CN117065730A - 一种用于去除或检测液体中四环素的新材料及其检测系统 - Google Patents

一种用于去除或检测液体中四环素的新材料及其检测系统 Download PDF

Info

Publication number
CN117065730A
CN117065730A CN202310973240.9A CN202310973240A CN117065730A CN 117065730 A CN117065730 A CN 117065730A CN 202310973240 A CN202310973240 A CN 202310973240A CN 117065730 A CN117065730 A CN 117065730A
Authority
CN
China
Prior art keywords
pda
mof
novel material
tetracycline
novel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310973240.9A
Other languages
English (en)
Inventor
柯胜金
张喜
王松
蒋旭辉
王瑞琼
邹鹏
周梦雪
何家骏
朱元浩
黄昱
李勇志
谢开骥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Institute of Green and Intelligent Technology of CAS
PowerChina Chongqing Engineering Corp Ltd
Original Assignee
Chongqing Institute of Green and Intelligent Technology of CAS
PowerChina Chongqing Engineering Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Institute of Green and Intelligent Technology of CAS, PowerChina Chongqing Engineering Corp Ltd filed Critical Chongqing Institute of Green and Intelligent Technology of CAS
Priority to CN202310973240.9A priority Critical patent/CN117065730A/zh
Publication of CN117065730A publication Critical patent/CN117065730A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0207Compounds of Sc, Y or Lanthanides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/405Concentrating samples by adsorption or absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明属于环保技术领域,公开了一种用于去除或检测液体中四环素的新型材料及其检测系统,该新型材料包含以表面修饰有聚多巴胺(PDA)层的Fe3O4为内核,在所述内核表面依次自行组装、生长Eu3+和MOF,形成Fe3O4@PDA@Eu3+‑MOF新型纳米材料。该新型材料不但可以去除水中四环素,而且还可以检测TC,并通过外部磁场高效、非常容易从水中或水溶液中分离回收。

Description

一种用于去除或检测液体中四环素的新材料及其检测系统
技术领域
本发明属于环保技术领域,具体涉及一种用于去除或检测液体中四环素的新材料及其检测系统。
背景技术
四环素(TC)作为一种广谱抗生素,可以有效抑制部分细菌的生长,如立克次体、螺旋体、革兰氏阳性细菌和革兰氏阴性细菌,因其良好的口服吸收、低成本和出色的抗菌能力而广泛应用于水产养殖、医药和畜牧业。然而,TC的滥用在动物产品和水中释放出越来越多的残留物,因为TC很难在身体中完全代谢,这对人类健康和生态系统功能具有巨大威胁,如过敏反应、抗生素耐药性、牙齿染色、胃肠道紊乱和肝毒性,因此,监控TC非常重要。到目前为止,已有许多定量测定TC的传统分析方法,比如高性能液相色谱(HPLC)、毛细管电泳(CE)、液相色谱-质谱(LC-MS)、比色谱、荧光等。其中,荧光传感器被认为是一种有前途的抗生素检测方法,具有高灵敏度、高选择性、操作简单和快速响应时间的优点。此外,对于去除水中残留TC的技术,包括膜过滤、光催化降解、吸附和离子交换等。其中,吸附技术被用作一种高效、环保的去除TC的方法。然而,将TC的检测和去除集成到材料中仍然是一个持续的挑战。因此,开发一种具有高灵敏度和高去除率优势的检测和去除TC的新方法至关重要。
金属有机框架(MOF)是一类有趣的由金属节点和有机配体自组装而成的多孔混合晶体材料。由于其大的比表面积、合成后修饰、结构多样和可调节的孔径,MOF最近引起了越来越多的关注。迄今为止,MOF已广泛应用于许多领域,如检测,吸附,催化和光催化等。有趣的是,TC可以作为双丁配体,与Eu3+强烈协调,并具有合适的能级敏化Eu3+,通过“天线效应”(AE)发出强红光,这确保了Eu-MOF对TC检测的选择性和准确性。与此同时,与铕离子(Eu3+)协调的水分子可以被Eu-MOF中的配体取代,从而减少高频O-H振荡器的非辐射淬火。因此,Eu-MOF具有作为TC敏感检测的荧光传感器的巨大潜力。
然而,在去除水中的TC时,基于传统MOF的吸附剂很难与水溶液分离。虽然高速离心或过滤操作可以有效地分离吸附器,但它可能会造成许多问题,如复杂操作、耗时、二次污染和样品丢失。开发一种既能很好吸附水中TC,实现检测和去除TC的双重功能,又能快速回收吸附材料的新型材料及其系统具有重要意义。
发明内容
为解决现有技术存在的技术问题,本发明提供了一种去除或检测液体中四环素的新型材料及其检测系统。
为解决现有技术存在技术问题,提供了如下技术方案。
在一实施方案中,本发明的一种用于去除或检测液体中四环素的新型材料,所述材料包含:以表面修饰有聚多巴胺(PDA)层的Fe3O4为内核,以及在所述内核表面依次自行组装、生长Eu3+和MOF,形成Fe3O4@PDA@Eu3+-MOF材料。
优选的,上述本发明的新型材料,所述MOF为均苯三甲酸(H3BTC)。
在一具体实施方案中,本发明的一种用于去除或检测液体中四环素的新型材料,主要由以下方法制得,具体包括以下步骤:
1)Fe3O4@PDA的准备
将Fe3O4颗粒溶解在Tris-HCl缓冲液中,搅拌,加入多巴胺盐酸盐(PDA),反应完成后,分离收集固体,用去离子水和乙醇清洗3-4次,干燥,即得Fe3O4@PDA;
2)Fe3O4@PDA@Eu-MOF的制备
将Fe3O4@PDA加入到N,N-二甲基甲酰胺(DMF)中,加入Eu(NO3)3·6H2O的DMF溶液,搅拌0.5-1小时,再缓慢加入H3BTC的DMF溶液,在140℃下反应,反应结束后,分离出固体,采用DMF和乙醇冲洗3-4次,真空干燥,得到Fe3O4@PDA@Eu-MOF。
在上述具体实施方案中,优选的,本发明的新型材料,步骤1)中所述的Fe3O4颗粒由以下方法制得:将FeCl3、乙酸钠和柠檬酸三钠(C6H5Na3O7)加入到乙二醇中,搅拌溶解,在200℃下反应,分离出Fe3O4颗粒,用乙醇和去离子水冲洗3-4次,干燥即得,其中,所述FeCl3为FeCl3六水合物,其与乙酸钠和柠檬酸三钠的质量比为6.75:18:0.1;所述反应,反应时间为约16小时。
在上述具体实施方案中,优选的,本发明的新型材料,步骤1)中,所述Fe3O4颗粒与多巴胺盐酸盐的质量比为1:(1-1.2),优选1:1.15,为所述Tris-HCl缓冲液的pH为8.0-9.0,优选pH为8.5。
在上述具体实施方案中,优选的,本发明的新型材料,步骤2)中,Eu(NO3)3与H3BTC的摩尔比为1:1,Fe3O4@PDA与H3BTC的质量比为1:(0.09-0.36),优选为1:0.34。
上述本发明的新型材料,所述方法中,步骤1)和步骤2)中所述干燥,干燥温度为60℃。
本发明所述液体包括牛奶、羊奶、水溶液或水,优选的是水,尤其是水塘、水库、江、湖等中的水。也就是说本发明的新型材料尤其适合较大水面中的四环素的检测。
本发明还提供了一种用于液体中四环素的去除和/检测系统(也可称为装置),含有上述本发明的新型材料。
术语说明:Fe3O4@PDA@Eu-MOF中的@表示,@右边的物质修饰在其左边的物质表面,Eu-MOF代表铕金属有机框架结构。
本发明结合Eu-MOF检测TC的出色性能和Fe3O4超顺磁性的优势,通过逐层自组装设计了一个核心外壳结构磁性金属有机框架(Fe3O4@PDA@Eu-MOF)。首先,表面修饰有聚多巴胺(PDA)涂层赋予磁微球(Fe3O4@PDA)丰富的胺和酚羟基,这些基团可以很好地用于金属离子螯合。然后,Eu-MOF通过使用苯三甲酸和硝酸铕的逐层自组装,在Fe3O4@PDA表面轻松生长。吸收TC后,Fe3O4@PDA@Eu-MOF的红色荧光在622纳米被TC激发,因为TC可以通过天线效应使Eu3+敏感化。因此,Fe3O4@PDA@Eu-MOF作为开启的荧光传感器可以敏感地检测TC。此外,Fe3O4@PDA@Eu-MOF还可以通过Eu3+和TC之间的协调、静电吸引和π-π相互作用来实现TC的选择性吸附。与此同时,Fe3O4@PDA@Eu-MOFs具有超顺磁性的优点,可以迅速有效地从水溶液中分离出来,减少材料、成本和环境污染的损失。因此,Fe3O4@PDA@Eu-MOF在TC分析中具有巨大的实际应用潜力,这使得能够检测和去除水溶液中的TC。
本发明开发的新型的纳米材料Fe3O4@PDA@Eu-MOF,可以利用其与TC相互作用产生的荧光信号变化检测TC。检测范围达到0.01–25mg/L,检测限达到2μg/L。操作简便的荧光传感器可在水面光伏电站上使用,将为日益受到关注的饮用水野外监测开辟一条新途径。
技术效果:该新型材料带有MOF的磁性功能化吸附剂并集成Fe3O4,可以去除目标物质TC,并通过外部磁场高效、非常容易地从水中或水溶液中分离出来。同时,该新型材料具有高饱和磁化、低成本和无毒性的优势,可以开发成一种体积小巧,能耗少的TC荧光检测装置。TC检测范围达到0.01–25mg/L,检测限可达到2μg/L。该装置可以利用水面光伏电站既有的水面平台作为承载仪器的装置,同时利用水上发电设备为其提供电力保障。在保障电力供应的同时,实现对饮用水水源的安全监测。
附图说明
图1为本发明的新型纳米材料Fe3O4@PDA@Eu-MOF的结构、合成和检测TC示意图;
图2为本发明的新型纳米材料Fe3O4@PDA@Eu-MOF的扫描电子显微镜(SEM)和透射电子显微镜(TEM)图;
图3为本发明的新型纳米材料Fe3O4@PDA@Eu-MOF的红外光谱图、PXRD图谱、N2吸附-脱附等温曲线图和磁滞后曲线图;
图3-1为Fe3O4@PDA@Eu-MOF-x(x=1,2,3,4)不同浓度的对比曲线图,其中,(A)为傅里叶红外光谱,(B)为XRD图,(C)为加入25mg/L四环素后的荧光光谱,(D)为加入50mg/L四环素的吸附能力对比;
图4为本发明的新型纳米材料Fe3O4@PDA@Eu-MOF添加TC的荧光、紫外测定图谱;
图5为本发明的新型纳米材料Fe3O4@PDA@Eu-MOF添加TC前后的Zeta电位图;
图6为本发明的新型纳米材料Fe3O4@PDA@Eu-MOF与TC反应荧光强度与pH和时间响应关系曲线图;
图7为本发明的新型纳米材料Fe3O4@PDA@Eu-MOF的荧光强度与TC浓度的关系曲线图。
具体实施方式
以下通过实施例进一步说明和理解本发明的实质,但实施例仅是代表性,因此,不以任何形式限制本发明的范围。
实施例1新型纳米材料Fe3O4@PDA@Eu-MOF的制备
1.1Fe3O4的制备
Fe3O4颗粒是通过简单的溶热方式合成的。0.675克FeCl3-6H2O、1.8克NaAc和0.01克均苯三甲酸钠(C6H5Na3O7)溶解在75毫升乙二醇中,然后在室温下搅拌0.5小时。混合物被密封在特氟龙内衬钢高压灭菌器中,并在200℃下保存16小时。Fe3O4颗粒通过磁铁分离收集,并用乙醇和去离子水冲洗四次。该产品在60℃的真空中干燥过夜。
1.2Fe3O4@PDA的准备
用超声波将0.35克Fe3O4溶解在300毫升的Tris-HCl缓冲液(10nM,pH值8.5)中,在机械搅拌下,加入0.4克多巴胺盐酸盐(PDA),混合反应12小时。反应完成后,通过磁铁分离收集Fe3O4@PDA,再用去离子水和乙醇清洗四次,最后在60℃下干燥过氧化真空。
1.3Fe3O4@PDA@Eu-MOF的制备
0.05克的Fe3O4@PDA被添加到10毫升N,N-二甲基甲酰胺(DMF)中形成混合液,然后,将含有不同浓度(1、2、3、4毫摩尔/升)的Eu(NO3)3-6H2O的20毫升DMF加入到上述混合液中并搅拌0.5小时。将制备含有H3BTC的DMF溶液20毫升(和Eu(NO3)3-6H2O相同浓度),并缓慢添加到上述混合液中,在140℃下反应12小时。反应结束后,用磁铁收集Fe3O4@PDA@Eu-MOF,用DMF和乙醇冲洗四次后,在60℃的真空下干燥过夜即得Fe3O4@PDA@Eu-MOF。将具有不同浓度的Eu-MOF涂层的Fe3O4@PDA@Eu-MOF样品命名为Fe3O4@PDA@Eu-MOF-x(x=1、2、3、4)。
实施例2Fe3O4@PDA@Eu-MOF的结构表征和特征
2.1结构及外观
Fe3O4@PDA@Eu-MOF纳米材料的结构及合成线路示意图见图1,其中,(A)代表Fe3O4@PDA@Eu-MOF的制备过程示意图,(B)和(C)分别代表使用Fe3O4@PDA@Eu-MOF检测和分离TC的示意图。
Fe3O4@PDA@Eu-MOF是通过逐层自组装方法成功制备的,它可以作为吸收和检测TC的高效吸收和荧光探头。为了验证Fe3O4@PDA@Eu-MOF的构建成功,研究了一系列表征。如图2所示,通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)对制备样品的形态和显微结构进行了表征。Fe3O4的图像呈现出规则的球体形状,表面粗糙(图2A)。相比之下,在用PDA涂层修改后,Fe3O4的表面变得光滑(图2B)。当Eu-MOF在Fe3O4@PDA表面生长时,Fe3O4@PDA的原始光滑球体形状被转化为粗糙的球形(图2C)。如图2D和2E,Fe3O4@PDA表现出核心外壳结构,PDA外壳厚度约为28.7纳米。在与Eu-MOF封装后,Fe3O4@PDAQEu-MOF显示尺寸明显增加,核心壳结构相似,Eu-MOF层厚度约为11.6nm(图2F所示)。值得注意的是,由于Eu-MOF的晶体结构,Fe3O4@PDA@Eu-MOF的表面很粗糙,不够均匀。图2中,(A、D)、(B、E)和(C、F)分别为Fe3O4、Fe3O4@PDA和Fe3O4@PDA@Eu-MOF的SEM和TEM图像。
2.2结构确证
红外图谱检测:
采用傅里叶变换红外光谱(FT-IR)检测Fe3O4、Fe3O4@PDA和Fe3O4@PDA@Eu-MOF,结果如图3A所示,580cm-1的吸收带归因于Fe-O的振动。1285cm-1和1508cm-1的峰值分别与PDA中的C-N和C=C的振动有关。由于对Eu-MOF的修改,一个新的峰值出现在1660nm-1,这可以分配给三甲酸的C=O振动,这表明在Fe3O4@PDA表面成功涂层了Eu-MOF。
晶型结构检测:
为了进一步证明Fe3O4@PDA@Eu-MOF的成功构建,采用粉末X射线衍射模式(PXRD)检测Fe3O4@PDA@Eu-MOF。结果如图3B所示,Fe3O4的特征峰值与之前的报告基本一致。Fe3O4@PDA的衍射模式与Fe3O4相似,表明PDA涂层对Fe3O4的结晶度没有影响。Eu-MOFs在Fe3O4@PDA上生长后,与(010)、(011)、(110)、(111)、(112)、(021)和(210)平面相对应的8.5°、10.9°、13.5°、17.3°、18.2°和20.1°的新特征峰值与Eu-MOF相对应。这些结果表明,Eu-MOF外壳是通过逐层自组装方法在Fe3O4@PDA表面成功形成的。Fe3O4@PDA表面的Eu-MOF涂层厚度通过XRD、FT-IR、荧光强度和TC的Fe3O4@PDA@Eu-MOF-x的吸附能力进行了优化。
通过对实施例1获得的不同Eu-MOF的Fe3O4@PDA@Eu-MOF-x进行XRD,荧光强度以及对Fe3O4@PDA@Eu-MOF-x(X=1、2、3、4)吸附能力测试,对比它们的特性,结果如图3-1所示。图A中,与Eu-MOF相比,Fe3O4@PDA@Eu-MOF-x得荧光光谱具有很多相似性,说明Eu-MOF成功合成到了Fe3O4@PDA表面。B为XRD图谱,在XRD图中,Eu-MOF在Fe3O4@PDA@Eu-MOF-x上的特征峰随着其厚度增加而增强。图C和D为TC吸附能力对比,结果显示,Fe3O4@PDA@Eu-MOF-4(X=4)在加入了四环素后表现出了最强的荧光信号以及对四环素最高的吸附能力。因此,结果表明Fe3O4@PDA@Eu-MOF-4具有突出性能,选择其用于后续实验。
N2吸附-解吸特性:
通过N2吸附-解吸等温器研究了Fe3O4@PDA和Fe3O4@PDA@Eu-MOF的比表面积和孔隙率特性(图3C)。在Fe3O4@PDA上涂上Eu-MOF后,Fe3O4@PDA的比表面积从20.56增加到102.74m2/g。孔隙大小分布Fe3O4@PDA@Eu-MOF主要为2.3和3.9纳米(图3C)。
磁化饱和度:
Fe3O4@PDA@Eu-MOF独特的比表面积和孔隙特性有利于TC吸附。确定了准备样品的磁滞曲线。Fe3O4、Fe3O4@PDA和Fe3O4@PDA@Eu-MOF的磁化饱和度(Ms)值分别为67.7、41.2和21.6emu/g(图3D)。虽然随着PDA和PDA@Eu-MOF外壳的修改,饱和磁化逐渐减少,但Fe3O4@PDA@Eu-MOF的磁响应仍然足以进行磁分离(图3D)。因此,在磁铁的帮助下,Fe3O4@PDA@Eu-MOF可以在不到2分钟内从水溶液中快速分离出来。
图3中,(A)为Fe3O4、Fe3O4@PDA和Fe3O4@PDA@Eu-MOF的FT-IR光谱。(B)为Fe3O4、Fe3O4@PDA和Fe3O4@PDA@Eu-MOFF的PXRD模式.(C)为Fe3O4、Fe3O4@PDA和Fe3O4@PDA@Eu-MOF在77K下的N2吸附-脱附等温曲线.(D)为Fe3O4、Fe3O4@PDA和Fe3O4@PDA@Eu-MOF的磁滞后曲线。
2.3TC的荧光、紫外测定
对Fe3O4@PDA@Eu-MOF在带有TC和不带有TC的情况下测定荧光强度,结果见图4(A)。在390纳米的激发波长下,Eu3+-TC在622纳米处表现出微弱的荧光强度(图4A)。令人惊讶的是,在TC面前,Fe3O4@PDA@Eu-MOF在622纳米(归因于Eu3+特征从5D07F2的过渡)下表现出强烈的荧光强度,因为配水分子可以被配体取代,从而减少了高频O-H振荡器的非辐射淬火。
不同传感系统的紫外光谱,以调查Fe3O4@PDA@EU-MOF的检测机制用于TC的传感器。如图4B所示,当Eu3+和TC在系统中共存时,TC的强吸收峰值从360纳米转移到372纳米,这归因于Eu3+和TC之间的协调。当TC被添加到Fe3O4@PDA@Eu-MOF时,Fe3O4@PDA@Eu-MOF-TC的吸收峰值也出现了明显的红移。
同时,这个能量传递过程如图4C所示。首先,在紫外光照射下,四环素中吸收了能量的电子被激发,从基态跃迁至S1单激发态。其次,根据Reinhoudt的经验法则,在系统内受激发的电子要从单激发态S1迁入三激发态T1需要满足的条件是T1和S1之间的能隙需大于5000cm-1.现在,S1和T1之间的能隙是17040cm-1,恰好满足跃迁条件。最后,因为四环素T1的能级(19160cm-1)要高于Eu3+5D0的能级(17500cm-1),四环素中被激发的电子可以跃迁至Eu3+5D0能级,并返回基态。四环素可以与Eu3+协同,在紫外光照射下,由于β-二酮结构和匹配的能级,实现能量从四环素转移到Eu3+。借助这一天线效应,从而实现Fe3O4@PDA@EU-MOF对四环素的检测。图4中(A)Eu3+和Fe3O4@PDA@Eu-MOF带和不带TC的荧光光谱,(B)不同传感系统的紫外光谱,(C)带有TC的Fe3O4@PDA@Eu-MOF能量传递机制示意图。
此外,还研究了Zeta电位,以进一步调查TC和Fe3O4@PDA@Eu-MOF之间的相互作用。如图5所示,Fe3O4@PDA@Eu-MOF的电位在添加TC后从=-19.3mV增加到-17.9mV,因为Fe3O4@PDA@Eu-MOF上的负电荷被TC上的羟基中和。上述结果表明,TC在Fe3O4@PDA@Eu-MOF上与Eu3+的不饱和配位点成功契合。
2.4pH值对TC检测的影响
检测TC的pH值和反应时间。结果如图6A所示,Fe3O4@PDA@Eu-MOF在622纳米的荧光强度随着pH值从3增加到8。当检测系统的pH为8时,622纳米的荧光发射峰值达到最大值,因为Eu3+和TC在强酸性或碱性条件下不稳定。因此,在以下实验中,pH 8用于测定TC。随后,优化了用于TC的Fe3O4@PDA@Eu-MOF荧光传感器的响应时间(图6B)。荧光强度在10分钟后保持稳定,即说明这是最佳检测条件。
2.5TC浓度与荧光强度关系
检测Fe3O4@PDA@Eu-MOF在Tri-HCl缓冲液(pH=8)中不同TC浓度下的荧光强度,评估用于TC的Fe3O4@PDA@Eu-MOF荧光传感器的检测特性。结果如图7所示。结果表明,Fe3O4@PDA@Eu-MOF在622纳米时的荧光强度随着TC浓度的增加而逐渐增加(0-25毫克/升)(见图7A)。在622纳米的荧光强度与0.01至0.5毫克/(y=13.051x+23.510,R2=0.9985)和0.5至25毫克/升(y=41.274x+8.511,R2=0.9914)的TC浓度表现出极好的线性关系(如图7B)。
上述检测结果表明:Fe3O4@PDA@Eu-MOF的检测极限(LOD)计算为2微克/升。证明Fe3O4@PDA@Eu-MOF在0.001-25毫克/升范围内可对TC进行敏感和定量检测。
为了验证Fe3O4@PDA@Eu-MOF在实际检测中的可行性,研究了用于TC检测的Fe3O4@PDA@Eu-MOF荧光传感器的选择性和抗干扰性能。在这个实验中选择了几种潜在的干扰物质,如氨基酸(Try、His、Lys、Leu、Glu、Cys)、金属离子(Na+、Zn2+、AI3+、K+、Ca2+、Mg2+、Fe3+),其他抗生素(CAP,ERY,AMP,STR,NEO,Kana),GSH和AA。如图7C和7D,在TC存在下添加干扰物质后,Fe3O4@PDA@Eu-MOF的荧光强度没有显著变化,表明Fe3O4@PDA@Eu-MOF在复杂系统中具有出色的TC检测选择性。
图7中,(A)Fe3O4@PDA@Eu-MOF与溶解在Tri-HCl缓冲液(pH=8)不同浓度的TC(0-25mg/L)时产生的荧光光谱。(B)622纳米荧光强度与TC浓度的线性关系。(C)和(D)分别是Fe3O4@PDA@Eu-MO在有TC和没有TC存在时,不同干扰物引起的荧光强度。
实施例3真实样本检测
采用本发明的Fe3O4@PDA@Eu-MOF对真实TC样本检测
为了评估Fe3O4@PDA@Eu-MOF作为荧光传感器的可靠性,选择牛奶和蜂蜜(比水溶液样本更复杂)作为实际样品,通过标准添加法检测TC。如表1所示,还原率从92.9到105.68%,RSD低于4.90%,这表明Fe3O4@PDA@Eu-MOF可以作为检测真实样本中检测TC的传感器。
表1检测牛奶和蜂蜜中的TC。
由于检测牛奶和蜂蜜比水复杂,基于检测结果,证明本发明的Fe3O4@PDA@Eu-MOF更适合作为检测水中TC的传感器和制作成TC检测装置。
以上实施例只是代表性的,任何在本发明的精神实质下进行的变通和简单修饰都属于本发明的范围。

Claims (10)

1.一种用于去除或检测液体中四环素的新型材料,所述材料包含:以表面修饰有聚多巴胺(PDA)层的Fe3O4为内核,以及在所述内核表面依次自行组装Eu3+和MOF,形成Fe3O4@PDA@Eu3+-MOF纳米材料。
2.如权利要求1所述的新型材料,所述MOF为均苯三甲酸。
3.如权利要求1或2所述的新型材料,主要由以下方法制得,该方法包括以下步骤:
1)Fe3O4@PDA的准备
将Fe3O4颗粒溶解在Tris-HCl缓冲液中,搅拌,加入多巴胺盐酸盐(PDA),反应完成后,分离收集固体,用去离子水和乙醇清洗3-4次,干燥,即得Fe3O4@PDA;
2)Fe3O4@PDA@Eu-MOF的制备
将Fe3O4@PDA加入到N,N-二甲基甲酰胺(DMF)中,加入Eu(NO3)3·6H2O的DMF溶液,搅拌0.5-1小时,再缓慢加入H3BTC的DMF溶液,在140℃下反应,反应结束后,分离出固体,用DMF和乙醇冲洗3-4次,真空干燥,得到Fe3O4@PDA@Eu-MOF。
4.如权利要求3所述的新型材料,步骤1)中所述的Fe3O4颗粒由以下方法制得:将FeCl3、乙酸钠和柠檬酸三钠(C6H5Na3O7)加入到乙二醇中,搅拌溶解,在190-200℃下反应,分离出Fe3O4颗粒,用乙醇和去离子水冲洗3-4次,干燥即得。
5.如权利要求4所述的新型材料,所述方法中,所述FeCl3为FeCl3六水合物,其与乙酸钠和柠檬酸三钠的质量比为6.75:18:0.1。
6.如权利要求4所述的新型材料,所述方法中,所述反应,反应时间为16小时。
7.如权利要求3所述的新型材料,步骤1)中,所述Fe3O4颗粒与多巴胺盐酸盐的质量比为1:(1-1.2),优选1:1.15,为所述Tris-HCl缓冲液的pH为8.0-9.0,优选pH为8.5。
8.如权利要求3所述的新型材料,步骤2)中,Eu(NO3)3与H3BTC的摩尔比为1:1,Fe3O4@PDA与H3BTC的质量比为1:(0.09-0.36),优选为1:0.34。
9.如权利要求3所述的新型材料,步骤1)和步骤2)所述干燥,其温度为60℃。
10.一种用于液体中四环素的去除和/检测系统,含有权利要求1-9的新型材料。
CN202310973240.9A 2023-08-03 2023-08-03 一种用于去除或检测液体中四环素的新材料及其检测系统 Pending CN117065730A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310973240.9A CN117065730A (zh) 2023-08-03 2023-08-03 一种用于去除或检测液体中四环素的新材料及其检测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310973240.9A CN117065730A (zh) 2023-08-03 2023-08-03 一种用于去除或检测液体中四环素的新材料及其检测系统

Publications (1)

Publication Number Publication Date
CN117065730A true CN117065730A (zh) 2023-11-17

Family

ID=88714471

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310973240.9A Pending CN117065730A (zh) 2023-08-03 2023-08-03 一种用于去除或检测液体中四环素的新材料及其检测系统

Country Status (1)

Country Link
CN (1) CN117065730A (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103894161A (zh) * 2014-04-09 2014-07-02 复旦大学 一种磁性金属有机骨架复合材料的合成方法及其应用
CN107163069A (zh) * 2017-05-10 2017-09-15 浙江大学 镧系金属有机框架材料的制备及其可视化检测手性对映体的方法
CN110128674A (zh) * 2019-05-31 2019-08-16 聊城大学 一种用于荧光检测磺胺类抗生素的、水稳定的稀土金属有机框架材料及其制备方法
CN110142035A (zh) * 2019-05-24 2019-08-20 云南大学 一种聚多巴胺修饰的磁性纳米颗粒的制备方法及应用
CN111829996A (zh) * 2020-06-23 2020-10-27 江苏大学 一种可视化检测四环素类抗生素的镧系金属有机框架测试纸条的制备方法
CN112457499A (zh) * 2020-11-30 2021-03-09 华南理工大学 一种稀土基金属有机框架荧光纳米材料及其制备方法与应用
WO2021068570A1 (zh) * 2019-10-12 2021-04-15 湖南大学 用于降解四环素的复合光催化剂及其制备方法和应用
CN113087921A (zh) * 2021-03-31 2021-07-09 广东工业大学 一种荧光金属有机框架超结构化合物及其制备方法和应用
CN113234233A (zh) * 2021-06-01 2021-08-10 江西省科学院应用化学研究所 一种具有抗生素荧光识别的铕基金属-有机框架材料及制备方法
CN113528121A (zh) * 2021-02-05 2021-10-22 南方医科大学 镧系金属有机框架化合物在检测抗生素中的应用及检测方法
NL2030557A (en) * 2022-01-14 2022-11-15 Inst Applied Chemistry Jiangxi Academy Sciences Europium—based metal-organic framework material for fluorescence recognition of antibiotics and preparation method thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103894161A (zh) * 2014-04-09 2014-07-02 复旦大学 一种磁性金属有机骨架复合材料的合成方法及其应用
CN107163069A (zh) * 2017-05-10 2017-09-15 浙江大学 镧系金属有机框架材料的制备及其可视化检测手性对映体的方法
CN110142035A (zh) * 2019-05-24 2019-08-20 云南大学 一种聚多巴胺修饰的磁性纳米颗粒的制备方法及应用
CN110128674A (zh) * 2019-05-31 2019-08-16 聊城大学 一种用于荧光检测磺胺类抗生素的、水稳定的稀土金属有机框架材料及其制备方法
WO2021068570A1 (zh) * 2019-10-12 2021-04-15 湖南大学 用于降解四环素的复合光催化剂及其制备方法和应用
CN111829996A (zh) * 2020-06-23 2020-10-27 江苏大学 一种可视化检测四环素类抗生素的镧系金属有机框架测试纸条的制备方法
CN112457499A (zh) * 2020-11-30 2021-03-09 华南理工大学 一种稀土基金属有机框架荧光纳米材料及其制备方法与应用
CN113528121A (zh) * 2021-02-05 2021-10-22 南方医科大学 镧系金属有机框架化合物在检测抗生素中的应用及检测方法
CN113087921A (zh) * 2021-03-31 2021-07-09 广东工业大学 一种荧光金属有机框架超结构化合物及其制备方法和应用
CN113234233A (zh) * 2021-06-01 2021-08-10 江西省科学院应用化学研究所 一种具有抗生素荧光识别的铕基金属-有机框架材料及制备方法
NL2030557A (en) * 2022-01-14 2022-11-15 Inst Applied Chemistry Jiangxi Academy Sciences Europium—based metal-organic framework material for fluorescence recognition of antibiotics and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZIYU GAN ET AL.: "A portable test strip based on fluorescent europium-based metal–organic framework for rapid and visual detection of tetracycline in food samples", 《FOOD CHEMISTRY》, vol. 354, 8 March 2021 (2021-03-08), pages 1 - 8, XP086544865, DOI: 10.1016/j.foodchem.2021.129501 *
荣介伟: "镧系金属有机骨架化合物在荧光探测领域的应用", 《广州化工》, vol. 48, no. 21, 30 November 2020 (2020-11-30), pages 12 - 14 *

Similar Documents

Publication Publication Date Title
Liu et al. Rapid and efficient removal of heavy metal and cationic dye by carboxylate-rich magnetic chitosan flocculants: role of ionic groups
Weijiang et al. Adsorption of Pb (II) ions from aqueous environment using eco-friendly chitosan schiff’s base@ Fe3O4 (CSB@ Fe3O4) as an adsorbent; kinetics, isotherm and thermodynamic studies
Huang et al. A designable magnetic MOF composite and facile coordination-based post-synthetic strategy for the enhanced removal of Hg 2+ from water
Gao et al. A bifunctional 3D porous Zn-MOF: Fluorescence recognition of Fe3+ and adsorption of congo red/methyl orange dyes in aqueous medium
Shi et al. Use of carboxyl functional magnetite nanoparticles as potential sorbents for the removal of heavy metal ions from aqueous solution
JP6494468B2 (ja) 磁性ナノ粒子を用いた水の浄化
Wang et al. Water-soluble Fe 3 O 4 nanoparticles with high solubility for removal of heavy-metal ions from waste water
Nodeh et al. Synthesis of magnetic graphene oxide doped with strontium titanium trioxide nanoparticles as a nanocomposite for the removal of antibiotics from aqueous media
Sun et al. Porphyrin-functionalized Fe3O4@ SiO2 core/shell magnetic colorimetric material for detection, adsorption and removal of Hg2+ in aqueous solution
Xiong et al. Facile synthesis of magnetic nanocomposites of cellulose@ ultrasmall iron oxide nanoparticles for water treatment
Govarthanan et al. Synthesis and characterization of lanthanum-based metal organic framework decorated polyaniline for effective adsorption of lead ions from aqueous solutions
Wang et al. Dendrimer modified magnetic nanoparticles for immobilized BSA: a novel chiral magnetic nano-selector for direct separation of racemates
Huang et al. Ionic liquid-coated Fe 3 O 4/APTES/graphene oxide nanocomposites: Synthesis, characterization and evaluation in protein extraction processes
Deng et al. Simultaneous detection and adsorptive removal of Cr (VI) ions by fluorescent sulfur quantum dots embedded in chitosan hydrogels
CN110404510B (zh) 一种花瓣状核壳结构的金属有机骨架材料及其制备方法和应用
Hojjati-Najafabadi et al. Adsorptive removal of malachite green using novel GO@ ZnO-NiFe2O4-αAl2O3 nanocomposites
Cai et al. Preparation of thiourea-modified magnetic chitosan composite with efficient removal efficiency for Cr (VI)
Jin et al. Removal of Cu (II) ions from aqueous solution by magnetic chitosan-tripolyphosphate modified silica-coated adsorbent: characterization and mechanisms
Wang et al. Selective and fast removal and determination of β-lactam antibiotics in aqueous solution using multiple templates imprinted polymers based on magnetic hybrid carbon material
Nicola et al. Mesoporous magnetic nanocomposites: a promising adsorbent for the removal of dyes from aqueous solutions
Li et al. Highly efficient removal of Cr (VI) ions from wastewater by the pomegranate-like magnetic hybrid nano-adsorbent of polydopamine and Fe 3 O 4 nanoparticles
CN109297943B (zh) 一种氟离子的检测方法及去除方法
Li et al. A facile construction of bifunctional core–shell–shell structured magnetic metal–organic frameworks for detection and removal of tetracycline
Ha et al. Ampicillin adsorption onto amine-functionalized magnetic graphene oxide: synthesis, characterization and removal mechanism
WO2023241689A1 (zh) 一种多孔胺化有机氟胶囊及其制法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination