CN106800294B - 一种胸腺嘧啶修饰的石墨烯量子点及其制备方法与应用 - Google Patents
一种胸腺嘧啶修饰的石墨烯量子点及其制备方法与应用 Download PDFInfo
- Publication number
- CN106800294B CN106800294B CN201611139536.7A CN201611139536A CN106800294B CN 106800294 B CN106800294 B CN 106800294B CN 201611139536 A CN201611139536 A CN 201611139536A CN 106800294 B CN106800294 B CN 106800294B
- Authority
- CN
- China
- Prior art keywords
- quantum dot
- graphene quantum
- solution
- thymidine
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6402—Atomic fluorescence; Laser induced fluorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6402—Atomic fluorescence; Laser induced fluorescence
- G01N21/6404—Atomic fluorescence
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2204/00—Structure or properties of graphene
- C01B2204/20—Graphene characterized by its properties
- C01B2204/22—Electronic properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/82—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/84—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N2021/6417—Spectrofluorimetric devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N2021/6432—Quenching
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Optics & Photonics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明涉及一种胸腺嘧啶修饰的石墨烯量子点及其制备方法与应用。制备时,将碳纤维溶于强酸溶液中,搅拌,超声,制得超声后的碳纤维与强酸的混合溶液,进行加热回流,得回流后的溶液A,再与二次水混合,调节溶液的pH为7‑9,过滤,透析,制得石墨烯量子点溶液;将EDC、NHS加入到石墨烯量子点溶液中,经活化后,再加入乙二胺反应4‑8小时,透析,制得共价修饰了乙二胺的石墨烯量子点溶液;取适量的胸腺嘧啶‑1‑乙酸,溶于水中,加入EDC、NHS,经活化,再加入负载有乙二胺的石墨烯量子点溶液,反应4‑8小时,透析,即可。与现有技术相比,本发明原料便宜易得,可以实时监测汞离子,具有高灵敏度、高选择性,可以用于在水体、医药、食品中检测汞离子。
Description
技术领域
本发明属于荧光探针材料技术领域,涉及一种胸腺嘧啶修饰的石墨烯量子点及其制备方法与应用。
背景技术
荧光纳米材料由于其优秀的性能和广泛的应用,现已受到越来越多的关注。传统的荧光探针由于其具有毒性,且光稳定性不好,因而其应用受到很大制约。量子点是由有限数目的原子组成,三个维度的尺寸都在100纳米(nm)以下的球形或类球形半导体纳米颗粒。量子点的直径一般介于2~20nm之间,由于电子和空穴被量子限域,连续的能带结构变成具有分子特性的分立能级结构,其吸收所有高于其带隙能量的光子后,可以发出荧光。基于量子效应,量子点在太阳能电池,发光器件,光学生物标记等领域具有广泛的应用前景。石墨烯量子点作为一种新型荧光探针,其具有低毒性、高灵敏度、高选择性、生物相容性好,且对环境污染小,抗光漂白能力强等优点。石墨烯量子点可以在生物、化学、物理等多个领域广泛应用。
汞离子是一种典型的有毒的重金属离子,可以造成大脑损伤,肾脏衰竭,心脏和神经系统不可逆转的损伤。在1956年,日本爆发的水俣病就是由于生物体中汞离子富集引起的。重金属污染已经成为目前环境监测必不可少的一部分,做好环境、食品、医药等领域中的重金属检测工作,对于维护人类健康以及保护良好的生态环境有非常重要的意义。
授权公告号为CN 104477900 B的中国发明专利公开了一种微波法制备多色荧光石墨烯量子点的方法,以碳材料为反应原料,通过两步反应得到产物。步骤1,将碳材料分散在水、浓硝酸和浓硫酸的混合液中加热氧化,再将所得到混合液分散于水中,经过中和、脱盐和干燥得到氧化碳材料。步骤2,将步骤1得到的氧化碳材料超声分散于N,N-二甲基甲酰胺中,所得分散液置于微波中反应后,再进行过滤、脱溶、重新分散和透析,得到石墨烯量子点。控制步骤1中水、浓硝酸和浓硫酸的比例和步骤2中微波反应的条件,可得不同荧光颜色的石墨烯量子点。本发明与上述专利制备的材料不同,上述专利采用微波辅助法制备石墨烯量子点。而本发明侧重点在于石墨烯量子点的功能化修饰和应用。本发明采用碳纤维为原料,通过硫酸、硝酸氧化碳纤维,在这个过程中会引入大量的含氧官能团,这些在C-C晶格上呈线性排列的官能团会使碳纤维层间距增大,使其易于沿锯齿方向断裂,通过碳纤维的裂解得到GQDs。接着,通过在GQDs上共价修饰乙二胺引入氨基,最后利用氨基与胸腺嘧啶-1-乙酸上的羧基反应形成酰胺键而制得胸腺嘧啶修饰的石墨烯量子点。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种具有良好的光稳定性,抗光漂白性好,灵敏度高的胸腺嘧啶修饰的石墨烯量子点。
本发明的另一个目的就是提供上述胸腺嘧啶修饰的石墨烯量子点的制备方法。
本发明的再一个目的就是提供上述胸腺嘧啶修饰的石墨烯量子点的应用。
本发明的目的可以通过以下技术方案来实现:
一种胸腺嘧啶修饰的石墨烯量子点的制备方法,该方法是通过酰胺键将胸腺嘧啶-1-乙酸连接到石墨烯量子点上,具体包括以下步骤:
步骤(1):将碳纤维溶于强酸溶液中,充分搅拌,超声,制得超声后的碳纤维与强酸的混合溶液;
步骤(2):将步骤(1)制得的超声后的碳纤维与强酸的混合溶液进行加热回流,得回流后的溶液A;
步骤(3):取步骤(2)中回流后的溶液A与二次水混合,加入碳酸盐,调节溶液的pH为7-9,过滤,透析,制得石墨烯量子点溶液;
步骤(4):将EDC、NHS加入到步骤(3)制得的石墨烯量子点溶液中,经活化后,再加入乙二胺反应4-8小时,透析,制得负载有乙二胺的石墨烯量子点溶液;
步骤(5):取适量的胸腺嘧啶-1-乙酸,溶于无机溶剂中,加入EDC、NHS,经活化,再加入步骤(4)制得的负载有乙二胺的石墨烯量子点溶液,反应4-8小时,透析,即制得所述的胸腺嘧啶修饰的石墨烯量子点。
步骤(1)所述的强酸溶液由浓硫酸与浓硝酸按体积比为2-4:1混合而成,并且步骤(1)中每100mL的强酸溶液中加入0.3-0.4g的碳纤维。
步骤(1)所述的搅拌的转速为800-1000转/分钟。
步骤(2)所述的加热回流的条件为:控制温度为90-120℃,回流时间为22-26小时。
步骤(3)中回流后的溶液A与二次水的体积比为1:8-10,所述的过滤为采用孔径为0.2-0.3μm的滤膜进行过滤,所述的透析的时间为2-4天。
步骤(4)中所述的EDC与NHS的质量比为1-1.5:1,所述的活化时间为1-3小时,所述的乙二胺与NHS的质量比为6-7:100,所述的透析的时间为1-3天。
步骤(4)中每1毫升石墨烯量子点溶液中分别加入2.5-5mg EDC及2.5-5mgNHS。
步骤(5)所述的胸腺嘧啶-1-乙酸与EDC、NHS的质量比为1:2-2.5:2-2.5,所述的负载有乙二胺的石墨烯量子点溶液与无机溶剂的体积比为3-4:1,所述的活化时间为1-3小时,所述的透析的时间为1-3天。
步骤(5)所述的胸腺嘧啶-1-乙酸在无机溶剂中的质量浓度为60-100μg/mL。
步骤(5)中,所述的无机溶剂为二次水。
采用上述方法制备而成的胸腺嘧啶修饰的石墨烯量子点。
胸腺嘧啶修饰的石墨烯量子点的应用,所述的胸腺嘧啶修饰的石墨烯量子点用于检测水体、医药或食品中的汞离子浓度。
本发明中,NHS为N-羟基琥珀酰亚胺,EDC为1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐,所述的胸腺嘧啶-1-乙酸的英文简写为T-1-COOH,本发明制得的胸腺嘧啶修饰的石墨烯量子点的化学结构式为GQDs-EDA-T。
通过利用酰胺键接上乙二胺和胸腺嘧啶-1-乙酸达到特异性检测汞离子的目的。其机理是在胸腺嘧啶3位上的N原子与汞离子特异性结合,引起石墨烯量子点的聚集,从而使石墨烯量子点的荧光淬灭。
与现有技术相比,本发明具有以下特点:
1)对汞离子具有高灵敏度和高选择性;
2)对设备要求低,原料便宜、易得,制备步骤简单,反应条件温和,操作安全,可以实时、定量、安全、绿色、便携检测汞离子;
3)制得的胸腺嘧啶修饰的石墨烯量子点作为荧光探针,具有良好的光稳定性,抗光漂白性,对汞离子有良好的灵敏度和选择性,在环境监测方面的具有很好的应用前景。
附图说明
图1是石墨烯量子点的TEM图;
图2是GQDs、GQDs-EDA、GQDs-EDA-T的紫外-可见吸收对比图,横坐标为波长,纵坐标为吸光度;
图3是GQDs、GQDs-EDA、GQDs-EDA-T的红外吸收对比图,横坐标为波数,纵坐标为透过率;
图4是GQDs、GQDs-EDA、GQDs-EDA-T的荧光对比图,横坐标为波长,纵坐标为荧光强度;
图5是GQDs、GQDs-EDA、GQDs-EDA-T的Zeta电位对比图;
图6是GQDs-EDA-T与汞离子反应的线性工作范围,横坐标为浓度,纵坐标为荧光强度;
图7是GQDs-EDA-T的荧光强度随加入的汞离子浓度的变化曲线,横坐标为波长,纵坐标为荧光强度;
图8是GQDs-EDA-T对金属离子的选择度;
图9是GQDs-EDA-T对汞离子的响应时间;
图10是GQDs-EDA-T的最大发射峰与激发波长的关系;
图11是溶液pH值对GQDs-EDA-T的荧光强度影响图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
石墨烯量子点的制备
取0.15g碳纤维于100mL的三颈烧瓶中,加入浓硫酸、浓硝酸分别为30mL、10mL,搅拌2h。超声2h,超声时保证温度不高于30℃。在90℃下,回流搅拌24h。取回流后的溶液20mL,加去二次水稀释至200mL。加入碳酸钠,调节pH至pH=8,用0.22μm的滤膜过滤,
得到滤液,取滤液透析3天,得到石墨烯量子点,如图1所示。
实施例2
接乙二胺的石墨烯量子点的制备
取石墨烯量子点30mL,加入EDC、NHS各100mg,活化2h,之后加入6.75mg乙二胺,反应6h,透析1天,得到接乙二胺的石墨烯量子点。
实施例3
胸腺嘧啶修饰的石墨烯量子点的制备
取胸腺嘧啶-1-乙酸25mg,溶于5mL二次水中,加入EDC、NHS各50mg,搅拌,保证药品完全溶解,活化2h,加入20mL接乙二胺的石墨烯量子点,反应6h,透析1天,得到胸腺嘧啶修饰的石墨烯量子点。
实施例1制得的GQDs、实施例2制得的GQDs-EDA及实施例3制得的GQDs-EDA-T紫外-可见吸收对比图、红外吸收对比图以及荧光对比图分别参见图2、图3及图4。
图5为GQDs、GQDs-EDA、GQDs-EDA-T的Zeta电位对比图。
实施例4
应用实施例3中的用于检测汞离子的胸腺嘧啶修饰的荧光探针检测水溶液中汞离子含量的具体步骤为:
取3mL的荧光探针,加入9次6μL的0.001mol/L的汞离子溶液。取3mL的荧光探针,先加入12μL0.005mol/L的汞离子溶液,再加入7次6μL 0.005mol/L的汞离子溶液。取3mL荧光探针,先加入6μL0.05mol/L汞离子溶液,再加入3次6μL0.05mol/L汞离子溶液。激发波长为310nm,发射波长为520nm,以汞离子浓度为横坐标,荧光强度变化为纵坐标作图,得到线性工作曲线图6所示。
本实施例制得的GQDs-EDA-T与不同浓度汞离子的反应后的荧光光谱如图7所示。
图8反映的是GQDs-EDA-T对不同金属离子的选择度。
图9反映的是GQDs-EDA-T的响应时间。
图10反映的是GQDs-EDA-T在不同波长条件下的最大发射峰。
图11反映的是pH值对GQDs-EDA-T荧光强度的pH影响图。
表1反映的是GQDs-EDA-T对汞离子的加标回收率。
表1
实施例5
取3mL荧光探针,向其中加入3μL0.05mol/L用自来水配制的汞离子溶液,根据线性工作曲线,得到汞离子浓度为48.5μM/L。
实施例6
本实施例胸腺嘧啶修饰的石墨烯量子点的制备方法,具体包括以下步骤:
步骤(1):将碳纤维溶于强酸溶液中,充分搅拌,超声,制得超声后的碳纤维与强酸的混合溶液;
步骤(2):将步骤(1)制得的超声后的碳纤维与强酸的混合溶液进行加热回流,得回流后的溶液A;
步骤(3):取步骤(2)中回流后的溶液A与二次水混合,加入碳酸盐,调节溶液的pH为7,过滤,透析,制得石墨烯量子点溶液;
步骤(4):将EDC、NHS加入到步骤(3)制得的石墨烯量子点溶液中,经活化后,再加入乙二胺反应4小时,透析,制得负载有乙二胺的石墨烯量子点溶液;
步骤(5):取适量的胸腺嘧啶-1-乙酸,溶于无机溶剂中,加入EDC、NHS,经活化,再加入步骤(4)制得的负载有乙二胺的石墨烯量子点溶液,反应4小时,透析,即制得胸腺嘧啶修饰的石墨烯量子点。
其中,步骤(1)中,强酸溶液由浓硫酸与浓硝酸按体积比为2:1混合而成,并且步骤(1)中每100mL的强酸溶液中加入0.3g的碳纤维。
步骤(2)中,加热回流的条件为:控制温度为90℃,回流时间为26小时。
步骤(3)中回流后的溶液A与二次水的体积比为1:8,过滤为采用孔径为0.2μm的滤膜进行过滤,透析的时间为2天。
步骤(4)中EDC与NHS的质量比为1:1,活化时间为1小时,乙二胺与NHS的质量比为6:100,透析的时间为1天。
步骤(4)中每1毫升石墨烯量子点溶液中分别加入3mg EDC及3mg NHS。
步骤(5)胸腺嘧啶-1-乙酸与EDC、NHS的质量比为1:2:2,负载有乙二胺的石墨烯量子点溶液与无机溶剂的体积比为3:1,活化时间为1小时,透析的时间为1天。
步骤(5)中,胸腺嘧啶-1-乙酸在无机溶剂中的质量浓度为60μg/mL。
本实施例制得的胸腺嘧啶修饰的石墨烯量子点用于检测水体、医药或食品中的汞离子浓度。
实施例7
本实施例胸腺嘧啶修饰的石墨烯量子点的制备方法,具体包括以下步骤:
步骤(1):将碳纤维溶于强酸溶液中,充分搅拌,超声,制得超声后的碳纤维与强酸的混合溶液;
步骤(2):将步骤(1)制得的超声后的碳纤维与强酸的混合溶液进行加热回流,得回流后的溶液A;
步骤(3):取步骤(2)中回流后的溶液A与二次水混合,加入碳酸盐,调节溶液的pH为9,过滤,透析,制得石墨烯量子点溶液;
步骤(4):将EDC、NHS加入到步骤(3)制得的石墨烯量子点溶液中,经活化后,再加入乙二胺反应8小时,透析,制得负载有乙二胺的石墨烯量子点溶液;
步骤(5):取适量的胸腺嘧啶-1-乙酸,溶于无机溶剂中,加入EDC、NHS,经活化,再加入步骤(4)制得的负载有乙二胺的石墨烯量子点溶液,反应8小时,透析,即制得胸腺嘧啶修饰的石墨烯量子点。
其中,步骤(1)中,强酸溶液由浓硫酸与浓硝酸按体积比为4:1混合而成,并且步骤(1)中每100mL的强酸溶液中加入0.4g的碳纤维。
步骤(2)中,加热回流的条件为:控制温度为120℃,回流时间为22小时。
步骤(3)中回流后的溶液A与二次水的体积比为1:10,过滤为采用孔径为0.3μm的滤膜进行过滤,透析的时间为4天。
步骤(4)中EDC与NHS的质量比为1.5:1,活化时间为3小时,乙二胺与NHS的质量比为7:100,透析的时间为3天。
步骤(4)中每1毫升石墨烯量子点溶液中分别加入4.5mg EDC及3mg NHS。
步骤(5)胸腺嘧啶-1-乙酸与EDC、NHS的质量比为1:2.5:2.5,负载有乙二胺的石墨烯量子点溶液与无机溶剂的体积比为4:1,活化时间为3小时,透析的时间为1天。
步骤(5)中,胸腺嘧啶-1-乙酸在无机溶剂中的质量浓度为90μmg/mL。
本实施例制得的胸腺嘧啶修饰的石墨烯量子点用于检测水样品中的汞离子浓度。
实施例8
本实施例胸腺嘧啶修饰的石墨烯量子点的制备方法,具体包括以下步骤:
步骤(1):将碳纤维溶于强酸溶液中,充分搅拌,超声,制得超声后的碳纤维与强酸的混合溶液;
步骤(2):将步骤(1)制得的超声后的碳纤维与强酸的混合溶液进行加热回流,得回流后的溶液A;
步骤(3):取步骤(2)中回流后的溶液A与二次水混合,加入碳酸盐,调节溶液的pH为8,过滤,透析,制得石墨烯量子点溶液;
步骤(4):将EDC、NHS加入到步骤(3)制得的石墨烯量子点溶液中,经活化后,再加入乙二胺反应6小时,透析,制得负载有乙二胺的石墨烯量子点溶液;
步骤(5):取适量的胸腺嘧啶-1-乙酸,溶于无机溶剂中,加入EDC、NHS,经活化,再加入步骤(4)制得的负载有乙二胺的石墨烯量子点溶液,反应6小时,透析,即制得胸腺嘧啶修饰的石墨烯量子点。
其中,步骤(1)中,强酸溶液由浓硫酸与浓硝酸按体积比为3:1混合而成,并且步骤(1)中每100mL的强酸溶液中加入0.36g的碳纤维。
步骤(2)中,加热回流的条件为:控制温度为100℃,回流时间为24小时。
步骤(3)中回流后的溶液A与二次水的体积比为1:9,过滤为采用孔径为0.22μm的滤膜进行过滤,透析的时间为3天。
步骤(4)中EDC与NHS的质量比为1.2:1,活化时间为2小时,乙二胺与NHS的质量比为6.5:100,透析的时间为2天。
步骤(4)中每1毫升石墨烯量子点溶液中分别加入3.6mg EDC及3mg NHS。
步骤(5)胸腺嘧啶-1-乙酸与EDC、NHS的质量比为1:2.4:2.4,负载有乙二胺的石墨烯量子点溶液与无机溶剂的体积比为3.5:1,活化时间为2小时,透析的时间为2天。
步骤(5)中,胸腺嘧啶-1-乙酸在无机溶剂中的质量浓度为100μg/mL。
本实施例制得的胸腺嘧啶修饰的石墨烯量子点用于检测水样品中的汞离子浓度。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。
Claims (10)
1.一种胸腺嘧啶修饰的石墨烯量子点的制备方法,其特征在于,该方法是通过酰胺键将胸腺嘧啶-1-乙酸连接到石墨烯量子点上,具体包括以下步骤:
步骤(1):将碳纤维溶于强酸溶液中,充分搅拌,超声,制得超声后的碳纤维与强酸的混合溶液;
步骤(2):将步骤(1)制得的超声后的碳纤维与强酸的混合溶液进行加热回流,得回流后的溶液A;
步骤(3):取步骤(2)中回流后的溶液A与二次水混合,加入碳酸盐,调节溶液的pH为7-9,过滤,透析,制得石墨烯量子点溶液;
步骤(4):将EDC、NHS加入到步骤(3)制得的石墨烯量子点溶液中,经活化后,再加入乙二胺反应4-8小时,透析,制得共价修饰了乙二胺的石墨烯量子点溶液;
步骤(5):取适量的胸腺嘧啶-1-乙酸,溶于无机溶剂中,加入EDC、NHS,经活化,再加入步骤(4)制得的共价修饰了乙二胺的石墨烯量子点溶液,反应4-8小时,透析,即制得所述的胸腺嘧啶修饰的石墨烯量子点。
2.根据权利要求1所述的一种胸腺嘧啶修饰的石墨烯量子点的制备方法,其特征在于,步骤(1)所述的强酸溶液由浓硫酸与浓硝酸按体积比为2-4:1混合而成,并且步骤(1)中每100mL的强酸溶液中加入0.3-0.4g的碳纤维。
3.根据权利要求1所述的一种胸腺嘧啶修饰的石墨烯量子点的制备方法,其特征在于,步骤(2)所述的加热回流的条件为:控制温度为90-120℃,回流时间为22-26小时。
4.根据权利要求1所述的一种胸腺嘧啶修饰的石墨烯量子点的制备方法,其特征在于,步骤(3)中回流后的溶液A与二次水的体积比为1:8-10,所述的过滤为采用孔径为0.2-0.3μm的滤膜进行过滤,所述的透析的时间为2-4天。
5.根据权利要求1所述的一种胸腺嘧啶修饰的石墨烯量子点的制备方法,其特征在于,步骤(4)中所述的EDC与NHS的质量比为1-1.5:1,所述的活化时间为1-3小时,所述的乙二胺与NHS的质量比为6-7:100,所述的透析的时间为1-3天。
6.根据权利要求5所述的一种胸腺嘧啶修饰的石墨烯量子点的制备方法,其特征在于,步骤(4)中每1毫升石墨烯量子点溶液中分别加入2.5-5mg EDC及2.5-5mg NHS。
7.根据权利要求1所述的一种胸腺嘧啶修饰的石墨烯量子点的制备方法,其特征在于,步骤(5)所述的胸腺嘧啶-1-乙酸与EDC、NHS的质量比为1:2-2.5:2-2.5,所述的共价修饰了乙二胺的石墨烯量子点溶液与无机溶剂的体积比为3-4:1,所述的活化时间为1-3小时,所述的透析的时间为1-3天。
8.根据权利要求1所述的一种胸腺嘧啶修饰的石墨烯量子点的制备方法,其特征在于,步骤(5)所述的胸腺嘧啶-1-乙酸在无机溶剂中的质量浓度为60-100μg/mL。
9.采用权利要求1至8任一项所述的方法制备而成的胸腺嘧啶修饰的石墨烯量子点。
10.如权利要求9所述的胸腺嘧啶修饰的石墨烯量子点的应用,其特征在于,所述的胸腺嘧啶修饰的石墨烯量子点用于检测水体、医药或食品中的汞离子浓度。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611139536.7A CN106800294B (zh) | 2016-12-12 | 2016-12-12 | 一种胸腺嘧啶修饰的石墨烯量子点及其制备方法与应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611139536.7A CN106800294B (zh) | 2016-12-12 | 2016-12-12 | 一种胸腺嘧啶修饰的石墨烯量子点及其制备方法与应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106800294A CN106800294A (zh) | 2017-06-06 |
CN106800294B true CN106800294B (zh) | 2018-09-28 |
Family
ID=58983970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611139536.7A Expired - Fee Related CN106800294B (zh) | 2016-12-12 | 2016-12-12 | 一种胸腺嘧啶修饰的石墨烯量子点及其制备方法与应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106800294B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109187689A (zh) * | 2018-06-26 | 2019-01-11 | 广东省测试分析研究所(中国广州分析测试中心) | 一种自组装电化学传感器及其在水相中痕量汞离子的检测中的应用 |
CN110592936A (zh) * | 2019-09-19 | 2019-12-20 | 西南大学 | 用edc/nhs溶液制备抗紫外蚕丝织物 |
CN110975919B (zh) * | 2019-12-25 | 2021-06-01 | 福州大学 | 一种氮掺杂碳量子点原位生长脱硝抗硫催化剂及其制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105174403A (zh) * | 2015-09-25 | 2015-12-23 | 泉州市福达科技咨询有限公司 | 一种胺基功能化石墨烯量子点及其制备和应用 |
-
2016
- 2016-12-12 CN CN201611139536.7A patent/CN106800294B/zh not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105174403A (zh) * | 2015-09-25 | 2015-12-23 | 泉州市福达科技咨询有限公司 | 一种胺基功能化石墨烯量子点及其制备和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN106800294A (zh) | 2017-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Dual-colored carbon dot ratiometric fluorescent test paper based on a specific spectral energy transfer for semiquantitative assay of copper ions | |
Sun et al. | Fluorescent carbon dots and their sensing applications | |
Zhou et al. | Color-multiplexing-based fluorescent test paper: dosage-sensitive visualization of arsenic (III) with discernable scale as low as 5 ppb | |
Liu et al. | One-pot carbonization synthesis of europium-doped carbon quantum dots for highly selective detection of tetracycline | |
Wang et al. | Blue photoluminescent carbon nanodots prepared from zeolite as efficient sensors for picric acid detection | |
Liu et al. | Constructing carbon dots and CdTe quantum dots multi-functional composites for ultrasensitive sensing and rapid degrading ciprofloxacin | |
Zhong et al. | Polymer dots of DASA-functionalized polyethyleneimine: Synthesis, visible light/pH responsiveness, and their applications as chemosensors | |
Li et al. | Aggregation-induced emission from gold nanoclusters for use as a luminescence-enhanced nanosensor to detect trace amounts of silver ions | |
Liu et al. | Fluorescent carbon dots embedded in mesoporous silica nanospheres: A simple platform for Cr (VI) detection in environmental water | |
CN106800294B (zh) | 一种胸腺嘧啶修饰的石墨烯量子点及其制备方法与应用 | |
Geng et al. | A new fluorescent sensor for detecting p-nitrophenol based on β-cyclodextrin-capped ZnO quantum dots | |
Li et al. | Efficient and visual monitoring of cerium (III) ions by green-fluorescent carbon dots and paper-based sensing | |
Yang et al. | Nitrogen-doped fluorescent carbon dots for highly sensitive and selective detection of tannic acid | |
Zhang et al. | Fluorescence resonance energy transfer between NaYF4: Yb, Tm upconversion nanoparticles and gold nanorods: Near-infrared responsive biosensor for streptavidin | |
CN104694117A (zh) | 一种基于碳点的比率型荧光探针及其制备和应用 | |
Wang et al. | A convenient and universal platform for sensing environmental nitro-aromatic explosives based on amphiphilic carbon dots | |
Deng et al. | Preparation of N/S doped carbon dots and their application in nitrite detection | |
Desai et al. | Simple hydrothermal approach for synthesis of fluorescent molybdenum disulfide quantum dots: Sensing of Cr3+ ion and cellular imaging | |
Zhang et al. | Design and synthesis of nanosensor based on unsaturated double bond functional carbon dots for phenylephrine detection using bromine as a bridge | |
CN109097032A (zh) | 碳量子点荧光材料的制备方法及其在铜离子检测中的应用 | |
Tong et al. | Electronic synergy between ligands of luminol and isophthalic acid for fluorescence ratiometric detection of Hg2+ | |
Lan et al. | One-pot hydrothermal synthesis of orange fluorescent silver nanoclusters as a general probe for sulfides | |
Zhu et al. | One-pot alkali cutting-assisted synthesis of fluorescence tunable amino-functionalized graphene quantum dots as a multifunctional nanosensor for sensing of pH and tannic acid | |
CN104628939A (zh) | 一种可选择性识别汞离子的新型水溶性聚合物及其制备方法和应用 | |
Yan et al. | Polyacrylonitrile fluorescent nanofibers for selective and reversible copper detection in aqueous solutions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180928 Termination date: 20211212 |