CN114436815B - 一种可用于识别三价铁离子的稀土荧光材料的制备及应用 - Google Patents

一种可用于识别三价铁离子的稀土荧光材料的制备及应用 Download PDF

Info

Publication number
CN114436815B
CN114436815B CN202210115553.6A CN202210115553A CN114436815B CN 114436815 B CN114436815 B CN 114436815B CN 202210115553 A CN202210115553 A CN 202210115553A CN 114436815 B CN114436815 B CN 114436815B
Authority
CN
China
Prior art keywords
rare earth
fluorescent material
earth fluorescent
mofs
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210115553.6A
Other languages
English (en)
Other versions
CN114436815A (zh
Inventor
宁张磊
蒋馨
车洁
高道江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Normal University
Original Assignee
Sichuan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Normal University filed Critical Sichuan Normal University
Priority to CN202210115553.6A priority Critical patent/CN114436815B/zh
Publication of CN114436815A publication Critical patent/CN114436815A/zh
Application granted granted Critical
Publication of CN114436815B publication Critical patent/CN114436815B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • C07C51/418Preparation of metal complexes containing carboxylic acid moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/182Metal complexes of the rare earth metals, i.e. Sc, Y or lanthanide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及一种可用于识别三价铁离子的稀土荧光材料的制备及应用。S1,选取原料,硝酸镧、硝酸铽和均苯三甲酸;S2,将均苯三甲酸加入无水乙醇之后搅拌至溶解;S3,将S2中得到的溶液加入0.05M的硝酸镧和硝酸铽的水溶液,搅拌;S4,静置,离心收集白色沉淀,洗涤对其进行干燥,得到稀土荧光材料;S5,对得到的稀土荧光材料进行表征;S6,将稀土荧光材料用于检测水体中的三价铁离子。该稀土荧光材料的制备是选用稀土硝酸镧、硝酸铽与具有对称结构且含有多个配位点的均苯三甲酸为原料形成稀土荧光材料,这样使其能够在水体中更准确的检测铁离子的存在。

Description

一种可用于识别三价铁离子的稀土荧光材料的制备及应用
技术领域
本发明涉及一种可用于识别三价铁离子的稀土荧光材料的制备及应用。
背景技术
铁离子是人类或其他生物体最重要的元素之一。铁离子参与电子转移酶催化、氧转运、细胞代谢和组织呼吸等过程,以维持人体的造血功能。过量或摄入铁离子不足都会引起严重的系统紊乱,如缺铁性贫血、关节炎、肝损伤、肾衰竭、糖尿病、帕金森和阿尔茨海默病,甚至癌症。此外,铁离子也是水中常见的无机污染物,美国环境保护局规定饮用水中的铁离子含量不能超过5.357 μM。到目前为止,传统的基于元素特异性的方法,如原子吸收发射光谱法、电感耦合等离子体质谱法等具有很高的灵敏度和准确性,但他们均需要大型仪器、专业的操作人员以及复杂的样品预处理过程,这无疑限制了它们的应用,尤其是在现场实际分析中的应用。近年来,相对低成本和操作简便的各种新型传感平台越来越引起人们的重视,如电化学方法、表面等离子体共振检测、石英晶体微量天平、化学发光、荧光方法,其中荧光法由于具有灵敏度高、可靠、成本低、选择性好等优点而备受关注。因此,探索一种简便、高选择性、高灵敏度的铁离子的荧光检测方法,对环境科学和生物科学具有重要意义。本专利中我们设计了一种在室温条件下合成的稀土荧光材料,该材料对铁离子具有高的选择性和高灵敏度,有望用于水体中铁离子的检测识别。
发明内容
为了解决上述问题,本发明的目的在于提供一种可用于水体中铁离子检测的稀土荧光材料。
为实现上述目的,本发明提供如下技术方案:稀土荧光材料的制备及应用,步骤如下:
S1,选取原料,硝酸镧、硝酸铽和均苯三甲酸;
S2,将均苯三甲酸加入无水乙醇之后搅拌至溶解;
S3,将S2中得到的溶液加入0.05M的硝酸镧和硝酸铽的水溶液,搅拌;
S4,静置,离心收集白色沉淀,洗涤对其进行干燥,得到稀土荧光材料;
S5,对得到的稀土荧光材料进行表征;
S6,将稀土荧光材料用于检测水体中的三价铁离子。
优选的,所述步骤S2与步骤S3中均为室温搅拌30分钟。
优选的,所述步骤S2中溶剂为无水乙醇。
优选的,所述步骤S3中硝酸铽占稀土硝酸盐的比例为2%。
优选的,所述步骤S4中静置时间为12小时,烘干的温度为70℃,时间为12小时。
优选的,所述步骤S5中所述表征为X射线粉末衍射光谱、红外光谱、热重曲线和荧光光谱。
优选的,所述步骤S6中所述检测为对水体中三价铁离子识别的选择性、抗干扰性、灵敏度。
与现有技术相比,本发明的有益效果是:该稀土荧光材料的制备是选用稀土硝酸镧、硝酸铽与具有对称结构且含有多个配位点的均苯三甲酸为原料形成稀土荧光材料,这样使其能够在水体中更准确的检测铁离子的存在。
附图说明
图1为La(TMA)(H2O)6单晶模拟的XRD图谱、本发明合成的均苯三甲酸镧(La-MOFs)和2%Tb3+掺杂均苯三甲酸镧材料(La-MOFs:2%Tb3+)的X射线粉末衍射光谱;
图2为本发明La-MOFs:2%Tb3+和La-MOFs以及均苯三甲酸配体的红外光谱图;
图3为本发明中La-MOFs:2%Tb3+的热重分析图;
图4为本发明La-MOFs:2%Tb3+的激发光谱图(a)和发射光谱图(b);
图5为本发明中不同比例铽掺杂的La-MOFs的荧光光谱图,插图为不同比例铽掺杂的La-MOFs的荧光强度变化折线图;
图6为本发明La-MOFs:2%Tb3+在浓度为10-2 M的不同金属离子水溶液中的发射光谱图(a)和剩余荧光强度柱状图(b),插图为不同金属离子存在下的La-MOFs:2%Tb3+在254nm的紫外光照射下的照片;
图7为本发明La-MOFs:2%Tb3+在浓度为10-2 M的不同金属离子水溶液中和La-MOFs:2%Tb3+在铁离子以及其他干扰金属离子共存时的荧光强度;
图8为本发明中La-MOFs:2%Tb3+的荧光强度随铁离子浓度变化发射光谱图(a)以及I544 nm与铁离子浓度对数关系(b)。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一:
稀土荧光材料的制备及应用,步骤如下:
S1,选取原料,硝酸镧、硝酸铽和均苯三甲酸;
S2,将均苯三甲酸加入无水乙醇之后搅拌至溶解;
S3,将S2中得到的溶液加入0.05M的硝酸镧和硝酸铽的水溶液,搅拌;
S4,静置,离心收集白色沉淀,洗涤对其进行干燥,得到稀土荧光材料;
S5,对得到的稀土荧光材料进行表征;
S6,将稀土荧光材料用于检测水体中的三价铁离子。
进一步的,所述步骤S2与步骤S3中均为室温搅拌30分钟。
进一步的,所述步骤S2中溶剂为无水乙醇。
进一步的,所述步骤S3中硝酸铽占稀土硝酸盐的比例为0.5%,1%,2%,5%,10%。
进一步的,所述步骤S4中静置时间为12小时,烘干的温度为70℃,时间为12小时。
进一步的,所述步骤S5中所述表征为X射线粉末衍射光谱、红外光谱、热重曲线和荧光光谱。
进一步的,所述步骤S6中所述检测为对水体中三价铁离子识别的选择性、抗干扰性、灵敏度。
其中,制备的稀土荧光材料用于水体中不同金属离子的选择性测试。
在室温条件下,称取3 mg La-MOFs:2%Tb3+样品溶于浓度为10-2 molL-1 MClx (Mx+=Mg2+,Na+,Sr2+,Ca2+,K+,Zn2+,Ba2+,Ni2+,Mn2+,Co2+,Cu2+,Cr3+,Fe3+,Pb2+)的水溶液中。然后对混合物进行超声处理30分钟,形成均匀稳定的含金属离子的溶液,对准备的溶液进行荧光测试。
制备的稀土荧光材料(La-MOFs:2%Tb3+)用于在不同金属离子的存在下对铁离子的检测的抗干扰性测试;
在室温条件下,称取3 mg La-MOFs:2%Tb3+ 样品溶于浓度为10-2 molL-1 MClx (Mx += Mg2+,Na+,Sr2+,Ca2+,K+,Zn2+,Ba2+,Ni2+,Mn2+,Co2+,Cu2+,Cr3+,Pb2+)的水溶液中,再加入浓度为10-2 mol L-1 Fe3+的水溶液。然后对混合物进行超声处理30分钟,形成均匀稳定的含金属离子的溶液。最后对准备的溶液进行荧光测试。
制备的稀土荧光材料(La-MOFs:2%Tb3+)对铁离子检测的灵敏度测试;
通过测量不同浓度的铁离子在水溶液中的荧光强度来实现实验灵敏度的计算。将3 mg的La-MOFs:2%Tb3+样品浸泡在不同浓度的Fe3+ (0,1×10-5,5×10-5,1×10-4,5×10-4,1×10-3,5×10-3和10-2 M)水溶液中,然后对混合物进行超声处理30分钟,形成均匀稳定的含金属离子的溶液。最后对准备的溶液进行荧光测试。
对样品进行结构表征,样品为铽掺杂的稀土荧光材料。
PXRD谱图分析:
将两种样品的PXRD图谱在b/max-RB Diffractometer(Rigaku)上获得,使用镍过滤Cu Kα射线,扫描范围从5到60,扫描速度为8/min;
图1为La(TMA)(H2O)6单晶模拟的XRD图谱、合成的均苯三甲酸镧(La-MOFs)和2%Tb3 +掺杂均苯三甲酸镧材料(La-MOFs:2%Tb3+)的X射线粉末衍射光谱(XRD)。可以看出合成的La-MOFs的衍射峰与La-MOFs单晶模拟图谱的衍射峰所处的位置基本一致,表明合成的La-MOFs样品与La-MOFs单晶是同构的,均为单斜晶系,CC空间群;同时对比La-MOFs和La-MOFs:2%Tb3+材料的X射线衍射图谱也可发现两者的衍射峰基本一致,表明La-MOFs:2%Tb3+与La-MOFs是同构的,少量掺杂的Tb3+不改变La-MOFs晶体结构。此外合成的两个材料的XRD图谱衍射峰尖锐且基本无杂峰,说明制备的La-MOFs材料和La-MOFs:2%Tb3+材料为纯相并有着较高的结晶度,高结晶度则意味着更少的缺陷和更强的发光。
红外光谱分析:
红外光谱分析(FT-IR)采用傅里叶变换红外光谱仪(美国Nicolet,NEXUS670)对材料的特征官能团和结构进行分析。测试的主要参数为:波数范围4000~400 cm-1,分辨率为:4cm-1
图2为有机配体、La-MOFs和La-MOFs:2%Tb3+的红外光谱。在La-MOFs红外光谱中,有机配体的非游离羧基特征谱带位于1721 cm-1处的峰消失了,而在1612-1556、1432-1370和530 cm-1新的谱出现了新的谱带,这分别属于-COO-对称和不对称伸缩振动和La-O伸缩振动,这些结果证明La原子与羧基成功配位。在3409 cm-1处的峰归属于水的羟基的伸缩振动,这表明水分子既是反应物又是溶剂。此外,La-MOFs:2%Tb3+的FT-IR与La-MOFs的FT-IR的谱带位置基本一致,但La-MOFs:2%Tb3+在1600-1300 cm-1的谱带更为圆滑,这可能是由于Tb3+部分取代La3+,使结构对称性降低。
热重分析:
热重分析(TG)采用了TGA/SDTA 851 (Mettler)仪器对La-MOFs:2%Tb3+样品进行了与时间相关的失重过程的测试,温度区间为25-800℃,升温速率为10℃/min,测试气氛为空气气氛;
图3为La-MOFs:2%Tb3+样品的TG图,样品有两个主要的失重过程。在25-150℃范围内,第一次失重约为25.20%,可能归因于水分子的损失。在300℃以下没有观察到进一步的重量损失,表明含有很高的热稳定性。第二次失重发生在470-800 ℃之间,失重为31.16%,可归因于有机配体的分解[La0.8Tb0.2(TMA)→La2O3+Tb2O3+CO2+H2O],在800℃时仍未完全失重,说明材料具有优异的热稳定定性。
进一步的,本发明稀土荧光材料(La-MOFs:2%Tb3+)的性能表征。
La-MOFs:2%Tb3+激发光谱和发射光谱:
如图4a所示为La-MOFs:2%Tb3+的荧光激发光谱。用Tb3+的特征发射波长544 nm作为监测波长记录了La-MOFs:2%Tb3+的激发光谱,在紫外区呈现一个宽的激发峰,覆盖范围200-350 nm,最大激发峰位于260 nm处,该吸收峰归因于有机配体的π-π*跃迁和Tb3+的基态(S0)到激发态(S1)的电子跃迁过程。宽激发光谱将有利于配体向Tb3+的能量转移,增强Tb3+的特征荧光发射。相应地,如图4b所示为La-MOFs:2%Tb3+的荧光发射光谱,在490,544,584和620 nm处出现了一系列尖锐的Tb3+发射特征峰,对应于Tb3+5D47FJ(J=6-3)跃迁,最强的发射峰位于544 nm处,具有明亮的绿色发射,这源于Tb3+5D47F5超灵敏跃迁。更值得注意的是,在发射光谱中并没有出现明显的配体的发射峰,表明存在一个有效的配体到Tb3+的能量转移过程。
图5为不同Tb3+掺杂量(0.5%,1%,2%,5%,10%)的稀土荧光材料的荧光发射光谱。随着Tb3+的掺杂量增加,544 nm处的发光强度逐渐增强,当掺杂量为2%时荧光强度最强,随后掺杂量增加荧光强度逐渐下降,因此选取Tb3+掺杂量为2%的La-MOFs材料来进行后续实验。
实施例二
本发明稀土荧光材料作为荧光探针检测水体中的三价铁离子。
选择性:
图6为La-MOFs:2%Tb3+在十四种不同金属离子水溶液中的荧光发射光谱图以及剩余荧光强度柱状图。剩余荧光程度强度可以用表达式I/I0×100%来计算,其中I0和I分别是在没有金属离子和存在金属离子时的最大发光强度。在La-MOFs:2%Tb3+中引入Ni2+,Ca2+,Co2+,材料的荧光强度几乎不变。而引入Na+,Mn2+,K+、Ba2+,Cu2+,Cr3+,Zn2+, Sr2+,Pb2+,Mg2+使La-MOFs:2%Tb3+的荧光均有一定程度的减弱,但减弱不显著。而La-MOFs:2%Tb3+与铁离子相互作用后,La-MOFs:2%Tb3+的剩余荧光强度仅为3.5%,荧光减弱效果明显高于其他金属离子。从插图254 nm紫外灯的照射下加入不同金属离子的La-MOFs:2%Tb3+的荧光变化的图片中,也可以明显的看到铁离子使样品的绿色荧光被猝灭。以上结果表明La-MOFs:2%Tb3+材料对铁离子的荧光响应具有高选择性。
抗干扰性:
图7为La-MOFs:2%Tb3+在其他干扰金属离子存在下对铁离子检测的荧光响应柱状图。当其他金属离子(Ni2+、Ca2+、Co2+、Na+、Mn2+、K+、Ba2+、Cu2+、Cr3+、Zn2+、Sr2+、Pd2+、Mg2+)与Fe3+共存时,La-MOFs:2%Tb3+的荧光强度与只有Fe3+存在时的荧光强度几乎一致。这表明其他常见的金属离子对于La-MOFs:2%Tb3+对铁离子的识别作用的影响非常有限,表明La-MOFs:2%Tb3+对检测铁离子具有很强的抗干扰能力。
灵敏度:
不同浓度铁离子溶液对La-MOFs:2%Tb3+的荧光响应的发射图谱,如图8a所示。La-MOFs:2%Tb3+的发射光谱随铁离子浓度对数值的增加而明显变化,Tb3+的强度(I544 nm)随着铁离子浓度的增加而减小。此外,在不同的铁离子浓度时,材料的荧光强度与铁离子浓度的对数呈良好的线性关系,如图8b所示。线性关系可以拟合为如下函数:I=-3089.12lg[c]-5557.5,相关系数(R2)为0.9923,表明La-MOFs:2%Tb3+可以作为定量检测铁离子的荧光探针。
为确定La-MOFs:2%Tb3+材料对识别铁离子的具有实际应用价值,采用如下公式计算检测限:
(1)
(2)
其中N为所做实验组数量值为21,C 0 为空白样品的荧光强度I带入拟合方程求得对应浓度,C 1 为21组空白样求得浓度的平均值。S为21次浓度的标准偏差。式中t (N-1,0.99)为自由度为N-1,置信度为99%时的t分布,在N=21时,t取2.528。经过计算,得其检出限(MDL)为1.52×10-6 M,通过查询生活饮用水卫生标准(GB 5749-2006)可知铁的限值为5.3×10-6 M,计算出铁的检出限小于饮用水的卫生标准,说明合成的La-MOFs:2%Tb3+材料有望用于实际生活中检测水中的铁离子。
尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种检测水体中三价铁离子的方法,其特征在于操作步骤如下:
S1,选取原料,硝酸镧、硝酸铽和均苯三甲酸;
S2,将均苯三甲酸加入无水乙醇之后搅拌至溶解;
S3,将S2中得到的溶液加入0.05M的硝酸镧和硝酸铽的水溶液,搅拌;
S4,静置,离心收集白色沉淀,洗涤对其进行干燥,得到稀土荧光材料;
S5,对得到的稀土荧光材料进行表征;
S6,使用所述稀土荧光材料检测水体中三价铁离子,所述步骤S3中硝酸铽占稀土硝酸盐的比例为2%。
2.根据权利要求1所述的检测水体中三价铁离子的方法,其特征在于:所述步骤S2与步骤S3中均为室温搅拌30分钟。
3.根据权利要求1所述的检测水体中三价铁离子的方法,其特征在于:所述步骤S4中静置时间为12小时,干燥的温度为70℃,时间为12小时。
4.根据权利要求1所述的检测水体中三价铁离子的方法,其特征在于:所述步骤S5中所述表征为X射线粉末衍射光谱、红外光谱、热重曲线和荧光光谱。
CN202210115553.6A 2022-02-07 2022-02-07 一种可用于识别三价铁离子的稀土荧光材料的制备及应用 Active CN114436815B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210115553.6A CN114436815B (zh) 2022-02-07 2022-02-07 一种可用于识别三价铁离子的稀土荧光材料的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210115553.6A CN114436815B (zh) 2022-02-07 2022-02-07 一种可用于识别三价铁离子的稀土荧光材料的制备及应用

Publications (2)

Publication Number Publication Date
CN114436815A CN114436815A (zh) 2022-05-06
CN114436815B true CN114436815B (zh) 2024-03-15

Family

ID=81371481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210115553.6A Active CN114436815B (zh) 2022-02-07 2022-02-07 一种可用于识别三价铁离子的稀土荧光材料的制备及应用

Country Status (1)

Country Link
CN (1) CN114436815B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107163069A (zh) * 2017-05-10 2017-09-15 浙江大学 镧系金属有机框架材料的制备及其可视化检测手性对映体的方法
CN112266485A (zh) * 2020-09-23 2021-01-26 东北大学 一种普适性的二维稀土MOFs材料及其无溶剂化学剥离方法和应用
CN113087921A (zh) * 2021-03-31 2021-07-09 广东工业大学 一种荧光金属有机框架超结构化合物及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107163069A (zh) * 2017-05-10 2017-09-15 浙江大学 镧系金属有机框架材料的制备及其可视化检测手性对映体的方法
CN112266485A (zh) * 2020-09-23 2021-01-26 东北大学 一种普适性的二维稀土MOFs材料及其无溶剂化学剥离方法和应用
CN113087921A (zh) * 2021-03-31 2021-07-09 广东工业大学 一种荧光金属有机框架超结构化合物及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Room-Temperature Synthesis of Multi-Morphological Coordination Polymer and Tunable White-Light Emission;Kai Liu等;《Crystal Growth & Design》;第10卷(第1期);16-19 *
均苯三甲酸镧铽发光配合物的合成与表征;王继业等;《河北师范大学学报(自然科学版)》;第30卷(第5期);第559-562页 *

Also Published As

Publication number Publication date
CN114436815A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
Zhu et al. A novel covalent post-synthetically modified MOF hybrid as a sensitive and selective fluorescent probe for Al 3+ detection in aqueous media
Zhou et al. Europium-decorated ZnO quantum dots as a fluorescent sensor for the detection of an anthrax biomarker
Gu et al. Water-stable lanthanide-based metal–organic gel for the detection of organic amines and white-light emission
CN113340860B (zh) 用于检测Fe3+的锰掺杂碳点、Mn-CDs溶液、试纸及其制备方法、检测方法
Sun et al. A reliable amplified fluorescence-enhanced chemosensor (Eu-MIL-61) for the directional detection of Ag+ in an aqueous solution
CN109307665B (zh) 一种利用荧光碳量子点检测Fe3+的方法
CN110954519B (zh) 一种Ag/Cu合金纳米簇的制备方法及其在Ag+检测中的应用
Wu et al. Visual determination of ferric ions in aqueous solution based on a high selectivity and sensitivity ratiometric fluorescent nanosensor
CN108088828B (zh) 一种双柱芳烃汞离子荧光传感器及其制备和应用
CN107643271B (zh) 一种水杨酸-Mn掺杂ZnS量子点复合纳米粒子比率型荧光探针及其制备方法和应用
CN109097026B (zh) 一种纳米花状Al-MOF荧光探针材料及其制备方法与应用
CN114369255B (zh) 一种可用于水体中Fe3+检测的稀土金属有机框架材料
CN114436815B (zh) 一种可用于识别三价铁离子的稀土荧光材料的制备及应用
CN108641714B (zh) 基于罗丹明衍生物的Hg2+荧光探针及其制备方法和应用
CN113340862B (zh) 荧光分子传感器及制法、水中痕量铀酰离子的检测方法
CN114235771B (zh) 一种重金属汞离子检测的传感检测方法
CN112724137B (zh) 一种苝酰亚胺衍生物及其制备方法和应用
Sun et al. Inner filter effect-based upconversion fluorescence sensing of sulfide ions
CN111560083B (zh) 壳聚糖萘基硫脲荧光探针、制备方法及其在检测铁离子中的应用
CN114369455B (zh) 一种可用于水体中铜离子识别的染料复合的稀土金属有机框架
CN109232526B (zh) 一种基于发光增强的铁离子检测探针及其制备方法和应用
CN116376545B (zh) 一种n,s共掺杂红光碳点材料的制备及其在重金属离子可视化检测中的应用
CN112759532B (zh) 一种可视化快速、灵敏检测炭疽杆菌的试剂及其检测方法
CN116656351B (zh) 一种用于检测有机相中铁离子的醇溶性荧光碳点的制备方法及应用
CN115960607B (zh) 四环素检测材料及其制备方法以及四环素的检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant