WO2022202884A1 - 組織状蛋白素材の製造方法及び組織状蛋白素材 - Google Patents

組織状蛋白素材の製造方法及び組織状蛋白素材 Download PDF

Info

Publication number
WO2022202884A1
WO2022202884A1 PCT/JP2022/013420 JP2022013420W WO2022202884A1 WO 2022202884 A1 WO2022202884 A1 WO 2022202884A1 JP 2022013420 W JP2022013420 W JP 2022013420W WO 2022202884 A1 WO2022202884 A1 WO 2022202884A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein material
textured
textured protein
weight
producing
Prior art date
Application number
PCT/JP2022/013420
Other languages
English (en)
French (fr)
Inventor
修造 橋本
Original Assignee
不二製油グループ本社株式会社
不二製油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 不二製油グループ本社株式会社, 不二製油株式会社 filed Critical 不二製油グループ本社株式会社
Priority to EP22775666.5A priority Critical patent/EP4316262A1/en
Priority to JP2023509238A priority patent/JPWO2022202884A1/ja
Priority to CN202280022632.0A priority patent/CN117062538A/zh
Priority to US18/283,314 priority patent/US20240172774A1/en
Priority to AU2022244773A priority patent/AU2022244773A1/en
Priority to KR1020237035817A priority patent/KR20230159532A/ko
Publication of WO2022202884A1 publication Critical patent/WO2022202884A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L11/00Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
    • A23L11/01Pulses or legumes in form of whole pieces or fragments thereof, without mashing or comminuting
    • A23L11/03Soya beans, e.g. full-fat soya bean flakes or grits
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/22Working-up of proteins for foodstuffs by texturising
    • A23J3/26Working-up of proteins for foodstuffs by texturising using extrusion or expansion
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/14Vegetable proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/14Vegetable proteins
    • A23J3/16Vegetable proteins from soybean
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/22Working-up of proteins for foodstuffs by texturising
    • A23J3/225Texturised simulated foods with high protein content
    • A23J3/227Meat-like textured foods
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/22Working-up of proteins for foodstuffs by texturising
    • A23J3/24Working-up of proteins for foodstuffs by texturising using freezing
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L11/00Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L13/00Meat products; Meat meal; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/10Drying, dehydrating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/16Extrusion
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/20Freezing

Definitions

  • the present invention relates to a method for producing a textured protein material and a textured protein material.
  • Instantly dried ingredients are cooked by adding hot water and soaking to rehydrate, adding water or hot water and simmering, adding water and heating in a microwave oven, etc., and can be eaten in about 3 to 5 minutes. It is a dried ingredient that can be made into Instant noodles, instant miso soup, etc. using these can be stored for a long time, and they are considered to be important food materials from the viewpoint of sustainability in recent years and in the future. In addition, the importance of ready-to-eat foods is increasing along with the increase in opportunities to eat at home due to the prevention of infectious diseases in recent years. Under these trends, instant dried ingredients not only add color to products, but also become one of the important elements deeply related to the taste of products.
  • Vegetables, livestock meat, processed meat products, etc. are known as conventional instant dried ingredients.
  • instant dried vegetable ingredients include cabbage, green onions, wakame seaweed, etc., as they are, or after pretreatment such as seasoning and boiling, freeze drying (FD) or hot air drying (AD). and dried to a final moisture content of about 2 to 3% by mass.
  • instant dried meat ingredients include beef, pork, chicken, etc., as they are, or after pretreatment such as seasoning and boiling, and then drying by FD or AD.
  • instant dried ingredients have been used, which are mixed with textured protein that has a meat-like texture to give them a firmer texture and improve reconstitution.
  • processed meat products such as sausage, roasted pork fillet, diced meat, kamaboko, and fish sausage, which are made from livestock meat, fish meat, etc.
  • processed meat products such as sausage, roasted pork fillet, diced meat, kamaboko, and fish sausage, which are made from livestock meat, fish meat, etc.
  • a freeze-drying method or a hot-air drying method are mentioned.
  • the textured protein material obtained by expanding the texture of the raw material kneaded material using an extruder using plant-derived protein materials such as soybeans and wheat as the main raw material has conventionally been finished with a quality that is close to the elasticity of livestock meat. It is widely used as a raw material for manufacturing processed foods using livestock meat such as hamburgers, meatballs, dumplings, steamed buns, steamed dumplings, mince cutlets, croquettes, minced meat, and the like.
  • This textured protein material swells when discharged from the extruder, and since there are voids inside, some of them have good resilience when hot water is added, and are sometimes used as meat substitutes for instant food. It's getting more.
  • Patent Document 1 a patent application has been filed to create a textured protein material with a distinctive texture by combining a protein raw material with an auxiliary raw material.
  • the applicant also added oat fiber as an auxiliary raw material and patented a technology that can realize a textured protein material with a meat-like texture that has more moderate hardness and a meat-like loose feeling (Patent Document 1).
  • Patent Document 2 the textured protein material extruded from the extruder is rehydrated, dehydrated, seasoned and dried to keep the voids of the textured protein material widened, and hot water is added. It has good resilience.
  • Patent Document 3 is a patent document relating to dried noodles, and reports on a dried noodle material that has a chewy texture and excellent resilience by adjusting the size and ratio of voids in dried noodles.
  • Plant-based textured protein materials for instant food use have voids inside, so they have excellent resilience when hot water is added. It has a different texture than normal meat. In fact, most of the textured protein materials currently used for instant foods have small grains, and most of them are made to have an unnoticeable texture. It is possible to produce a chewy material by adjusting the size and ratio of the voids as in Patent Document 3. It is difficult to give a bite response with a method. In addition, the textured protein material using the technology of Patent Document 1 achieves a dense fiber structure while suppressing swelling, and has a texture very close to meat. However, it is difficult to use it for instant foods.
  • Patent Document 2 a textured protein material with a porous structure is rehydrated, dehydrated, seasoned, and dried with hot air to keep the pores of the textured protein material widened, and to restore the texture when hot water is added. It improves sexuality. Although the voids shrink due to drying, the voids are still larger than those of the textured protein material before rehydration, so it is difficult to say that the structure is dense. Thus, there has been a demand for a plant-based textured protein material that has a dense structure with small voids and is chewy, has a large size and is chewy, and has good reconstitution when reconstituted with hot water.
  • an object of the present invention is to provide a vegetable textured protein material that has a dense structure with small voids, is chewy, and has good reconstitution properties when reconstituted with hot water.
  • step (A) to (C) that is, (A) A raw material containing a protein raw material is introduced into an extruder, water is added so that the water content is 60 to 80% by weight with respect to the total amount of the raw material containing the protein raw material and water, kneading and pressurized heating are performed.
  • C a step of freezing the unswelled textured material obtained in (B) at -5 to -25°C and drying it by freeze-drying;
  • the inventors have found that the freeze-dried textured protein material produced by the method has good restorability when reconstituted with hot water, and has a dense texture with small voids and a chewy texture, and has completed the present invention. and completed the present invention.
  • the present invention (1) A method for producing a freeze-dried textured protein material, comprising the following steps (A) to (C), (A) A raw material containing a protein raw material is introduced into an extruder, water is added so that the water content is 60 to 80% by weight with respect to the total amount of the raw material containing the protein raw material and water, kneading and pressurized heating are performed.
  • a step of cooling the dough with a cooling die having a hole length of 10 mm or more installed at the exit of the extruder and extruding to obtain an unexpanded textured product (B) A step of cutting the unswelled textured material obtained in (A) into a rectangular parallelepiped shape of 5 to 12 mm square, or cutting the unswelled textured material obtained in (A) into a thickness of 0.1 to 5 mm, A step of cutting into a flat shape with a length of 1 to 80 mm in the extrusion direction and a width of 1 to 50 mm; (C) a step of freezing the unswelled textured material obtained in (B) at -5 to -25°C and freeze-drying; (2) The method for producing a textured protein material according to (1), wherein in the step (A), the protein material is 40 to 95% by weight in terms of solid content in the raw materials.
  • step (A) further comprises 1 to 10% by weight of dietary fiber in terms of solid content as a raw material.
  • step (A) further comprises starch as a raw material in an amount of 1 to 5% by weight in terms of solid content.
  • step (A) Manufacture of the textured protein material according to (1), wherein the step (A) further contains 1 to 10% by weight of dietary fiber in terms of solid content and 1 to 5% by weight of starch in terms of solid content as raw materials.
  • step (9) The method for producing a textured protein material according to (5), wherein the step (A) further comprises 1 to 10% by weight of dietary fiber in terms of solid content as a raw material.
  • step (10) The method for producing a textured protein material according to (5), wherein the step (A) further contains 1 to 5% by weight of starch as a raw material in terms of solid content, (11) Manufacture of the textured protein material according to (5), wherein the step (A) further contains 1 to 10% by weight of dietary fiber in terms of solid content and 1 to 5% by weight of starch in terms of solid content as raw materials.
  • Method (12) The method for producing a textured protein material according to (6), wherein the step (A) further comprises 0.1 to 15% by weight of fats and oils as a raw material in terms of solid content. (13) The method for producing a textured protein material according to (7), wherein the step (A) further comprises 0.1 to 15% by weight of fats and oils as a raw material in terms of solid content. (14) The method for producing a textured protein material according to (8), wherein the process (A) further comprises 0.1 to 15% by weight of fats and oils as a raw material in terms of solid content.
  • the method for producing the textured protein material according to (1), which is a textured protein material for instant food (19) The method for producing the textured protein material according to (5), which is a textured protein material for instant food, (20) The method for producing the textured protein material according to (6), which is a textured protein material for instant food, (21) The method for producing the textured protein material according to (7), which is a textured protein material for instant food, (22) The method for producing the textured protein material according to (8), which is a textured protein material for instant food, (23) The method for producing the textured protein material according to (9), which is a textured protein material for instant food, (24) The method for producing the textured protein material according to (10), which is a textured protein material for instant food, (25) The method for producing the textured protein material according to (11), which is a textured protein material for instant food, (26) The method for producing the textured protein material according to (12), which is a textured protein material for instant food, (27) The method for producing the textured
  • FIG. 2 is a view showing a cut surface of a tissue-like protein material section observed under a microscope.
  • FIG. 10 is a drawing-substituting photograph of microscopic observation of cross sections of cut pieces of the materials of Example 3 and Comparative Example 5.
  • FIG. 10 is a drawing-substituting photograph of microscopic observation of cross sections of cut pieces of the materials of Example 3 and Comparative Example 5.
  • the method for producing a freeze-dried textured protein material of the present invention is characterized by including the following steps (A) to (C).
  • a raw material containing a protein raw material is introduced into an extruder, water is added so that the water content is 60 to 80% by weight with respect to the total amount of the raw material containing the protein raw material and water, kneading and pressurized heating are performed. Then, the dough is cooled with a cooling die having a hole length of 10 mm or more at the outlet of the extruder, and then extruded to obtain an unexpanded textured material.
  • (B) A step of cutting the unswelled structured material obtained in (A) into rectangular parallelepipeds of 5 to 12 mm square, or A step of cutting the unexpanded structured product obtained in (A) into a flat shape having a thickness of 0.1 to 5 mm, a length of 1 to 80 mm in the extrusion direction, and a width of 1 to 50 mm.
  • (C) A step of freezing the unswelled structured product obtained in (B) at -5 to -25°C and freeze-drying.
  • the freeze-dried textured protein material of the present invention has the following characteristics. i.e.
  • the protein material is 40 to 95% by weight in terms of solid content, and satisfies the following (1) or (2).
  • the textured protein material may contain, in addition to the protein material, 1 to 10% by weight of dietary fiber in terms of solid content and 1 to 5% by weight of starch in terms of solid content as raw materials.
  • the textured protein material may further contain 0.1 to 15% by weight of oil in terms of solid content.
  • the cut surface of the textured protein material is cut and observed under a microscope, the textured protein material is characterized by a dense structure with fine cells and fibers oriented in the longitudinal direction. Conditions for microscopic observation will be described later.
  • Water is added when supplying the raw material containing the protein material to the extruder.
  • water may be added so that the water content is 60 to 80% by weight with respect to the total amount of raw materials including the protein raw material and water supplied to the extruder. It is appropriate to add water so that it is necessary, preferably 61 to 78% by weight, more preferably 62 to 76% by weight.
  • the textured protein material produced using the cooling die is sufficiently cooled at the exit of the cooling die to a surface temperature of about 10-60°C. Therefore, the amount of water added and the amount of water in the actual textured protein material are almost the same.
  • the moisture content of the resulting textured product is generally 60-80% by weight, preferably 61-78% by weight, more preferably 62-76% by weight.
  • the total amount of water contained between protein fibers is greater than in the textured protein material using a cooling die containing a small amount of water. Therefore, evaporating this will result in relatively increasing the voids contained inside, and the water absorption speed will increase.
  • the water used in the present invention is not particularly limited, and an aqueous solvent containing a water-soluble component can be used as long as it does not affect the texture, flavor, and the like.
  • protein raw material refers to a structured raw material that is introduced into an extruder in order to produce a structured protein material and that contains protein.
  • a vegetable protein material is a plant-derived protein material, for example, oil such as soybean, pea, mung bean, chickpea, rapeseed, cottonseed, peanut, sesame, safflower, sunflower, corn, safflower, coconut, etc.
  • examples include protein materials derived from grain seeds, or protein materials derived from grain seeds such as rice, barley, and wheat.
  • the protein material includes pulverized plants, extracted protein, concentrated protein, isolated protein, plant milk such as soy milk, plant milk powder obtained by pulverizing plant milk such as soy milk, and the like.
  • examples thereof include rice glutelin, barley prolamin, wheat prolamin, wheat gluten, full-fat soybean flour, defatted soybean flour, soybean protein concentrate, soybean protein isolate, pea protein isolate, and mung bean protein isolate.
  • a soybean-derived protein material as described in the Examples and a protein material derived from oily seeds that can be substituted therefor are preferable.
  • oily seeds a protein material derived from beans is more preferable. preferable.
  • soybeans as an example, typical and non-limiting examples of the production of isolated soybean protein are given below. Even if other vegetable raw materials are used, the isolated vegetable protein can be produced according to the production examples below.
  • Extraction step Defatted soybeans are used as a soybean raw material, water is added to the mixture and stirred to form a suspension (slurry), and proteins are extracted with water.
  • the water can have a neutral to alkaline pH and can also contain salts such as calcium chloride.
  • the okara is separated by solid-liquid separation means such as centrifugation to obtain a protein extract (so-called soymilk).
  • so-called defatted soymilk powder obtained by heat sterilization and spray drying at this stage can be used as a powdery vegetable protein material.
  • Acid precipitation step Next, an acid such as hydrochloric acid or citric acid is added to the protein extract, and the pH of the extract is adjusted to pH 4 to 5, which is the isoelectric point of soybean protein, to insolubilize the protein and cause acid precipitation.
  • an acid such as hydrochloric acid or citric acid
  • pH 4 to 5 which is the isoelectric point of soybean protein
  • whey a supernatant containing saccharides and ash, which are acid-soluble components
  • solid-liquid separation means such as centrifugation to recover an "acid-precipitated curd" containing acid-insoluble components.
  • curd powder which can also be used as a powdery vegetable protein material.
  • soybean raw material instead of defatted soybean, various soybean raw materials such as full-fat soybean and partially defatted soybean can be used.
  • Various extraction conditions and devices can be applied to the extraction means.
  • a method for removing whey from the protein extract membrane concentration using an ultrafiltration membrane or the like may be performed instead of acid precipitation, in which case the neutralization step is not necessarily required.
  • the protein can be partially hydrolyzed by allowing a protease to act on the protein solution at any of the above steps.
  • soy milk When using plant milk such as soymilk, for example, in the case of soybeans, general soymilk or defatted soymilk obtained by extracting whole soybeans or defatted soybeans with water and removing bean curd refuse, which is an insoluble fiber, can be used. In order to obtain soymilk with better flavor at that time, an appropriately improved production method can be applied.
  • soymilk a slurry obtained by finely pulverizing bean curd refuse without removing bean curd refuse from soymilk can also be used.
  • the soymilk obtained from whole soybeans is further centrifuged to remove the low-density oil-rich cream layer produced.
  • the use of low-fat or non-fat soymilk obtained by this method is preferable to the use of defatted soymilk obtained from defatted soybeans in that it has less unpleasant taste and can be adjusted to have a stronger umami flavor.
  • the lipid content of the low-fat or fat-free soymilk is preferably 10% by weight or less, more preferably 5% by weight or less of the dry matter.
  • the composition of soybean protein preferably contains less "lipophilic protein" in the soybean protein in terms of flavor with less unfavorable taste.
  • a soybean protein material for example, the reduced-fat soybean protein material described in JP-A-2012-16348 can be used.
  • the lipid content in the reduced-fat soybean protein material is preferably less than 40% by weight, more preferably less than 35% by weight, relative to the protein content. , more preferably less than 30% by weight, and even more preferably less than 25% by weight, less than 20% by weight, less than 15% by weight, and less than 13% by weight.
  • the protein content of the reduced-fat soybean protein material used in the textured protein material is 40% by weight or more, preferably in the range of 45 to 95% by weight, based on the solid content.
  • the protein content is determined by measuring the nitrogen content by the Kjeldahl method in the same manner as in the soybean emulsion composition, and multiplying the nitrogen content by a nitrogen conversion factor of 5.71.
  • the soy protein material is soy milk
  • the lower limit is usually 40% by weight or more, or 45% by weight or more
  • the upper limit is 70% by weight or less, or 65% by weight or less.
  • the reduced-fat soybean protein material obtained by this process can also be powdered by spray drying or the like. Such a powdered reduced-fat soybean protein material is a good vegetable protein powder with a good umami flavor and little cereal flavor, and is also suitable for use as a textured protein material.
  • the protein raw material used in the present invention is powdery and granular. That is, it can be powdery or granular. However, in the case of granules, it is preferable that the particle size is as small as possible. Preferably, the particle size is 2 mm or less, more preferably 1 mm or less.
  • the protein content in the solid content of the protein raw material is preferably as high as possible in order to satisfy the protein content of the textured protein raw material.
  • the protein content is preferably 40% by weight or more, more preferably 45% by weight or more, and may be 50% by weight or more.
  • the protein content can be 95% or less, 90% or less, or 85% or less by weight.
  • the protein content of protein raw materials other than soymilk, such as isolated soybean protein and defatted soybean is determined by determining the total nitrogen content in the sample by the Kjeldahl method, multiplying it by a coefficient of 6.25, and measuring it as a percentage of the sample. It is expressed in minutes.
  • the mixing ratio of the protein raw material in the solid content of the raw material for producing the textured protein material can be appropriately set depending on the desired quality and in consideration of other raw materials, but the protein content of the textured protein material is satisfied. As high as possible is preferable.
  • the protein raw material is blended so that the protein content in the whole raw material is preferably 40 to 95% by weight.
  • the protein content may be 45% by weight or more, or 50% by weight or more.
  • the upper limit may be 93% by weight or less, or may be 90% by weight or less.
  • raw materials such as dietary fiber, starch, and oils can also be used.
  • insoluble dietary fiber or water-soluble dietary fiber can be used.
  • insoluble dietary fibers that can be used include wheat bran, soy bean curd refuse, wood pulp, and crystalline cellulose.
  • the amount of dietary fiber used when structuring the raw material is preferably 1 to 10% by weight, more preferably 3 to 10% by weight, and still more preferably 5 to 10% by weight based on the solid content of the raw material.
  • the content of the textured protein material of dietary fiber is preferably 1 to 10% by weight, more preferably 3 to 10% by weight, and still more preferably 5 to 10% by weight of the solid content.
  • starch Starches include, for example, sweet potatoes, potatoes, corn, tapioca, rice, barley, oats, rye, oats, buckwheat, corn, wheat, cassava, etc., unrefined starches thereof, starches derived therefrom, gelatinization thereof, It can be selected from the group consisting of processed starches treated by baking, hydrolysis, etc., starch derivatives, alkaline starch, fractionated starch, physically treated starch, etc., and mixtures thereof.
  • the amount of starch used in structuring the raw material is preferably 1-5% by weight, more preferably 2-4% by weight, based on the solid content of the raw material.
  • the content of the textured protein material of starch is preferably 1 to 5% by weight, more preferably 2 to 4% by weight, based on the solid content.
  • oils and fats vegetable oils such as rapeseed oil, soybean oil, corn oil, sunflower oil, palm oil, palm kernel oil, and coconut oil; Fractionated oils, hardened oils, transesterified oils, emulsified oils and fats emulsified with an emulsifier, and the like can be used. These oils and fats can be used singly or in combination of two or more. In the present invention, it is preferable to use vegetable oil.
  • the amount of fats and oils used when structuring the raw material is preferably 0.1 to 15% by weight, more preferably 3 to 15% by weight, and still more preferably 5 to 13% by weight based on the solid content of the raw material.
  • the content of the fat and oil textured protein material is preferably 0.1 to 15% by weight, more preferably 3 to 15% by weight, and still more preferably 5 to 13% by weight in the solid content.
  • the structuring for producing the textured protein material of the present invention is performed using an extruder device.
  • the extruder generally has a mechanism for feeding, kneading, pressurizing (compressing), and heating the raw material from the raw material supply port through a screw placed inside the barrel, and has a jacket type at the tip of the barrel (outlet).
  • a cooling pipe is installed.
  • the extruder that can be used is not limited, and one, two, or three or more shafts can be used. Among these, a biaxial extruder can be preferably used.
  • the operating conditions for supplying the raw material for producing the textured protein material to the extruder and extruding it from the die under pressure and heat can be appropriately selected and adjusted based on known conditions.
  • the temperature at the tip of the barrel is preferably 120 to 220°C, more preferably 120 to 170°C, as heating conditions.
  • the die pressure at the tip of the barrel is preferably 0.01 to 50 kg/cm 2 , more preferably 0.01 to 20 kg/cm 2 .
  • the longest hole length is at least 10 mm or more in the structure extruded through the cooling die located at the exit of the extruder. It is preferably 20 mm or more, more preferably 30 mm or more. Also, the upper limit value is preferably 200 mm or less, more preferably 150 mm or less, and even more preferably 100 mm or less. Examples include 10 mm to 200 mm, 10 mm to 150 mm, 10 mm to 100 mm, 20 mm to 200 mm, 20 mm to 150 mm, 20 mm to 100 mm, 30 mm to 200 mm, 30 mm to 150 mm, 30 mm to 100 mm.
  • the length of the longest portion of the cross section of the cooling die has the above length.
  • the shape of the hole of the cooling die is preferably circular, elliptical, square or rectangular. If the shape is circular, the longest part of the cross section is the length of the diameter of the circle; if the shape is elliptical, the longest part of the cross section is the length of the major axis of the ellipse; The longest part of the cross-section of is the length of the diagonal of the square, rectangle.
  • the structure extruded from the cooling die be cut into a suitable shape.
  • the structured product is cut into a rectangular parallelepiped shape of 5 to 12 mm square, or a flat shape having a thickness of 0.1 to 5 mm, a length of 1 to 80 mm in the extrusion direction, and a width of 1 to 50 mm. It is necessary to.
  • the "length in the extrusion direction” is the length in the direction in which the textured product is extruded
  • the "width” is the length in the direction perpendicular to the extrusion direction.
  • Cutting may be performed with a kitchen knife, and in the case of industrial production, for example, Dicer manufactured by Ashel Japan Co., Ltd. and Mini Multi Slicer manufactured by Asahi Sangyo Co., Ltd. may be used. There is no problem if the equipment can cut into the above shape.
  • the thickness is preferably 0.5-5 mm, more preferably 1-5 mm.
  • the texturized product After cutting the tissue, it is essential to freeze it at -5 to -25°C and then freeze-dry it. Freezing below -25°C accelerates the freezing rate and results in denser fibers due to smaller water ice crystals. Therefore, the texturized product has a gelatinous texture after freeze-drying, which is different from meat-like texture. In addition, the structure becomes too dense, so the water absorption is remarkably deteriorated. There are also drying methods such as hot air drying (AD) and microwave drying (MD), but both methods shrink the tissue, resulting in narrower voids. For this reason, it is essential to freeze at -5 to -25°C and then lyophilize.
  • AD hot air drying
  • MD microwave drying
  • auxiliary materials can be added as the structuring material of the present invention.
  • oils and fats, alkali metal salts such as salt, animal proteins such as egg white and casein, carbohydrates such as starch and polysaccharides, dietary fibers, emulsifiers, flavors, and other known additives may interfere with the effects of the present invention. It can also be added as appropriate within the range that is not required. However, it is preferable not to include animal protein if a plant-based textured protein material is desired.
  • the textured protein material of the present invention is characterized by a good meat-like fibrous feel and a high water absorption rate. Due to such characteristics, the textured protein material can be used as an ingredient for instant foods that is easily reconstituted with hot water. In addition, the textured protein material can be used as meat substitutes such as livestock meat such as beef, pork and chicken, and fish meat. The textured protein material of the present invention has a good meat-like texture even after being reconstituted with hot water. In addition, the textured protein material of the present invention can also be used as a meat-like raw material such as thinly sliced meat such as char siu. Moreover, since it is used as an ingredient for instant food, it is preferable that the textured protein material is seasoned. Specifically, in addition to protein raw materials, starch, dietary fiber, preferably oils and fats raw materials, reaction flavors, yeast extracts, fragrances, flavor oils, umami seasonings, etc. are combined and added as raw materials and organized. is preferred.
  • Examples 1-4, Comparative Examples 1-2 According to the raw material composition and operating conditions shown in Table 1, the raw material was introduced into a twin-screw extruder, kneaded and heated under pressure, and the kneaded material was extruded through a cooling die at the tip of the barrel to obtain a textured material.
  • the water content of the resulting structured material was the same value as the added water rate.
  • the resulting textured material was cut into cubes of 10 mm in length using a multi-slicer manufactured by Asahi Sangyo Co., Ltd., frozen at -18°C, and freeze-dried to obtain a textured protein material.
  • a twin-screw extruder (manufactured by Kowa Kogyo Co., Ltd.) was used under the following conditions.
  • ⁇ Cooling die opening 10 mm ⁇ 40 mm ⁇ length 90 cm (The shape of the hole in the cooling die is a rectangle of 10 mm ⁇ 40 mm, and the length of the longest part of the hole is 41.2 mm, which is the length of the diagonal of the rectangle. .)
  • Die pressure at barrel tip Controlled at 0.01 to 1 MPa ⁇ Barrel temperature: Inlet side: 80°C, center part: 90 to 110°C, outlet side: 120 to 150°C
  • Dietary fiber Soybean dietary fiber manufactured by Fuji Oil Co., Ltd.
  • textured protein material put 10 grains in a vertical 500ml tall beaker, pour 400ml of hot water at 95°C, and evaluate the texture after 5 minutes. Seven panelists skilled in texture evaluation of textured protein materials tasted and evaluated. The texture was evaluated based on the evaluation criteria shown below, and was determined by discussion among the panelists. Table 1 shows the results. ⁇ , ⁇ , and ⁇ were regarded as passed.
  • Comparative Example 1 The texture of Comparative Example 1 was fragile, and it was hard to say that it had a meat-like texture. Comparative Example 2 had a very strong feeling of elasticity, but had a gel texture that did not loosen easily and remained in the mouth for a long time. Although the feeling of elasticity was strong, it was judged that it was not meat-like elasticity. On the other hand, the textured protein materials of Examples 1 to 4 had a meat-like elasticity and were good.
  • Examples 5 to 8, Comparative Example 3 Thinly sliced ingredients such as char siu are also included in the ingredients of instant noodles. Also in the present invention, the shape of sliced meat was examined. According to the raw materials and operating conditions in Table 1 and Example 3, the kneaded raw materials were extruded through a cooling die at the tip of the barrel to obtain a textured product. The water content of the resulting structured material was the same value as the added water rate. The textured product is cut into a flat shape having a thickness of 1, 2, 3, 5, and 10 mm, a length of 40 mm in the extrusion direction, and a width of 40 mm using a meat slicer, frozen at -18 ° C., and freeze-dried. to obtain a textured protein material.
  • the resilience was good up to a thickness of 5 mm, but the resilience evaluation was poor at a thickness of 10 mm.
  • the texture evaluation of the examples was also good. Therefore, the desirable result was that the thickness of the textured protein material should be 5 mm or less. In the textured protein material with a thickness of 10 mm, the inside was not completely restored, and there was a hard part, so the meat-like elastic feeling could not be felt, and the texture was evaluated as x.
  • Example 9-10 Using the reduced-fat soymilk powder obtained in Production Example 1 (protein content per dry matter: 45%, lipid content per protein content: 11.5%), cooling die, barrel tip die The pressure and barrel temperature were set in the same manner as in Example 1 to obtain a textured product. The water content of the resulting structured material was the same value as the added water rate. Defatted soybean flour having approximately the same protein content was also processed in the same manner to obtain a textured product. The water content of the resulting structured material was the same value as the added water rate.
  • the textured product was cut into a flat shape with a thickness of 2 mm, a length of 40 mm in the extrusion direction, and a width of 40 mm using a meat slicer, frozen at -18°C, and then freeze-dried to obtain a textured protein material. .
  • evaluation of resilience, measurement of water absorption, and evaluation of texture were performed. Table 4 shows the results.
  • the textured protein material produced using the reduced-fat soymilk powder of Production Example 1 had a meat-like texture and was good. Reduced fat soymilk powder could also be used in this application.
  • the reduced-fat soymilk powder is a good vegetable protein powder with little cereal flavor, and is also suitable for use as a textured protein material.
  • the textured protein material produced using the defatted soybean flour of Example 9 also had a meat-like texture and was good.
  • Example 4 (Verification of freezing method Examples 11 to 12, Comparative Example 4) The freezing method was also verified. It was manufactured under the conditions of Example 3 to obtain a textured product. The water content of the resulting structured material was the same value as the added water rate. The resulting textured product was cut into cubes of 10 mm in length using a multi-slicer manufactured by Asahi Sangyo Co., Ltd., frozen at -18°C, -22°C, and -40°C, and then freeze-dried to obtain a textured protein material. got As in Example 1, the textured protein material was evaluated for resilience, measured for water absorption, and evaluated for texture. Table 5 shows the results.
  • Comparative Example 4 which was frozen at a freezing temperature of -40°C, water rehydration was not complete, and there were some hard parts that had not been rehydrated, and the restorability was poor.
  • Examples 11 and 12 which were frozen at -18°C and -22°C, were rehydrated with hot water without any problem, and had good restoration properties. This is because when the textured protein material is frozen, water ice crystals become finer at -40°C, resulting in a denser fibrous structure.
  • ice crystals become larger and gaps are formed between fibers. Since the size of the voids after the moisture is removed by freeze-drying is larger at the freezing temperature of ⁇ 18° C., it is thought that a difference in the water absorption rate is produced.
  • Examples 13 to 15 Evaluation of seasoned textured protein material
  • Examples 13 to 15 we evaluated textured protein materials seasoned with fats and seasonings.
  • the cooling die, the die pressure at the tip of the barrel, and the barrel temperature were used in the same manner as in Example 1 to obtain a structured product.
  • the water content of the resulting structured material was the same value as the added water rate.
  • the resulting textured product was cut into rectangular parallelepipeds of 10 mm square and freeze-dried to obtain textured protein materials.
  • the textured protein material was evaluated in the same manner as in Example 1, and the results are shown in Table 7.
  • Yeast extract Yeast extract manufactured by Fuji Food Industry Co., Ltd.
  • Beef flavor Beef flavor manufactured by Hasegawa Koryo Co., Ltd.
  • Example 13 There were no problems with resilience in either case.
  • the texture evaluation was good, and compared with Example 3, the mouthfeel was even better. This is considered to be the effect of blending the oil.
  • meat-like flavor and umami were felt in terms of taste.
  • the one that can contain the most vegetable protein is the assembled dried ingredient food.
  • Assembled dried ingredient foods are produced by mixing raw materials such as meat, commercially available soybean protein, water, and seasonings. The textures of this assembled dried ingredient food and the textured protein material of Example 3 were compared.
  • Comparative Example 5 had a fragile texture, a sponge-like cellular structure, and no meat-like texture. Therefore, the result was that the textured protein material produced by the production method of the present invention had a better meat-like texture than the dry meat alternative ingredient production method by general assembly.
  • Example 3 the texture was observed with a microscope because it had a dense meat-like texture despite being limited to vegetable raw materials.
  • the section was prepared by the following method and subjected to microscopic observation.
  • Example 3 As shown in FIG. 1, the cut surface along the dashed line was used as the observation surface.
  • Comparative Example 5 the cube was equally divided, and the cross section was used as the observation surface. 2. After embedding the sample in 3% CMC and freezing it, 10 ⁇ m sections were prepared with a freezing microtome. 3. Sections were stained by the method described in Japanese Patent No. 4780099 and observed under an optical microscope.
  • Example 3 there are clearly larger voids and cracks in the structure of Comparative Example 5 than in Example 3 (black circles in the micrograph of Comparative Example 5 in FIG. 2). It was considered that the fragility and sponge-like cellular structure in the food texture evaluation shown in Table 9 was derived from this structure. On the other hand, in Example 3, the structure is dense and has fine bubbles. It can also be seen that the fibers are oriented in the longitudinal direction of FIG. This was considered to be the reason why the meat-like texture can be felt in the texture evaluation shown in Table 9.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Agronomy & Crop Science (AREA)
  • Botany (AREA)
  • Grain Derivatives (AREA)
  • Beans For Foods Or Fodder (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)

Abstract

本発明は、空隙の小さい緻密な組織で噛み応えがあり、湯で戻したときの復元性のよい植物性組織状蛋白素材を提供することを課題とする。 (A)蛋白質原料を含む原料をエクストルーダーに導入し、蛋白質原料を含む原料及び水の全体の量に対して、水分が60~80重量%となるように加水して混練及び加圧加熱をし、エクストルーダーの出口に設置された、穴の最長部分の長さが10mm以上の冷却ダイにて生地を冷却してから押し出し、未膨化の組織化物を得る工程、 (B)(A)で得られた未膨化の組織化物を5~12mm四方の直方体状に切断する工程、あるいは、 (A)で得られた未膨化の組織化物を厚み0.1~5mm、押出方向の長さ1~80mm、幅1~50mmの扁平形状に切断する工程、 (C)(B)で得られた未膨化の組織化物を、-5~-25℃で冷凍し、凍結乾燥する工程、 により製造される凍結乾燥された組織状蛋白素材がお湯で戻したときの復元性がよく、空隙の小さい緻密な組織で噛み応えがあることを見出した。

Description

組織状蛋白素材の製造方法及び組織状蛋白素材
 本発明は、組織状蛋白素材の製造方法及び組織状蛋白素材に関する。
 即席乾燥具材とはお湯を加えてふやかすことで湯戻しする、水・お湯を加えて煮込む、水を加えて電子レンジで加熱するなどの調理方法で、3~5分ほどで喫食可能な状態にすることができる乾燥具材のことである。これらを使用した即席麺・即席みそ汁などは長期保存が可能であり、近年のサステナブルの観点からも将来的にも重要な食品素材になると考えられている。加えて近年の感染症の予防で自宅での食機会が増えていることにも伴い、即席食品への重要が増している。こういった趨勢の下、即席乾燥具材は、商品に彩りを与えるだけでなく、商品のおいしさに深く関わる重要な要素の一つである。
 従来の即席乾燥具材としては、野菜、畜肉、食肉加工品などが知られている。野菜の即席乾燥具材としては、例えば、キャベツ、ネギ、わかめ等を、そのままの状態か、又は味付け、ボイル等の前処理を行った後、凍結乾燥法(FD)又は熱風乾燥法(AD)により最終水分含有量2~3質量%程度まで乾燥させたものが挙げられる。畜肉の即席乾燥具材としては、例えば、牛肉、豚肉、鶏肉等を、そのままの状態か、又は味付け、ボイル等の前処理を行った後、FD又はADにより乾燥させたものが挙げられる。さらに近年では肉様の食感を持つ組織状蛋白と混ぜ合わせることで食感を固くしつつ復元性を高めた即席乾燥具材も用いられている。食肉加工品の即席乾燥具材としては、例えば、ソーセージ、チャーシュー、ダイス肉、かまぼこ、魚肉ソーセージ等の、畜肉、魚肉等を原料とした食肉加工品をフリーズドライ法又は熱風乾燥法により乾燥させたものが挙げられる。
 近年はサステナブルの観点から、組織状蛋白素材に対する注目度が上がっている。大豆や小麦などの植物由来の蛋白質原料を主原料としてエクストルーダーで原料混練物の組織を膨化させて得られる組織状蛋白素材は、従来から畜肉様の弾力感に近付けた品質に仕上げられて、ハンバーグやミートボール,ギョーザ,肉まん,シューマイ,メンチカツ,コロッケ,そぼろ等の畜肉を使用した加工食品の製造原料に広く使用されている。この組織状蛋白素材はエクストルーダーから吐出される際に膨化し、内部に空隙があるため、お湯を加えた際の復元性が良好なものもあり、即席食品の代用肉として利用されることも多くなってきた。
 近年では、蛋白質原料に副原料を組み合わせ、食感に特長のある組織状蛋白素材を創出する特許が出願されている。出願人もオート麦ファイバーを副原料として添加し、より適度な硬さと肉様のほぐれ感を有する肉様食感の組織状蛋白素材を実現できる技術を特許化した(特許文献1)。
 特許文献2においては、エクストルーダーから押出された組織状蛋白素材を、水戻し後脱水し、味付け処理を行って乾燥することで組織状蛋白素材の空隙を広げた状態を保ち、お湯を加えた際の復元性を良好にしている。
 特許文献3は乾麺に関する特許文献であるが、乾麺の空隙のサイズ・割合を調整することで噛み応えがあり、復元性に優れる乾麺素材について報告している。
特許第5794373号公報 特開2017-175942 特開2016-127856 特許第4780099号公報
 即席食品用途の植物性の組織状蛋白素材は、空隙が内部に存在するのでお湯を加えた際の復元性に優れるが、一方で空隙が多くあるために柔らかい食感やスポンジを噛んでいるような肉とは異なる食感となってしまっている。実際に、現在即席食品に用いられている組織状蛋白素材の大部分は粒が小さいもので、食感を目立たないようにしてあるものがほとんどである。
 特許文献3のように空隙のサイズ・割合を調整することで噛み応えがある素材を造ることが可能であるが、エクストルーダーを使った膨化食品においては空隙が大きくなってしまうため、こういった手法で噛み応えを出すことが難しい。また、特許文献1の技術を使用した組織状蛋白素材は膨化を抑えつつ緻密な繊維組織を実現し、非常に肉に近い食感であるが、一方でその緻密な組織がお湯を加えた際の復元性を悪くさせており、即席食品への利用は難しい。
 特許文献2においては多孔質構造の組織状蛋白素材を水戻し後脱水し、味付け処理を行って熱風乾燥することで組織状蛋白素材の空隙を広げた状態を保ち、お湯を加えた際の復元性を良好にしている。乾燥によって空隙は縮むがそれでも水戻し前の組織状蛋白素材に比べると空隙は大きくなるため、緻密な組織とは言いがたい。
 このように空隙の小さい緻密な組織で噛み応えがあり、大きいサイズで食べ応えがある、湯で戻したときの復元性のよい植物性の組織状蛋白素材が求められていた。
 そこで本発明は、空隙の小さい緻密な組織で噛み応えがあり、湯で戻したときの復元性のよい植物性組織状蛋白素材を提供することを課題とする。
 本発明者らは、上記の課題に対して鋭意研究を重ねた結果、以下の(A)~(C)の工程、すなわち、
(A)蛋白質原料を含む原料をエクストルーダーに導入し、蛋白質原料を含む原料及び水の全体の量に対して、水分が60~80重量%となるように加水して混練及び加圧加熱をし、エクストルーダーの出口に設置された、穴の最長部分の長さが10mm以上の冷却ダイにて生地を冷却してから押し出し、未膨化の組織化物を得る工程、
(B)(A)で得られた未膨化の組織化物を5~12mm四方の直方体状に切断する工程、あるいは、
(A)で得られた未膨化の組織化物を厚み0.1~5mm、押出方向の長さ1~80mm、幅1~50mmの扁平形状に切断する工程、
(C)(B)で得られた未膨化の組織化物を、-5~-25℃で冷凍し、フリーズドライで乾燥する工程、
により製造される凍結乾燥された組織状蛋白素材がお湯で戻したときの復元性がよく、空隙の小さい緻密な組織で噛み応えがあることを見出し本発明を完成するに至った。
を見出し本発明を完成するに到った。
 すなわち本発明は、
(1)以下の(A)~(C)の工程を含む、凍結乾燥された組織状蛋白素材の製造方法、
(A)蛋白質原料を含む原料をエクストルーダーに導入し、蛋白質原料を含む原料及び水の全体の量に対して、水分が60~80重量%となるように加水して混練及び加圧加熱をし、エクストルーダーの出口に設置された、穴の最長部分の長さが10mm以上の冷却ダイにて生地を冷却してから押し出し、未膨化の組織化物を得る工程、
(B)(A)で得られた未膨化の組織化物を5~12mm四方の直方体状に切断する工程、あるいは、(A)で得られた未膨化の組織化物を厚み0.1~5mm、押出方向の長さ1~80mm、幅1~50mmの扁平形状に切断する工程、
(C)(B)で得られた未膨化の組織化物を、-5~-25℃で冷凍し、凍結乾燥する工程、
(2)(A)の工程において、原料中、蛋白質原料が固形分換算で40~95重量%である、(1)記載の組織状蛋白素材の製造方法、
(3)蛋白質原料が植物性蛋白質素材である、(1)記載の組織状蛋白素材の製造方法、
(4)蛋白質原料が植物性蛋白質素材である、(2)記載の組織状蛋白素材の製造方法、
(5)植物性蛋白素材が、以下の(a)~(b)の要件を満たす減脂大豆蛋白素材である、(4)記載の組織状蛋白素材の製造方法、
(a)固形分当たりの蛋白質含量が40重量%以上。
(b)大豆蛋白素材中の脂質含量(クロロホルム/メタノール混合溶媒抽出物としての含量をいう。)が蛋白質含量に対して40重量%未満。
(6)(A)の工程において、さらに原料として食物繊維を固形分換算で1~10重量%含む、(1)記載の組織状蛋白素材の製造方法、
(7)(A)の工程において、さらに原料として澱粉を固形分換算で1~5重量%含む、(1)記載の組織状蛋白素材の製造方法、
(8)(A)の工程において、さらに原料として食物繊維を固形分換算で1~10重量%及び澱粉を固形分換算で1~5重量%含む、(1)記載の組織状蛋白素材の製造方法、
(9)(A)の工程において、さらに原料として食物繊維を固形分換算で1~10重量%含む、(5)記載の組織状蛋白素材の製造方法、
(10)(A)の工程において、さらに原料として澱粉を固形分換算で1~5重量%含む、(5)記載の組織状蛋白素材の製造方法、
(11)(A)の工程において、さらに原料として食物繊維を固形分換算で1~10重量%及び澱粉を固形分換算で1~5重量%含む、(5)記載の組織状蛋白素材の製造方法、
(12)(A)の工程において、さらに原料として油脂を固形分換算で0.1~15重量%含む、(6)記載の組織状蛋白素材の製造方法、
(13)(A)の工程において、さらに原料として油脂を固形分換算で0.1~15重量%含む、(7)記載の組織状蛋白素材の製造方法、
(14)(A)の工程において、さらに原料として油脂を固形分換算で0.1~15重量%含む、(8)記載の組織状蛋白素材の製造方法、
(15)(A)の工程において、さらに原料として油脂を固形分換算で0.1~15重量%含む、(9)記載の組織状蛋白素材の製造方法、
(16)(A)の工程において、さらに原料として油脂を固形分換算で0.1~15重量%含む、(10)記載の組織状蛋白素材の製造方法、
(17)(A)の工程において、さらに原料として油脂を固形分換算で0.1~15重量%含む、(11)記載の組織状蛋白素材の製造方法、
(18)即席食品用の組織状蛋白素材である、(1)記載の組織状蛋白素材の製造方法、
(19)即席食品用の組織状蛋白素材である、(5)記載の組織状蛋白素材の製造方法、
(20)即席食品用の組織状蛋白素材である、(6)記載の組織状蛋白素材の製造方法、
(21)即席食品用の組織状蛋白素材である、(7)記載の組織状蛋白素材の製造方法、
(22)即席食品用の組織状蛋白素材である、(8)記載の組織状蛋白素材の製造方法、
(23)即席食品用の組織状蛋白素材である、(9)記載の組織状蛋白素材の製造方法、
(24)即席食品用の組織状蛋白素材である、(10)記載の組織状蛋白素材の製造方法、
(25)即席食品用の組織状蛋白素材である、(11)記載の組織状蛋白素材の製造方法、
(26)即席食品用の組織状蛋白素材である、(12)記載の組織状蛋白素材の製造方法、
(27)即席食品用の組織状蛋白素材である、(13)記載の組織状蛋白素材の製造方法、
(28)即席食品用の組織状蛋白素材である、(14)記載の組織状蛋白素材の製造方法、
(29)即席食品用の組織状蛋白素材である、(15)記載の組織状蛋白素材の製造方法、
(30)即席食品用の組織状蛋白素材である、(16)記載の組織状蛋白素材の製造方法、
(31)即席食品用の組織状蛋白素材である、(17)記載の組織状蛋白素材の製造方法、
(32)蛋白質原料を固形分換算で40~95重量%含み、形状が以下の(1)または(2)を満たす凍結乾燥された組織状蛋白素材、
 (1)5~12mm四方の直方体状。
 (2)厚み0.1~5mm、押出方向の長さ1~80mm、幅1~50mmの扁平形状、
(33)蛋白質原料が、植物性蛋白質素材である、(32)記載の組織状蛋白素材、
(34)植物性蛋白素材が、以下の(a)~(b)の要件を満たす減脂大豆蛋白素材である、(33)記載の組織状蛋白素材、
(a)乾物当たりの蛋白質含量が40重量%以上、
(b)大豆蛋白素材中の脂質含量(クロロホルム/メタノール混合溶媒抽出物としての含量をいう。)が蛋白質含量に対して40重量%未満、
(35)さらに食物繊維が固形分換算で1~10重量%含有する、(34)記載の組織状蛋白素材、
(36)さらに澱粉が固形分換算で1~5重量%を含有する、(34)記載の組織状蛋白素材、
(37)さらに食物繊維が固形分換算で1~10重量%及び、澱粉が固形分換算で1~5重量%含有する、(34)記載の組織状蛋白素材、
(38)さらに、油脂を固形分換算で0.1~15重量%含有する、(35)記載の組織状蛋白素材、
(39)さらに、油脂を固形分換算で0.1~15重量%含有する、(36)記載の組織状蛋白素材、
(40)さらに、油脂を固形分換算で0.1~15重量%含有する、(37)記載の組織状蛋白素材、
(41)即席食品用である、(32)記載の組織状蛋白素材、
(42)即席食品用である、(34)記載の組織状蛋白素材、
(43)(32)記載の組織状蛋白素材を含有する肉代替物、
(44)(34)記載の組織状蛋白素材を含有する肉代替物、
(45)(32)記載の組織状蛋白素材を含有する即席食品用具材、
(46)(34)記載の組織状蛋白素材を含有する即席食品用具材、
である。
 本発明により、空隙の小さい緻密な組織で噛み応えがあり、湯で戻したときの復元性のよい植物性組織状蛋白素材を提供することができる。
顕微鏡観察する組織状蛋白素材切片切断面を示す図である。 実施例3、比較例5の素材の切片断面の顕微鏡観察した図面代用写真である。
 以下、本発明の実施態様について、詳細に説明する。
(凍結乾燥された組織状蛋白素材の製造方法)
 本発明の凍結乾燥された組織状蛋白素材の製造方法は、以下の(A)~(C)の工程を含むことを特徴とする。
(A)蛋白質原料を含む原料をエクストルーダーに導入し、蛋白質原料を含む原料及び水の全体の量に対して、水分が60~80重量%となるように加水して混練及び加圧加熱をし、エクストルーダーの出口に設置された、穴の最長部分の長さが10mm以上の冷却ダイにて生地を冷却してから押し出し、未膨化の組織化物を得る工程。
(B)(A)で得られた未膨化の組織化物を5~12mm四方の直方体に切断する工程、あるいは、
(A)で得られた未膨化の組織化物を厚み0.1~5mm、押出方向の長さ1~80mm、幅1~50mmの扁平形状に切断する工程。
(C)(B)で得られた未膨化の組織化物を、-5~-25℃で冷凍し、凍結乾燥する工程。
 本発明の凍結乾燥された組織状蛋白素材は以下の特徴を有する。すなわち、
 蛋白質素材が固形分換算で40~95重量%であり、以下の(1)または(2)を満たす。
 (1)5~12mm四方の直方体状、
 (2)厚み0.1~5mm、押出方向の長さ1~80mm、幅1~50mmの扁平形状
 である。
 本組織状蛋白素材は、蛋白質素材の他さらに原料として食物繊維を固形分換算で1~10重量%及び澱粉を固形分換算で1~5重量%含有しても良い。
 また、本組織状蛋白素材は、蛋白質素材、食物繊維、澱粉の他さらに、油脂を固形分換算で0.1~15重量%含有しても良い。
 本組織状蛋白素材は、切断したときの切断面を顕微鏡観察したとき、ち密かつ気泡が細かい組織となり、縦方向に繊維が配向するという特徴を有する。顕微鏡観察の条件については後述する。
 まず、上記(A)の工程について説明する。
 本発明における組織化方法について記載する。
 まず、脱脂大豆等の脱脂された植物性素材、分離植物性蛋白、濃縮植物性蛋白などの蛋白質原料の他、必要に応じさらに食物繊維、澱粉、油脂等の適当な原料をエクストルーダーに導入して、装置内部が加圧加熱された条件下において、加水しながら原料を装置内のスクリューで混練する。その後、形成された混練物を装置の出口部分にある「冷却ダイ」と呼ばれるジャケット冷却式のダイを用いることで、組織を膜状、繊維状に加工し、未膨化の組織化物を得ることができる。
(加水)
 蛋白質素材を含む原料を、エクストルーダーに供給する際に、加水を行う。本発明の組織状蛋白素材の製造方法の場合、エクストルーダーに供給される、蛋白質原料を含む原料及び水の全体の量に対して、水分が60~80重量%となるように加水することが必要であり、好ましくは61~78重量%であり、より好ましくは62~76重量%となるように加水するのが適当である。冷却ダイを使用して製造される組織状蛋白素材は、冷却ダイの出口で十分に冷却され、表面温度が10~60度程度となっている。そのため加水量と実際の組織状蛋白素材の水分量はほぼ同じとなる。従って、得られた組織化物の水分量は概ね60~80重量%であり、好ましくは61~78重量%であり、より好ましくは62~76重量%である。水を多く含む冷却ダイを使用した組織状蛋白素材においては蛋白の繊維間に含まれる水の総量が、水を少なく含む冷却ダイを使用した組織状蛋白素材に比べて多い。よってこちらを蒸発させると相対的に内部に含まれる空隙が増える結果となり、吸水速度が速くなる。
 また、本発明に用いる水は特に制限するものではなく、組織、風味等に影響のない範囲で水溶性成分を含む水性溶媒を用いることができる。
(蛋白質原料)
 本発明において、「蛋白質原料」とは、組織状蛋白素材を製造するために、エクストルーダーに導入する組織化原料であって、蛋白質を含有する原料を指す。具体的には、1つの態様としては植物性蛋白質素材を用いることが好ましい。
 「植物性蛋白質素材」とは、植物由来の蛋白質素材であり、例えば、大豆、エンドウ、緑豆、ヒヨコ豆、菜種、綿実、落花生、ゴマ、サフラワー、ヒマワリ、コーン、ベニバナ、ココナッツ等の油糧種子由来の蛋白質素材、あるいは、米、大麦、小麦等の穀物種子由来の蛋白質素材等が挙げられる。蛋白質素材とは、上記植物の粉砕物、抽出蛋白、濃縮蛋白、分離蛋白、豆乳などの植物乳、豆乳などの植物乳を粉末化した植物乳粉末等である。例えば、米グルテリン、大麦プロラミン、小麦プロラミン、小麦グルテン、全脂大豆粉、脱脂大豆粉、濃縮大豆蛋白、分離大豆蛋白、分離エンドウ蛋白、分離緑豆蛋白等が挙げられる。植物性蛋白質素材としては、特に実施例に記載されるような大豆由来の蛋白質素材や、これと置換可能な油量種子由来の蛋白質素材が好ましく、油量種子の中でも豆類由来の蛋白質素材がさらに好ましい。
 ここでは大豆を例として分離大豆蛋白の典型的かつ非限定的な製造例を以下に挙げる。他の植物性原料を用いても下記の製造例に準じて植物性分離蛋白を製造することができる。
I)抽出工程
 大豆原料として脱脂大豆を使用し、これに加水し攪拌等して懸濁液(スラリー)とし、蛋白質を水で抽出する。水は中性~アルカリ性のpHとすることができ、塩化カルシウム等の塩を含むこともできる。これを遠心分離等の固液分離手段でオカラを分離し、蛋白質抽出液(いわゆる豆乳)を得る。この段階で加熱殺菌し、噴霧乾燥したものが、いわゆる脱脂豆乳粉末であり、これを粉末状植物性蛋白素材として用いることもできる。
II)酸沈殿工程
 次に蛋白質抽出液に塩酸やクエン酸等の酸を添加し、該抽出液のpHを大豆蛋白質の等電点であるpH4~5に調整し、蛋白質を不溶化させて酸沈殿させる。次に遠心分離等の固液分離手段により酸可溶性成分である糖質や灰分を含む上清(いわゆるホエー)を除去して、酸不溶性成分を含む「酸沈殿カード」を回収する。この段階で噴霧乾燥したものが、いわゆるカードパウダーであり、これを粉末状植物性蛋白素材として用いることもできる。
III)中和工程
 次に酸沈殿カードに再度加水し、必要により該カードを水で洗浄後、「カードスラリー」を得る。そして該スラリーに水酸化ナトリウムや水酸化カリウム等のアルカリを加えて中和し、「中和スラリー」を得る。
IV)殺菌・粉末化工程
 次に中和スラリーを加熱殺菌し、スプレードライヤー等により噴霧乾燥し、必要により流動層造粒を経て分離大豆蛋白を得る。
 ただし、本発明における分離大豆蛋白は上記製造例にて製造されるものには限定されるものではない。大豆原料としては脱脂大豆の代わりに全脂大豆や部分脱脂大豆などの種々の大豆原料を用いることもできる。抽出手段も種々の抽出条件や装置を適用できる。たん白質抽出液からホエーを除去する方法として酸沈殿を行う代わりに限外ろ過膜等による膜濃縮を行うこともでき、その場合は中和工程は必ずしも必要ではない。さらに、大豆原料から予め酸性水やアルコールにより洗浄してホエーを除去した後に、中性乃至アルカリ性の水で蛋白質を抽出する方法を適用して製造することもできる。また、上記のいずれかの段階にて蛋白質の溶液にプロテアーゼを作用させ、蛋白質を部分加水分解することもできる。
(豆乳)
 豆乳のような植物乳を使用する場合、例えば大豆では、丸大豆や脱脂大豆から水で抽出し、不溶性繊維であるオカラを除去して得られる、一般的な豆乳や脱脂豆乳を使用することができ、その際に風味がより良好な豆乳を得るために適宜改良された製法を適用することができる。また豆乳としては豆乳からオカラを除去せずにオカラを微粉砕したスラリー状のものも使用することができる。
 一つの好適な態様として、なるべく脱脂粉乳のように低脂肪の大豆蛋白質原料を使用したい場合、丸大豆から得た豆乳類をさらに遠心分離することにより生成する低比重の油分に富むクリーム層を除去して得られる低脂肪ないし無脂肪の豆乳を使用することが、雑味が少なく、うま味をより強く感じる風味に調整できる点で、脱脂大豆から得た脱脂豆乳を使用するよりも好ましい。この際、低脂肪ないし無脂肪の豆乳の脂質含量は乾物中10重量%以下が好ましく、乾物中5重量%以下がより好ましい。
 より好適な態様としては、大豆蛋白質の組成としては、より雑味の少ない風味の点から、大豆蛋白質のうち「脂質親和性蛋白質」がより低減されていることが好ましい。かかる大豆蛋白質原料としては、例えば特開2012-16348号公報に記載の減脂大豆蛋白素材を使用することができる。
 また、減脂大豆蛋白素材中の脂質含量(クロロホルム/メタノール混合溶媒抽出物としての含量をいう。)が蛋白質含量に対して好ましくは40重量%未満であり、より好ましくは35重量%未満であり、さらに好ましくは30重量%未満であり、さらにより好ましくは25重量%未満、20重量%未満、15重量%未満、13重量%未満とすることも可能である。
 本組織状蛋白素材に使用する減脂大豆蛋白素材の蛋白質含量は固形分あたりで、40重量%以上であり、好ましくは45~95重量%の範囲となりうる。ここで蛋白質含量は大豆乳化組成物と同様に、ケルダール法により窒素量として測定し、該窒素量に5.71の窒素換算係数を乗じて求めるものとする。大豆蛋白素材が豆乳の場合、通常は下限が乾物あたり40重量%以上、あるいは45重量%以上であり、上限が70重量%以下、あるいは65重量%以下でありうる。
 本工程により得られる減脂大豆蛋白素材はスプレードライ等で粉末化したものも使用できる。かかる粉末化した減脂大豆蛋白素材は、うまみが感じられ、穀物風味の少ない良好な植物性蛋白粉末であり、組織状蛋白素材用途にも適している。
 本発明に用いる蛋白質原料は、粉粒状である。すなわち粉末状ないし粒状であることができる。ただし、粒状の場合、粒子径はできるだけ小さい方が好ましい。好ましくは、粒子径のサイズが2mm以下、より好ましくは1mm以下が適当である。
 該蛋白質原料中の固形分中の蛋白質含量は、組織状蛋白素材の蛋白質含量を満たすためになるべく高いことが好ましい。具体的には該蛋白質含量は、好ましくは40重量%以上であり、より好ましくは45重量%以上、50重量%以上とすることもできる。また、該蛋白質含量は、95重量%以下、90重量%以下、または85重量%以下であることができる。
 なお、豆乳以外の蛋白質原料、例えば、分離大豆蛋白、脱脂大豆などの蛋白質原料の蛋白質含量は試料中の全窒素量をケルダール法により求めて、係数6.25を乗じ試料に対する百分率として測定し固形分換算で表したものである。
 一般的には、組織状蛋白素材の製造原料の固形分中における蛋白質原料の混合比率は、求める品質により他原料との兼ね合いで適宜設定することができるが、組織状蛋白素材の蛋白質含量を満たすためになるべく高いことが好ましい。そのために、原料全体中の蛋白質含量が好ましくは40~95重量%となるように蛋白質原料を配合する。好ましくは、蛋白質含量が45重量%以上、50重量%以上とすることもできる。また、上限は93重量%以下でもよく、90重量%以下とすることもできる。
 本発明ではさらに食物繊維、澱粉、油脂等の原料を使用することができる。
(食物繊維)
 食物繊維として、不溶性食物繊維あるいは水溶性食物繊維を使用することができる。不溶性食物繊維としては、例えば、小麦フスマ、大豆オカラ、木材パルプ、結晶セルロースなどを使用することができる。
 原料を組織化する際の食物繊維の使用量は、原料の固形分中、好ましくは1~10重量%、より好ましくは3~10重量%、さらに好ましくは5~10重量%である。また、食物繊維の組織状蛋白素材の含有量は、固形分中、好ましくは1~10重量%、より好ましくは3~10重量%、さらに好ましくは5~10重量%である。
(澱粉)
 澱粉としては、例えば、甘藷、じゃがいも、玉蜀黍、タピオカ、米、大麦、オーツ、ライ麦、燕麦、蕎麦、トウモロコシ、小麦、キャッサバ等やこれらの未精製およびこれら由来の澱粉等、及びそれらのα化、ばい焼、加水分解等の処理を行った加工澱粉類、澱粉誘導体、アルカリ澱粉、分画澱粉、物理処理澱粉等、並びにその混合物からなる群から選ぶことが出来る。
 原料を組織化する際の澱粉の使用量は、原料の固形分中、好ましくは1~5重量%、より好ましくは2~4重量%である。また、澱粉の組織状蛋白素材の含有量は、固形分中、好ましくは1~5重量%、より好ましくは2~4重量%である。
(油脂)
 油脂として、菜種油、大豆油、とうもろこし油、ひまわり油、パーム油、パーム核油、ヤシ油等の植物性油脂、牛脂、豚脂、乳脂等の動物性油脂、またはこれらの植物性油脂あるいは動物性油脂の分別油、硬化油、エステル交換油、乳化剤を用いて乳化した乳化油脂等を用いることができる。これらの油脂は1種、または2種以上を併用して使用することができる。
 本発明においては植物性油脂を用いることが好ましい。
 原料を組織化する際の油脂の使用量は、原料の固形分中、好ましくは0.1~15重量%、より好ましくは3~15重量%、さらに好ましくは5~13重量%である。また、油脂の組織状蛋白素材の含有量は、固形分中、好ましくは0.1~15重量%、より好ましくは3~15重量%、さらに好ましくは5~13重量%である。
(エクストルーダー)
 本発明の組織状蛋白素材を製造するための組織化は、エクストルーダーの装置を用いて行う。エクストルーダーは一般的に、原料供給口からバレル内でその中に配置されたスクリューによって原料を送り、混練、加圧(圧縮)、加熱する機構を有し、バレル先端部(出口)にジャケット式冷却管が装着されている。
 使用できるエクストルーダーは、制限はなく、1軸、2軸、あるいは3軸以上のものを用いることができる。この中でも2軸エクストルーダーを好適に用いることができる。
(エクストルーダーの運転条件)
 組織状蛋白素材の製造原料をエクストルーダーに供給し、加圧加熱下にダイより押し出す際の運転条件は、公知の条件に基づいて適宜選択および調整できる。非限定的な例を示すと、加熱条件としてバレル先端部の温度は120~220℃が好ましく、120~170℃がさらに好ましい。
 加圧条件はバレル先端のダイ圧力が0.01~50kg/cm2が好ましく、0.01~20kg/cm2がさらに適当である。
(ダイ)
 エクストルーダーの出口に設置された冷却ダイを通過して押し出される組織化物において、穴の最長部分の長さが少なくとも10mm以上であることが重要である。好ましくは20mm以上、さらに好ましくは30mm以上である方がよい。また、上限の数値は、好ましくは200mm以下であり、より好ましくは150mm以下であり、さらに好ましくは100mm以下である。例えば、10mm~200mm、10mm~150mm、10mm~100mm、20mm~200mm、20mm~150mm、20mm~100mm、30mm~200mm、30mm~150mm、30mm~100mm等が挙げられる。
 既存の植物性の即席食品具材はその食感の違和感から小さい粒状のものが用いられており、満足感があるとは言いがたかった。従って本課題を解決するためにも冷却ダイの断面の最長部分の長さは上記の長さがあることが望まれる。
 冷却ダイの穴の形状は円形、楕円形、正方形、長方形などがよい。形状が円形の場合の断面の最長部分は、円の直径の長さであり、形状が楕円形の場合の断面の最長部分は、楕円の長径の長さであり、形状が正方形、長方形の場合の断面の最長部分は、正方形、長方形の対角線の長さである。
 次に、上記(B)、(C)の工程について説明する。
 冷却ダイより押出された組織化物は切断して適切な形状にすることが必須である。組織化物の吸水速度を早くするために、組織化物は5~12mm四方の直方体状、あるいは、厚み0.1~5mm、押出方向の長さ1~80mm、幅1~50mmの扁平形状などに切断することが必要である。ここで、「押出方向の長さ」とは組織化物が押し出される方向の長さであり、「幅」は押出方向の長さと垂直の方向の長さをいう。
 切断は包丁で切断してもよいし、工業的に生産する場合には例えばアーシェルジャパン株式会社製Dicerやアサヒ産業株式会社製ミニマルチスライサーなどが挙げられる。上記の形状に切断できる機器であれば問題ない。
 厚みは、好ましくは0.5~5mm、より好ましくは1~5mmである。
 組織化物を切断後には-5~-25℃で冷凍してから凍結乾燥することが必須である。-25℃未満で冷凍すると冷凍速度が速くなり、水の氷結晶が小さくなるためより緻密な繊維となる。そのため、組織化物は凍結乾燥後の食感がゲル質となり、畜肉様の食感と異なるものとなる。また組織が緻密になりすぎるため吸水性も著しく悪化する。熱風乾燥(AD)やマイクロ波ドライ(MD)で乾燥する方法もあるが、いずれの方法も組織を縮ませるため、空隙が狭くなってしまう。このため、-5~-25℃で凍結した後に凍結乾燥することが必須である。
(その他の組織化原料)
 本発明の組織化原料として、他に種々の副原料を添加することができる。例えば、油脂、食塩等のアルカリ金属塩、卵白やカゼイン等の動物性蛋白、澱粉や多糖類等の糖質、食物繊維、乳化剤、香料、その他の公知の添加物を、本発明の効果を妨げない範囲で、適宜加えることもできる。ただし、動物性蛋白については、植物ベースの組織状蛋白素材を謳いたい場合は、含まないことが好ましい。
(用途)
 本発明の組織状蛋白素材は、肉様の繊維感が良好で、吸水速度が速いという特徴を有する。このような特徴から、組織状蛋白素材を湯戻りが良好な即席食品用の具材として使用することができる。また、組織状蛋白素材を牛肉、豚肉、鶏肉等畜肉や、魚肉等の肉代替物として使用することができる。本発明の組織状蛋白素材は湯戻しした後も、肉様の良好な食感を有する。
 また、本発明の組織状蛋白素材は、チャーシューのような薄切り肉などの畜肉様原料として利用することもできる。
 また、即席食品具材として使用するため、組織状蛋白素材が味付けされていることが好ましい。具体的には、蛋白質原料、澱粉、食物繊維、好ましくは油脂の原料に加えて、リアクションフレーバーや酵母エキス、香料、香味油、うまみ調味料などを組み合わせて、原料として添加して組織化するのが好ましい。
 以下に実施例を記載することで本発明を説明する。なお、例中の部及び%は特に断らない限り重量基準を意味するものとする。
(実施例1~4、比較例1~2)
 表1の原料配合、運転条件に従い、原料を2軸エクストルーダーに導入し、原料の混練、加圧加熱を行い、混練物をバレル先端の冷却ダイから押し出して組織化物を得た。得られた組織化物の水分は添加水率と同様の数値となった。得られた組織化物をアサヒ産業(株)製マルチスライサーで長さ10mmの立方体に切断し、-18℃で冷凍した後、凍結乾燥を行い、組織状蛋白素材を得た。なお、2軸エクストルーダー(幸和工業(株)社製)は以下の条件で使用した。
 ・冷却ダイ     :開口部10mm×40mm×長さ90cm(冷却ダイの穴の形状は10mm×40mmの長方形であり、穴の最長部分の長さは、該長方形の対角線の長さの41.2mmである。)
 ・バレル先端のダイの圧力: 0.01~1MPaで管理
 ・バレル温度    :入口側:80℃,中央部:90~110℃,出口側:120~150℃
(表1)
Figure JPOXMLDOC01-appb-I000001
食物繊維:不二製油(株)製 大豆食物繊維
 組織状蛋白素材について、10粒を縦型の500mlトールビーカーに入れた状態で95℃のお湯を400ml注いで5分後の食感を評価した。組織状蛋白素材の食感評価に熟練したパネラー7名が試食し評価した。食感評価に関しては、以下に示す評価基準に基づき評価し、パネラーの合議により決定した。結果を表1に示した。△、○、◎を合格とした。
<評価基準>
・食感評価
 ◎:肉様の弾力感を非常に強く感じる
 ○:肉様の弾力感を強く感じる 
 △:肉様の弾力感を感じる 
 ×:肉様の弾力感を感じない
 比較例1は食感がもろく、肉様の食感とは言い難かった。比較例2は弾力感が非常に強いものの、ほぐれが悪く口の中に長く残り続けるゲル食感であった。弾力感は強いが肉様の弾力感ではないと判断した。一方で実施例1~4の組織状蛋白素材は肉様の弾力感が感じられ、良好であった。
 表1における食感評価においてはお湯戻しを5分で行ったが実際の即席食品においてはすばやく吸水し、未吸水の硬い部分が残らないようにしなければならない。よって、実施例1の評価と同様の方法を使用し、食感評価において合格範囲であった実施例1~4において2分後の食感・吸水量を測定した。吸水量に関しては2分後に自重の何倍のお湯を吸ったかを測定・算出した。
 組織状蛋白素材の水戻り評価に関しては、組織状蛋白素材の官能評価に熟練したパネラー7名が試食し評価した。水戻り評価に関しては、以下に示す評価基準に基づき評価し、パネラーの合議により決定した。結果を表2に示した。○を合格とした。
<評価基準>
・復元性評価に関する官能評価
 ○:問題なく水戻りしている。硬い部分がない。
 ×:硬い部分が残っており、完全に水戻りしていない。
(表2)
Figure JPOXMLDOC01-appb-I000002
 実施例1~4において、いずれも硬い部分が感じられず、お湯の復元性は問題なかった。
(実施例5~8、比較例3)
 即席麺の具材にはチャーシュー等の薄くスライスされた具材も存在する。本発明においても薄切り肉形状の検討を行った。表1・実施例3の原料、運転条件に従い、原料の混練物をバレル先端の冷却ダイから押し出して組織化物を得た。得られた組織化物の水分は添加水率と同様の数値となった。組織化物は、厚み1、2、3、5、10mmとして、押出方向の長さが40mm、幅が40mmの扁平形状にミートスライサーを用いて切断し、-18℃で冷凍した後、凍結乾燥を行い、組織状蛋白素材を得た。
 実施例1と同様に復元性の評価、吸水量の測定、食感評価を行った。結果を表3に示した。
(表3)
Figure JPOXMLDOC01-appb-I000003
 湯戻り評価の結果5mmの厚さまでは復元性は良好だったが、10mmの厚みにおいては復元性評価は悪かった。また、実施例の食感評価も良好であった。よって組織状蛋白素材の厚みは5mm以下が望ましい結果となった。10mmの厚みの組織状蛋白素材においては完全に内部まで復元しておらず、硬い部分があったため肉様の弾力感を感じられず、食感評価は×とした。
 次に減脂大豆蛋白素材として、減脂豆乳粉を使用した組織状蛋白素材を製造した。
(製造例1)(減脂豆乳粉の調製)
 不二製油(株)において製造した低脂肪豆乳をスプレードライヤーにおいて乾燥し、粉末化し、減脂豆乳粉末を得た。
(実施例9~10)
 製造例1において得られた減脂豆乳粉末(乾物あたりの蛋白質量:45%、蛋白質含量あたりの脂質含量:11.5%)を用いて、表5の配合、条件に従い、冷却ダイ、バレル先端のダイ圧力、バレル温度は実施例1と同様にして組織化し組織化物を得た。得られた組織化物の水分は添加水率と同様の数値となった。また、ほぼ同量の蛋白含量を持つ脱脂大豆粉についても同様に加工し、組織化物を得た。得られた組織化物の水分は添加水率と同様の数値となった。組織化物は、厚み2mm、押出方向の長さが40mm、幅が40mmの扁平形状にミートスライサーを用いて切断し、-18℃で冷凍した後、凍結乾燥を行い、組織状蛋白素材を得た。実施例1と同様に復元性の評価、吸水量の測定、食感評価を行った。結果を表4に示した。
(表4)
Figure JPOXMLDOC01-appb-I000004
 製造例1の減脂豆乳粉末を使用して製造した組織状蛋白素材は肉様の食感があり、良好であった。本用途において減脂豆乳粉末も使用可能であった。
 減脂豆乳粉末は穀物風味の少ない良好な植物性蛋白粉末であり、組織状蛋白素材用途にも適しているため、即席食品具材用途においても穀物臭が少ない具材を作成可能であった。
 また、実施例9の脱脂大豆粉を使用して製造した組織状蛋白素材も肉様の食感があり、良好であった。
(冷凍方法の検証 実施例11~12、比較例4)
 冷凍方法についても検証を行った。
 実施例3の条件で製造し、組織化物を得た。得られた組織化物の水分は添加水率と同様の数値となった。得られた組織化物を、アサヒ産業(株)製マルチスライサーで長さ10mmの立方体に切断し、-18℃、-22℃、-40℃で冷凍した後、凍結乾燥を行い、組織状蛋白素材を得た。組織状蛋白素材について、実施例1と同様に復元性の評価、吸水量の測定、食感評価を行った。結果を表5に示した。
(表5)
Figure JPOXMLDOC01-appb-I000005
 凍結温度が-40℃凍結の比較例4は水戻りが完全でなく、所々湯戻りしていない硬い部分が存在し、復元性は悪かった。一方、-18℃、-22℃凍結の実施例11、12は問題なく湯戻りし、復元性は良好だった。これは組織状蛋白素材が冷凍される際に-40℃においては水の氷結晶が細かくなり、より緻密な繊維組織になるためである。一方、-18℃、-22℃の凍結においては氷結晶が大きくなり、繊維間の隙間ができる。凍結乾燥によって水分がなくなった後の空隙の大きさは-18℃の凍結温度の方が大きくなるため、吸水速度に差が生まれると考えられる。
(味付けした組織状蛋白素材の評価)(実施例13~15)
 次に油脂や調味料を使用し、味付けを行った組織状蛋白素材について評価を行った。表6の配合、条件に従って、冷却ダイ、バレル先端のダイ圧力、バレル温度は実施例1と同様に組織化し、組織化物を得た。得られた組織化物の水分は添加水率と同様の数値となった。得られた組織化物を10mm四方の直方体状に切断後、凍結乾燥し、組織状蛋白素材を得た。組織状蛋白素材について、実施例1と同様に評価し、結果を表7に示した。
 (表6)
Figure JPOXMLDOC01-appb-I000006
 酵母エキス:富士食品工業(株)製酵母エキス
 ビーフフレーバ―:長谷川香料(株)製ビーフ風味フレーバー
 (表7)
Figure JPOXMLDOC01-appb-I000007
 いずれも復元性は問題なかった。実施例13~15は食感評価は良好な上、実施例3と比べさらにくちどけがよくなっていた。これは油を配合したことによる効果であると考えられる。また、調味料を使用した実施例15は味の面でも畜肉様の風味、うまみが感じられた。
 市販されている乾燥肉様具材においてもっとも植物性たんぱく質を多く含むことができるものは組み立て乾燥具材食品である。組み立て乾燥具材食品は、肉、市販の大豆たんぱく、水、調味料等の原料を混合して製造するものである。
 この組み立て乾燥具材食品と、実施例3の組織状蛋白素材との食感の比較を行った。
(比較例5)組み立て乾燥具材食品の製造
 表8の配合に従い、原料を攪拌後、10mmの厚みに成型して210℃で5分間蒸し加熱して、-18℃で冷凍した。冷凍後、10mmの立方体に切断して凍結乾燥を行い、水分3%程度になるように調整し、組み立て乾燥具材食品を製造した。食感は実施例1の評価と同様に繊維食感評価を行った。結果を表9に示した。
 なお、粒状大豆蛋白は、不二製油株式会社製の「ニューフジニック50」を用いた。
(表8)
Figure JPOXMLDOC01-appb-I000008
(表9)
Figure JPOXMLDOC01-appb-I000009
 比較例5はもろい食感であり、スポンジのような気泡構造を感じ、肉様の食感は感じられなかった。よって、一般的な組み立てによる乾燥肉代替具材製造方法よりも本発明の製造方法で製造した組織状蛋白素材の方が肉様の食感が良好であるという結果となった。
 実施例3に関しては植物性原料限定にも拘らず緻密な肉様の食感を持っていたので顕微鏡による組織観察を行った。
 切片を以下の方法で調整し、顕微鏡観察に供した。
(切片調整方法)
1. 実施例3は図1に示したように、破線による切断面を観察面とした。比較例5は立方体を等分割し、断面を観察面とした。
2. 試料を3%CMCに包埋し凍結させたのちに、凍結ミクロトームで10μmの切片を作製した。
3. 特許 第4780099号に記載された方法で切片を染色し、光学顕微鏡にて観察した。
 結果を以下の図2に示した。
 図2において、実施例3よりも比較例5の組織の方が明らかに大きな空隙やひび割れが存在する(図2の比較例5の顕微鏡写真の黒の円の部分)。表9で示された食感評価においてもろさやスポンジのような気泡構造を感じたのはこの構造に由来するものであると考えられた。一方で実施例3においては、ち密かつ気泡が細かい組織となっている。図2の縦方向に繊維が配向しているのも見て取れた。これが表9で示された食感評価において肉様の食感を感じることができる要因と考えられた。
 以上の結果により、空隙の小さい緻密な組織で噛み応えがあり、湯で戻したときに復元性のよい植物性組織状蛋白素材が製造できることを見出した。

Claims (46)

  1. 以下の(A)~(C)の工程を含む、凍結乾燥された組織状蛋白素材の製造方法。
    (A)蛋白質原料を含む原料をエクストルーダーに導入し、蛋白質原料を含む原料及び水の全体の量に対して、水分が60~80重量%となるように加水して混練及び加圧加熱をし、エクストルーダーの出口に設置された、穴の最長部分の長さが10mm以上の冷却ダイにて生地を冷却してから押し出し、未膨化の組織化物を得る工程。
    (B)(A)で得られた未膨化の組織化物を5~12mm四方の直方体状に切断する工程、あるいは、(A)で得られた未膨化の組織化物を厚み0.1~5mm、押出方向の長さ1~80mm、幅1~50mmの扁平形状に切断する工程。
    (C)(B)で得られた未膨化の組織化物を、-5~-25℃で冷凍し、凍結乾燥する工程。
  2. (A)の工程において、原料中、蛋白質原料が固形分換算で40~95重量%である、請求項1記載の組織状蛋白素材の製造方法。
  3. 蛋白質原料が植物性蛋白質素材である、請求項1記載の組織状蛋白素材の製造方法。
  4. 蛋白質原料が植物性蛋白質素材である、請求項2記載の組織状蛋白素材の製造方法。
  5. 植物性蛋白素材が、以下の(a)~(b)の要件を満たす減脂大豆蛋白素材である、請求項4記載の組織状蛋白素材の製造方法。
    (a)固形分当たりの蛋白質含量が40重量%以上。
    (b)大豆蛋白素材中の脂質含量(クロロホルム/メタノール混合溶媒抽出物としての含量をいう。)が蛋白質含量に対して40重量%未満。
  6. (A)の工程において、さらに原料として食物繊維を固形分換算で1~10重量%含む、請求項1記載の組織状蛋白素材の製造方法。
  7. (A)の工程において、さらに原料として澱粉を固形分換算で1~5重量%含む、請求項1記載の組織状蛋白素材の製造方法。
  8. (A)の工程において、さらに原料として食物繊維を固形分換算で1~10重量%及び澱粉を固形分換算で1~5重量%含む、請求項1記載の組織状蛋白素材の製造方法。
  9. (A)の工程において、さらに原料として食物繊維を固形分換算で1~10重量%含む、請求項5記載の組織状蛋白素材の製造方法。
  10. (A)の工程において、さらに原料として澱粉を固形分換算で1~5重量%含む、請求項5記載の組織状蛋白素材の製造方法。
  11. (A)の工程において、さらに原料として食物繊維を固形分換算で1~10重量%及び澱粉を固形分換算で1~5重量%含む、請求項5記載の組織状蛋白素材の製造方法。
  12. (A)の工程において、さらに原料として油脂を固形分換算で0.1~15重量%含む、請求項6記載の組織状蛋白素材の製造方法。
  13. (A)の工程において、さらに原料として油脂を固形分換算で0.1~15重量%含む、請求項7記載の組織状蛋白素材の製造方法。
  14. (A)の工程において、さらに原料として油脂を固形分換算で0.1~15重量%含む、請求項8記載の組織状蛋白素材の製造方法。
  15. (A)の工程において、さらに原料として油脂を固形分換算で0.1~15重量%含む、請求項9記載の組織状蛋白素材の製造方法。
  16. (A)の工程において、さらに原料として油脂を固形分換算で0.1~15重量%含む、請求項10記載の組織状蛋白素材の製造方法。
  17. (A)の工程において、さらに原料として油脂を固形分換算で0.1~15重量%含む、請求項11記載の組織状蛋白素材の製造方法。
  18. 即席食品用の組織状蛋白素材である、請求項1記載の組織状蛋白素材の製造方法。
  19. 即席食品用の組織状蛋白素材である、請求項5記載の組織状蛋白素材の製造方法。
  20. 即席食品用の組織状蛋白素材である、請求項6記載の組織状蛋白素材の製造方法。
  21. 即席食品用の組織状蛋白素材である、請求項7記載の組織状蛋白素材の製造方法。
  22. 即席食品用の組織状蛋白素材である、請求項8記載の組織状蛋白素材の製造方法。
  23. 即席食品用の組織状蛋白素材である、請求項9記載の組織状蛋白素材の製造方法。
  24. 即席食品用の組織状蛋白素材である、請求項10記載の組織状蛋白素材の製造方法。
  25. 即席食品用の組織状蛋白素材である、請求項11記載の組織状蛋白素材の製造方法。
  26. 即席食品用の組織状蛋白素材である、請求項12記載の組織状蛋白素材の製造方法。
  27. 即席食品用の組織状蛋白素材である、請求項13記載の組織状蛋白素材の製造方法。
  28. 即席食品用の組織状蛋白素材である、請求項14記載の組織状蛋白素材の製造方法。
  29. 即席食品用の組織状蛋白素材である、請求項15記載の組織状蛋白素材の製造方法。
  30. 即席食品用の組織状蛋白素材である、請求項16記載の組織状蛋白素材の製造方法。
  31. 即席食品用の組織状蛋白素材である、請求項17記載の組織状蛋白素材の製造方法。
  32. 蛋白質原料を固形分換算で40~95重量%含み、形状が以下の(1)または(2)を満たす凍結乾燥された組織状蛋白素材。
    (1)5~12mm四方の直方体状。
    (2)厚み0.1~5mm、押出方向の長さ1~80mm、幅1~50mmの扁平形状。
  33. 蛋白質原料が、植物性蛋白質素材である、請求項32記載の組織状蛋白素材。
  34. 植物性蛋白素材が、以下の(a)~(b)の要件を満たす減脂大豆蛋白素材である、請求項33記載の組織状蛋白素材。
    (a)乾物当たりの蛋白質含量が40重量%以上。
    (b)大豆蛋白素材中の脂質含量(クロロホルム/メタノール混合溶媒抽出物としての含量をいう。)が蛋白質含量に対して40重量%未満。
  35. さらに食物繊維が固形分換算で1~10重量%含有する、請求項34記載の組織状蛋白素材。
  36. さらに澱粉が固形分換算で1~5重量%を含有する、請求項34記載の組織状蛋白素材。
  37. さらに食物繊維が固形分換算で1~10重量%及び、澱粉が固形分換算で1~5重量%含有する、請求項34記載の組織状蛋白素材。
  38. さらに、油脂を固形分換算で0.1~15重量%含有する、請求項35記載の組織状蛋白素材。
  39. さらに、油脂を固形分換算で0.1~15重量%含有する、請求項36記載の組織状蛋白素材。
  40. さらに、油脂を固形分換算で0.1~15重量%含有する、請求項37記載の組織状蛋白素材。
  41. 即席食品用である、請求項32記載の組織状蛋白素材。
  42. 即席食品用である、請求項34記載の組織状蛋白素材。
  43. 請求項32記載の組織状蛋白素材を含有する肉代替物。
  44. 請求項34記載の組織状蛋白素材を含有する肉代替物。
  45. 請求項32記載の組織状蛋白素材を含有する即席食品用具材。
  46. 請求項34記載の組織状蛋白素材を含有する即席食品用具材。
PCT/JP2022/013420 2021-03-25 2022-03-23 組織状蛋白素材の製造方法及び組織状蛋白素材 WO2022202884A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP22775666.5A EP4316262A1 (en) 2021-03-25 2022-03-23 Method for producing textured protein material, and textured protein material
JP2023509238A JPWO2022202884A1 (ja) 2021-03-25 2022-03-23
CN202280022632.0A CN117062538A (zh) 2021-03-25 2022-03-23 组织状蛋白原材料的制造方法和组织状蛋白原材料
US18/283,314 US20240172774A1 (en) 2021-03-25 2022-03-23 Method for producing textured protein material, and textured protein material
AU2022244773A AU2022244773A1 (en) 2021-03-25 2022-03-23 Method for producing textured protein material, and textured protein material
KR1020237035817A KR20230159532A (ko) 2021-03-25 2022-03-23 조직상 단백 소재의 제조 방법 및 조직상 단백 소재

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021051020 2021-03-25
JP2021-051020 2021-03-25

Publications (1)

Publication Number Publication Date
WO2022202884A1 true WO2022202884A1 (ja) 2022-09-29

Family

ID=83397252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013420 WO2022202884A1 (ja) 2021-03-25 2022-03-23 組織状蛋白素材の製造方法及び組織状蛋白素材

Country Status (7)

Country Link
US (1) US20240172774A1 (ja)
EP (1) EP4316262A1 (ja)
JP (1) JPWO2022202884A1 (ja)
KR (1) KR20230159532A (ja)
CN (1) CN117062538A (ja)
AU (1) AU2022244773A1 (ja)
WO (1) WO2022202884A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681580B2 (ja) * 1988-12-02 1994-10-19 不二製油株式会社 乾燥蛋白食品の製造法
JP2004041041A (ja) * 2002-07-10 2004-02-12 Fuji Oil Co Ltd 乾燥食品の製造法
JP4780099B2 (ja) 2007-12-17 2011-09-28 不二製油株式会社 小麦粉製品観察方法
JP2012016348A (ja) 2010-06-07 2012-01-26 Fuji Oil Co Ltd 減脂豆乳及び大豆乳化組成物、並びにそれらの製造法
JP5794373B1 (ja) 2014-10-28 2015-10-14 不二製油株式会社 肉様食感の強い組織状大豆蛋白質素材
JP2016127856A (ja) 2010-07-01 2016-07-14 東洋水産株式会社 乾麺およびその製造方法
JP2017175942A (ja) 2016-03-28 2017-10-05 日清食品ホールディングス株式会社 肉様乾燥蛋白加工食品の製造方法
JP2018164459A (ja) * 2018-08-01 2018-10-25 日清食品ホールディングス株式会社 組織状蛋白素材の製造方法
JP2019135923A (ja) * 2018-02-06 2019-08-22 日清食品ホールディングス株式会社 組織状蛋白素材の製造方法
JP6844736B1 (ja) * 2020-07-13 2021-03-17 不二製油株式会社 組織状蛋白素材の製造方法及び組織状蛋白素材

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681580B2 (ja) * 1988-12-02 1994-10-19 不二製油株式会社 乾燥蛋白食品の製造法
JP2004041041A (ja) * 2002-07-10 2004-02-12 Fuji Oil Co Ltd 乾燥食品の製造法
JP4780099B2 (ja) 2007-12-17 2011-09-28 不二製油株式会社 小麦粉製品観察方法
JP2012016348A (ja) 2010-06-07 2012-01-26 Fuji Oil Co Ltd 減脂豆乳及び大豆乳化組成物、並びにそれらの製造法
JP2016127856A (ja) 2010-07-01 2016-07-14 東洋水産株式会社 乾麺およびその製造方法
JP5794373B1 (ja) 2014-10-28 2015-10-14 不二製油株式会社 肉様食感の強い組織状大豆蛋白質素材
JP2017175942A (ja) 2016-03-28 2017-10-05 日清食品ホールディングス株式会社 肉様乾燥蛋白加工食品の製造方法
JP2019135923A (ja) * 2018-02-06 2019-08-22 日清食品ホールディングス株式会社 組織状蛋白素材の製造方法
JP2018164459A (ja) * 2018-08-01 2018-10-25 日清食品ホールディングス株式会社 組織状蛋白素材の製造方法
JP6844736B1 (ja) * 2020-07-13 2021-03-17 不二製油株式会社 組織状蛋白素材の製造方法及び組織状蛋白素材

Also Published As

Publication number Publication date
CN117062538A (zh) 2023-11-14
AU2022244773A1 (en) 2023-10-12
US20240172774A1 (en) 2024-05-30
JPWO2022202884A1 (ja) 2022-09-29
EP4316262A1 (en) 2024-02-07
KR20230159532A (ko) 2023-11-21

Similar Documents

Publication Publication Date Title
JP5034940B2 (ja) 大豆パフの製造法
US5437885A (en) Method of making a non-porous vegetable protein fiber product
JP2017532020A (ja) 改善されたテクスチャーおよび延長された品質保持期間を有するタンパク質性肉類似物
CA3008247C (en) Pulse-based pasta and process for manufacturing the same
JP2022514457A (ja) テクスチャ付与した豆果タンパク質を含む組成物
JPWO2015108142A1 (ja) 海老肉代替物及びその製造法
WO2014156948A1 (ja) 組織状植物性蛋白素材及びこれを利用した薄切り代用肉
JP7099661B1 (ja) 畜肉様加工食品の製造方法
JPH0446098B2 (ja)
JP2004180516A (ja) 菓子及びその製造法
JP6476536B2 (ja) ノンフライスナック様食品およびその製造法
US7851009B2 (en) Process of making meat-like food products
US7541057B2 (en) Method for preparing multipurpose ready-to-eat high protein soy granules
WO2022202884A1 (ja) 組織状蛋白素材の製造方法及び組織状蛋白素材
JP4070453B2 (ja) 肉様食品素材並びにこれを用いた肉様食品
JP5276236B1 (ja) 乾燥蛋白質加工品及びその製造法
JP2003018964A (ja) 含脂組織状膨化食品素材の製造方法
EP4252540A1 (en) Tissue-form protein ingredient and method for producing same
JP6844736B1 (ja) 組織状蛋白素材の製造方法及び組織状蛋白素材
JP2006191927A (ja) 大豆蛋白含有シート状食品及びその製造方法
WO2020196714A1 (ja) 植物ベースの繊維性肉代替食品及びその製造法
JP2003235461A (ja) 組織状蛋白及びこれを用いた加工食品の製造法
JP7160736B2 (ja) ウニ様乾燥食品の製造方法
WO2022255379A1 (ja) 肉様タンパク組成物およびその製造方法ならびにそれを含む肉様食品、添加剤、組成物の使用
JPH0928304A (ja) 大豆蛋白含有シート状食品の製造方法及びその生地

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775666

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023509238

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280022632.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18283314

Country of ref document: US

Ref document number: 2301005959

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2022244773

Country of ref document: AU

Ref document number: AU2022244773

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022244773

Country of ref document: AU

Date of ref document: 20220323

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237035817

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237035817

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022775666

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202307037S

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 2022775666

Country of ref document: EP

Effective date: 20231025