WO2022205569A1 - 一种荧光金属有机框架超结构化合物及其制备方法和应用 - Google Patents

一种荧光金属有机框架超结构化合物及其制备方法和应用 Download PDF

Info

Publication number
WO2022205569A1
WO2022205569A1 PCT/CN2021/093034 CN2021093034W WO2022205569A1 WO 2022205569 A1 WO2022205569 A1 WO 2022205569A1 CN 2021093034 W CN2021093034 W CN 2021093034W WO 2022205569 A1 WO2022205569 A1 WO 2022205569A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
rare earth
organic framework
organic
salt solution
Prior art date
Application number
PCT/CN2021/093034
Other languages
English (en)
French (fr)
Inventor
林鹏程
余伟泰
吴红姣
陈颖
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Priority to US17/790,492 priority Critical patent/US20230287261A1/en
Publication of WO2022205569A1 publication Critical patent/WO2022205569A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • B01F23/414Emulsifying characterised by the internal structure of the emulsion
    • B01F23/4143Microemulsions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • B01F23/414Emulsifying characterised by the internal structure of the emulsion
    • B01F23/4145Emulsions of oils, e.g. fuel, and water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/302Micromixers the materials to be mixed flowing in the form of droplets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/001Macromolecular compounds containing organic and inorganic sequences, e.g. organic polymers grafted onto silica
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/182Metal complexes of the rare earth metals, i.e. Sc, Y or lanthanide

Definitions

  • the invention relates to the technical field of functional nanomaterials, in particular to a fluorescent metal-organic framework superstructure compound and a preparation method and application thereof.
  • Metal-organic frameworks are porous crystalline materials composed of metal clusters or ions as connecting nodes and rigid organic ligands through coordination bonds. Compared with traditional porous materials such as zeolite, activated carbon, and silica gel, MOFs are favored by people due to their simple synthesis method, large specific surface area, and diverse and tunable structures. The rich designability of the structure and function of MOFs makes it possible to endow them with diverse functions by choosing different metal ions, clusters, and organic ligands, so there are a large number of reports on cutting-edge applications such as fluorescence sensing and biodetection based on MOFs.
  • Fluorescent MOFs superstructure is the self-assembly of MOFs to form a three-dimensional spherical structure, which is a very promising class of multifunctional materials. Its luminescence properties are very sensitive, and the complex fluorescent sensing MOFs with high sensitivity and selectivity can be obtained by rationally controlling the structure, pore size, and functional sites in the superstructure of fluorescent MOFs.
  • the preparation method of fluorescent metal-organic framework materials is mainly hydrothermal reaction, but when using hydrothermal reaction, it is difficult to control its self-assembly to form superstructure, and usually only single MOFs nanorods or nanorod clusters can be obtained.
  • the purpose of the present invention is to provide a fluorescent metal-organic framework superstructure compound and a preparation method and application thereof.
  • the preparation method provided by the present invention can self-assemble to prepare a spherical fluorescent metal-organic framework superstructure compound, and the spherical The particle size distribution is uniform.
  • the present invention provides a method for preparing a fluorescent metal-organic framework superstructure compound, comprising the following steps:
  • a microfluidic mixing device comprises a first feeding pipe 1, a capillary 3 whose feeding end is communicated with the discharging end of the first feeding pipe 1, and the feeding end
  • the mixing channel 4 communicated with the discharge end of the capillary tube 3 further includes a second feed pipe 2, and the discharge end of the second feed pipe is communicated with the feed end of the mixing channel 4;
  • the soluble rare earth salt solution is injected from the first feeding pipe 1, flows through the capillary 2 into the mixing channel 4, and the oil phase solution is injected from the second feeding pipe 2 and enters the mixing channel 4,
  • the rare earth salt solution forms droplets of the rare earth salt solution
  • the rare earth salt solution droplets flow out of the mixing channel 4 and undergo a coordination chemical reaction with the organic ligand solution to obtain the fluorescent metal-organic framework superstructure compound.
  • the flow rate of the soluble rare earth salt solution entering the mixing channel 4 is 5-15 ⁇ L/min;
  • the flow rate of the oil phase solution entering the mixing channel 4 is 150-250 ⁇ L/min.
  • the capillary 3 is conical, the inner diameter of the bottom surface of the conical shape is 0.05-0.15 mm, and the outer diameter is 0.3-0.4 mm;
  • the inner diameters of the first feeding pipe 1 and the mixing channel 4 are independently 0.5-0.6 mm, and the outer diameters are independently 0.75-0.86 mm;
  • the inner diameter of the second feed pipe 1 is 0.35-0.45 mm, and the outer diameter is 0.47-0.57 mm.
  • the molar concentration of the soluble rare earth salt solution is 300-400 mmol/L;
  • the soluble rare earth salt solution includes any one or two of a soluble europium salt solution, a soluble terbium salt solution and a soluble dysprosium salt solution.
  • the oil phase solution includes an oil phase and a polar organic solvent, and the mass percentage of the oil phase solution is 0.05-0.15%.
  • the oil phase is a surfactant
  • the surfactant includes 80 and/or Span 60.
  • the organic ligand solution includes an organic ligand and a polar organic solvent, and the molar concentration of the organic ligand solution is 80-90 mmol/L.
  • the ratio of the amount of the soluble rare earth salt to the organic ligand is (30-40): (8-9).
  • the organic ligand is trimesic acid.
  • the present invention provides the fluorescent metal-organic framework superstructure compound obtained by the preparation method described in the above technical solution, which is in the shape of a sphere, and the diameter of the sphere is 150-260 ⁇ m.
  • the present invention provides a fluorescent metal-organic framework superstructure compound compounded by functional nanomaterials, comprising a fluorescent metal-organic framework superstructure compound and a functional nanomaterial supported on the surface of the fluorescent metal-organic framework superstructure compound;
  • the fluorescent metal-organic framework superstructure compound is the fluorescent metal-organic framework superstructure compound described in the above technical solution;
  • the functional nanomaterials include functional inorganic nanomaterials or functional organic nanomaterials.
  • the functional inorganic nanomaterial includes ferric oxide.
  • the functional organic nanomaterials include aggregation-induced luminescent materials, organic fluorescent dyes or upconversion nanoparticles.
  • the aggregation-induced luminescent material is a tetraphenylethylene material
  • the organic fluorescent dye is Rhodamine B
  • the up-conversion nanoparticle is NaTF 4 :Yb/Er.
  • the present invention provides a method for preparing a fluorescent metal-organic framework superstructure compound composited with functional nanomaterials according to the technical solution, comprising the following steps:
  • the functional nanomaterials include functional inorganic nanomaterials
  • the functional inorganic nanomaterials and the soluble rare earth salt solution are injected from the first feeding pipe 1, and flow through the capillary 2 into the mixing channel 4, and the oil phase
  • the solution is injected from the second feed pipe 2 and enters the mixing channel 4, where the rare earth salt solution forms droplets of the rare earth salt solution;
  • the rare earth salt solution droplets flow out of the mixing channel 4 and undergo a coordination chemical reaction with the organic ligand solution to obtain the fluorescent metal-organic framework superstructure compound;
  • the soluble rare earth salt solution is injected from the first feed pipe 1 and flows through the capillary 2 into the mixing channel 4, where the functional organic nanomaterials and the oil phase are mixed
  • the solution is injected from the second feed pipe 2 and enters the mixing channel 4, where the rare earth salt solution forms droplets of the rare earth salt solution;
  • the rare earth salt solution droplets flow out of the mixing channel 4 and undergo a coordination chemical reaction with the organic ligand solution to obtain the fluorescent metal-organic framework superstructure compound.
  • the mass ratio of the functional inorganic nanomaterial to the soluble rare earth salt is (2.2-6.5):36; the mass ratio of the functional organic nanomaterial to the oil phase is (0.05-0.6):5 .
  • the present invention provides the application of the fluorescent metal-organic framework superstructure compound described in the above technical solution in the detection of biological samples for non-therapeutic purposes.
  • the biological sample is tetracycline or ferric chloride.
  • the detection includes qualitative detection or quantitative detection; the qualitative detection is detection according to the change of fluorescence color after the fluorescent metal organic framework superstructure compound is contacted with the biological sample;
  • the quantitative detection is based on the change of the relative intensity of fluorescence after the fluorescent metal organic framework superstructure compound is contacted with the biological sample.
  • the present invention provides a method for preparing a fluorescent metal-organic framework superstructure compound, comprising the following steps: providing a microfluidic mixing device, the microfluidic mixing device comprises a first feeding pipe 1, the feeding end is connected to The capillary 3 connected with the discharge end of the first feed pipe 1, the mixing channel 4 connected with the discharge end of the capillary 3, and the second feed pipe 2, the second feed pipe 2.
  • the discharge end of the feeding pipe is connected with the feeding end of the mixing channel 4; the soluble rare earth salt solution is injected from the first feeding pipe 1, and flows through the capillary 2 into the mixing channel 4;
  • the feed pipe 2 is injected into the mixing channel 4; in the mixing channel 4, the rare earth salt solution forms droplets of rare earth salt solution; the rare earth salt solution droplets flow out of the mixing channel 4 and then combine with organic ligands
  • the solution undergoes a coordination chemical reaction to obtain the fluorescent metal-organic framework superstructure compound.
  • the soluble rare earth salt solution is transported from the capillary to the mixing channel through the above-mentioned microfluidic mixing device.
  • the shear dispersion effect of the phase solution on the soluble rare earth salt solution forms individual droplets of the soluble rare earth salt solution at the port 3 of the capillary, and the droplets flow out of the mixing channel 4 and undergo a coordination chemical reaction with the organic ligand solution to obtain The fluorescent metal organic framework superstructure compound.
  • the preparation method provided by the invention can prepare the fluorescent metal-organic framework superstructure compound which is self-assembled from MOFs nanorods to form a sphere, and the particle size distribution of the sphere is uniform.
  • the results of the examples show that the preparation method provided by the present invention obtains fluorescent metal organic framework superstructure compounds in the form of spheres, the diameter of the spheres is 150-260 ⁇ m, and the particle size distribution of the spheres is uniform.
  • the MOFs of nanorods have more functional sites, can be combined with functional nanomaterials, and have higher sensitivity and selectivity when applied to the detection of biological samples.
  • the preparation method provided by the present invention is simple and easy to control.
  • Example 1 is a schematic diagram of a microfluidic mixing device in Example 1 of the present invention
  • 1 is the first feeding tube
  • 2 is the second feeding tube
  • 3 is the capillary tube
  • 4 is the mixing channel
  • 5 is the epoxy resin
  • 6 is the double-sided adhesive tape
  • Fig. 2 is the fluorescence color developing picture of the product prepared by the embodiment of the present invention 1 ⁇ 7;
  • Fig. 3 is the electron microscope photograph of the product prepared by the embodiment of the present invention 1;
  • Fig. 5 is the fluorescence color contrast diagram of the products prepared by Example 4 and Example 9 of the present invention.
  • Example 6 is a comparison diagram of the fluorescence intensity of the products prepared in Example 4 and Example 9 of the present invention.
  • Fig. 7 is the fluorescence color comparison diagram of the products prepared by Example 4 and Example 10 of the present invention.
  • FIG. 8 is a comparison diagram of the fluorescence intensity of the products prepared in Example 4 and Example 10 of the present invention.
  • Example 9 is a graph showing the change in fluorescence intensity of red metal-organic framework superstructure compounds under tetracycline solutions of different concentrations in Example 12;
  • Example 10 is a linear fitting diagram of the fluorescence intensity of red metal organic framework superstructure compounds under tetracycline solutions of different concentrations in Example 12;
  • FIG. 11 is a comparison diagram of discoloration of the detection results of Rhodamine B@green fluorescent metal organic framework compound in Example 13.
  • FIG. 11 is a comparison diagram of discoloration of the detection results of Rhodamine B@green fluorescent metal organic framework compound in Example 13.
  • the present invention provides a method for preparing a fluorescent metal-organic framework superstructure compound, comprising the following steps:
  • a microfluidic mixing device comprises a first feeding pipe 1, a capillary 3 whose feeding end is communicated with the discharging end of the first feeding pipe 1, and the feeding end
  • the mixing channel 4 communicated with the discharge end of the capillary tube 3 further includes a second feed pipe 2, and the discharge end of the second feed pipe is communicated with the feed end of the mixing channel 4;
  • the soluble rare earth salt solution is injected from the first feeding pipe 1, flows through the capillary 2 into the mixing channel 4, and the oil phase solution is injected from the second feeding pipe 2 and enters the mixing channel 4,
  • the rare earth salt solution forms droplets of the rare earth salt solution
  • the rare earth salt solution droplets flow out of the mixing channel 4 and undergo a coordination chemical reaction with the organic ligand solution to obtain the fluorescent metal-organic framework superstructure compound.
  • the microfluidic mixing device includes a first feeding pipe 1 .
  • the material of the first feeding pipe 1 is preferably polyvinyl chloride; in the present invention, the inner diameter of the first feeding pipe 1 is preferably 0.45-0.6 mm, more preferably 0.5, and the outer diameter is It is preferably 0.7 to 0.86 mm, and more preferably 0.75 mm.
  • the microfluidic mixing device includes a capillary tube 3 whose feeding end is in communication with the discharging end of the first feeding tube 1.
  • the material of the capillary tube 3 is preferably glass
  • the shape of the capillary 3 is preferably conical, the inner diameter of the bottom surface of the capillary 3 is preferably 0.05-0.15 mm, more preferably 0.1 mm, and the outer diameter is preferably 0.3-0.4 mm, more preferably 0.38 mm;
  • the length of the capillary tube 3 is preferably 11-12 cm; in the embodiment of the present invention, the bottom end of the capillary 3 is the feed end, and the vertex is the discharge end.
  • the present invention preferably inserts the feed end of the capillary tube into the first feed tube, and the present invention has no special requirements on the insertion length of the feed end of the capillary tube.
  • the conical capillary is preferably obtained by processing a cylindrical capillary through a needle puller.
  • the present invention preferably performs post-processing on the conical capillary, and the post-processing preferably includes grinding,
  • the mesh number of the sandpaper for grinding is preferably 2000 meshes.
  • the present invention ensures that the outer surface of the conical capillary is smooth by grinding the conical capillary.
  • the microfluidic mixing device includes a mixing channel 4 whose feed end communicates with the discharge end of the capillary 3.
  • the discharge end of the capillary 3 communicates with the mixing channel 4.
  • the material channel 4 is preferably communicated coaxially, and the length of the top end of the conical glass capillary leading into the material mixing channel 4 is preferably 3-7 cm, more preferably 4-5 cm.
  • the material of the mixing channel 4 is preferably polyvinyl chloride; in the present invention, the inner diameter of the mixing channel 4 is preferably 0.45-0.6 mm, more preferably 0.5, and the outer diameter is preferably 0.7- 0.86mm, more preferably 0.75mm; the length of the mixing channel 4 is preferably 10-11 cm, and the length of the capillary 3 is preferably 0.3-0.7 in proportion to the length of the mixing channel 4 .
  • the microfluidic mixing device further includes a second feed pipe 2, and the material of the second feed pipe 2 is preferably polyvinyl chloride; in the present invention, the second feed pipe
  • the inner diameter of 2 is preferably 0.35-0.45mm, more preferably 0.38mm, and the outer diameter is preferably 0.47-0.57mm, more preferably 0.5mm;
  • the feed end of the mixing channel 4 is connected.
  • the present invention preferably inserts the second feeding tube 2 into the gap between the mixing channel 4 and the capillary tube 3.
  • the present invention has no special requirements for the insertion length of the second feeding tube 2. .
  • the microfluidic mixing device further includes a base, and the first feeding pipe 1 , the second feeding pipe 2 , the capillary 3 and the mixing channel 4 are fixed on the surface of the base.
  • the microfluidic mixing device is shown in FIG. 1 , and the assembling method of the microfluidic mixing device preferably includes: fixing the capillary 3 on the base, and assembling the mixing channel 4 It is fixed on the right side of the capillary tube 3 and communicated with the capillary tube 3.
  • the length of the top end of the capillary tube 3 leading into the mixing channel 4 is preferably 3-7 cm; the first feeding tube is connected to the left end of the capillary tube 3 Connect the second feeding pipe 2 with the left end of the mixing channel 4.
  • the second feeding pipe is connected to the gap between the capillary 3 and the mixing channel
  • epoxy resin is preferably used to seal the joints of the above-mentioned pipes
  • the capillary tube 3 is preferably fixed on the substrate by epoxy resin
  • the mixing channel is preferably fixed by epoxy resin and double-sided tape in the present invention. fixed on the base.
  • the above-mentioned device is preferably subjected to post-treatment to obtain the microfluidic mixing device.
  • the post-treatment preferably includes air-drying.
  • the air-drying time is preferably 12 hours.
  • the soluble rare earth salt solution is injected from the first feeding pipe 1 and flows through the capillary 2 into the mixing channel 4 .
  • the flow rate of the soluble rare earth salt solution entering the mixing channel 4 is preferably 5-15 ⁇ L/min, more preferably 7-12 ⁇ L/min, most preferably 8-10 ⁇ L/min; in the present invention,
  • the molar concentration of the soluble rare earth salt solution is preferably 300-400 mmol/L, more preferably 320-380 mmol/L, and most preferably 330-350 mmol/L.
  • the soluble rare earth salt solution preferably includes any one or both of a soluble europium salt solution, a soluble terbium salt solution and a soluble dysprosium salt solution
  • the soluble europium salt preferably includes europium acetate and/or europium nitrate
  • a soluble terbium salt Preferably it includes terbium acetate and/or terbium nitrate
  • the soluble dysprosium salt preferably includes dysprosium acetate and/or dysprosium nitrate.
  • the soluble rare earth salt when the soluble rare earth salt includes any two of the above substances, the soluble rare earth salt preferably includes a mixture of soluble europium salt and soluble terbium salt or a mixture of soluble europium salt and soluble dysprosium salt.
  • the invention prepares metal-organic framework superstructure compounds with different fluorescent colors by adjusting the type and mass ratio of soluble rare earth salts.
  • the product when the soluble rare earth salt includes europium acetate and europium nitrate, the product is a red metal organic framework superstructure compound; in a specific embodiment of the present invention, the mass ratio of the europium acetate and europium nitrate is is 0.0474:0.0963;
  • the soluble rare earth salts include europium acetate and terbium nitrate, and the mass ratio of europium acetate and terbium nitrate is 0.0166:0.1402, the product is an orange metal organic framework superstructure compound;
  • the soluble rare earth salts include europium acetate and terbium nitrate, and the mass ratio of europium acetate and terbium nitrate is 0.0142:0.1435, the product is a yellow metal organic framework superstructure compound;
  • the product is a green metal organic framework superstructure compound, and in a specific embodiment of the present invention, the mass ratio of the terbium acetate and terbium nitrate is 0.0484:0.0979;
  • the soluble rare earth salts include europium acetate and dysprosium nitrate, and the mass ratio of terbium acetate and terbium nitrate is 0.0415:0.0865, the product is a cyan metal organic framework superstructure compound;
  • the product is a blue metal organic framework superstructure compound.
  • the mass ratio of dysprosium acetate and dysprosium nitrate is 0.0484:0.0947;
  • the soluble rare earth salts include europium acetate and dysprosium nitrate, and the mass ratio of europium acetate and dysprosium nitrate is 0.0236:0.1264, the product is a purple metal organic framework superstructure compound.
  • the soluble rare earth salt solution is preferably prepared by the following method: first mixing the soluble rare earth salt and water to obtain a soluble rare earth salt solution; in the present invention, the water is preferably deionized water, so The first mixing is preferably performed under stirring conditions, the rotational speed of the stirring is preferably 600-1500 rpm, more preferably 800-1200 rpm, the stirring time is preferably 8-15 min, and the stirring is preferably magnetic stirring.
  • the soluble rare earth salt solution is preferably injected into the first feeding pipe 1 by a syringe pump, and the flow rate of the rare earth salt solution is preferably controlled by a syringe pump in the present invention.
  • the oil phase solution is injected from the second feed pipe into the mixing channel 4; in the present invention, the flow rate of the oil phase solution when entering the mixing channel 4 is preferably 150-250 ⁇ L/min, more preferably 175 ⁇ L/min ⁇ 220 ⁇ L/min, most preferably 180-200 ⁇ L/min.
  • the oil phase solution preferably includes an oil phase and a polar organic solvent, the oil phase is preferably a surfactant, and the polar organic solvent is preferably n-amyl alcohol and/or n-butanol.
  • the mass percentage of the surfactant in the oil phase solution is preferably 0.05-0.15%, more preferably 0.08-0.1%; in the present invention, the surfactant preferably includes Span 80 and/or Span 80 plate 60.
  • the oil phase solution is preferably prepared by the following method: performing a second mixing of the oil phase and the organic solvent to obtain an oil phase solution; in the present invention, the second mixing is preferably performed under stirring conditions
  • the rotational speed of the stirring is preferably 600-1500 rpm, more preferably 800-1200 rpm, the stirring time is preferably 10-20 min, and the stirring is preferably magnetic stirring.
  • the oil phase solution is preferably injected into the first feeding pipe 2 by a syringe pump, and the flow rate of the oil phase solution is preferably controlled by a syringe pump in the present invention.
  • the rare earth salt solution forms droplets of the rare earth salt solution under the shearing action of the oil phase solution; in the present invention, the rare earth salt solution is preferably adjusted by controlling the flow rates of the rare earth salt solution and the oil phase solution. The size of the solution droplets and make the size of the rare earth salt solution droplets more uniform.
  • the organic ligand solution preferably includes an organic ligand and a polar organic solvent, and the molar concentration of the organic ligand solution is preferably 80-90 mmol/L, more preferably 83-95 mmol/L.
  • the organic ligand is preferably trimesic acid;
  • the polar organic solvent is preferably n-amyl alcohol and/or n-butanol.
  • the organic ligand solution is preferably prepared by the following method: performing a third mixing of trimesic acid and a polar organic solvent to obtain an organic ligand solution; in the present invention, the third mixed
  • the temperature is preferably 60-70°C
  • the third mixing is preferably carried out under stirring conditions
  • the stirring speed is preferably 600-1500rpm, more preferably 800-1200rpm
  • the stirring time is preferably 10-20min
  • the stirring is preferably magnetic stirring.
  • the time of the coordination chemical reaction is preferably 15-30 minutes, more preferably 20 minutes, and the temperature of the coordination chemical reaction is preferably room temperature.
  • the soluble rare earth salt solution is transported from the capillary to the mixing channel through the above-mentioned microfluidic mixing device.
  • individual droplets of the soluble rare earth salt solution are formed at the port 3 of the capillary tube.
  • the droplets flow out of the mixing channel 4 and undergo a coordination chemical reaction with the organic ligand solution.
  • the fluorescent metal-organic framework superstructure compound is obtained; the preparation method provided by the present invention can prepare the fluorescent metal-organic framework superstructure compound that is self-assembled into a sphere, and the particle size distribution of the sphere is uniform.
  • metal-organic framework superstructure compounds with different fluorescent colors are prepared; the present invention adjusts the size of the fluorescent metal-organic framework superstructure compound by controlling the flow rate of the oil phase solution and the soluble rare-earth salt solution, and makes the obtained fluorescent metal-organic framework The size of the superstructure compound is more uniform.
  • the product of the coordination chemical reaction is preferably subjected to post-treatment to obtain a fluorescent metal organic framework superstructure compound.
  • the post-treatment preferably includes solid-liquid separation and drying. There are no special requirements for the implementation process; the present invention preferably dries the solid product after solid-liquid separation.
  • the drying temperature is preferably 100-200°C, more preferably 150°C, and the drying time is preferably It is 10 to 15 hours, more preferably 12 hours.
  • the present invention provides a fluorescent metal organic framework superstructure compound obtained by the preparation method described in the above technical solution.
  • the compound prepared in the embodiment of the present invention has the structure shown in formula I, Ln represents a rare earth element, the shape is a sphere, and the diameter of the sphere is 150 to 260 ⁇ m.
  • the shape of the fluorescent metal organic framework superstructure compound is a sphere, and the spherical structure is formed by the self-assembly of MOFs nanorods when a single soluble rare earth salt solution droplet undergoes a coordination chemical reaction with an organic ligand solution. Therefore, in the present invention, the diameter of the fluorescent metal organic framework superstructure compound sphere is preferably 150-260 ⁇ m, more preferably 175-250 ⁇ m, and most preferably 200-225 ⁇ m.
  • the fluorescent metal organic framework superstructure compound has any fluorescent color among red, orange, yellow, green, cyan, blue and violet.
  • the metal-organic framework superstructure compound with different fluorescent colors obtained by the invention is prepared by adjusting the type and mass ratio of the soluble rare earth salt.
  • the present invention provides a fluorescent metal-organic framework superstructure compound compounded by functional nanomaterials, comprising a fluorescent metal-organic framework superstructure compound and a functional nanomaterial supported on the surface of the fluorescent metal-organic framework superstructure compound;
  • the fluorescent metal-organic framework superstructure compound is the fluorescent metal-organic framework superstructure compound described in the above technical solution;
  • the functional nanomaterials include functional inorganic nanomaterials or functional organic nanomaterials.
  • the fluorescent metal-organic framework superstructure compound composited with functional nanomaterials provided by the present invention includes the fluorescent metal-organic framework superstructure compound described in the above technical solution.
  • the fluorescent metal organic framework superstructure compound composited with functional nanomaterials provided by the present invention includes functional nanomaterials supported on the surface of the fluorescent metal organic framework superstructure compound.
  • the functional nanomaterials include functional functional inorganic nanomaterials or functional organic nanomaterials; in the present invention, the functional inorganic nanomaterials preferably include ferric oxide, and the functional organic nanomaterials preferably include aggregation-induced emission (AIE) materials, organic fluorescent dyes or up-conversion nanoparticles (UCNPs); in a specific embodiment of the present invention, the AIE material is preferably a tetraphenylethylene (TPE) material, the organic fluorescent dye is preferably Rhodamine B, and the UCNPs is preferably NaTF 4 :Yb/Er.
  • TPE tetraphenylethylene
  • the organic fluorescent dye is preferably Rhodamine B
  • the UCNPs is preferably NaTF 4 :Yb/Er.
  • the difference between the preparation method of the fluorescent metal organic framework superstructure compound composited with functional nanomaterials and the preparation method of the fluorescent metal organic framework superstructure compound is: when the functional nanomaterial is preferably When the functional inorganic nanomaterial is included, the functional inorganic nanomaterial and the soluble rare earth salt solution are simultaneously injected from the first feed pipe 1; when the functional nanomaterial preferably includes a functional organic nanomaterial, the The functional organic nanomaterials and the oil phase solution are injected from the second feed pipe 2 at the same time.
  • the mass ratio of the functional inorganic nanomaterial to the soluble rare earth salt is preferably (2.2-6.5): 36, more preferably 4.3: 36;
  • the present invention preferably performs the fourth mixing of the functional inorganic nanomaterial and the soluble rare earth salt solution to obtain a mixed solution of the functional inorganic nanomaterial and the soluble rare earth salt, and then injects it from the first feeding pipe 1.
  • the fourth mixing is preferably carried out under the condition of ultrasound, the duration of the ultrasound is 10-15 minutes, and the present invention has no special requirements on the power of the ultrasound.
  • the mass ratio of the functional organic nanomaterial to the oil phase is preferably (0.05-0.6):5, more preferably 0.5:5
  • the present invention preferably carries out the fifth mixing with the functional organic nanomaterial and the oil phase solution, and then injects the second feed pipe 2 after obtaining the mixed oil phase solution, in the present invention, the fifth mixing is preferably performed in a stirring Under the conditions of , the stirring speed is preferably 1000-1200 rmp, and the stirring is preferably magnetic stirring.
  • the present invention provides the application of the fluorescent metal-organic framework superstructure compound described in the above technical solution in the detection of biological samples for non-therapeutic purposes.
  • the fluorescent metal-organic framework superstructure compound is preferably used as a detection reagent for non-therapeutic biological samples.
  • the fluorescence intensity changes from strong to weak to detect the substance to be detected.
  • the fluorescent metal organic framework superstructure compound when the fluorescent metal organic framework superstructure compound is compounded with functional nanomaterials to obtain a fluorescent metal organic framework superstructure compound compounded with functional nanomaterials, the fluorescent metal organic framework compounded with functional nanomaterials
  • the fluorescent metal organic framework superstructure compound in the fluorescent metal organic framework superstructure compound composited with functional nanomaterials and the substance to be detected in the biological sample generate The fluorescence is quenched and the fluorescence intensity changes can be qualitatively detected.
  • the concentration of the sample to be detected can be quantitatively detected.
  • the change of fluorescence color detects the substance to be detected.
  • the microfluidic mixing device includes a first feeding tube 1, a second feeding tube 2, a capillary tube 3 and a mixing channel 4; with a glass slide as the base, a cylindrical glass with an inner diameter of 0.1 mm is mixed
  • the capillary is processed into a conical catheter by means of a needle puller. After sanding and smoothing, it is fixed on a glass slide with epoxy resin.
  • the inner diameter 0.5mm polyvinyl chloride catheter is placed on the right end of the capillary, and the apex end of the conical glass capillary is inserted into the capillary.
  • the PVC conduit 3cm forms a coaxial structure.
  • the soluble rare earth salt solution into a 1mL syringe, connect the syringe pump, connect the syringe pump to the first feeding tube 1 of the microfluidic mixing device, put the oil phase solution into a 10mL syringe, connect the syringe pump, and put the The syringe pump is connected to the first feeding pipe 2 of the microfluidic mixing device, and the flow rate of the soluble rare earth salt solution is adjusted to 200 ⁇ L/min, and the flow rate of the oil phase solution is 10 ⁇ L/min.
  • Fluorescent metal-organic framework superstructure compounds with orange, yellow, green, cyan, blue and purple fluorescence were prepared according to the types and mass ratios of soluble rare earth salts shown in Table 1. Other preparation conditions were the same as those in Example 1.
  • the preparation method is the same as that of Example 1, except that 0.005 g of ferric oxide powder is weighed and added to the soluble rare earth salt solution prepared in Example 1, and ultrasonically crushed and dispersed for 10 minutes to obtain ferric oxide and soluble rare earth salt.
  • the mixed solution was prepared to obtain functional nanomaterial composite fluorescent metal-organic framework superstructure compound, which was denoted as MOFs@magnetic iron tetroxide.
  • the preparation method is the same as that of Example 4, except that 0.006649 g of tetraphenylethylene is added to the oil phase solution, and after putting in a stirrer, the mixture is stirred at 1000 rpm for 10 minutes to obtain a mixed oil phase solution.
  • the fluorescent metal-organic framework superstructure compound composited with functional nanomaterials was prepared, denoted as AIE@MOFs.
  • the preparation method is the same as that of Example 4, except that 0.05 g of Rhodamine B is added to the oil phase solution, and after putting in a stirrer, the mixture is stirred at 1000 rpm for 10 minutes to obtain a mixed oil phase solution.
  • Fluorescent metal-organic framework superstructures composited with functional nanomaterials were prepared, denoted as organic dyes@MOFs.
  • the preparation method is the same as that of Example 1, except that 0.05g of NaYF 4 :Yb/Er is added to the oil phase solution, and after putting in a stirrer, the mixture is stirred at 1000 rpm for 10 minutes to obtain a mixed oil phase solution.
  • the fluorescent metal-organic framework superstructure compound composited with functional nanomaterials was prepared, denoted as UCNPs@MOFs.
  • tetracycline and deionized water were prepared into a series of tetracycline solutions of different concentrations (0, 20, 40, 60, 80, 100 ⁇ mol/L), and the red fluorescent metal organic framework superstructure compound prepared in Example 1 was weighed 0.3 mg was mixed with 6 mL of ultrapure water and magnetically stirred for 30 min to form a homogeneous suspension. The suspension is then dropped onto the reagent detection area of the detection chip. After dripping tetracycline solutions of different concentrations into the reagent addition area of the detection chip, the magnetic control valve was turned on with an external magnet, so that the tetracycline solution and the detection reagent could be transported along the flow channel of the detection chip.
  • Ln-BTC fluorescent metal-organic framework superstructure compounds
  • IFE internal filtering effect
  • PET photoinduced electron transfer
  • Rhodamine B@green fluorescent metal-organic framework prepared in Example 10 was added to the reagent detection area of the detection chip, and spread it evenly.
  • ferric chloride add it to 50 mL of deionized water, configure it into an aqueous solution of ferric chloride, and drop the ferric chloride solution into the reagent addition area of the detection chip.
  • 0.5 g of Rhodamine B@green fluorescent metal organic framework was added to the reagent detection area of the same detection chip, and ordinary deionized water was added dropwise to the reagent addition area.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Luminescent Compositions (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明涉及功能纳米材料技术领域,具体涉及一种荧光金属有机框架超结构化合物及其制备方法和应用。本发明提供一种荧光金属有机框架超结构化合物的制备方法,包括以下步骤:提供一种微流控混料装置;将可溶性稀土盐溶液由第一进料管1注入;将油相溶液由第二进料管2注入;在所述混料通道4中,所述稀土盐溶液形成稀土盐溶液液滴后与有机配体溶液发生配位化学反应,得到所述荧光金属有机框架超结构化合物。本发明提供的制备方法能够制备得到自组装呈球体的荧光金属有机框架超结构化合物,且球体粒径分布均匀。

Description

一种荧光金属有机框架超结构化合物及其制备方法和应用
本申请要求于2021年03月31日提交中国专利局、申请号为202110346336.3、发明名称为“一种荧光金属有机框架超结构化合物及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及功能纳米材料技术领域,具体涉及一种荧光金属有机框架超结构化合物及其制备方法和应用。
背景技术
金属有机框架(Metal-organic frameworks,MOFs)是由作为连接节点的金属团簇或离子和刚性的有机配体通过配位键组成的多孔晶体材料。对比于沸石、活性炭、二氧化硅凝胶等传统的多孔材料,MOFs因其合成方法简单、比表面积大、结构多样可调节而受到人们的青睐。MOFs结构和功能的丰富可设计性使得人们可以通过选择不同的金属离子、团簇和有机配体来赋予其多样的功能,因此有大量基于MOFs的荧光传感、生物检测等尖端应用的报道。
荧光MOFs超结构是MOFs通过自组装形成三维球状结构,是一类非常有前途的多功能材料,除了自身结构的独特性外,还能与其它功能材料复合发挥作用。它的发光特性非常敏感,可以通过对荧光MOFs超结构中的结构、孔径和功能位点进行合理的控制,得到高灵敏度和高选择性的复合型荧光传感MOFs。
目前,荧光金属有机框架材料的制备方法主要是水热反应,但是采用水热反应时,难以控制其自组装形成超结构,通常只能得到单独的MOFs纳米棒或者纳米棒团簇。
发明内容
鉴于此,本发明的目的在于提供一种荧光金属有机框架超结构化合物及其制备方法和应用,本发明提供的制备方法能够自组装制备得到呈球体的荧光金属有机框架超结构化合物,且球体的粒径分布均匀。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供一种荧光金属有机框架超结构化合物的制备方法,包括以下步骤:
提供一种微流控混料装置,所述微流控混料装置包括第一进料管1,入料端与所述第一进料管1的出料端连通的毛细管3,入料端与所述毛细管3的出料端连通的混料通道4,还包括第二进料管2,所述第二进料管的出料端与所述混料通道4的入料端连通;
将可溶性稀土盐溶液由第一进料管1注入,流经毛细管2进入混料通道4,将油相溶液由第二进料管2注入,进入混料通道4,
在所述混料通道4中,所述稀土盐溶液形成稀土盐溶液液滴;
所述稀土盐溶液液滴流出混料通道4后与有机配体溶液发生配位化学反应,得到所述荧光金属有机框架超结构化合物。
优选的,所述可溶性稀土盐溶液进入混料通道4时的流速为5~15μL/min;
所述油相溶液进入混料通道4时的流速为150~250μL/min。
优选的,所述毛细管3为圆锥形,所述圆锥形的底面内径为0.05~0.15mm,外径为0.3~0.4mm;
所述第一进料管1和混料通道4的内径独立为0.5~0.6mm,外径独立为0.75~0.86mm;
所述第二进料管1的内径为0.35~0.45mm,外径为0.47~0.57mm。
优选的,所述可溶性稀土盐溶液的摩尔浓度为300~400mmol/L;
所述可溶性稀土盐溶液包括可溶性铕盐溶液、可溶性铽盐溶液和可溶性镝盐溶液中的任意一种或两种。
优选的,所述油相溶液包括油相和极性有机溶剂,所述油相溶液的质量百分数为0.05~0.15%。
优选的,所述油相为表面活性剂,所述表面活性剂包括80和/或司盘60。
优选的,所述有机配体溶液包括有机配体和极性有机溶剂,所述有机配体溶液的摩尔浓度为80~90mmol/L。
优选的,所述可溶性稀土盐和有机配体的物质的量之比为(30~40):(8~9)。
优选的,所述有机配体为均苯三甲酸。
本发明提供上述技术方案所述的制备方法得到的荧光金属有机框架超结构化合物,形状为球体,所述球体的直径为150~260μm。
本发明提供一种功能性纳米材料复合的荧光金属有机框架超结构化合物,包括荧光金属有机框架超结构化合物和负载于所述荧光金属有机框架超结构化合物表面的功能性纳米材料;
所述荧光金属有机框架超结构化合物为上述技术方案所述的荧光金属有机框架超结构化合物;
所述功能性纳米材料包括功能性无机纳米材料或功能性有机纳米材料。
优选的,所述功能性无机纳米材料包括四氧化三铁。
优选的,所述功能性有机纳米材料包括聚集诱导发光材料、有机荧光染料或上转换纳米粒子。
优选的,所述聚集诱导发光材料为四苯乙烯材料;所述有机荧光染料为罗丹明B;所述上转换纳米粒子为NaTF 4:Yb/Er。
本发明提供了上述技术方案所述功能性纳米材料复合的荧光金属有机框架超结构化合物的制备方法,包括以下步骤:
当所述功能性纳米材料包括功能性无机纳米材料时,将所述功能性无机纳米材料和可溶性稀土盐溶液由第一进料管1注入,流经毛细管2进入混料通道4,将油相溶液由第二进料管2注入,进入混料通道4,在所述混料通道4中,所述稀土盐溶液形成稀土盐溶液液滴;
所述稀土盐溶液液滴流出混料通道4后与有机配体溶液发生配位化学反应,得到所述荧光金属有机框架超结构化合物;
当所述功能性纳米材料包括功能性有机纳米材料时,将可溶性稀土盐溶液由第一进料管1注入,流经毛细管2进入混料通道4,将所述功能性有机纳米材料和油相溶液由第二进料管2注入,进入混料通道4,在所述混料通道4中,所述稀土盐溶液形成稀土盐溶液液滴;
所述稀土盐溶液液滴流出混料通道4后与有机配体溶液发生配位化学反应,得到所述荧光金属有机框架超结构化合物。
优选的,,所述所述功能性无机纳米材料与可溶性稀土盐的质量比为 (2.2~6.5):36;所述功能性有机纳米材料和油相的质量比为(0.05~0.6):5。
本发明提供上述技术方案所述的荧光金属有机框架超结构化合物在非治疗目的的生物试样检测中的应用。
优选的,所述生物试样为四环素或氯化铁。
优选的,所述检测包括定性检测或定量检测;所述定性检测为根据所述荧光金属有机框架超结构化合物和生物试样接触后荧光颜色变化进行检测;
所述定量检测为根据所述荧光金属有机框架超结构化合物和生物试样接触后荧光相对强度变化进行检测。
本发明提供一种荧光金属有机框架超结构化合物的制备方法,包括以下步骤:提供一种微流控混料装置,所述微流控混料装置包括第一进料管1,入料端与所述第一进料管1的出料端连通的毛细管3,入料端与所述毛细管3的出料端连通的混料通道4,还包括第二进料管2,所述第二进料管的出料端与所述混料通道4的入料端连通;将可溶性稀土盐溶液由第一进料管1注入,流经毛细管2进入混料通道4;将油相溶液由第二进料管2注入,进入混料通道4;在所述混料通道4中,所述稀土盐溶液形成稀土盐溶液液滴;所述稀土盐溶液液滴流出混料通道4后与有机配体溶液发生配位化学反应,得到所述荧光金属有机框架超结构化合物。本发明通过上述微流控混料装置将可溶性稀土盐溶液由毛细管输送至混料通道,在混料通道中,由第二进料管进入的油相溶液与可溶性稀土盐溶液混合时,利用油相溶液对可溶性稀土盐溶液的剪切分散作用,在毛细管3端口处形成一个个单独的可溶性稀土盐溶液液滴,液滴流出混料通道4后与有机配体溶液发生配位化学反应,得到所述荧光金属有机框架超结构化合物。本发明提供的制备方法能够制备得到由MOFs纳米棒自组装呈球体的荧光金属有机框架超结构化合物,且球体粒径分布均匀。由实施例的结果表明,本发明提供的制备方法得到了呈球体的荧光金属有机框架超结构化合物,球体直径为150~260μm,且球体粒径分布均匀,呈球体的超结构化合物相较于呈纳米棒的MOFs具有更多的功能位点,能与功能性纳米材料复合,且应用于生物试样检测时,具有更高的灵敏度和选择性。
本发明提供的制备方法相较于与传统的水热反应釜制备,工艺简单、易控。
说明书附图
图1为本发明实施例1微流控混料装置示意图,
其中,1为第一进料管,2为第二进料管,3为毛细管,4为混料通道,5为环氧树脂,6为双面胶;
图2为本发明实施例1~7制备得到的产品的荧光显色图片;
图3为本发明实施例1制备得到的产品的电镜照片图;
图4为本发明实施例8~11制备过程示意图;
图5为本发明实施例4和实施例9制备的产品的荧光颜色对比图;
图6为本发明实施例4和实施例9制备的产品的荧光强度对比图;
图7为本发明实施例4和实施例10制备的产品的荧光颜色对比图;
图8为本发明实施例4和实施例10制备的产品的荧光强度对比图;
图9为实施例12不同浓度的四环素溶液下红色金属有机框架超结构化合物荧光强度变化图;
图10为实施例12不同浓度的四环素溶液下红色金属有机框架超结构化合物荧光强度的线性拟合图;
图11为实施例13罗丹明B@绿色荧光金属有机框架化合物检测结果变色对比图。
具体实施方式
本发明提供一种荧光金属有机框架超结构化合物的制备方法,包括以下步骤:
提供一种微流控混料装置,所述微流控混料装置包括第一进料管1,入料端与所述第一进料管1的出料端连通的毛细管3,入料端与所述毛细管3的出料端连通的混料通道4,还包括第二进料管2,所述第二进料管的出料端与所述混料通道4的入料端连通;
将可溶性稀土盐溶液由第一进料管1注入,流经毛细管2进入混料通道4,将油相溶液由第二进料管2注入,进入混料通道4,
在所述混料通道4中,所述稀土盐溶液形成稀土盐溶液液滴;
所述稀土盐溶液液滴流出混料通道4后与有机配体溶液发生配位化 学反应,得到所述荧光金属有机框架超结构化合物。
在本发明中,所述微流控混料装置包括第一进料管1。在本发明中,所述第一进料管1的材质优选为聚氯乙烯;在本发明中,所述第一进料管1的内径优选为0.45~0.6mm,更优选为0.5,外径优选为0.7~0.86mm,更优选为0.75mm。
在本发明中,所述微流控混料装置包括进料端与所述第一进料管1的出料端连通的毛细管3,在本发明中,所述毛细管3的材质优选为玻璃,所述毛细管3的形状优选为圆锥形,所述毛细管3的底面内径优选为0.05~0.15mm,更优选为0.1mm,外径优选为0.3~0.4mm,更优选为0.38mm;所述毛细管3的长度优选为11~12cm;在本发明的实施例中,所述毛细管3的底面端为进料端,顶点处为出料端。本发明优选将将毛细管的进料端插入第一进料管中,本发明对所述毛细管进料端的插入长度没有特殊要求。
在本发明中,所述圆锥形毛细管优选通过圆柱形毛细管通过拉针仪加工得到,所述圆锥形毛细管加工成型后,本发明优选对圆锥形毛细管进行后处理,所述后处理优选包括打磨,所述打磨用砂纸的目数优选为2000目。本发明通过打磨所述圆锥形毛细管,确保圆锥形毛细管外表面平滑。
在本发明中,所述微流控混料装置包括进料端与所述毛细管3的出料端连通的混料通道4,在本发明中,所述毛细管3的出料端与所述混料通道4优选同轴连通,所述圆锥形玻璃毛细管的顶点端通入所述混料通道4的长度优选为3~7cm,更优选为4~5cm。在本发明中,所述混料通道4的材质优选为聚氯乙烯;在本发明中,所述混料通道4的内径优选为0.45~0.6mm,更优选为0.5,外径优选为0.7~0.86mm,更优选为0.75mm;所述混料通道4的长度优选为10~11cm,所述毛细管3通入的长度优选占混料通道4长度的比例为0.3~0.7。
在本发明中,所述微流控混料装置还包括第二进料管2,所述第二进料管2的材质优选为聚氯乙烯;在本发明中,所述第二进料管2的内径优选为0.35~0.45mm,更优选为0.38mm,外径优选为0.47~0.57mm,更优选为0.5mm;在本发明中,所述第二进料管2的出料端与所述混料通道4的进料端连通,本发明优选将第二进料管2插入混料通道4和毛细管3 的缝隙处,本发明对所述第二进料管2的插入长度没有特殊要求。
在本发明中,所述微流控混料装置还包括基底,所述第一进料管1、第二进料管2、毛细管3和混料通道4固定在所述基底表面。
在本发明中,所述微流控混料装置如图1所示,所述微流控混料装置的组装方法优选包括:将所述毛细管3固定于基底上,将所述混料通道4固定于毛细管3的右侧,且与毛细管3连通,所述毛细管3的顶点端通入混料通道4的长度优选为3~7cm;将所述第一进料管与毛细管3的左侧端连通,将所述第二进料管2与所述混料通道4的左侧端连通,在本发明的具体实施例中,所述第二进料管连接于毛细管3和混料通道的缝隙中;本发明优选采用环氧树脂密封上述管道的连接处,本发明优选通过环氧树脂将所述毛细管3固定于基底上,本发明优选通过环氧树脂和双面胶将所述混料通道固定于所述基底上。
本发明优选对上述装置进行后处理,得到所述微流控混料装置,在本发明中,所述后处理优选包括晾晒风干,在本发明中,所述晾晒风干的时间优选为12h。
本发明将可溶性稀土盐溶液由第一进料管1注入,流经毛细管2进入混料通道4。在本发明中,所述可溶性稀土盐溶液进入混料通道4时的流速优选为5~15μL/min,更优选为7~12μL/min,最优选为8~10μL/min;在本发明中,所述可溶性稀土盐溶液的摩尔浓度优选为300~400mmol/L,更优选为320~380mmol/L,最优选为330~350mmol/L。在本发明中,所述可溶性稀土盐溶液优选包括可溶性铕盐溶液、可溶性铽盐溶液和可溶性镝盐溶液任意一种或两种,可溶性铕盐优选包括乙酸铕和/或硝酸铕,可溶性铽盐优选包括乙酸铽和/或硝酸铽,可溶性镝盐优选包括乙酸镝和/或硝酸镝。在本发明的具体实施例中,当可溶性稀土盐包括上述物质中的任意两种时,所述可溶性稀土盐优选包括可溶性铕盐和可溶性铽盐的混合物或可溶性铕盐和可溶性镝盐的混合物。
本发明通过调节可溶性稀土盐的种类和质量配比,制备得到不同通荧光颜色的金属有机框架超结构化合物。在本发明的具体实施例中,当可溶性稀土盐包括乙酸铕和硝酸铕时,产物为红色金属有机框架超结构化合物;在本发明的具体实施例中,所述乙酸铕和硝酸铕的质量比为 0.0474:0.0963;
当可溶性稀土盐包括乙酸铕和硝酸铽时,且乙酸铕和硝酸铽的质量比为0.0166:0.1402时,产物为橙色金属有机框架超结构化合物;
当可溶性稀土盐包括乙酸铕和硝酸铽,且乙酸铕和硝酸铽的质量比为0.0142:0.1435时,产物为黄色金属有机框架超结构化合物;
当可溶性稀土盐包括乙酸铽和硝酸铽时,产物为绿色金属有机框架超结构化合物,在本发明的具体实施例中,所述乙酸铽和硝酸铽的质量比为0.0484:0.0979;
当可溶性稀土盐包括乙酸铕和硝酸镝,且乙酸铽和硝酸铽的质量比为0.0415:0.0865时,产物为青色金属有机框架超结构化合物;
当可溶性稀土盐包括乙酸镝和硝酸镝,产物为蓝色金属有机框架超结构化合物,在本发明的具体实施例中,所述乙酸镝和硝酸镝的质量比为0.0484:0.0947;
当可溶性稀土盐包括乙酸铕和硝酸镝,且乙酸铕和硝酸镝的质量比为0.0236:0.1264时,产物为紫色金属有机框架超结构化合物。
在本发明中,所述可溶性稀土盐溶液优选通过以下方法制备得到:将可溶性稀土盐和水进行第一混合,得到可溶性稀土盐溶液;在本发明中,所述水优选为去离子水,所述第一混合优选在搅拌的条件下进行,所述搅拌的转速优选为600~1500rpm,更优选为800~1200rpm,所述搅拌的时间优选为8~15min,所述搅拌优选为磁力搅拌。
本发明优选通过注射泵将所述可溶性稀土盐溶液注入第一进料管1,且本发明优选通过注射泵控制所述稀土盐溶液的流速。
本发明将油相溶液由第二进料管注入,进入混料通道4;在本发明中,所述油相溶液进入混料通道4时的流速优选为150~250μL/min,更优选为175~220μL/min,最优选为180~200μL/min。
在本发明中,所述油相溶液优选包括油相和极性有机溶剂,所述油相优选为表面活性剂,所述极性有机优选为正戊醇和/或正丁醇。在本发明中,所述油相溶液中表面活性剂的质量百分数优选为0.05~0.15%,更优选为0.08~0.1%;在本发明中,所述表面活性优选包括司盘80和/或司盘60。
在本发明中,所述油相溶液优选通过以下方法制备得到:将油相和有机溶剂进行第二混合,得到油相溶液;在本发明中,所述第二混合优选在搅拌的条件下进行,所述搅拌的转速优选为600~1500rpm,更优选为800~1200rpm,所述搅拌的时间优选为10~20min,所述搅拌优选为磁力搅拌。
本发明优选通过注射泵将所述油相溶液注入第一进料管2,且本发明优选通过注射泵控制所述油相溶液的流速。
本发明在所述混料通道4中,所述稀土盐溶液在油相溶液的剪切作用下形成稀土盐溶液液滴;本发明优选通过控制稀土盐溶液和油相溶液的流速,调节稀土盐溶液液滴的尺寸且使得到的稀土盐溶液液滴的尺寸更加均匀。
在本发明中,所述稀土盐溶液液滴流出混料通道后与有机配体溶液发生配位化学反应,得到所述荧光金属有机框架超结构化合物。
在本发明中,所述有机配体溶液优选包括有机配体和极性有机溶剂,所述有机配体溶液的摩尔浓度优选为80~90mmol/L,更优选为83~95mmol/L。在本发明中,所述有机配体优选为均苯三甲酸;极性有机溶剂优选为正戊醇和/或正丁醇。
在本发明中,所述有机配体溶液优选通过以下方法制备得到:将均苯三甲酸和极性有机溶剂进行第三混合,得到有机配体溶液;在本发明中,所述第三混合的温度优选为60~70℃,所述第三混合优选在搅拌的条件下进行,所述搅拌的转速优选为600~1500rpm,更优选为800~1200rpm,所述搅拌的时间优选为10~20min,所述搅拌优选为磁力搅拌。
在本发明中,所述配位化学反应的时间优选为15~30min,更优选为20min,所述配位化学反应的温度优选为室温。
本发明通过上述微流控混料装置将可溶性稀土盐溶液由毛细管输送至混料通道,在混料通道中,由第二进料管进入的油相溶液在与可溶性稀土盐溶液进行混合时,利用油相溶液对可溶性稀土盐溶液的剪切作用,在毛细管3端口处形成一个个单独的可溶性稀土盐溶液液滴,液滴流出混料通道4后与有机配体溶液发生配位化学反应,得到所述荧光金属有机框架超结构化合物;本发明提供的制备方法能够制备得到自组装呈球体的荧光 金属有机框架超结构化合物,且球体粒径分布均匀,本发明通过调节可溶性稀土盐的种类和质量配比,制备得到不同荧光颜色的金属有机框架超结构化合物;本发明通过控制油相溶液和可溶性稀土盐溶液的流速,调节荧光金属有机框架超结构化合物的尺寸且使得到的荧光金属有机框架超结构化合物的尺寸更加均匀。
本发明优选对配位化学反应的产物进行后处理,得到荧光金属有机框架超结构化合物,在本发明中,所述后处理优选包括固液分离和干燥,本发明对所述固液分离的具体实施过程没有特殊要求;本发明优选对固液分离后的固体产物进行干燥,在本发明中,所述干燥的温度优选为100~200℃,更优选为内150℃,所述干燥的时间优选为10~15h,更优选为12h。
本发明提供由上述技术方案所述制备方法得到的荧光金属有机框架超结构化合物,本发明实施例制备得到的化合物具有式Ⅰ所示结构,Ln代表稀土元素,形状为球体,所述球体的直径为150~260μm。
Figure PCTCN2021093034-appb-000001
在本发明中,所述荧光金属有机框架超结构化合物的形状为球体,所述球体结构由单独的可溶性稀土盐溶液液滴与有机配体溶液发生配位化学反应时由MOFs纳米棒自组装而成,在本发明中,所述荧光金属有机框架超结构化合物球体的直径优选为150~260μm,更优选为175~250μm,最优选为200~225μm。
在本发明中,所述荧光金属有机框架超结构化合物具有红、橙、黄、绿、青、蓝和紫中的任一种荧光颜色。本发明得到不同荧光颜色的金属有机框架超结构化合物通过调节可溶性稀土盐的种类和质量配比制备得到。
本发明提供一种功能性纳米材料复合的荧光金属有机框架超结构化合物,包括荧光金属有机框架超结构化合物和负载于所述荧光金属有机框架超结构化合物表面的功能性纳米材料;
所述荧光金属有机框架超结构化合物为上述技术方案所述的荧光金属有机框架超结构化合物;
所述功能性纳米材料包括功能性无机纳米材料或功能性有机纳米材料。
本发明提供的功能性纳米材料复合的荧光金属有机框架超结构化合物,包括上述技术方案所述的荧光金属有机框架超结构化合物。
本发明提供的功能性纳米材料复合的荧光金属有机框架超结构化合物,包括负载于所述荧光金属有机框架超结构化合物表面的功能性纳米材料,在本发明中,所述功能性纳米材料包括功能性无机纳米材料或功能性有机纳米材料;在本发明中,所述功能性无机纳米材料优选包括四氧化三铁,所述功能性有机纳米材料优选包括聚集诱导发光(AIE)材料、有机荧光染料或上转换纳米粒子(UCNPs);在本发明的具体实施例中,所述AIE材料优选为四苯乙烯(TPE)材料,所述有机荧光染料优选为罗丹明B,所述UCNPs优选为NaTF 4:Yb/Er。
在本发明中,所述功能性纳米材料复合的荧光金属有机框架超结构化合物的制备方法与所述荧光金属有机框架超结构化合物的制备方法的不同之处在于:当所述功能性纳米材料优选包括功能性无机纳米材料时,将所述功能性无机纳米材料和可溶性稀土盐溶液同时由第一进料管1注入;当所述功能性纳米材料优选包括功能性有机纳米材料时,将所述功能性有机纳米材料和油相溶液同时由第二进料管2注入。
在本发明中,当所述功能性纳米材料优选包括功能性无机纳米材料时,所述功能性无机纳米材料与可溶性稀土盐的质量比优选为(2.2~6.5):36,更优选为4.3:36;本发明优选将所述功能性无机纳米材料、可溶性稀土盐溶液进行第四混合,得到功能性无机纳米材料和可溶性稀土盐的混合溶液后再由第一进料管1注入,在本发明中,所述第四混合优选在超声的条件下进行,所述超声的时间为10~15min,本发明对所述超声的功率没有特殊要求。
在本发明中,当所述功能性纳米材料优选包括功能性有机纳米材料时,所述功能性有机纳米材料和油相的质量比优选为(0.05~0.6):5,更优选为0.5:5;本发明优选将所述功能性有机纳米材料和油相溶液进行第五混合,得到混合油相溶液后再由第二进料管2注入,在本发明中,所述第五混合优选在搅拌的条件下进行,所述搅拌的速度优选为1000~1200rmp,所述搅拌优选为磁力搅拌。
本发明提供由上述技术方案所述荧光金属有机框架超结构化合物在非治疗目的的生物试样检测中的应用。
在本发明中,所述荧光金属有机框架超结构化合物优选作为非治疗目的的生物试样的检测试剂,利用荧光金属有机框架超结构化合物与生物试样中的待检测物质发生荧光猝灭时,荧光强度发生由强变弱的变化检测待检测物质。
在本发明中,当所述荧光金属有机框架超结构化合物与功能性纳米材料复合,得到功能性纳米材料复合的荧光金属有机框架超结构化合物时,所述功能性纳米材料复合的荧光金属有机框架超结构化合物应用于非治疗目的的生物试样检测中时,本发明利用功能性纳米材料复合的荧光金属有机框架超结构化合物中荧光金属有机框架超结构化合物与生物试样中的待检测物质发生荧光猝灭,荧光强度发生变化可以进行定性检测,通过制备待检测样品的标准品和相对荧光强度的线性拟合曲线,可以对待检测样品的浓度进行定量检测。功能性纳米材料与生物试样中的同一种待检测物质不发生荧光猝灭时,荧光颜色的改变检测待检测物质。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
如图1所示,微流控混料装置包括第一进料管1、第二进料管2、毛细管3和混料通道4;以载玻片为基底,将内径0.1mm的圆柱形玻璃毛细管通过拉针仪加工成圆锥形的导管,经砂纸打磨平滑后使用环氧树脂固定在载玻片上,将内径0.5mm聚氯乙烯导管放置在毛细管的右端,将圆 锥形玻璃毛细管顶点端伸入聚氯乙烯导管3cm形成同轴结构。将另一根内径0.5mm聚四氟乙烯导管接入左侧的圆锥形玻璃毛细管底面端,将第三根聚四氟乙烯导管接在圆柱形玻璃毛细管与聚氯乙烯导管之间的狭缝中。最后,使用环氧树脂和双面胶将导管以及狭缝固定和密封,晾晒风干12h后备用。
称取0.0474g乙酸铕和0.0963g硝酸铕置于5g的样品瓶中,随后在样品瓶中加入去离子水,放入搅拌子后,以1000rmp转速搅拌10min,制得1g浓度为360mmol/L的稀土离子溶液。
称取9.5g正戊醇溶液于20g样品瓶中,称取0.5g表面活性剂司盘80加入样品瓶,放入搅拌子后,以1200rmp转速搅拌20min,制得SPan80质量分数为5%wt的油相溶液。
称取0.3532g均苯三甲酸置于50mL的烧杯中,随后称取20g正戊醇加入烧杯,放入搅拌子后,调节磁力搅拌台加热温度为50℃,转速为800rmp,时间为20min,制得84mmol/L的有机配体溶液。
将可溶性稀土盐溶液装入1mL的注射器中,连接注射泵,将注射泵接入微流控混料装置的第一进料管1,将油相溶液装入10mL的注射器,连接注射泵,将注射泵接入微流控混料装置的第一进料管2,调节可溶性稀土盐溶液流速为200μL/min,油相溶液流速为10μL/min,利用油相溶液对可溶性稀土盐溶液的剪切作用形成液滴,液滴流出微流控混料装置后与有机配体溶液发生反应20min,随后将配位化学反应液固液分离得到的固体产物放入真空烘箱150℃干燥12h,制得的荧光金属有机框架超结构化合物,球形态,尺寸为150μm,在365nm紫外光激发下发射出红光(如图2左一所示),实施例1制备得到的产品的电镜照片如图3所示,由图3左侧的图所示,本发明制备得到的荧光金属有机框架超结构化合物为球形,球体结构由纳米棒自作装而成(如图3右侧图)。
实施例2~7
按照表1所示的可溶性稀土盐的种类和质量配比制备荧光为橙色、黄色、绿色、青色、蓝色和紫色的荧光金属有机框架超结构化合物,其他制备条件与实施例1相同。
表1实施例2~7中可溶性稀土盐的种类和制备配比
Figure PCTCN2021093034-appb-000002
实施例8
与实施例1的制备方法相同,不同之处在于,称取0.005g四氧化三铁粉末加入实施例1制备得到的可溶性稀土盐溶液中,超声破碎分散10min,得到四氧化三铁和可溶性稀土盐的混合溶液,制备得到功能性纳米材料复合的荧光金属有机框架超结构化合物,记为MOFs@磁性四氧化三铁。
实施例9
与实施例4的制备方法相同,不同之处在于,向油相溶液中加入0.006649g四苯乙烯,放入搅拌子后,以1000rmp转速搅拌10min,得到混合油相溶液。制备得到功能性纳米材料复合的荧光金属有机框架超结构化合物,记为AIE@MOFs。
由图5和图6可以得出,实施例4制备得到的荧光金属有机框架超结构化合物形状为球形,在紫外光线的照射下,颜色为绿色(图5左),而实施例9制备得到的AIE@MOFs在紫外灯的照射下,颜色为蓝色(图5右);图6为实施例4、实施例9制备的产品以及四苯乙烯在400~700纳米的紫外光线下的光强,由图6可以得出,实施例9制备的产品由于负载了四苯乙烯,其荧光颜色发生变化,由绿色变为蓝色。
实施例10
与实施例4的制备方法相同,不同之处在于,向油相溶液中加入0.05g罗丹明B,放入搅拌子后,以1000rmp转速搅拌10min,得到混合油相溶液。制备得到功能性纳米材料复合的荧光金属有机框架超结构化合 物,记为有机染料@MOFs。
由图7和图8可以得出,实施例10制备得到的有机染料@MOFs为球形,在紫外光线的照射下,颜色为红色;图8为实施例4、实施例9制备的产品以及罗丹明B在400~900纳米的紫外光线下的光强,由图8可以得出,实施例10制备的产品由于负载罗丹明B,其荧光颜色发生变化,由绿色变为红色。
实施例11
与实施例1的制备方法相同,不同之处在于,向油相溶液中加入0.05gNaYF 4:Yb/Er,放入搅拌子后,以1000rmp转速搅拌10min,得到混合油相溶液。制备得到功能性纳米材料复合的荧光金属有机框架超结构化合物,记为UCNPs@MOFs。
实施例12
将商用的四环素与去离子水配制成一系列不同浓度的四环素溶液(0、20、40、60、80、100μmol/L),将实施例1制备好的红色荧光金属有机框架超结构化合物称取0.3mg与6mL超纯水混合,并磁力搅拌30min形成均匀的悬浮液。随后将悬浮液滴到检测芯片的试剂检测区。在检测芯片的试剂加入区分别滴入不同浓度的四环素溶液后,利用外置磁铁接通磁性控制阀,使四环素溶液和检测试剂能沿着检测芯片流道运输,混合反应3min后,在365nm的激发波长下记录混合物的荧光强度。实验结果如图9所示,随着四环素浓度的增加,荧光强度逐渐减弱,表明负载红色荧光金属有机框架超结构化学物的纸基微流控芯片对四环素具有较好的检测效果;同时,根据与初始荧光的强度的比较,还可以得出在0~100μmol/L的四环素溶液中,荧光强度具有较好的线性拟合(如图10所示),图10所示的荧光相对强度与四环素溶液的质量浓度的线性拟合曲线的线性方程为:y=0.98952+0.0094x,线性范围x为0~100μmol/L,拟合曲线的R 2为0.9922,因此,在0~100μmol/L的四环素溶液中,可利用红色荧光金属有机框架超结构化合物对四环素含量进行定量分析。
而且,根据荧光金属有机框架超结构化合物(Ln-BTC)对四环素的检测基于荧光猝灭机理,其主要与内部过滤效应(IFE)与光致电子转移(PET)有关。因此,化学构型相同的Ln-BTC具有相似的化学性质,实 施例1~7制备得到的七色荧光金属有机框架化合物均可以根据荧光猝灭机理来对四环素进行检测。
实施例13
称取实施例10制备的罗丹明B@绿色荧光金属有机框架0.5mg于检测芯片的试剂检测区,将其均匀铺展开。称取0.5mg氯化铁,加入到50mL去离子水中,配置成氯化铁水溶液,将氯化铁溶液滴入检测芯片的试剂加入区。作为对比,向相同的检测芯片的试剂检测区加0.5g罗丹明B@绿色荧光金属有机框架,试剂加入区滴加普通的去离子水。将两个芯片的检测试剂检测区和试剂加入区的物质反应4min后,进行比色对比,定性检测是否含有铁离子,如图11所述。由于绿色的金属有机框架超结构化学物容易与铁离子发生荧光猝灭,而罗丹明B的荧光则对铁离子稳定,因此,将反应后的检测区域在365nm的紫外光激发下,含有铁离子的检测区域从最初的绿色变为最后的红色(如图11右侧所示),而不含铁离子的检测区域(0)一直保持稳定的绿色。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (19)

  1. 一种荧光金属有机框架超结构化合物的制备方法,包括以下步骤:
    提供一种微流控混料装置,所述微流控混料装置包括第一进料管(1),入料端与所述第一进料管(1)的出料端连通的毛细管(3),入料端与所述毛细管(3)的出料端连通的混料通道(4),还包括第二进料管(2),所述第二进料管的出料端与所述混料通道(4)的入料端连通;
    将可溶性稀土盐溶液由第一进料管(1)注入,流经毛细管(2)进入混料通道(4),将油相溶液由第二进料管(2)注入,进入混料通道(4),在所述混料通道(4)中,所述稀土盐溶液形成稀土盐溶液液滴;
    所述稀土盐溶液液滴流出混料通道(4)后与有机配体溶液发生配位化学反应,得到所述荧光金属有机框架超结构化合物。
  2. 根据权利要求1所述的制备方法,其特征在于,所述可溶性稀土盐溶液进入混料通道(4)时的流速为5~15μL/min;
    所述油相溶液进入混料通道(4)时的流速为150~250μL/min。
  3. 根据权利要求1所述的制备方法,其特征在于,所述毛细管(3)为圆锥形,所述圆锥形的底面内径为0.05~0.15mm,外径为0.3~0.4mm;
    所述第一进料管(1)和混料通道(4)的内径独立为0.5~0.6mm,外径独立为0.75~0.86mm;
    所述第二进料管(1)的内径为0.35~0.45mm,外径为0.47~0.57mm。
  4. 根据权利要求1或2所述的制备方法,其特征在于,所述可溶性稀土盐溶液的摩尔浓度为300~400mmol/L;
    所述可溶性稀土盐溶液包括可溶性铕盐溶液、可溶性铽盐溶液和可溶性镝盐溶液中的任意一种或两种。
  5. 根据权利要求1或2所述的制备方法,其特征在于,所述油相溶液包括油相和极性有机溶剂,所述油相溶液的质量百分数为0.05~0.15%。
  6. 根据权利要求5所述的制备方法,其特征在于,所述油相为表面活性剂,所述表面活性剂包括80和/或司盘60。
  7. 根据权利要求1所述的制备方法,其特征在于,所述有机配体溶液包括有机配体和极性有机溶剂,所述有机配体溶液的摩尔浓度为 80~90mmol/L。
  8. 根据权利要求1、4和7所述的制备方法,其特征在于,所述可溶性稀土盐和有机配体的物质的量之比为(30~40):(8~9)。
  9. 根据权利要求7所述的制备方法,其特征在于,所述有机配体为均苯三甲酸。
  10. 权利要求1~9任一项所述的制备方法得到的荧光金属有机框架超结构化合物,形状为球体,所述球体的直径为150~260μm。
  11. 一种功能性纳米材料复合的荧光金属有机框架超结构化合物,包括荧光金属有机框架超结构化合物和负载于所述荧光金属有机框架超结构化合物表面的功能性纳米材料;
    所述荧光金属有机框架超结构化合物为权利要求8所述的荧光金属有机框架超结构化合物;
    所述功能性纳米材料包括功能性无机纳米材料或功能性有机纳米材料。
  12. 根据权利要求11所述功能性纳米材料复合的荧光金属有机框架超结构化合物,其特征在于,所述功能性无机纳米材料包括四氧化三铁。
  13. 根据权利要求11所述功能性纳米材料复合的荧光金属有机框架超结构化合物,其特征在于,所述功能性有机纳米材料包括聚集诱导发光材料、有机荧光染料或上转换纳米粒子。
  14. 根据权利要求13所述功能性纳米材料复合的荧光金属有机框架超结构化合物,其特征在于,所述聚集诱导发光材料为四苯乙烯材料;所述有机荧光染料为罗丹明B;所述上转换纳米粒子为NaTF 4:Yb/Er。
  15. 权利要求11~14所述功能性纳米材料复合的荧光金属有机框架超结构化合物的制备方法,其特征在于,包括以下步骤:
    当所述功能性纳米材料包括功能性无机纳米材料时,将所述功能性无机纳米材料和可溶性稀土盐溶液由第一进料管(1)注入,流经毛细管(2)进入混料通道(4),将油相溶液由第二进料管(2)注入,进入混料通道(4),在所述混料通道(4)中,所述稀土盐溶液形成稀土盐溶液液滴;
    所述稀土盐溶液液滴流出混料通道(4)后与有机配体溶液发生配位化学反应,得到所述荧光金属有机框架超结构化合物;
    当所述功能性纳米材料包括功能性有机纳米材料时,将可溶性稀土盐溶液由第一进料管(1)注入,流经毛细管(2)进入混料通道(4),将所述功能性有机纳米材料和油相溶液由第二进料管(2)注入,进入混料通道(4),在所述混料通道(4)中,所述稀土盐溶液形成稀土盐溶液液滴;
    所述稀土盐溶液液滴流出混料通道(4)后与有机配体溶液发生配位化学反应,得到所述荧光金属有机框架超结构化合物。
  16. 根据权利要求15所述的制备方法,其特征在于,所述所述功能性无机纳米材料与可溶性稀土盐的质量比为(2.2~6.5):36;所述功能性有机纳米材料和油相的质量比为(0.05~0.6):5。
  17. 权利要求10或11所述的荧光金属有机框架超结构化合物在非治疗目的的生物试样检测中的应用。
  18. 根据权利要求17所述的应用,其特征在于,所述生物试样为四环素或氯化铁。
  19. 根据权利要求17所述的应用,其特征在于,所述检测包括定性检测或定量检测;所述定性检测为根据所述荧光金属有机框架超结构化合物和生物试样接触后荧光颜色变化进行检测;
    所述定量检测为根据所述荧光金属有机框架超结构化合物和生物试样接触后荧光相对强度变化进行检测。
PCT/CN2021/093034 2021-03-31 2021-05-11 一种荧光金属有机框架超结构化合物及其制备方法和应用 WO2022205569A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/790,492 US20230287261A1 (en) 2021-03-31 2021-05-11 Fluorescent metal-organic framework superstructure compound, preparation method and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110346336.3A CN113087921B (zh) 2021-03-31 2021-03-31 一种荧光金属有机框架超结构化合物及其制备方法和应用
CN202110346336.3 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022205569A1 true WO2022205569A1 (zh) 2022-10-06

Family

ID=76671408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093034 WO2022205569A1 (zh) 2021-03-31 2021-05-11 一种荧光金属有机框架超结构化合物及其制备方法和应用

Country Status (3)

Country Link
US (1) US20230287261A1 (zh)
CN (1) CN113087921B (zh)
WO (1) WO2022205569A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114011422B (zh) * 2021-11-01 2022-05-10 广东工业大学 一种单原子纳米酶及其制备方法与应用
CN114436815B (zh) * 2022-02-07 2024-03-15 四川师范大学 一种可用于识别三价铁离子的稀土荧光材料的制备及应用
CN114369255B (zh) * 2022-02-07 2023-06-13 四川师范大学 一种可用于水体中Fe3+检测的稀土金属有机框架材料
CN114702953B (zh) * 2022-05-20 2024-01-19 中国计量大学 一种基于镧系离子杂化共价有机框架材料的荧光探针及制备方法及应用
CN117065730A (zh) * 2023-08-03 2023-11-17 中国电建集团重庆工程有限公司 一种用于去除或检测液体中四环素的新材料及其检测系统
CN116920753B (zh) * 2023-09-13 2023-12-15 国科大杭州高等研究院 一种纳米材料自组装合成微反应器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101342472A (zh) * 2008-08-20 2009-01-14 东南大学 均一尺寸纳米颗粒荧光微球的制备方法
CN102757453A (zh) * 2012-07-16 2012-10-31 南开大学 一种多功能稀土金属-有机框架及其制备方法
CN107602874A (zh) * 2017-11-01 2018-01-19 中国药科大学 一种基于微流控技术合成金属有机骨架材料的方法
WO2020210868A1 (en) * 2019-04-15 2020-10-22 Royal Melbourne Institute Of Technology Metal organic frameworks and methods of preparation thereof
CN112457499A (zh) * 2020-11-30 2021-03-09 华南理工大学 一种稀土基金属有机框架荧光纳米材料及其制备方法与应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101585856A (zh) * 2008-05-23 2009-11-25 安徽大学 具有单级或多级孔道结构的纳米孔洞金属-有机骨架材料及其制备
CN102093892B (zh) * 2011-03-01 2013-05-08 上海大学 多元溶剂热法制备稀土掺杂氟化镧发光空心纳米粉体的方法
CN105742611B (zh) * 2016-05-06 2018-09-21 中国科学院宁波材料技术与工程研究所 一种锂离子电池负极材料、其制备方法及锂离子电池
CN109320727A (zh) * 2017-08-01 2019-02-12 华东理工大学 纳米金属有机骨架材料的制备方法
CN109384935B (zh) * 2017-08-08 2020-11-10 中国石油化工股份有限公司 一种金属有机骨架材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101342472A (zh) * 2008-08-20 2009-01-14 东南大学 均一尺寸纳米颗粒荧光微球的制备方法
CN102757453A (zh) * 2012-07-16 2012-10-31 南开大学 一种多功能稀土金属-有机框架及其制备方法
CN107602874A (zh) * 2017-11-01 2018-01-19 中国药科大学 一种基于微流控技术合成金属有机骨架材料的方法
WO2020210868A1 (en) * 2019-04-15 2020-10-22 Royal Melbourne Institute Of Technology Metal organic frameworks and methods of preparation thereof
CN112457499A (zh) * 2020-11-30 2021-03-09 华南理工大学 一种稀土基金属有机框架荧光纳米材料及其制备方法与应用

Also Published As

Publication number Publication date
CN113087921B (zh) 2021-11-19
US20230287261A1 (en) 2023-09-14
CN113087921A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
WO2022205569A1 (zh) 一种荧光金属有机框架超结构化合物及其制备方法和应用
CN110776916B (zh) 一种量子点双发射比率荧光探针及其制备方法、应用
CN105749288B (zh) 一种近红外光监控、可控药物释放的介孔二氧化硅微球及其合成方法
CN105199717B (zh) 2‑巯基咪唑‑牛血清白蛋白‑金纳米团簇荧光材料及其制备方法
Lin et al. A highly zinc-selective ratiometric fluorescent probe based on AIE luminogen functionalized coordination polymer nanoparticles
Zhang et al. Fluorescent nanocomposites based on gold nanoclusters for metal ion detection and white light emitting diodes
CN104262487A (zh) 一种功能纳米材料/金属有机框架物复合物及其制备方法
CN108504347B (zh) 增强型双发射荧光复合材料及其制备方法和应用
CN109001175A (zh) 一种sers基底的制备方法、sers基底及其应用
Yan et al. Sensing performance and mechanism of carbon dots encapsulated into metal–organic frameworks
CN102696119A (zh) 着色剂的稀土脱除
CN111777768B (zh) 一种稀土铽(iii)-有机框架配位聚合物及其制备方法和作为发光材料的应用
Kembuan et al. Coating of upconversion nanoparticles with silica nanoshells of 5–250 nm thickness
CN106800294B (zh) 一种胸腺嘧啶修饰的石墨烯量子点及其制备方法与应用
Mohapatra et al. Highly stable fluorescent CsPbBr3 perovskite nanocrystals with reduced in-vitro toxicity for bioimaging and mercury ion detection in cells
Xu et al. Colorimetric detection of trivalent chromium in aqueous solution using tartrate-capped silver nanoparticles as probe
CN106732650A (zh) 一种兼掺杂和负载双重改性的钙钛矿型光催化剂及其制备方法
Hu et al. Modulating the size and photoluminescence of a copper nanocluster via metal-organic frameworks encapsulating strategy for fluorescence sensing
CN114525133A (zh) 一种含疏水铜纳米团簇胶体溶液的制备与检测Fe3+的应用
CN103487478B (zh) MnFePBA-Ag-CNTs复合肼传感器的制备方法
CN111647168B (zh) 一种稀土铽(iii)配位聚合物及其制备方法和应用
CN108659813A (zh) 一种荧光纳米颗粒及其制备方法
KR101660399B1 (ko) 금 나노 입자를 포함하는 형광 입자 및 그 제조방법
CN113913050A (zh) 一种mof荧光墨水的制备及其在离子浓度检测中的应用
Lv et al. Self-calibrated HAp: Tb-EDTA paper-based probe with dual emission ratio fluorescence for binary visual and fluorescent detection of anthrax biomarker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934220

Country of ref document: EP

Kind code of ref document: A1