理後の断面組織を図26A(ALLOY X)、図26B(ALLOY 601)、図26C(ALLOY 20)、図26D(ALLOY 825)、図26E(ALLOY 800HT)、図27A(ALLOY 625)、図27B(ALLOY 718)、図27C(ALLOY B2)、図27D(ALLOY 22)および図27E(ALLOY C276)に示す。これらの図より、Al拡散処理後では、いずれの試験片においても、Cr系多目的合金層203に相当する層の形成は認められない。
 上記のAl拡散処理後の各試験片を4サイクル酸化した後の断面の組織を図28A(ALLOY 22、34.7原子%)、図28B(ALLOY 625、32.7原子%)、図28C(ALLOY C276、30.5原子%)、図28D(ALLOY X、30.1原子%)、図28E(ALLOY 718、26.2原子%)、図29A(ALLOY 825、25.2原子%)、図29B(ALLOY 20、23.4原子%)、図29C(ALLOY 601、24.5原子%)、図29D(ALLOY 800HT、21.7原子%)および図29E(ALLOY B2、20.1原子%)に示す(各図番の後ろの括弧内には基材の種類および基材に含まれる元素(Cr+Mo+Nb+W)の総和(原子%)を示す)。これらの組織写真は基材に含まれる元素(Cr+Mo+Nb+W)の総和(原子%)順に示している(図29Bおよび図29Cは例外)。
 上記のAl拡散処理後の各試験片を100サイクル酸化した後の断面の組織を図30A(ALLOY 22、34.7原子%)、図30B(ALLOY 625、32.7原子%)、図30C(ALLOY C276、30.5原子%)、図30D(ALLOY X、30.1原子%)、図30E(ALLOY 718、26.2原子%)、図31A(ALLOY 825、25.2原子%)、図31B(ALLOY 20、23.4原子%)、図31C(ALLOY 601、24.5原子%)、図31D(ALLOY 800HT、21.7原子%)および図31E(ALLOY B2、20.1原子%)に示す。これらの組織写真は基材に含まれる元素(Cr+Mo+Nb+W)の総和(原子%)順に示している(図31Bおよび図31Cは例外)。
 上記の各試験片について、Al拡散処理後、それに続く大気中での4サイクル酸化後、100サイクル酸化後の各元素の濃度分析を行った。Cr系多目的合金層203の内層を構成する元素と濃度をまとめて表2に示す。
Figure JPOXMLDOC01-appb-T000002
 以上の組織観察の結果と各元素の濃度分布の分析結果から、Cr系多目的合金層203の形成について、基材中の各元素の濃度と以下のような関係が求められる。
 以下に、基材中のCr+Mo+Nb+Wの元素の濃度の総和とCr系多目的合金層との関係について、表3に示す。以下のように要約される。
Figure JPOXMLDOC01-appb-T000003
(1)Al拡散処理後では、Cr系多目的合金層の形成は、明瞭には観察されない。
(2)4サイクル酸化後では、Cr系多目的合金層は以下の合金の基材で明瞭に観察される。
 ALLOY 22、ALLOY 625、ALLOY C276、ALLOY X、
 ALLOY 718、ALLOY 825、ALLOY 20
 これらの合金のCr+Mo+Nb+Wの濃度の総和は23.4原子%以上である。
      (ALLOY B2はMoが多く、Cr含有量が少ない)
(3)4サイクル酸化後では、Cr系多目的合金層の形成は以下の合金では確認できない。
 ALLOY 601、ALLOY 800HT
 これらの合金のCr+Mo+Nb+Wの濃度の総和は24.5原子%以下である。
(4)100サイクル酸化後では、Cr系多目的合金層の連続層を形成している合金は下記の通りである。
 ALLOY 22、ALLOY 625、ALLOY C276
 これらの合金のCr+Mo+Nb+Wの濃度の総和は30.5原子%以上である。
 Cr系多目的合金層が不連続に形成されている合金は下記の通りである。
 ALLOY X、ALLOY 718、ALLOY 825、ALLOY 20
 これらの合金のCr+Mo+Nb+Wの濃度の総和は23.4原子%以上30.1原子%以下である。
 Cr系多目的合金層が形成されていない合金基材は下記の通りである。
 ALLOY 601、ALLOY 800HT
 これらの合金のCr+Mo+Nb+Wの濃度の総和は24.5原子%以下である。
 以上の結果から、Cr系多目的合金層の形成には、合金基材中のCr、Mo、Nb、Wが効果的である。しかし、ALLOY B2の結果にみられるように、多量のMoはCr系多目的合金層を脆性にすることから、また、耐酸化性の視点から、CrとMoとの複合添加が有効である。
 100サイクル酸化後の上記の各試験片の基材に含まれるFe(+Nb)の効果について説明する。基材に含まれる元素(Fe+Nb)の総和(原子%)順に示すと、図31D(ALLOY 800HT、45.3原子%)、図31B(ALLOY 20、35.4原子%)、図31A(ALLOY 825、29.9原子%)、図30E(ALLOY
718、21.6原子%)、図30D(ALLOY X、19.3原子%)、図31C(ALLOY 601、13.1原子%)、図30C(ALLOY C276、6.2原子%)、図30B(ALLOY 625、5原子%)、図30A(ALLOY 22、4.4原子%)および図31E(ALLOY B2、2.1原子%)となる(各図番の後ろの括弧内に基材に含まれる元素(Fe+Nb)の総和(原子%)を示す)。これらの図より、Fe(+Nb)の濃度が高いほど、Cr系多目的合金層203の形成は認められない。Cr系多目的合金層203の形成と維持に対しては、Fe(+Nb)の濃度は29.9原子%以下が望ましい。
 表1に示す各合金からなる耐熱合金基材100上に形成したRe系多目的合金層201の元素および濃度(原子%)を表4および表5に示す。表4および表5中、AlパックはAl拡散処理後、25cyc等は25サイクル酸化後等を意味する。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表4、5に示す結果は、以下のように要約される。
 Re系多目的合金層201は、Al拡散処理後、4サイクル酸化後、25サイクル酸化後、100サイクル酸化後において、全ての合金基材で観察される。Re系多目的合金層201に含まれる元素(Re+Cr+Nb+Mo)の濃度の総和は、51.8原子%~73.5原子%である。しかし、100サイクル酸化後では、ALLOY B2とALLOY 201ではRe系多目的合金層201が消失している。これは、ALLOY 201は工業純度のNiであり、ALLOY B2のCr濃度は0.2原子%と極めて低いことによる。
[クリープ強度]
 三種類の多目的合金層(Re系、W系、Cr系) を形成したALLOY X基材のクリープ挙動を970℃、大気中、応力20~50MPaで調査した。その結果のラーソンミラーパラメータ(Larson Miller Parameter)プロットを図32に示す。ラーソンミラーパラメータはP=T(C+ logt)で定義される。ただし、Tは絶対温度、tは破断時間(h)、Cは材料定数である。
 図32より、Cr系多目的合金層203を形成したALLOY X基材の破断時間はALLOY X基材と同等であり、Re系多目的合金層201またはW系多目的合金層202を施工したALLOY X基材の破断時間は長時間側に位置している。すなわち、三種類の多目的合金層(Re系、W系、Cr系) を形成したALLOY X基材では、強度低下は見られず、逆に、Re系多目的合金層201およびW系多目的合金層202では高強度化に寄与していることが明らかとなった。
 Re系多目的合金層201を形成したALLOY X基材のクリープ曲線(970℃;
大気中、応力22.5MPa、27.5MPa、40MPa)を図33Aおよび図33Bに示す。ここで、図33Aは歪の経時変化、図33Bは歪速度の経時変化を示す。図33Aおよび図33Bより、応力27.5MPaで比較すると、ALLOY X基材の破断時間が220時間であるのに対して、基材/Re系多目的合金層201では380時間となっている。定常クリープ速度は、ALLOY X基材に比較して、基材/Re系多目的合金層201では低下していることが明らかとなった。
 図33Aおよび図33Bに示したクリープ試験において、応力22.5MPaでのクリープ試験を歪3.5%、190時間で中断し、試験片の表面と断面組織を観察した結果を図34A、図34Bおよび図34Cに示す。図34Aは試験片全体、図34Bは図34Aの破線で囲んだ領域の拡大図、図34Cは試験片の断面の組織を示す。図34A、図34Bおよび図34Cより、試験片の表面にはθ-Alが形成され、縦クラック(応力軸に垂直)と部分的剥離が観察される。試験片の断面観察から、Re系多目的合金層201/β-NiAl皮膜が連続的に残存し、亀裂、剥離、等は観察されない。すなわち、基材と一緒にRe系多目的合金層201/β-NiAl皮膜はクリープ変形していることが分かる。
 図35Aおよび図35Bはそれぞれ、図34Cに示した断面組織において、Re系多目的合金層201/β-NiAl皮膜の拡大写真および各元素の濃度分布を示す。図35Aおよび図35Bより、Re系多目的合金層201の組成(原子%)は25原子%Re-35原子%Cr-16原子%Ni-10原子%Fe-10原子%Moである。試験片の表面に形成されたθ-Alの一部が剥離しているが、Re系多目的合金層201およびβ-NiAl皮膜には、亀裂等の欠陥は見られない。β-NiAl皮膜のAlは基材側への拡散浸透は見られず、クリープ変形にもかかわらず、Re系多目的合金層201はAlの拡散バリアとして機能している。
 Re系多目的合金層201を形成したSUS310基材のクリープ挙動を900℃、大気中、応力22.5MPaで調査した結果を図36に示す。図36には、比較のために、SUS310基材のクリープ挙動を調査した結果も示す。図36より、例えば、クリープ時間200時間での歪(%)を比較すると、SUS310基材は21%であるのに対して、10μm、20μmの厚さのRe系多目的合金層201を形成したSUS310基材ではそれぞれ11%、8.5%である。Re系多目的合金層201を形成することによって、SUS310基材の耐クリープ特性が改善されていることが分かる。
 図37A、図37B、図37C、図37D、図37Eおよび図37Fは、図36に示したクリープ試験の破断後の試験片の断面組織を示す。ここで、図37Aおよび図37BはSUS310基材のクリープ試験後の断面組織を示し、図37Bは図37Aの一部を拡大したものである。図37Cおよび図37Dは厚さ10μmのRe系多目的合金層201を形成したSUS310基材のクリープ試験後の断面組織を示し、図37Dは図37Cの一部を拡大したものである。図37Eおよび図37Fは厚さ20μmのRe系多目的合金層201を形成したSUS310基材のクリープ試験後の断面組織を示し、図37Fは図37Eの一部を拡大したものである。これらの図より、SUS310基材では多数の微細な粒界割れが見られるのに対して、基材/Re系多目的合金層201では、粒界破壊の頻度は少ない。
 ALLOY X基材にCr系多目的合金層203またはRe系多目的合金層201を形成し、それらの耐疲労特性を表6に示した条件で調査した。
              表6 疲労試験条件
          試験波形  三角波
          試験規格  ASTM E606/E606M-12
          温度    760℃
          歪範囲   0.4%
          歪速度   0.4%/sec
 その結果、疲労破断サイクル数は、合金基材に対する相対値として、基材/Cr系多目的合金層203では1.16~1.24、基材/Re系多目的合金層201では2.59~2.75であった。
 以上の結果から、耐疲労特性は、基材/Cr系多目的合金層203では基材とほぼ同等であり、基材/Re系多目的合金層201では2倍以上に改善されていることが分かる。
 以上、この発明の実施の形態および実施例について具体的に説明したが、この発明は、上述の実施の形態および実施例に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。
 100 耐熱合金基材
 150 Al含有合金皮膜
 201 Re系多目的合金層
 202 W系多目的合金層
 203 Cr系多目的合金層
 300 ボンド層
 400 トップ層

Claims (20)

  1.  耐熱合金基材と、
     上記耐熱合金基材の表面の遮熱を行うべき領域を少なくとも含む領域に設けられたRe系、W系またはCr系の多目的合金層と、
     上記多目的合金層上の上記遮熱を行うべき領域を少なくとも含む領域に設けられたAl含有合金からなるボンド層と、
     上記ボンド層上の上記遮熱を行うべき領域のみに設けられた遮熱性セラミックスからなるトップ層と、
    を有する耐熱合金部材。
  2.  Re系またはW系の上記多目的合金層、上記ボンド層および上記トップ層は上記耐熱合金基材の表面の上記遮熱を行うべき領域のみに設けられている請求項1記載の耐熱合金部材。
  3.  上記多目的合金層、上記ボンド層および上記トップ層は上記耐熱合金基材の表面の遮熱を行うべき領域のみに設けられ、上記遮熱を行うべき領域以外の部分の上記耐熱合金基材の表面を覆うようにAl含有合金皮膜が設けられている請求項1記載の耐熱合金部材。
  4.  上記多目的合金層は、Re系の多目的合金層、W系の多目的合金層およびCr系の多目的合金層から選ばれた互いに異なる2層が積層されたものからなる請求項1記載の耐熱合金部材。
  5.  上記耐熱合金基材の表面全体を覆うようにCr系の上記多目的合金層および当該多目的合金層上のAl含有合金皮膜が設けられ、上記ボンド層および上記トップ層は上記Al含有合金皮膜上の上記遮熱を行うべき領域のみに設けられている請求項1記載の耐熱合金部材。
  6.  上記多目的合金層、上記ボンド層および上記トップ層は上記耐熱合金基材の表面の遮熱を行うべき領域のみに設けられ、上記遮熱を行うべき領域以外の部分の上記耐熱合金基材の表面を覆うように上記多目的合金層および当該多目的合金層上のAl含有合金皮膜が設けられている請求項3記載の耐熱合金部材。
  7.  上記耐熱合金基材の表面全体を覆うようにCr系の上記多目的合金層および当該多目的合金層上の、上記ボンド層を兼用するAl含有合金皮膜が設けられ、上記トップ層は上記Al含有合金皮膜上の上記遮熱を行うべき領域のみに設けられている請求項3記載の耐熱合金部材。
  8.  上記耐熱合金基材はCr、Mo、NbおよびWからなる群より選ばれた少なくともCrを含む一種または二種以上の金属を総和で24.5原子%より多く含有するNi基合金からなり、上記多目的合金層はCr系である請求項1記載の耐熱合金部材。
  9.  上記Ni基合金はCrを18.7原子%以上含有し、Mo、NbおよびWからなる群より選ばれた一種または二種以上の金属を総和で5.7原子%以上19.2原子%以下含有し、FeおよびNbを総和で13.1原子%以下含有する請求項8記載の耐熱合金部材。
  10.  上記耐熱合金基材はNi基単結晶超合金からなり、上記多目的合金層はRe系である請求項1記載の耐熱合金部材。
  11.  上記ボンド層を構成する上記Al含有合金はMCrAlY(M=Co,Ni)、β-NiAl、γ’-NiAlまたはγ-Ni(Al,Cr)からなる請求項1~10のいずれか一項記載の耐熱合金部材。
  12.  上記トップ層を構成する上記遮熱性セラミックスは、ジルコニウムとイットリウムと酸素とを含有する酸化物セラミックス、アルミニウムとイットリウムと酸素とを含有する酸化物セラミックス、アルミニウムとランタンと酸素とを含有する酸化物セラミックス、アルミニウムとサマリウムと酸素とを含有する酸化物セラミックス、セリウムと酸素とを含有する酸化物セラミックスおよびトリウムと酸素とを含有する酸化物セラミックスからなる群より選ばれた少なくとも一種からなる請求項1~11のいずれか一項記載の耐熱合金部材。
  13.  耐熱合金基材の表面の遮熱を行うべき領域を少なくとも含む領域にRe系、W系またはCr系の多目的合金層を形成する工程と、
     上記多目的合金層上の上記遮熱を行うべき領域を少なくとも含む領域にAl含有合金からなるボンド層を形成する工程と、
     上記ボンド層上の上記遮熱を行うべき領域のみに遮熱性セラミックスからなるトップ層を形成する工程と、
    を有する耐熱合金部材の製造方法。
  14.  上記耐熱合金基材の表面の上記遮熱を行うべき領域のみに上記多目的合金層を形成した後、上記多目的合金層上に上記ボンド層および上記トップ層を順次形成する請求項13記載の耐熱合金部材の製造方法。
  15.  上記耐熱合金基材の表面の上記遮熱を行うべき領域のみに上記多目的合金層を形成し、Al拡散処理を施すことにより上記遮熱を行うべき領域以外の部分の上記耐熱合金基材の表面を覆うようにAl含有合金皮膜を形成した後、上記多目的合金層上に上記ボンド層および上記トップ層を順次形成する請求項13記載の耐熱合金部材の製造方法。
  16.  上記耐熱合金基材はCr、Mo、NbおよびWからなる群より選ばれた少なくともCrを含む一種または二種以上の金属を総和で24.5原子%より多く含有するNi基合金からなり、上記ボンド層および上記トップ層を順次形成した後、高温で酸化を行うことにより上記耐熱合金基材と上記Al含有合金皮膜との反応により上記耐熱合金基材と上記Al含有合金皮膜との間にCr系の上記多目的合金層を形成する請求項15記載の耐熱合金部材の製造方法。
  17.  上記耐熱合金基材はCr、Mo、NbおよびWからなる群より選ばれた少なくともCrを含む一種または二種以上の金属を総和で24.5原子%より多く含有するNi基合金からなり、Al拡散処理を施すことにより上記耐熱合金基材の表面全体にAl含有合金皮膜を形成し、上記遮熱を行うべき領域のみに上記ボンド層および上記トップ層を順次形成した後、高温で酸化を行うことにより上記耐熱合金基材と上記Al含有合金皮膜との反応により上記耐熱合金基材と上記Al含有合金皮膜との間にCr系の上記多目的合金層を形成する請求項15記載の耐熱合金部材の製造方法。
  18.  上記耐熱合金基材はCr、Mo、NbおよびWからなる群より選ばれた少なくともCrを含む一種または二種以上の金属を総和で24.5原子%より多く含有するNi基合金からなり、Al拡散処理を施すことにより上記耐熱合金基材の表面全体に上記ボンド層を兼用するAl含有合金皮膜を形成し、上記Al含有合金皮膜上の上記遮熱を行うべき領域のみに上記トップ層を形成した後、高温で酸化を行うことにより上記耐熱合金基材と上記Al含有合金皮膜との反応により上記耐熱合金基材と上記Al含有合金皮膜との間にCr系の上記多目的合金層を形成する請求項15記載の耐熱合金部材の製造方法。
  19.  耐熱合金基材と、
     上記耐熱合金基材の表面の遮熱を行うべき領域を少なくとも含む領域に設けられたRe系、W系またはCr系の多目的合金層と、
     上記多目的合金層上の上記遮熱を行うべき領域を少なくとも含む領域に設けられたAl含有合金からなるボンド層と、
     上記ボンド層上の上記遮熱を行うべき領域のみに設けられた遮熱性セラミックスからなるトップ層と、を有する耐熱合金部材
    を有する高温装置。
  20.  耐熱合金基材の表面の遮熱を行うべき領域を少なくとも含む領域にRe系、W系またはCr系の多目的合金層を形成する工程と、
     上記多目的合金層上の上記遮熱を行うべき領域を少なくとも含む領域にAl含有合金からなるボンド層を形成する工程と、
     上記ボンド層上の上記遮熱を行うべき領域のみに遮熱性セラミックスからなるトップ層を形成する工程と、を実行することにより耐熱合金部材を製造する工程を有する高温装置の製造方法。
PCT/JP2021/014268 2021-04-02 2021-04-02 耐熱合金部材およびその製造方法ならびに高温装置およびその製造方法 WO2022208861A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/014268 WO2022208861A1 (ja) 2021-04-02 2021-04-02 耐熱合金部材およびその製造方法ならびに高温装置およびその製造方法
JP2023510128A JP7369499B2 (ja) 2021-04-02 2021-04-02 耐熱合金部材およびその製造方法ならびに高温装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/014268 WO2022208861A1 (ja) 2021-04-02 2021-04-02 耐熱合金部材およびその製造方法ならびに高温装置およびその製造方法

Publications (1)

Publication Number Publication Date
WO2022208861A1 true WO2022208861A1 (ja) 2022-10-06

Family

ID=83457361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014268 WO2022208861A1 (ja) 2021-04-02 2021-04-02 耐熱合金部材およびその製造方法ならびに高温装置およびその製造方法

Country Status (2)

Country Link
JP (1) JP7369499B2 (ja)
WO (1) WO2022208861A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035911A (ja) * 2002-06-28 2004-02-05 Japan Science & Technology Corp レニウム含有合金皮膜を被着してなる耐高温酸化性耐熱合金部材の製造方法
JP2005526907A (ja) * 2002-04-10 2005-09-08 シーメンス アクチエンゲゼルシヤフト 遮蔽層を有する構成部材
JP3857690B2 (ja) * 2001-10-31 2006-12-13 独立行政法人科学技術振興機構 拡散障壁用Re合金皮膜
JP4753720B2 (ja) * 2004-01-15 2011-08-24 株式会社荏原製作所 拡散バリヤ用合金皮膜及びその製造方法、並びに高温装置部材
JP5905336B2 (ja) * 2012-05-30 2016-04-20 三菱日立パワーシステムズ株式会社 発電用ガスタービン翼、発電用ガスタービン

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3857690B2 (ja) * 2001-10-31 2006-12-13 独立行政法人科学技術振興機構 拡散障壁用Re合金皮膜
JP2005526907A (ja) * 2002-04-10 2005-09-08 シーメンス アクチエンゲゼルシヤフト 遮蔽層を有する構成部材
JP2004035911A (ja) * 2002-06-28 2004-02-05 Japan Science & Technology Corp レニウム含有合金皮膜を被着してなる耐高温酸化性耐熱合金部材の製造方法
JP4753720B2 (ja) * 2004-01-15 2011-08-24 株式会社荏原製作所 拡散バリヤ用合金皮膜及びその製造方法、並びに高温装置部材
JP5905336B2 (ja) * 2012-05-30 2016-04-20 三菱日立パワーシステムズ株式会社 発電用ガスタービン翼、発電用ガスタービン

Also Published As

Publication number Publication date
JP7369499B2 (ja) 2023-10-26
JPWO2022208861A1 (ja) 2022-10-06

Similar Documents

Publication Publication Date Title
JP5182669B2 (ja) 多層合金皮膜、それを有する耐熱性金属部材および多層合金皮膜の製造方法
JP4166977B2 (ja) 耐高温腐食合金材、遮熱コーティング材、タービン部材、及びガスタービン
US8025984B2 (en) Protective layer for protecting a component against corrosion and oxidation at high temperatures, and component
JP5437573B2 (ja) 合金組成物及びそれを含む物品
JP4535059B2 (ja) アルミニウムの拡散コーティングの施工方法
JP2006226290A (ja) 金属及びケイ素含有構成部品を有する組立体のための拡散バリヤ及びそのための方法。
JP7174811B2 (ja) 高温部材
US6720088B2 (en) Materials for protection of substrates at high temperature, articles made therefrom, and method for protecting substrates
JP2008168345A (ja) 合金組成物及びそれを含む物品
JP3700766B2 (ja) 熱遮蔽皮膜被覆部材並びに溶射用粉体
WO2012029540A1 (ja) 熱遮蔽コーティング膜及びその製造方法、並びにそれを用いた耐熱合金部材
WO2022208861A1 (ja) 耐熱合金部材およびその製造方法ならびに高温装置およびその製造方法
JP2006328499A (ja) 遮熱コーティング、ガスタービン高温部品及びガスタービン
JP2021123771A (ja) 耐熱合金部材およびその製造方法ならびに高温装置およびその製造方法
JP3413096B2 (ja) 耐熱部材およびその製造方法
JPH0563555B2 (ja)
JP5967534B2 (ja) 熱遮蔽被膜の形成方法および熱遮蔽被膜被覆部材
JP7138339B2 (ja) 耐熱合金部材およびその製造方法ならびに高温装置およびその製造方法
JP6083710B2 (ja) 耐熱合金部材の製造方法
JPWO2003038152A1 (ja) 拡散障壁用Re合金皮膜
JP2022065441A (ja) 耐熱金属部材およびその製造方法ならびに高温装置およびその製造方法
JP2023009333A (ja) 耐熱金属部材およびその製造方法ならびに高温装置およびその製造方法
JP5905355B2 (ja) 発電用ガスタービン翼の製造方法
JPH08246901A (ja) 耐酸化性に優れた遮熱コーティング膜
JPS62210328A (ja) セラミツク被覆ジエツトエンジン燃焼器及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935023

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023510128

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935023

Country of ref document: EP

Kind code of ref document: A1