WO2021068570A1 - 用于降解四环素的复合光催化剂及其制备方法和应用 - Google Patents

用于降解四环素的复合光催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2021068570A1
WO2021068570A1 PCT/CN2020/099693 CN2020099693W WO2021068570A1 WO 2021068570 A1 WO2021068570 A1 WO 2021068570A1 CN 2020099693 W CN2020099693 W CN 2020099693W WO 2021068570 A1 WO2021068570 A1 WO 2021068570A1
Authority
WO
WIPO (PCT)
Prior art keywords
uio
composite photocatalyst
organic framework
silver iodide
metal organic
Prior art date
Application number
PCT/CN2020/099693
Other languages
English (en)
French (fr)
Other versions
WO2021068570A8 (zh
Inventor
袁兴中
潘阳
蒋龙波
王侯
于瀚博
张进
Original Assignee
湖南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南大学 filed Critical 湖南大学
Publication of WO2021068570A1 publication Critical patent/WO2021068570A1/zh
Publication of WO2021068570A8 publication Critical patent/WO2021068570A8/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J35/39
    • B01J35/61
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Definitions

  • the invention belongs to the technical field of photocatalysis, and specifically relates to a composite photocatalyst for degrading tetracycline and a preparation method and application thereof.
  • photocatalytic technology has made great progress in its research in recent years.
  • photocatalysis technology has the advantages of high efficiency and energy saving, less secondary pollution, clean and non-toxic, and simplified process compared with other methods. This makes photocatalysis technology has broad application prospects in wastewater purification treatment.
  • Metal-organic framework UiO-66 (NH 2 ) as a typical metal-organic framework material, has the characteristics of large specific surface area, thermal stability, chemical stability, etc., and exhibits semiconductor properties, and has been widely used in the field of photocatalysis.
  • the metal-organic framework UiO-66 (NH 2 ) can only use sunlight below 435 nm, and there are problems such as rapid recombination of electron-hole pairs and poor visible light absorption efficiency, which severely limits the application range of UiO-66 (NH 2) , And it is a great challenge to further improve its photocatalytic performance.
  • an overall improvement in UiO-66 (NH 2) presence of shortcomings and deficiencies, and the development of application is important in the art based on the photocatalytic UiO-66 (NH 2) a composite material.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the prior art, such as cumbersome material preparation technology, unstable materials, etc., and provide a large specific surface area, many reaction sites, high photogenerated electron-hole utilization rate, and photocatalytic activity
  • the silver iodide modified metal organic framework UiO-66 (NH 2 ) binary composite photocatalyst with high, good stability and corrosion resistance also provides a silver iodide modified metal organic framework UiO- with simple process, low raw material cost and low energy consumption.
  • the composite photocatalyst for degrading tetracycline is characterized in that the composite photocatalyst uses a metal organic framework UiO-66 (NH 2 ) as a carrier, and silver iodide is supported on it.
  • a metal organic framework UiO-66 NH 2
  • the adsorption effect is also on its The pollutant removal effect occupies an important part, and the binary composite material AgI/UiO-66 (NH 2 ) of the present invention is used to remove the colorless pollutant tetracycline, reducing the pollution caused by the adsorption of the material.
  • the large amount of removal can maximize its effect on photocatalytic removal of pollutants.
  • the self-organized Z-type heterojunction formed by the composite photocatalyst of the present invention can inhibit the photo-corrosion phenomenon of AgI in the composite and retain Photo-generated electrons and holes with stronger redox ability.
  • the composite photocatalyst is a binary composite material AgI/UiO-66(NH 2 ),
  • the concentration of the tetracycline wastewater is 10mg/L-40mg/L;
  • the time of the photocatalytic reaction is 40 minutes.
  • the silver iodide modified metal organic framework UiO-66 (NH 2 ) composite photocatalyst of the present invention can be used to degrade tetracycline wastewater, and has the advantages of high degradation efficiency, simple application method, and strong corrosion resistance. After 40 minutes of photocatalytic reaction, the degradation efficiency of tetracycline was 76.6%, and the photocatalytic degradation rate of tetracycline wastewater was 0.03578 min -1 .
  • Figure 2 shows the ultraviolet-visible diffuse reflection absorption of the silver iodide modified metal organic framework UiO-66 (NH 2 ) composite photocatalyst (AUN-2), UiO-66 (NH 2) and silver iodide (AgI) prepared in Example 2. Spectrum.
  • FIG 3 is a photocurrent diagram of the silver iodide modified metal organic framework UiO-66 (NH 2 ) composite photocatalyst (AUN-2), UiO-66 (NH 2 ) and silver iodide (AgI) prepared in Example 2 of the present invention.
  • Figure 5 shows the silver iodide modified metal organic framework UiO-66 (NH 2 ) composite photocatalyst (AUN-1, AUN-2 and AUN-3), UiO-66 (NH 2 ), silver iodide (AgI) in Example 5 of the present invention
  • the corresponding rate constant bar graph of the photocatalytic degradation of tetracycline wastewater by the mechanical mixture of silver iodide and metal organic framework UiO-66(NH 2) (mix-AUN-30%).
  • Figure 7 is the XRD pattern ((a)-(b)) and XPS spectrum (() of the silver iodide modified metal organic framework UiO-66 (NH 2) composite photocatalyst (AUN-2) in Example 6 of the present invention before and after the cycle experiment c)-(d)) comparison chart.
  • the mass percentage of silver iodide in the silver iodide modified metal organic framework UiO-66 (NH 2 ) composite photocatalyst is 10%-50%, and the mass percentage of metal organic framework UiO-66 (NH 2) is 50%-90%, by adjusting the mass ratio of silver iodide and the metal organic framework UiO-66 (NH 2 ) to achieve the highest effect on the photocatalytic degradation efficiency of tetracycline.
  • the present invention has been confirmed by multiple experiments.
  • the above-mentioned mass percentage content value The limited range of composite photocatalyst can get the best degradation effect of tetracycline.
  • the silver iodide is in the shape of microspheres; the metal organic framework UiO-66 (NH 2 ) is in the shape of square blocks.
  • the suspension obtained after the ion exchange reaction was centrifuged, and the solid material obtained by centrifugation was washed three times with deionized water and absolute ethanol, and the solid product was collected and dried in a vacuum drying oven at 60°C for 6 hours to obtain Silver iodide modified metal organic framework UiO-66 (NH 2 ) composite photocatalyst, named AUN-1.
  • One kind of silver iodide modified metal organic frameworks UiO-66 (NH 2) composite photocatalyst the embodiment of a modified embodiment of the silver iodide metal organic frameworks UiO-66 (NH 2) composite photocatalyst substantially the same, except that only: Example 2
  • the mass percentage of silver iodide in the silver iodide modified metal organic framework UiO-66 (NH 2 ) composite photocatalyst is 30%, and the mass percentage of metal organic framework UiO-66 (NH 2 ) is 70%.
  • Figure 1 is the SEM of the silver iodide modified metal organic framework UiO-66 (NH 2 ) composite photocatalyst (AUN-2), metal organic framework UiO-66 (NH 2 ) and silver iodide (AgI) prepared in Example 3 of the present invention
  • (a) is UiO-66(NH 2 )
  • (b) is AgI
  • (c) is AUN-2.
  • UiO-66(NH 2 ) has a block structure
  • Fig. 1(b) silver iodide has a microsphere structure with a clean and smooth surface. It can be seen from Fig.
  • the silver iodide modified metal organic framework UiO-66 (NH 2 ) composite photocatalyst of the present invention has microspherical silver iodide attached to the surface of the bulk UiO-66 (NH 2 ).
  • Figure 1 (d)-(f) are the silver iodide modified metal organic framework UiO-66 (NH 2 ) composite photocatalyst (AUN-2) and the metal organic framework UiO-66 (NH 2 ) prepared in Example 3 of the present invention
  • D is the TEM image of UiO-66(NH 2 )
  • (e) is the TEM image of AUN-2
  • (f) is the high-resolution TEM image of AUN-2.
  • Figure 1(e) that the surface of the bulk UiO-66(NH 2 ) in the silver iodide modified metal-organic framework UiO-66(NH 2 ) composite photocatalyst is modified with microspherical silver iodide.
  • the result is the same as that in Figure 1 Unanimous.
  • Figure 1(f) that the high-resolution TEM further illustrates the presence of silver iodide.
  • Example 2 The silver iodide modified metal organic framework UiO-66 (NH 2 ) composite photocatalyst (AUN-2), UiO-66 (NH 2 ) and silver iodide (AgI) prepared in Example 2 of the present invention were subjected to ultraviolet-visible diffuse reflection absorption The results of spectral analysis are shown in Figure 2.
  • Figure 2 shows the ultraviolet-visible diffuse reflection absorption of the silver iodide modified metal organic framework UiO-66 (NH 2 ) composite photocatalyst (AUN-2), UiO-66 (NH 2) and silver iodide (AgI) prepared in Example 2. Spectrum.
  • the silver iodide produced after ion exchange can significantly increase the visible light absorption intensity and range of UiO-66 (NH 2 ), which shows that the construction of silver iodide modified metal organic framework UiO-66 (NH 2 ) heterostructure It can increase the light response range of UiO-66(NH 2 ), and improve the photocatalytic performance and light energy utilization rate of the material.
  • FIG. 3 is a photocurrent diagram of the silver iodide modified metal organic framework UiO-66 (NH 2 ) composite photocatalyst (AUN-2), UiO-66 (NH 2 ) and silver iodide (AgI) prepared in Example 2 of the present invention. It can be seen from FIG.
  • the photocurrent peak value of the silver iodide modified metal organic framework UiO-66 (NH 2 ) composite photocatalyst (AUN-2) of the present invention is the highest, indicating the highest electron-hole transfer efficiency. Therefore, the silver iodide modified metal organic framework UiO-66 (NH 2 ) heterojunction photocatalyst can promote the transfer of photo-generated charges and significantly reduce the recombination of photo-generated charges.
  • a silver iodide modified metal organic framework UiO-66 (NH 2 ) composite photocatalyst which is basically the same as the silver iodide modified metal organic framework UiO-66 (NH 2 ) composite photocatalyst in Example 1. The only difference is: Example 3 The mass percentage of silver iodide in the silver iodide modified metal organic framework UiO-66 (NH 2 ) composite photocatalyst is 50%, and the mass percentage of the metal organic framework UiO-66 (NH 2 ) is 50%.
  • a method for preparing the silver iodide modified metal organic framework UiO-66 (NH 2 ) composite photocatalyst of this embodiment is basically the same as the preparation method in Example 1, except for the quality of potassium iodide added in Example 3. It is 114.5 mg, and the volume of the silver nitrate aqueous solution is 3.45 mL.
  • the silver iodide modified metal organic framework UiO-66 (NH 2 ) composite photocatalyst prepared in Example 3 was named AUN-3.
  • the antibiotic wastewater is specifically tetracycline wastewater and includes the following steps:
  • Example 5 Weigh AgI (Example 1), UiO-66 (NH 2 ) (Example 1), AUN-1 (Example 2), AUN-2 (Example 3), AUN-3 (Example 4) and mix -0.03g each of AUN-30% (Example 5) were added to 100mL modified L tetracycline (TC) wastewater with an initial concentration of 10mg, and magnetically stirred in a dark place for one hour to reach adsorption equilibrium; then turn on the light source, The photocatalytic reaction was carried out under visible light ( ⁇ 420nm) for 40 minutes to complete the degradation of tetracycline wastewater.
  • TC modified L tetracycline
  • Figure 4 shows the silver iodide modified metal organic framework UiO-66 (NH 2 ) composite photocatalyst (AUN-1, AUN-2 and AUN-3), UiO-66 (NH 2 ), silver iodide (AgI) in Example 5 of the present invention
  • C represents the concentration of TC after degradation
  • C 0 represents the initial concentration of TC.
  • Figure 5 shows the silver iodide modified metal organic framework UiO-66 (NH 2 ) composite photocatalyst (AUN-1, AUN-2 and AUN-3), UiO-66 (NH 2 ), silver iodide (AgI) in Example 5 of the present invention Histogram of rate constants corresponding to the photocatalytic degradation of tetracycline wastewater with a mechanical mixture of silver iodide and metal organic framework UiO-66(NH 2) (mix-AUN-30%).
  • Example 1 of the present invention the silver iodide modified metal organic framework UiO-66 (NH 2 ) composite photocatalyst (AUN-1) has a degradation efficiency of 64.3% and a degradation rate constant of 0.02603 min -1 after 40 minutes of photocatalytic reaction.
  • Example 2 of the present invention the silver iodide modified metal organic framework UiO-66 (NH 2 ) composite photocatalyst (AUN-2) has a degradation efficiency of 76.6% and a degradation rate constant of 0.03578 min -1 after 40 minutes of photocatalytic reaction.
  • Example 3 of the present invention the silver iodide iodide modified metal organic framework UiO-66 (NH 2 ) composite photocatalyst (AUN-3) has a degradation efficiency of 61.4% and a degradation rate constant of 0.00833 min -1 after 40 minutes of photocatalytic reaction. .
  • Example 4 of the present invention the silver iodide (AgI), silver iodide and metal organic framework UiO-66 (NH 2 ) mechanical mixture (mix-AUN-30%) after the photocatalytic reaction for 40 minutes, the degradation efficiency of TC is 27.6%, and the degradation rate The constant is 0.02048min -1 .
  • the degradation efficiency of silver iodide (AgI) to TC after 40min of photocatalytic reaction is 31.6%, and the degradation rate constant is 0.0093min -1
  • Example 2 the silver iodide modified metal organic framework UiO-66 (NH 2 ) composite photocatalyst (AUN-2) in Example 2 has the best degradation efficiency for tetracycline, and the degradation efficiency for TC after 40 minutes of photocatalytic reaction is 76.6 %, the photocatalytic degradation rate is 0.03578 min -1 , while the degradation efficiency and degradation rate of pure UiO-66 (NH 2 ) are only 4.3% and 0.00122 min -1, respectively .
  • the silver iodide modified metal organic framework UiO-66 (NH 2 ) composite photocatalyst of the present invention increases the degradation rate of tetracycline wastewater by 29.3 times and 3.8 times, the main reason for this phenomenon is the self-organized new Z-type heterojunction formed in the silver iodide modified metal organic framework UiO-66(NH 2) composite photocatalyst, and the heterojunction photocatalyst obtained therefrom
  • the electron-hole separation efficiency in the semiconductor is improved, the absorption intensity and range of visible light are enhanced, and the photo-generated electrons and holes with stronger redox ability are retained.
  • step (2) Place the reaction system (tetracycline wastewater with AUN-2 added) obtained in step (1) on a magnetic stirrer and stir for 1 hour in the dark to reach adsorption equilibrium. At this time, 4 mL of the solution is taken out to represent the initial liquid to be degraded , That is, the solution when the reaction time is 0 min, measure its concentration with an ultraviolet-visible spectrophotometer, and record it as C 0 .
  • step (3) The remaining solution in step (2) was subjected to a photocatalytic reaction under visible light for 40 minutes, and 4 mL of the reaction product solution was centrifuged for separation, and the residual concentration of tetracycline in the supernatant was measured with an ultraviolet-visible spectrophotometer, which was recorded as C.
  • Fig. 6 is a histogram of the photocatalytic performance of the silver iodide modified metal organic framework UiO-66(NH 2 ) composite photocatalyst (AUN-2) in Example 5 of the present invention for four cycles.
  • the degradation efficiency of tetracycline is taken as the ordinate, and the number of cycles is taken as the abscissa.
  • the metal-silver iodide modified metal-organic framework UiO-66(NH 2 ) composite photocatalyst (AUN-2) of the present invention still exhibits high-efficiency photocatalytic performance, and degrades after four cycles The efficiency is still as high as 67.8%.
  • Figure 7(a)-(d) are the comparison diagrams of the XRD and XPS characterization results of the sample AUN-2 before and after the cycle experiment, showing the stability of its overall structure, and it can also prove that a small amount of silver and only a small amount of single substance appeared in the system during the illumination process.
  • the small amount of silver element promotes the formation of self-organized Z-type heterojunction and inhibits the photo-corrosion phenomenon of silver iodide.
  • the gold-silver iodide modified metal organic framework UiO-66 (NH 2 ) composite photocatalyst of the present invention has the advantages of stable photocatalytic performance, strong corrosion resistance, and high degradation efficiency for tetracycline wastewater. It is a kind of good stability and resistance.
  • a new type of visible light catalyst that is corrosive and efficient, has a good practical application prospect.

Abstract

提供一种用于降解四环素的复合光催化剂及其制备方法和应用,涉及光催化领域。该复合光催化剂以金属有机框架UiO-66(NH 2)为载体,金属有机框架UiO-66(NH 2)上修饰有颗粒状碘化银;所述复合光催化剂为二元复合材料AgI/UiO-66(NH 2),并在光催化初始阶段转变为自组建的具有Z型异质结结构的复合光催化剂。其制备方法是将金属有机框架UiO-66(NH 2)与碘化银前驱体混合,所得混合物经过化学沉淀,得到碘化银修饰金属有机框架UiO-66(NH 2)二元复合光催化剂。所述碘化银修饰金属有机框架UiO-66(NH 2)二元复合光催化剂具有绿色环保、比表面积大、光生电子-空穴分离效率高、光催化活性高、稳定性好、耐光腐蚀等优点,其制备方法具有简单、原料成本低、耗能少、耗时短、条件易控等优点。

Description

用于降解四环素的复合光催化剂及其制备方法和应用 技术领域
本发明属于光催化技术领域,具体涉及用于降解四环素的复合光催化剂及其制备方法和应用。
背景技术
抗生素污染已经成为人类面临的重要问题,光催化技术作为一种绿色净化技术,近年来对其研究已取得了很大进展。光催化技术作为一种污染处理新技术,与其他方法相比,具有高效节能、二次污染小、清洁无毒和工艺简化等优点,这使光催化技术在废水净化处理具有广阔的应用前景。
金属有机框架UiO-66(NH2)作为一种典型的金属有机框架材料,具有比表面积大,热稳定性,化学稳定性等特点,并表现出半导体性质,已被广泛应用于光催化领域。然而,金属有机框架UiO-66(NH2)只能利用435nm以下的太阳光,存在电子-空穴对的快速复合、可见光吸收效率差等问题,严重限制了UiO-66(NH2)应用范围,且对于进一步提高其光催化性能是很大的挑战。因此,全面改善UiO-66(NH2)存在的缺点和不足,并开发基于UiO-66(NH2)的复合材料在光催化技术领域的应用范围具有重要意义。
发明内容
本发明要解决的技术问题是克服现有技术的不足,如材料制备工艺繁琐,材料不稳定等,提供一种比表面积大、反应位点多、光生电子-空穴利用率高、光催化活性高、稳定性好、耐腐蚀的碘化银修饰金属有机框架UiO-66(NH2)二元复合光催化剂,还提供了一种工艺简单、原料成本低、耗能少的碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂的制备方法,以及该碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂在降解四环素废水中的应用。
为解决上述技术问题,本发明采用的技术方案是:
用于降解四环素的复合光催化剂,其特征在于,所述复合光催化剂以金属有机框架UiO-66(NH2)为载体,其上负载有碘化银。
本发明的复合光催化剂具有的Z型异质结结构使所制备的二元复合光催化剂具备更好的氧化还原能力,其优秀的氧化能力更益于四环素的降解;相比对比文件中的三元复合材料UiO-66(NH2)/Ag/AgBr,本发明中的二元复合材料AgI/UiO-66(NH2)合成过程简单,易操作, 避免了在合成过程中产生银单质,减少对原料的损耗。并且对于UiO-66(NH2)/Ag/AgBr三元复合物而言,其主要运用于去除水体中的阳离子染料甲基橙的去除,除了光催化降解的部分外,吸附作用也在其对污染物去除效果占据重要部分,而本发明中的二元复合材料AgI/UiO-66(NH2)则是用于对无色污染物四环素的去除,减少了材料因吸附作用产生的对污染物的大量去除,可最大限度发挥其在光催化去除污染物上的效果,此外,本发明中的复合光催化剂所形成的自组建Z型异质结可抑制复合物中AgI的光腐蚀现象并保留氧化还原能力更强的光生电子和空穴。
本发明的“Z型异质结结构”、“Z型异质结”具有本领域技术人员通常理解的技术含义。
所述碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂中碘化银的质量百分含量为10%~50%,金属有机框架UiO-66(NH2)的质量百分含量为50%~90%。通过调整碘化银与金属有机框架UiO-66(NH2)的质量配比,以达到对四环素光催化降解效率最高的效果,本发明经多次试验确认,上述质量百分比含量数值范围限定的复合光催化剂能得到最佳的四环素降解效果。
所述碘化银为微球状;所述金属有机框架UiO-66(NH2)为方形块状。
优选地,所述复合光催化剂为二元复合材料AgI/UiO-66(NH2),
更优选地,所述复合光催化剂在光催化反应过程中形成具有Z型异质结结构的AgI/Ag/UiO-66(NH2);
更优选地,所述复合光催化剂在光催化反应初始阶段形成具有Z型异质结结构的AgI/Ag/UiO-66(NH2);
所述光催化反应初始阶段指反应开始后10分钟内。
所述的复合光催化剂的制备方法,其特征在于,包括以下步骤:
S1、将UiO-66(NH2)分散于溶剂中,加入碘化钾,搅拌,得到含有UiO-66(NH2)和碘化钾的混合液;
S2、将含Ag+的溶液加入到步骤S1得到的含有UiO-66(NH2)和碘化钾的混合液中进行沉淀反应,离心,洗涤,干燥,得到碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂。
所述UiO-66(NH2)的制备方法包括以下步骤:
(1)将氯化锆、2-氨基对苯二甲酸和二甲基甲酰胺混合,搅拌,直至溶液澄清,得到前驱体溶液;
(2)将步骤(1)中的前驱体溶液进行水热反应,离心,洗涤,真空干燥,得到UiO-66(NH2)。
步骤(1)中,所述氯化锆和2-氨基对苯二甲酸的摩尔比为1:1,二甲基甲酰胺体积为40mL;
和/或,所述水热反应的温度为120℃;所述水热反应的时间为48h。
步骤S1中,所述UiO-66(NH2)与溶剂的质量体积比为161.6mg∶35mL;所述溶剂为去离子水;所述UiO-66(NH2)与所述碘化钾的比例为161.6mg∶12.6mg,161.6mg∶48.9mg和161.6mg∶114.5mg;所述搅拌的时间为60min;
和/或,步骤S2中,所述含Ag+的溶液为浓度为0.2M的硝酸钾溶液;所述含Ag+的溶液中所含的Ag+与所述含有UiO-66(NH2)和碘化钾的混合液中的碘化钾的摩尔比为1∶1;所述沉淀反应在室温黑暗环境中进行;所述沉淀反应过程中的转速为300rpm;所述沉淀反应的时间为12h。
一种所述的碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂在降解四环素废水中的应用。
所述的应用包括以下步骤:将碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂与四环素废水混合,在黑暗条件下振荡吸附,达到吸附平衡后,在光照射下进行光催化反应,完成对四环素废水的降解。
所述碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂的添加量为每升所述四环素废水中添加所述碘化银修饰金属有机框UiO-66(NH2)复合光催化剂0.3g;和/或,所述四环素废水的浓度为10mg/L~40mg/L;
和/或,所述振荡吸附的时间为0.5h~2h;
和/或,所述光催化反应在波长≥420nm的可见光下进行;
和/或,所述光催化反应的时间为40min。
一种碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂,所述碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂以金属有机框架UiO-66(NH2)为载体,所述金属有机框架UiO-66(NH2)上修饰有碘化银。
上述的碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂,进一步改进的,所述碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂中碘化银的质量百分含量为10%~50%,金属有机框架UiO-66(NH2)的质量百分含量为50%~90%;所述所述碘化银为圆球状;所述金属有机框架UiO-66(NH2)为方形块状。
作为一个总的技术构思,本发明还提供了一种上述的碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂的制备方法,包括以下步骤:
S1、将金属有机框架UiO-66(NH2)分散于溶剂中,加入碘化钾,搅拌,得到含有UiO-66(NH2)和碘化钾的混合液;
S2、将含Ag+溶液加入到步骤S1得到的含有UiO-66(NH2)和碘化钾的混合液中进行沉淀 反应,离心,洗涤,干燥,得到碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂。
上述的制备方法中,进一步改进的,所述UiO-66(NH2)的制备方法包括以下步骤:
(1)将氯化锆、2-氨基对苯二甲酸和二甲基甲酰胺混合,搅拌,直至溶液澄清,得到前驱体溶液;
(2)将步骤(1)中的前驱体溶液进行水热反应,离心,洗涤,真空干燥,得到UiO-66(NH2)。
上述的制备方法中,进一步改进的,步骤(1)中,所述氯化锆和2-氨基对苯二甲酸的摩尔比为1:1,二甲基甲酰胺体积为40mL;
和/或,所述水热反应的温度为120℃;所述水热反应的时间为48h。
上述的制备方法中,进一步改进的,步骤S1中,所述UiO-66(NH2)与溶剂的质量体积比为161.6mg∶35mL;所述溶剂为去离子水;所述UiO-66(NH2)与所述碘化钾的比例为161.6mg∶12.6mg,161.6mg∶48.9mg和161.6mg∶114.5mg;所述搅拌的时间为60min;
和/或,步骤S2中,所述含Ag+的溶液为浓度为0.2M的硝酸钾溶液;所述含Ag+的溶液中所含的Ag+与所述含有UiO-66(NH2)和碘化钾的混合液中的碘化钾的摩尔比为1∶1;所述沉淀反应在室温黑暗环境中进行;所述沉淀反应过程中的转速为300rpm;所述沉淀反应的时间为12h。
作为一个总技术构思,本发明还提供了一种上述的碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂在降解四环素废水中的应用。
上述的应用中,进一步改进的,包括以下步骤:将碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂与四环素废水混合,在黑暗条件下振荡吸附,达到吸附平衡后,在光照射下进行光催化反应,完成对四环素废水的降解;所述碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂的添加量为每升所述四环素废水中添加所述碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂0.3g。
上述的应用中,进一步改进的,所述四环素废水的浓度为10mg/L~40mg/L;
和/或,所述振荡吸附的时间为0.5h~2h;
和/或,所述光催化反应在波长≥420nm的可见光下进行;
和/或,所述光催化反应的时间为40min。
本发明的创新点在于:
本发明中金属有机框架UiO-66(NH2)由于比表面积大,物化性质稳定并表现出半导体性质,在可见光驱动的光催化领域具有巨大的潜力。在此基础上,本发明创造性地将碘化银与金属有机框架UiO-66(NH2)复合在一起,形成二元复合材料AgI/UiO-66(NH2)。以碘化银为修饰剂,旨在改善金属有机框架UiO-66(NH2)单体自身的光子利用率低、光生电子-空穴对复合 速率快等问题,合成经济环保的碘化银与金属有机框架UiO-66(NH2)复合光催化剂。由于金属有机框架UiO-66(NH2)表现出半导体性质,并具有2.83eV能带隙,与半导体碘化银(带隙2.76eV)组成碘化银/金属有机框架UiO-66(NH2)传统II类异质结;碘化银在可见光的照射下还原出少量的银单质,产生的单质银可作为碘化银与金属有机框架UiO-66(NH2)之间的的电子传导体,进而形成自组建的新型Z型异质结,生成以后马上形成了银单质的一个得失电子的动态平衡,生成的少量银单质实现了得失电子的动态平衡进而抑制了碘化银的光腐蚀。通过内建电场作用和电势差作用,电子空穴能够得到快速的迁移与分离,降低了电子-空穴的复合几率,保留了体系中氧化还原能力更强的光生电子和空穴,提高了碘化银/金属有机框架UiO-66(NH2)异质结的光催化能力。同时,UiO-66(NH2)导带上的电子迁移至界面的UiO-66(NH2),与吸附在UiO-66(NH2)的氧气发生反应产生超氧自由基(·O2 -)。价带中的空穴或产生的超氧自由基可直接作用于污染物,达到降解污染物的效果。
与现有技术相比,本发明的优点在于:
1、本发明提供了一种碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂,以金属有机框架UiO-66(NH2)为载体,碘化银负载在金属有机框架UiO-66(NH2)载体上。本发明有效解决了金属有机框架UiO-66(NH2)电子-空穴复合率高、光催化活性差等问题。通过内建电场作用和电势差作用,提高了碘化银/金属有机框架UiO-66(NH2)异质结的光催化能力,本发明具有光生电子-空穴分离效率高、光催化活性高、光吸收能力强、耐腐蚀等优点,能有效降解四环素废水。
2、本发明还提供了一种碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂的制备方法,通过原位沉积法将碘化银纳米粒子沉积于UiO-66(NH2)上,得到碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂。本发明方法具有操作简便、原料成本低、耗能少、耗时短、条件易控等优点,适于连续大规模批量生产,便于工业化利用。
3、本发明的碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂可用于降解四环素废水,具有降解效率高、应用方法简单、耐腐蚀性强等优点。在光催化反应40min后对四环素的降解效率为76.6%,对四环素废水的光催化降解速率为0.03578min-1。与单纯的金属有机框架UiO-66(NH2)与碘化银相比,本发明碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂对四环素废水的降解速率提高了29.3倍和3.8倍;同时,经过四次循环利用后,本发明碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂依然展现出高效的光催化性能,其中四次循环后降解效率依然高达67.8%。本发明碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂是一种光催化稳定性好、光催化效率高、耐腐蚀的新型可见光催化剂,具有很好的实际应用前景。
附图说明
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述。
图1中(a)-(c)为本发明实施例2中制得的碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂(AUN-2)、金属有机框架UiO-66(NH2)和碘化银(AgI)的SEM图,其中(a)为UiO-66(NH2),(b)为AgI,(c)为AUN-2;图1(d)-(f)为本发明实施例3中制得的碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂(AUN-2)和金属有机框架UiO-66(NH2)的TEM图,其中(d)为UiO-66(NH2),(e)为AUN-2,(f)为AUN-2的高分辨TEM图
图2为实施例2中制得的碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂(AUN-2)、UiO-66(NH2)和碘化银(AgI)的紫外-可见漫反射吸收光谱图。
图3为本发明实施例2中制得的碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂(AUN-2)、UiO-66(NH2)和碘化银(AgI)的光电流图。
图4为本发明实施例5中碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂(AUN-1,AUN-2和AUN-3)、UiO-66(NH2)、碘化银(AgI)及碘化银与金属有机框架UiO-66(NH2)机械混合物(mix-AUN-30%)的光催化降解四环素废水时对应的时间-降解效率关系图。
图5为本发明实施例5中碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂(AUN-1,AUN-2和AUN-3)、UiO-66(NH2)、碘化银(AgI)及碘化银与金属有机框架UiO-66(NH2)机械混合物(mix-AUN-30%)的光催化降解四环素废水时对应的速率常数柱状图。
图6为本发明实施例6中碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂(AUN-2)循环反应四次的光催化降解四环素废水时对应的时间-降解效率关系图。
图7为本发明实施例6中碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂(AUN-2)循环实验前后的XRD图谱((a)-(b))和XPS能谱((c)-(d))的对比图。
具体实施方式
以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。
以下实施例中所采用的材料和仪器均为市售。
实施例1:
一种碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂,以金属有机框架UiO-66(NH2)为载体,金属有机框架UiO-66(NH2)上修饰有碘化银。
本实施例中,该碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂中碘化银的质量百分含量为10%-50%,金属有机框架UiO-66(NH2)的质量百分含量为50%-90%,通过调整碘化银与金属有机框架UiO-66(NH2)的质量配比,以达到对四环素光催化降解效率最高的效果, 本发明经多次试验确认,上述质量百分比含量数值范围限定的复合光催化剂能得到最佳的四环素降解效果。
本实施例中,碘化银为微球状;金属有机框架UiO-66(NH2)为方形块状。
一种上述本实施例的碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂的制备方法,包括以下步骤:
(1)制备金属有机框架UiO-66(NH2)
将1mmol的氯化锆(ZrCl4)溶解于40mL N,N-二甲基甲酰胺(DMF)中,所得溶液在转速为300rpm下剧烈搅拌,待氯化锆溶解后将1mmol的2-氨基对苯二甲酸加入上述溶液中,并在转速为300rpm下搅拌,使2-氨基对苯二甲酸溶解。搅拌30分钟,转移到带聚四氟乙烯内衬的不锈钢高压釜中,在120℃下反应48小时。溶剂热反应完成后将高压釜冷却至室温,将反应后所得产物进行离心,通过离心收集淡黄色固体产物,用去离子水和乙醇分别洗涤三次,在70℃下干燥8小时,得到UiO-66(NH2)样品。
(2)碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂
将161.6mg步骤(1)中制得的UiO-66(NH2)样品加入到35mL去离子水中,并在转速为300rpm下搅拌,在上述溶液中加入12.6mg碘化钾,搅拌1h后逐滴加入0.38mL浓度为0.2M的硝酸银水溶液进行离子交换反应,具体为在室温、黑暗条件下搅拌12小时,其中搅拌的转速为300rpm。将离子交换反应后所得悬浮液进行离心分离,并将离心分离所得固体物质分别用去离子水和无水乙醇洗涤三次,收集所得固体产物置于真空干燥箱中在60℃下干燥6小时,得到碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂,命名为AUN-1。
对比例1
一种方形块状UiO-66(NH2)单体的制备方法,包括以下步骤:
将1mmol的氯化锆(ZrCl4)溶解于40mL N,N-二甲基甲酰胺(DMF)中,所得溶液在转速为300rpm下搅拌,待氯化锆溶解后将1mmol的2-氨基对苯二甲酸加入上述溶液中,并在转速为300rpm下搅拌,使2-氨基对苯二甲酸溶解。搅拌30分钟,转移到带聚四氟乙烯内衬的不锈钢高压釜中,在120℃下反应48小时。溶剂热反应完成后将高压釜冷却至室温,将反应后所得产物进行离心,通过离心收集淡黄色固体产物,用去离子水和乙醇分别洗涤三次,在70℃下干燥8小时,得到UiO-66(NH2)样品。
对比例2
一种碘化银单体的制备方法,包括以下步骤:
将48.9mg碘化钾溶解于35mL去离子水中,所得溶液在转速为300rpm下搅拌,逐滴加入1.475mL浓度为0.2mol/L的硝酸银水溶液进行离子交换反应,具体为在室温、黑暗条 件下搅拌12小时,其中搅拌的转速为300rpm。将离子交换反应后所得悬浮液进行离心分离,并将离心分离所得固体物质分别用去离子水和无水乙醇洗涤三次,收集所得固体产物置于真空干燥箱中在60℃下干燥6小时,得到碘化银样品。
实施例2:
一种碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂,与实施例1中的碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂基本相同,区别仅在于:实施例2的碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂中碘化银的质量百分含量为30%,金属有机框架UiO-66(NH2)的质量百分含量为70%。
一种上述本实施例的碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂的制备方法,与实施例1中的制备方法基本相同,区别仅在于:实施例2中所加入的碘化钾质量为48.9mg,硝酸银水溶液的体积为1.475mL。
实施例2中制得的碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂,命名为AUN-2。
图1为本发明实施例3中制得的碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂(AUN-2)、金属有机框架UiO-66(NH2)和碘化银(AgI)的SEM图,其中,(a)为UiO-66(NH2),(b)为AgI,(c)为AUN-2。由图1(a)可知,UiO-66(NH2)为块状结构,由图1(b)可知,碘化银为微球结构,表面干净且光滑。由图1(c)可知,本发明碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂中微球状碘化银附着在块状UiO-66(NH2)表面。
图1(d)-(f)为本发明实施例3中制得的碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂(AUN-2)和金属有机框架UiO-66(NH2)的TEM图,其中,(d)为UiO-66(NH2)的TEM图,(e)为AUN-2的TEM图,(f)为AUN-2的高分辨TEM图。由图1(e)可知,本发明碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂中块状UiO-66(NH2)表面修饰有微球状碘化银,该结果与图1中的结果一致。由图1(f)可知,高分辨TEM进一步说明了碘化银的存在。
将本发明实施例2中制得的碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂(AUN-2)、UiO-66(NH2)和碘化银(AgI)进行紫外-可见漫反射吸收光谱分析,结果如图2所示。图2为实施例2中制得的碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂(AUN-2)、UiO-66(NH2)和碘化银(AgI)的紫外-可见漫反射吸收光谱图。由图2可以看出,经过离子交换后生成的碘化银可以显著提高UiO-66(NH2)的可见光吸收强度和范围,由此可知构建碘化银修饰金属有机框架UiO-66(NH2)异质结能够提高UiO-66(NH2)的光响应范围,提高材料的光催化性能和光能利用率。
将本发明实施例2中制得的碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂(AUN-2)、UiO-66(NH2)和碘化银(AgI)进行光电流分析,结果如图3所示。图3为本发明 实施例2中制得的碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂(AUN-2)、UiO-66(NH2)和碘化银(AgI)的光电流图。由图3可知,本发明碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂(AUN-2)的光电流峰值最高,说明电子-空穴转移效率最高。因此,碘化银修饰金属有机框架UiO-66(NH2)异质结光催化剂能够促进光生电荷的转移,显著降低光生电荷的复合。
实施例3:
一种碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂,与实施例1中的碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂基本相同,区别仅在于:实施例3的碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂中碘化银的质量百分含量为50%,金属有机框架UiO-66(NH2)的质量百分含量为50%。
一种上述本实施例的碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂的制备方法,与实施例1中的制备方法基本相同,区别仅在于:实施例3中所加入的碘化钾质量为114.5mg,硝酸银水溶液的体积为3.45mL。
实施例3中制得的碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂,命名为AUN-3。
实施例4
一种碘化银和金属有机框架UiO-66(NH2)机械混合物,其制备方法为将161.6mg金属有机框架UiO-66(NH2)加入到35mL去离子水,所得悬浮液在转速为300rpm下搅拌,加入对比例2中碘化银69.2mg,在室温、黑暗条件下机械搅拌12h,将机械搅拌后所得悬浮液进行离心分离,并将离心分离所得固体物质分别用去离子水和无水乙醇洗涤三次,收集所得固体产物置于真空干燥箱中在60℃下干燥6小时,得到碘化银和金属有机框架UiO-66(NH2)机械混合物样品。实施例4中制得的碘化银和金属有机框架UiO-66(NH2)机械混合物,命名为mix-AUN-30%。
实施例5:
一种碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂在降解抗生素废水中的应用,抗生素废水具体为四环素废水,包括以下步骤:
称取AgI(实施例1)、UiO-66(NH2)(实施例1)、AUN-1(实施例2)、AUN-2(实施例3)、AUN-3(实施例4)和mix-AUN-30%(实施例5)各0.03g,分别添加到100mL、初始浓度为10mg修饰L的四环素(TC)废水中,在暗处磁力搅拌一个小时,达到吸附平衡;然后打开光源,在可见光(λ≥420nm)下照射进行光催化反应40min,完成对四环素废水的降解。
降解效率的测定:光催化反应过程中,每隔10min吸取4mL反应容器中的光催化降解液,在7000rpm条件下离心5min,吸取上清液在紫外-可见分光光度计仪器上进行检测。图 4为本发明实施例5中碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂(AUN-1,AUN-2和AUN-3)、UiO-66(NH2)、碘化银(AgI)和碘化银和金属有机框架UiO-66(NH2)机械混合物mix-AUN-30%光催化降解四环素废水时对应的时间-降解效率关系图。图4中C代表降解后的TC的浓度,C0表示TC的初始浓度。图5为本发明实施例5中碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂(AUN-1,AUN-2和AUN-3)、UiO-66(NH2)、碘化银(AgI)和碘化银和金属有机框架UiO-66(NH2)机械混合物(mix-AUN-30%)光催化降解四环素废水时对应的速率常数柱状图。
从图4和图5中可知:
本发明实施例1中碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂(AUN-1)在光催化反应40min后对TC的降解效率为64.3%,降解速率常数为0.02603min-1
本发明实施例2中碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂(AUN-2)在光催化反应40min后对TC的降解效率为76.6%,降解速率常数为0.03578min-1
本发明实施例3中碘碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂(AUN-3)在光催化反应40min后对TC的降解效率为61.4%,降解速率常数为0.00833min-1
本发明实施例4中碘化银(AgI)和碘化银和金属有机框架UiO-66(NH2)机械混合物(mix-AUN-30%)在光催化反应40min后对TC的降解效率为27.6%,降解速率常数为0.02048min-1
UiO-66(NH2)在光催化反应40min后对TC的降解效率为4.3%,降解速率常数为0.00122min-1
碘化银(AgI)在光催化反应40min后对TC的降解效率为31.6%,降解速率常数为0.0093min-1
上述结果表明:实施例2中的碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂(AUN-2)对四环素的降解效率最佳,在光催化反应40min后对TC的降解效率为76.6%,光催化降解速率为0.03578min-1,而单纯的UiO-66(NH2)的降解效率和降解速率分别只有4.3%和0.00122min-1。通过比较可知:与单纯的金属有机框架UiO-66(NH2)与碘化银相比,本发明碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂对四环素废水的降解速率提高了29.3倍和3.8倍,导致该现象的主要原因是本发明碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂中所形成的自组建的新型Z型异质结,由此获得的异质结光催化剂提高了半导体中电子-空穴的分离效率,增强了可见光的吸收强度与范围,保留了氧化还原能力更强的光生电子和空穴。
实施例6
考察本发明碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂在光催化降解过程中的抗腐蚀性和稳定性,包括以下步骤:
(1)称取0.03g实施例2中的碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂(AUN-2),添加至100mL、浓度为10mg/L的四环素废水中,得到反应体系。
(2)将步骤(1)中得到的反应体系(添加有AUN-2的四环素废水)置于磁力搅拌器上,避光搅拌1h达到吸附平衡,此时取出4mL溶液来代表待降解的初始液,即反应时间为0min时的溶液,用紫外可见分光光度仪测其浓度,并记为C0
(3)将步骤(2)剩余的溶液在可见光下进行光催化反应40min,取4mL反应后的产物溶液离心分离,用紫外可见分光光度仪测上清液中四环素残余浓度,记为C。
(4)将步骤(3)反应后的溶液离心分离,倒掉上清液,收集反应后的AUN-2,用水解吸后,离心烘干,称重并重新加入到100mL、浓度为10mg/L的四环素废水中。
(5)继续重复步骤(2)~(4)三次。
图6为本发明实施例5中碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂(AUN-2)循环反应四次的光催化性能柱状图。图6中,以四环素的降解效率为纵坐标,以循环次数为横坐标。由图6可以看出,经过四次循环后,本发明金属碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂(AUN-2)依然展现出高效的光催化性能,四次循环后降解效率依然高达67.8%。图7(a)-(d)为循环实验前后样品AUN-2的XRD和XPS表征结果对比图,展现了其整体结构的稳定性,也能证明光照过程中体系中出现了少量银单质且仅为少量,少量银单质促使了自组建Z型异质结的形成并抑制了碘化银的光腐蚀现象。这说明本发明的金碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂具有光催化性能稳定、耐腐蚀性能强、对四环素废水降解效率较高的优点,是一种稳定性好、耐腐蚀且高效的新型可见光催化剂,具有很好的实际应用前景。
以上实施例仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例。凡属于本发明思路下的技术方案均属于本发明的保护范围。应该指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下的改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 用于降解四环素的复合光催化剂,其特征在于,所述复合光催化剂以金属有机框架UiO-66(NH2)为载体,其上负载有碘化银。
  2. 根据权利要求1所述的复合光催化剂,其特征在于,所述碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂中碘化银的质量百分含量为10%~50%,金属有机框架UiO-66(NH2)的质量百分含量为50%~90%。
  3. 根据权利要求1或2所述的复合光催化剂,其特征在于,所述碘化银为微球状;所述金属有机框架UiO-66(NH2)为方形块状;
    优选地,所述复合光催化剂为二元复合材料AgI/UiO-66(NH2),
    更优选地,所述复合光催化剂在光催化反应过程中形成具有Z型异质结结构的AgI/Ag/UiO-66(NH2);
    更优选地,所述复合光催化剂在光催化反应初始阶段形成具有Z型异质结结构的AgI/Ag/UiO-66(NH2);
    所述光催化反应初始阶段指反应开始后10分钟内。
  4. 权利要求1-3任一所述的复合光催化剂的制备方法,其特征在于,包括以下步骤:
    S1、将UiO-66(NH2)分散于溶剂中,加入碘化钾,搅拌,得到含有UiO-66(NH2)和碘化钾的混合液;
    S2、将含Ag+的溶液加入到步骤S1得到的含有UiO-66(NH2)和碘化钾的混合液中进行沉淀反应,离心,洗涤,干燥,得到碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂。
  5. 根据权利要求4所述的制备方法,其特征在于,所述UiO-66(NH2)的制备方法包括以下步骤:
    (1)将氯化锆、2-氨基对苯二甲酸和二甲基甲酰胺混合,搅拌,直至溶液澄清,得到前驱体溶液;
    (2)将步骤(1)中的前驱体溶液进行水热反应,离心,洗涤,真空干燥,得到UiO-66(NH2)。
  6. 根据权利要求5所述的制备方法,其特征在于,步骤(1)中,所述氯化锆和2-氨基对苯二甲酸的摩尔比为1:1,二甲基甲酰胺体积为40mL;
    和/或,所述水热反应的温度为120℃;所述水热反应的时间为48h。
  7. 根据权利要求4所述的制备方法,其特征在于,步骤S1中,所述UiO-66(NH2)与溶剂的质量体积比为161.6mg∶35mL;所述溶剂为去离子水;所述UiO-66(NH2)与所述碘化钾的比例为161.6mg∶12.6mg,161.6mg∶48.9mg和161.6mg∶114.5mg;所述搅拌的时间为60min;
    和/或,步骤S2中,所述含Ag+的溶液为浓度为0.2M的硝酸钾溶液;所述含Ag+的溶液 中所含的Ag+与所述含有UiO-66(NH2)和碘化钾的混合液中的碘化钾的摩尔比为1∶1;所述沉淀反应在室温黑暗环境中进行;所述沉淀反应过程中的转速为300rpm;所述沉淀反应的时间为12h。
  8. 一种如权利要求1~3中任一项所述的碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂在降解四环素废水中的应用。
  9. 根据权利要求8所述的应用,其特征在于,包括以下步骤:将碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂与四环素废水混合,在黑暗条件下振荡吸附,达到吸附平衡后,在光照射下进行光催化反应,完成对四环素废水的降解;
    优选地,所述复合光催化剂在光催化反应过程中形成具有Z型异质结结构的AgI/Ag/UiO-66(NH2);
    更优选地,所述复合光催化剂在光催化反应初始阶段形成具有Z型异质结结构的AgI/Ag/UiO-66(NH2);
    所述光催化反应初始阶段指反应开始后10分钟内。
  10. 根据权利要求9所述的应用,其特征在于,所述碘化银修饰金属有机框架UiO-66(NH2)复合光催化剂的添加量为每升所述四环素废水中添加所述碘化银修饰金属有机框UiO-66(NH2)复合光催化剂0.3g;和/或,所述四环素废水的浓度为10mg/L~40mg/L;
    和/或,所述振荡吸附的时间为0.5h~2h;
    和/或,所述光催化反应在波长≥420nm的可见光下进行;
    和/或,所述光催化反应的时间为40min。
PCT/CN2020/099693 2019-10-12 2020-07-01 用于降解四环素的复合光催化剂及其制备方法和应用 WO2021068570A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910966480.X 2019-10-12
CN201910966480.XA CN110639620A (zh) 2019-10-12 2019-10-12 用于降解四环素的复合光催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
WO2021068570A1 true WO2021068570A1 (zh) 2021-04-15
WO2021068570A8 WO2021068570A8 (zh) 2021-06-03

Family

ID=68993968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099693 WO2021068570A1 (zh) 2019-10-12 2020-07-01 用于降解四环素的复合光催化剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN110639620A (zh)
WO (1) WO2021068570A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115555052A (zh) * 2022-11-23 2023-01-03 山东环投环境工程有限公司 UiO-66@二氧化钛复合光催化剂及制备方法与应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110639620A (zh) * 2019-10-12 2020-01-03 湖南大学 用于降解四环素的复合光催化剂及其制备方法和应用
CN111939979A (zh) * 2020-08-13 2020-11-17 武汉工程大学 BiOBr与MOF材料的复合光催化剂及其制备方法和应用
CN114177944A (zh) * 2021-11-24 2022-03-15 北京农学院 金属有机框架化合物可见光催化降解新烟碱类农药
CN115870005A (zh) * 2022-10-24 2023-03-31 蚌埠学院 一种Ag2CrO4/UiO-66-NH2复合光催化剂及其制备方法和光催化应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103316714A (zh) * 2013-06-28 2013-09-25 中国石油大学(北京) 一种光催化分解水制氢用催化剂及其制备方法
CN107008507A (zh) * 2017-06-08 2017-08-04 合肥工业大学 一种介孔Fe基MOF@AgI高效复合可见光光催化材料及其制备方法和应用
CN107983377A (zh) * 2017-11-13 2018-05-04 湖南大学 钨酸镉修饰的银/碘化银复合材料及其制备方法和应用
EP3424594A1 (en) * 2017-07-06 2019-01-09 Ecole Polytechnique Federale De Lausanne (Epfl) Photocatalytic system comprising a titanium-based mof
CN110639620A (zh) * 2019-10-12 2020-01-03 湖南大学 用于降解四环素的复合光催化剂及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108043462B (zh) * 2017-11-27 2019-09-13 辽宁大学 一种Ag/UiO-66-NH2复合材料及其制备方法和应用
CN108636454A (zh) * 2018-04-12 2018-10-12 常州大学 一种基于金属有机骨架材料uio-66(nh2)复合光催化剂的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103316714A (zh) * 2013-06-28 2013-09-25 中国石油大学(北京) 一种光催化分解水制氢用催化剂及其制备方法
CN107008507A (zh) * 2017-06-08 2017-08-04 合肥工业大学 一种介孔Fe基MOF@AgI高效复合可见光光催化材料及其制备方法和应用
EP3424594A1 (en) * 2017-07-06 2019-01-09 Ecole Polytechnique Federale De Lausanne (Epfl) Photocatalytic system comprising a titanium-based mof
CN107983377A (zh) * 2017-11-13 2018-05-04 湖南大学 钨酸镉修饰的银/碘化银复合材料及其制备方法和应用
CN110639620A (zh) * 2019-10-12 2020-01-03 湖南大学 用于降解四环素的复合光催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG CHAO, YAO XUE, PEIFANG WANG, YANHUI AO: "Effects of water environmental factors on the photocatalytic degradation of sulfamethoxazole by AgI/UiO-66 composite under visible light irradiation", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 748, 14 March 2018 (2018-03-14), pages 314 - 322, XP055800981, DOI: 10.1016/j.jallcom.2018.03.129 *
WANG JUN-HAO, HUANG SHENG-ZHENG, YANG SHAN-SHAN, CHEN YUN-LONG, WU YA-MENG, LI NA-NA, DONG XI-YAN, LI FEI-FEI: "Nanosized Functional MOFs Loading Ag/AgBr with Throughout-Visible-Light Absorption for High-Efficiency Photocatalysis", ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, vol. 645, no. 10, 3 June 2019 (2019-06-03), pages 706 - 711, XP055800982, ISSN: 0044-2313, DOI: 10.1002/zaac.201900048 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115555052A (zh) * 2022-11-23 2023-01-03 山东环投环境工程有限公司 UiO-66@二氧化钛复合光催化剂及制备方法与应用

Also Published As

Publication number Publication date
CN110639620A (zh) 2020-01-03
WO2021068570A8 (zh) 2021-06-03

Similar Documents

Publication Publication Date Title
WO2021068570A1 (zh) 用于降解四环素的复合光催化剂及其制备方法和应用
US20200354235A1 (en) Heterojunction composite material consisting of one-dimensional in2o3 hollow nanotube and two-dimensional znfe2o4 nanosheet, and application thereof in water pollutant removal
CN108786923B (zh) 一种核壳结构可见光催化剂的制备方法
CN112521618B (zh) 一种铋基金属有机框架材料及其制备方法和应用
CN110882725B (zh) 金属有机骨架负载二氧化钛光催化材料及其制备方法
Xu et al. MOFs-derived C-In2O3/g-C3N4 heterojunction for enhanced photoreduction CO2
CN102674451A (zh) 一种{001}面暴露二氧化钛纳米晶的制备方法
CN108940332B (zh) 一种高活性MoS2/g-C3N4/Bi24O31Cl10复合光催化剂的制备方法
CN108355669B (zh) 一种磁性纳米洋葱碳负载Bi2WO6的光催化剂及其制备方法和应用
CN108295907A (zh) 一种复合可见光光催化剂Ag2CO3/TiO2/UiO-66-(COOH)2的制备方法及其应用
CN105032418B (zh) 不同微观形貌Ag/ZnO‑碳球三元壳核异质结光催化剂的制备方法
CN110624550A (zh) 一种原位碳包覆的铜镍合金纳米颗粒光催化剂及其制备方法和应用
CN109718859A (zh) 一种Ag/TiO2/MIL-125(Ti)复合材料及其制备方法和形貌调控
CN112316969A (zh) 一种N掺杂TiO2中空微球-BiOBr的光催化降解材料及制备方法
CN114950402A (zh) TiO2/CeO2异质结光催化剂及其制备方法
CN108607580B (zh) 硫化铟/钒酸铟复合光催化剂及其制备方法和应用
Teng et al. Remarkably enhanced photodegradation of organic pollutants by NH2-UiO-66/ZnO composite under visible-light irradiation
CN111203245B (zh) 一种高效降解环丙沙星的复合光催化剂及其制备方法和应用
CN108295897B (zh) 一种复合可见光光催化剂Ag2CO3/TiO2/UIO-66-(COOH)2及有机物降解应用
CN110586149B (zh) 钼酸铋/碳化钛异质结二维光催化材料及其制备方法和应用
CN110624532B (zh) 一种TiO2-BiVO4-石墨烯三元复合光催化材料及其制备方法
CN116196944A (zh) 一种生物质氮掺杂碳量子点耦合超薄BiOBr纳米片复合材料光催化剂的制备方法及应用
CN113634267B (zh) 一种CdS/ZnS-NiS纳米簇光催化剂及其制备方法和应用
Xu Preparation of ZnS-CdS nanocomposite for photoelectrochemical hydrogen production
CN115608388A (zh) 一种壳核型Cs3PMo12O40/MnIn2S4复合光催化剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20874487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20874487

Country of ref document: EP

Kind code of ref document: A1