WO2022202763A1 - 車両の制動制御装置 - Google Patents

車両の制動制御装置 Download PDF

Info

Publication number
WO2022202763A1
WO2022202763A1 PCT/JP2022/013005 JP2022013005W WO2022202763A1 WO 2022202763 A1 WO2022202763 A1 WO 2022202763A1 JP 2022013005 W JP2022013005 W JP 2022013005W WO 2022202763 A1 WO2022202763 A1 WO 2022202763A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking force
wheel
regenerative braking
rear wheel
front wheel
Prior art date
Application number
PCT/JP2022/013005
Other languages
English (en)
French (fr)
Inventor
将来 丸山
貴之 山本
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Priority to CN202280022284.7A priority Critical patent/CN117043024A/zh
Priority to DE112022001650.7T priority patent/DE112022001650T5/de
Publication of WO2022202763A1 publication Critical patent/WO2022202763A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1766Proportioning of brake forces according to vehicle axle loads, e.g. front to rear of vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/12Dynamic electric regenerative braking for vehicles propelled by dc motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/26Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/604Merging friction therewith; Adjusting their repartition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/608Electronic brake distribution (EBV/EBD) features related thereto

Definitions

  • the present disclosure relates to a vehicle braking control device.
  • Patent Literature 1 describes a braking force control method during regenerative braking coordinated control that ensures the safety of a brake system that independently controls the braking force of the front and rear wheels, improves fuel efficiency, and distributes excellent braking force.
  • providing in the first stage of “distributing the braking force of the front wheels and rear wheels by generating regenerative braking force to one or more of the front wheels and rear wheels at the time of braking up to the reference deceleration, front wheels according to the reference braking distribution ratio After the regenerative braking force and the rear wheel regenerative braking force are distributed and generated, only the rear wheel regenerative braking force is generated up to the rear wheel regenerative braking force limit value, and the rear wheel regenerative braking force reaches the rear wheel regenerative braking force limit value.
  • the applicant has developed a "brake control device capable of simultaneously applying separate hydraulic pressures to the front and rear wheels by a single pressurization system using an electric motor," as described in Patent Document 2.
  • the braking control device adjusts the front wheel brake fluid pressure of front wheel cylinders 71 and 72 provided for the front wheels of the vehicle and the rear wheel brake fluid pressure of rear wheel cylinders 73 and 74 provided for the rear wheels of the vehicle.
  • a hydraulic pressure generating unit 1A that adjusts the hydraulic pressure generated by the electric motor 11 to obtain the regulated hydraulic pressure and applies the regulated hydraulic pressure as the rear wheel braking hydraulic pressure; and a hydraulic pressure correction unit 1B for applying the corrected hydraulic pressure as the front wheel braking hydraulic pressure. Therefore, in the configuration of the brake control device, the front wheel brake fluid pressure is always lower than the rear wheel brake fluid pressure. In other words, there is a constraint on the generation of the front wheel braking force and the rear wheel braking force.
  • the relationship between the front wheel braking force and the rear wheel braking force must be constant even during regenerative braking in which the regenerative braking device generates the regenerative braking force. (That is, the ratio of the rear wheel braking force to the front wheel braking force should be constant). Further, it is desired that this relationship be achieved in a configuration with the constraints noted above.
  • a braking control device for a vehicle includes front and rear wheel regenerative braking devices (KCf, KCr) that generate front and rear wheel regenerative braking forces (Fgf, Fgr) on front and rear wheels (WHf, WHr).
  • KCf, KCr front and rear wheel regenerative braking devices
  • Fgf, Fgr front and rear wheel regenerative braking forces
  • WHf, WHr front and rear wheels
  • An actuator that supplies hydraulic pressure (Pwr) to generate front and rear wheel frictional braking forces (Fmf, Fmr) on the front and rear wheels (WHf, WHr); and a regenerative braking device for the front and rear wheels.
  • KCf, KCr and a controller (ECU) that controls the actuator (HU).
  • the controller calculates the braking force required for the entire vehicle as a target vehicle system power (Fv), and calculates front wheel and rear wheel required braking forces (Fqf, Fqr) matches the target vehicle system dynamics (Fv), and the ratio (Kq) of the required rear wheel braking force (Fqr) to the required front wheel braking force (Fqf) becomes a constant value (hb).
  • the rear wheel limit regenerative braking force (Fsr) is calculated by multiplying the power (Fxf) by the constant value (hb), and the rear wheel limit regenerative braking force (Fxr) and the rear wheel limit regenerative braking force (Fsr ) is determined as the rear wheel reference regenerative braking force (Fkr).
  • the front wheel required braking force (Fqf) is equal to or less than the front wheel limit regenerative braking force (Fxf) (Fqf ⁇ Fxf)
  • the front wheel required braking force (Fqf) is achieved only by the front wheel regenerative braking force (Fgf).
  • the front wheel required braking force (Fqf) is greater than the front wheel limit regenerative braking force (Fxf) (Fqf>Fxf)
  • the front wheel required braking force (Fqf) is reduced to the front wheel regenerative braking force (Fgf) and , is achieved by the front wheel frictional braking force (Fmf).
  • the rear wheel required braking force (Fqr) is equal to or less than the rear wheel reference regenerative braking force (Fkr) (Fqr ⁇ Fkr)
  • the rear wheel required braking force (Fqr) is reduced to the rear wheel regenerative braking force (Fgr )
  • the rear wheel requested braking force (Fqr) is greater than the rear wheel reference regenerative braking force (Fkr) (Fqr>Fkr
  • the rear wheel requested braking force (Fqr) is set to the rear wheel regenerative braking force (Fqr).
  • the controller (ECU) does not generate the rear wheel regenerative braking force (Fgr) when the front wheel regenerative braking device (KCf) cannot generate the front wheel regenerative braking force (Fgf).
  • the actuator HU has a restriction that the rear wheel braking hydraulic pressure Pwr is greater than or equal to the front wheel braking hydraulic pressure Pwf.
  • the rear wheel regenerative braking force Fgr is reduced based on the rear wheel reference regenerative braking force Fkr. occurrence is restricted. Therefore, even if the generation of the front and rear braking forces is restricted, the ratio Kq of the rear wheel required braking force Fqr to the front wheel required braking force Fqf is always maintained constant. Therefore, the relationship between the front and rear braking forces is optimized, and vehicle stability is improved.
  • a braking control device for a vehicle includes front and rear wheel regenerative braking devices (KCf, KCr) that generate front and rear wheel regenerative braking forces (Fgf, Fgr) on front and rear wheels (WHf, WHr). It is applied to a vehicle, and supplies a rear wheel brake fluid pressure (Pwr) to a rear wheel wheel cylinder (CWr), and supplies a front wheel brake fluid pressure (Pwf) or more to a front wheel cylinder (CWf).
  • An actuator (HU) that supplies braking fluid pressure (Pwf) to generate front and rear wheel frictional braking forces (Fmf, Fmr) on the front and rear wheels (WHf, WHr); and regenerative braking of the front and rear wheels. It comprises devices (KCf, KCr) and a controller (ECU) that controls the actuator (HU).
  • the controller calculates the braking force required for the entire vehicle as a target vehicle system power (Fv), and calculates front wheel and rear wheel required braking forces (Fqf, Fqr) matches the target vehicle system dynamics (Fv), and the ratio (Kq) of the required rear wheel braking force (Fqr) to the required front wheel braking force (Fqf) becomes a constant value (hb).
  • the smaller one of them is determined as the front wheel reference regenerative braking force (Fkf).
  • the front wheel required braking force (Fqf) is equal to or less than the front wheel reference regenerative braking force (Fkf) (Fqf ⁇ Fkf)
  • the front wheel required braking force (Fqf) is achieved only by the front wheel regenerative braking force (Fgf).
  • the front wheel required braking force (Fqf) is greater than the front wheel reference regenerative braking force (Fkf) (Fqf>Fkf)
  • the front wheel required braking force (Fqf) is reduced to the front wheel regenerative braking force (Fgf) and , is achieved by the front wheel frictional braking force (Fmf).
  • the rear wheel required braking force (Fqr) is equal to or less than the rear wheel limit regenerative braking force (Fxr) (Fqr ⁇ Fxr)
  • the rear wheel required braking force (Fqr) is reduced to the rear wheel regenerative braking force (Fgr )
  • the rear wheel required braking force (Fqr) is greater than the rear wheel limit regenerative braking force (Fxr) (Fqr>Fxr
  • the rear wheel required braking force (Fqr) is set to the rear wheel regenerative braking force This is achieved by the live braking force (Fgr) and the rear wheel frictional braking force (Fmr).
  • the controller (ECU) does not generate the front wheel regenerative braking force (Fgf) when the rear wheel regenerative braking device (KCr) cannot generate the rear wheel regenerative braking force (Fgr).
  • the actuator HU has a restriction that the front wheel brake fluid pressure Pwf is greater than or equal to the rear wheel brake fluid pressure Pwr.
  • the front wheel regenerative braking force Fgf is reduced based on the front wheel reference regenerative braking force Fkf. occurrence is restricted. Therefore, even if the generation of the front and rear braking forces is restricted, the ratio Kq of the rear wheel required braking force Fqr to the front wheel required braking force Fqf is always kept constant. Therefore, the relationship between the front and rear braking forces is optimized, and vehicle stability is improved.
  • FIG. 1 is a configuration diagram for explaining an entire vehicle JV equipped with a braking control device SC;
  • FIG. 1 is a schematic diagram for explaining a first embodiment of a braking control device SC;
  • FIG. 4 is a flowchart for explaining processing of regenerative cooperative control;
  • FIG. 4 is a characteristic diagram for explaining the front-rear braking force distribution at the start of braking in the first embodiment;
  • FIG. 5 is a characteristic diagram for explaining the front-rear distribution of braking force at the time of reallocation operation in the first embodiment;
  • FIG. 10 is a characteristic diagram for explaining the braking force front-rear distribution at the start of braking in the second embodiment;
  • FIG. 11 is a characteristic diagram for explaining braking force front-rear distribution at the time of reallocation operation in the second embodiment;
  • constituent elements such as members, signals, values, etc. denoted by the same reference numerals such as "CW” have the same function.
  • the suffixes "f” and “r” attached to the end of various symbols related to wheels are generic symbols indicating whether the elements relate to the front wheels or the rear wheels. Specifically, “f” indicates “elements related to front wheels” and “r” indicates “elements related to rear wheels”.
  • the wheel cylinders CW are described as “front wheel cylinder CWf, rear wheel cylinder CWr”. Additionally, the subscripts "f” and "r” may be omitted. When these are omitted, each symbol represents its generic name.
  • ⁇ Vehicle JV equipped with braking control device SC> An entire vehicle equipped with a braking control device SC according to the first embodiment will be described with reference to the configuration diagram of FIG.
  • the vehicle equipped with the braking control device SC is also referred to as "own vehicle JV" in order to distinguish it from other vehicles (for example, preceding vehicle SV).
  • the vehicle JV is a hybrid vehicle or an electric vehicle equipped with an electric motor GN for driving.
  • the electric motor GN for driving also functions as a generator for regenerating energy.
  • the generators GN are provided for the front wheels WHf and the rear wheels WHr.
  • a device including the front wheel generator GNf and its controller EGf is referred to as a "front wheel regenerative braking device KCf".
  • a device constituted by the rear wheel generator GNr and its controller EGr is called a "rear wheel regenerative braking device KCr".
  • the vehicle JV is equipped with storage batteries BT for the front and rear wheel regenerative braking devices KCf and KCr. That is, the front wheel and rear wheel regenerative braking devices KCf and KCr also include the storage battery BT.
  • the controller EG for the regenerative braking device (simply referred to as "regenerative controller") is used.
  • regenerative controller electric power is supplied from the storage battery BT to the electric motor/generator GN.
  • the electric motor/generator GN operates as a generator (during deceleration of the vehicle JV)
  • electric power from the generator GN is stored in the storage battery BT via the regenerative controller EG (so-called regenerative braking is performed). is called).
  • front wheel and rear wheel generators GNf and GNr generate front and rear wheel regenerative braking forces Fgf and Fgr independently and individually.
  • the front wheel regenerative braking device KCf is relatively larger than the rear wheel regenerative braking device KCr. That is, the front and rear wheel regenerative braking devices KCf and KCr generate front and rear wheel regenerative braking forces Fgf and Fgr in accordance with the vehicle speed Vx. is higher than the generation limit of the regenerative braking force of the rear wheel regenerative braking device KCr. Therefore, the rear wheel regenerative braking device KCr reaches the generation limit of the regenerative braking force before the front wheel regenerative braking device KCf.
  • the vehicle JV is equipped with a braking device SX.
  • Front wheel and rear wheel frictional braking forces Fmf and Fmr are generated on the front wheel WHf and the rear wheel WHr by the braking device SX.
  • the braking device SX includes a rotary member (for example, brake disc) KT and a brake caliper CP.
  • the rotary member KT is fixed to the wheel WH, and a brake caliper CP is provided so as to sandwich the rotary member KT.
  • a wheel cylinder CW is provided in the brake caliper CP.
  • a braking fluid BF adjusted to a braking fluid pressure Pw is supplied to the wheel cylinder CW from the braking control device SC.
  • the braking fluid pressure Pw presses the friction member (for example, brake pad) MS against the rotating member KT. Since the rotating member KT and the wheels WH are fixed so as to rotate integrally, friction braking force Fm is generated on the wheels WH by the frictional force generated at this time.
  • the friction member for example, brake pad
  • the vehicle JV is equipped with a braking operation member BP and various sensors (BA, etc.).
  • a braking operation member (for example, a brake pedal) BP is a member operated by the driver to decelerate the vehicle.
  • the vehicle JV is provided with a braking operation amount sensor BA that detects an operation amount (braking operation amount) Ba of the braking operation member BP.
  • a simulator hydraulic pressure sensor PS for detecting a hydraulic pressure (simulator hydraulic pressure) Ps of a stroke simulator SS (described later)
  • an operation displacement sensor SP for detecting an operation displacement Sp of a braking operation member BP
  • a braking At least one of the operating force sensors FP is employed to detect the operating force Fp of the operating member BP.
  • the operation amount sensor BA detects at least one of the simulator hydraulic pressure Ps, the braking operation displacement Sp, and the braking operation force Fp as the braking operation amount Ba.
  • the braking operation amount Ba is input to a controller ECU for the braking control device SC (simply referred to as a "braking controller").
  • the vehicle JV is equipped with various sensors including a wheel speed sensor VW for detecting the rotation speed (wheel speed) Vw of the wheels WH. Detection signals (Ba, etc.) from these sensors are input to the braking controller ECU.
  • the braking controller ECU calculates a vehicle body speed Vx based on the wheel speed Vw.
  • the vehicle JV is provided with a braking control device SC so that so-called regenerative cooperative control (control for cooperatively operating the regenerative braking force Fg and the frictional braking force Fm) is executed.
  • the braking control device SC employs a so-called front-rear type (also referred to as "II type") as the two braking systems.
  • the braking control device SC adjusts the actual braking fluid pressure Pw according to the operation amount Ba of the braking operation member BP, and controls the braking device SX (in particular, the wheel cylinder CW ) is supplied with the braking fluid pressure Pw.
  • the braking control device SC is composed of a hydraulic unit HU (also referred to as an "actuator”) including a master cylinder CM, and a controller ECU (brake controller) for the braking control device SC.
  • the fluid unit HU (described later) is controlled by the braking controller ECU.
  • a controller ECU for the braking control device SC is composed of a microprocessor MP for signal processing, and a drive circuit DD for driving the solenoid valves and the electric motor.
  • the vehicle body speed Vx is calculated by the braking controller ECU and transmitted to the controller ECA for the driving assistance device (simply referred to as "driving assistance controller") through the communication bus BS.
  • a target deceleration Gd is calculated by the driving assistance controller ECA and transmitted to the braking controller ECU via the communication bus BS.
  • a braking operation amount Ba, a wheel speed Vw, a target deceleration Gd, a limit regenerative braking force Fx, and the like are input to the braking controller ECU. Based on these signals, the brake controller ECU controls the hydraulic unit HU.
  • the vehicle JV is provided with a driving support device UC that performs automatic braking on behalf of the driver or to assist the driver.
  • the driving assistance device UC includes an object detection sensor OB for detecting a distance Ds (relative distance) to an object OJ in front of the own vehicle JV (including a preceding vehicle SV traveling in front of the own vehicle JV), and a driving assistance device. It is composed of a controller ECA for For example, a radar sensor, a millimeter wave sensor, an image sensor, etc. are employed as the object detection sensor OB.
  • the driving assistance controller ECA calculates a target deceleration Gd (a target value of vehicle acceleration in the longitudinal direction of the vehicle JV) of the vehicle JV based on the detection result Ds (relative distance) of the object detection sensor OB.
  • the target deceleration (target vehicle longitudinal acceleration) Gd is transmitted from the driving assistance controller ECA to the braking controller ECU via the communication bus BS. Then, braking forces Fg and Fm corresponding to the target deceleration Gd are generated by the braking control device SC.
  • the brake control device SC includes a fluid unit HU as a pressurization source for increasing the hydraulic pressure (brake hydraulic pressure) Pw of the four wheel cylinders CW.
  • the fluid unit HU and the master cylinder CM are integrated.
  • the brake control device SC employs a front/rear type (also referred to as "type II") braking system.
  • the fluid unit HU is composed of an apply unit AU including a master cylinder CM and a pressure unit KU.
  • the apply unit AU and pressurization unit KU are controlled by the braking controller ECU.
  • the controller ECU stores a braking operation amount Ba (at least one of simulator hydraulic pressure Ps, operation displacement Sp, and operation force Fp), target deceleration Gd, first and second adjustment hydraulic pressures Pa, Pb, , front and rear wheel limit regenerative braking forces Fxf and Fxr are input.
  • drive signals Va and Vb for the first and second on-off valves VA and VB drive signals Ua and Ub for the first and second pressure regulating valves UA and UB, drive signals Ma for the electric motor MA, Then, front wheel and rear wheel target regenerative braking forces Fhf and Fhr are calculated.
  • the solenoid valves "VA, VB, UA, UB” and the electric motor MA that constitute the fluid unit HU are controlled (driven) according to the drive signals "Va, Vb, Ua, Ub, Ma".
  • a fluid pipe, a flow path in the fluid unit HU, a hose, etc. correspond to the fluid path (HS, etc.).
  • the apply unit AU includes a master reservoir RV, a master cylinder CM, a master piston NP, a master spring DP, an input cylinder CN, an input piston NN, an input spring DN, first and second on-off valves VA and VB, a stroke simulator SS, and It is composed of the simulator hydraulic pressure sensor PS.
  • the master reservoir (also called “atmospheric pressure reservoir”) RV is a tank for working fluid, and brake fluid BF is stored inside.
  • the master reservoir RV is connected to the master cylinder CM (especially the master chamber Rm).
  • the master cylinder CM is a cylinder member having a bottom.
  • a master piston NP is inserted inside the master cylinder CM, and the inside thereof is sealed by a seal member SL to form a master chamber Rm.
  • the master cylinder CM is a so-called single type.
  • a master spring DP is provided in the master chamber Rm so as to press the master piston NP in the backward direction Hb (the direction in which the volume of the master chamber Rm increases and opposite to the forward direction Ha).
  • the master chamber Rm is finally connected to the front wheel cylinder CWf via the front wheel communication path HSf and the hydraulic pressure modulator MJ.
  • the brake fluid BF flows from the fluid unit HU (particularly, the master cylinder CM) toward the front wheel cylinder CWf so that the hydraulic pressure Pm is pumped with
  • the hydraulic pressure Pm in the master chamber Rm is referred to as "master hydraulic pressure”.
  • a flange portion (flange) Tp is provided on the master piston NP.
  • the inside of the master cylinder CM is further partitioned into a servo chamber Ru and a rear chamber Ro by the flange Tp.
  • the servo chamber Ru is arranged to face the master chamber Rm with the master piston NP therebetween.
  • the rear chamber Ro is sandwiched between the master chamber Rm and the servo chamber Ru and arranged therebetween.
  • the servo chamber Ru and the rear chamber Ro are also sealed by the seal member SL in the same manner as described above.
  • the pressure receiving area of the flange Tp of the master piston NP (that is, the pressure receiving area of the servo chamber Ru) ru and the pressure receiving area of the end portion of the master piston NP (that is, the pressure receiving area of the master chamber Rm) rm become equal.
  • the hydraulic pressure Pa (described later) in the servo chamber Ru and the hydraulic pressure Pm (master hydraulic pressure) in the master chamber Rm become equal.
  • the input cylinder CN is fixed to the master cylinder CM.
  • An input piston NN is inserted inside the input cylinder CN and sealed by a seal member SL to form an input chamber Rn.
  • the input piston NN is mechanically connected to the brake operating member BP via a clevis (U-shaped link).
  • the input piston NN is provided with a flange portion (flange) Tn.
  • An input spring DN is provided between the flange portion Tn and the mounting surface of the input cylinder CN with respect to the master cylinder CM. The input spring DN presses the input piston NN in the backward direction Hb.
  • the input piston NN and the master piston NP With the input piston NN and the master piston NP being pushed most in the backward direction Hb, the input piston NN and the master piston NP have a gap Ks (also referred to as "separation distance").
  • the clearance Ks creates a state in which the braking fluid pressure Pw does not change even when the displacement Sp of the braking operation member BP occurs.
  • the input piston NN and the master piston NP are separated from each other with the gap Ks, so that the braking control device SC is brake-by-wire and can achieve cooperative regenerative control.
  • the apply unit AU is provided with an input chamber Rn, a servo chamber Ru, a rear chamber Ro, and a master chamber Rm.
  • the "hydraulic chamber” is a chamber filled with the damping fluid BF and sealed by the seal member SL.
  • the volume of each hydraulic chamber is changed by movement of the input piston NN and master piston NP.
  • the hydraulic chambers are arranged along the central axis Jm of the master cylinder CM in the order of the input chamber Rn, the servo chamber Ru, the rear chamber Ro, and the master chamber Rm from the side closest to the braking operation member BP.
  • the input chamber Rn and the rear chamber Ro are connected via an input path HN.
  • a first on-off valve VA is provided in the input path HN.
  • the input path HN is connected to the master reservoir RV via the reservoir path HR between the rear chamber Ro and the first on-off valve VA.
  • a second on-off valve VB is provided in the reservoir passage HR.
  • the first and second on-off valves VA and VB are two-position solenoid valves (also called “on/off valves") having an open position (communication state) and a closed position (blockage state).
  • a normally closed solenoid valve is employed as the first on-off valve VA.
  • a normally open solenoid valve is employed as the second on-off valve VB.
  • the first and second on-off valves VA and VB are driven (controlled) by drive signals Va and Vb from the braking controller ECU.
  • a stroke simulator (simply called a "simulator") SS is connected to the rear chamber Ro.
  • the simulator SS generates an operating force Fp for the brake operating member BP.
  • a piston and an elastic body (for example, a compression spring) are provided inside the simulator SS.
  • the piston is pushed by the brake fluid BF. Since a force is applied to the piston by the elastic body in a direction to prevent the inflow of the brake fluid BF, an operating force Fp of the brake operating member BP is generated.
  • the operating characteristics of the brake operating member BP (the relationship between the operating displacement Sp and the operating force Fp) are formed by the simulator SS.
  • a simulator hydraulic pressure sensor PS is provided to detect the hydraulic pressure Ps of the simulator SS (which is the simulator hydraulic pressure and is also the hydraulic pressure of the input chamber Rn and the rear chamber Ro).
  • the simulator hydraulic pressure sensor PS is one of the braking operation amount sensors BA described above.
  • the simulator hydraulic pressure Ps is input to the braking controller ECU as a braking operation amount Ba.
  • the hydraulic unit HU includes, as a braking operation amount sensor BA, an operation displacement sensor SP for detecting an operation displacement Sp of the braking operation member BP and/or an operation force Fp of the braking operation member BP.
  • An operating force sensor FP is provided to detect the . That is, at least one of the simulator hydraulic pressure sensor PS, the operation displacement sensor SP (stroke sensor), and the operation force sensor FP is employed as the braking operation amount sensor BA. Therefore, the braking operation amount Ba is at least one of the simulator hydraulic pressure Ps, the operation displacement Sp, and the operation force Fp.
  • the pressurization unit KU comprises an electric motor MA, a fluid pump QA, first and second pressure regulating valves UA, UB, and first and second regulating hydraulic pressure sensors PA, PB.
  • a set of one electric motor MA and one fluid pump QA constitutes an electric pump.
  • the fluid pump QA is driven by the electric motor MA, and the brake fluid pressure Pw is increased by the brake fluid BF discharged by the fluid pump QA. Therefore, the electric motor MA is a power source for increasing the hydraulic pressure (braking hydraulic pressure) Pw of the wheel cylinder CW.
  • the electric motor MA is controlled by the brake controller ECU according to the drive signal Ma.
  • the suction portion of the fluid pump QA is connected to the master reservoir RV via the reservoir passage HR. Also, the suction portion and the discharge portion of the fluid pump QA are connected via a return path HK. Therefore, when the electric motor MA is driven, a circulating flow KN of the braking fluid BF (indicated by a dashed arrow in the figure, simply referred to as "recirculation") is generated in the circulation path HK by the braking fluid BF discharged by the fluid pump QA. ) is generated.
  • the return KN the side closer to the discharge portion of the fluid pump QA is called the "upstream side", and the side farther from it is called the "downstream side".
  • Two pressure regulating valves UA and UB are provided in series in the return passage HK.
  • the return path HK is provided with a first pressure regulating valve UA.
  • a second pressure regulating valve UB is provided between the first pressure regulating valve UA and the discharge portion of the fluid pump QA. Therefore, in the return KN, the second pressure regulating valve UB is arranged upstream with respect to the first pressure regulating valve UA.
  • the first and second pressure regulating valves UA and UB are linear solenoid valves (“proportional valves” or It is also called a “differential pressure valve”). Normally open solenoid valves are employed as the first and second pressure regulating valves UA and UB.
  • the first and second pressure regulating valves UA and UB are controlled by the braking controller ECU based on drive signals Ua and Ub.
  • the brake fluid BF is circulated in the order of "QA ⁇ UB ⁇ UA ⁇ QA".
  • the second pressure regulating valve UB is not energized, power begins to be supplied to the first pressure regulating valve UA, and when the energization amount Ia increases, the return KN is throttled by the first pressure regulating valve UA.
  • the hydraulic pressure Pa between the fluid pump QA and the first pressure regulating valve UA (referred to as "first regulating hydraulic pressure") is increased from "0".
  • the return path HK is connected to the servo chamber Ru through the servo path HV between the first pressure regulating valve UA and the second pressure regulating valve UB. Therefore, the first adjustment hydraulic pressure Pa is supplied to the servo chamber Ru. Since the pressure receiving area ru of the servo chamber Ru and the pressure receiving area rm of the master chamber Rm are the same, the master hydraulic pressure Pm (resulting in the front wheel brake hydraulic pressure Pwf) is equal to the first adjustment hydraulic pressure Pa. In other words, the first adjustment hydraulic pressure Pa is supplied to the front wheel cylinder CWf.
  • the return passage HK is connected to the rear wheel cylinder CWr between the fluid pump QA (especially the discharge portion) and the second pressure regulating valve UB via the rear wheel communication passage HSr and the hydraulic pressure modulator MJ. be done. Therefore, the second adjustment hydraulic pressure Pb is supplied to the rear wheel cylinder CWr.
  • the pressurizing unit KU is provided with first and second regulating hydraulic pressure sensors PA, PB to detect the first and second regulating hydraulic pressures Pa, Pb.
  • a hydraulic pressure modulator MJ is provided between the braking control device SC and the front and rear wheel cylinders CWf and CWr so that the front and rear wheel braking hydraulic pressures Pwf and Pwr can be individually controlled in each wheel cylinder CW. be done.
  • the front and rear wheel communication paths HSf and HSr are each branched into two and connected to the front and rear wheel cylinders CWf and CWr.
  • the hydraulic pressure modulator MJ independently and individually controls the hydraulic pressure Pw of each wheel cylinder CW for antilock brake control, vehicle stability control, and the like. Note that the hydraulic pressure modulator MJ is not operated in regenerative cooperative control (described later).
  • the first on-off valve VA is opened and the second on-off valve VB is closed. That is, the input chamber Rn and the rear chamber Ro are communicated with each other, and the communication state between the rear chamber Ro and the master reservoir RV is cut off to be in a non-communication state.
  • the operation amount Ba of the braking operation member BP increases, the input piston NN is moved in the forward direction Ha, and the brake fluid BF is discharged from the input chamber Rn.
  • this braking fluid BF is absorbed by the stroke simulator SS, the fluid pressure Pn in the input chamber Rn (input fluid pressure) and the fluid pressure Po in the rear chamber Ro (rear fluid pressure) are increased, and the brake operating member BP , an operating force Fp is generated.
  • the first and second pressure regulating valves UA and UB are controlled according to the braking operation amount Ba (at least one of the simulator hydraulic pressure Ps, the operating displacement Sp, and the operating force Fp).
  • the adjustment hydraulic pressures Pa and Pb are increased.
  • the master piston NP Since the first adjustment hydraulic pressure Pa is supplied to the servo chamber Ru, the master piston NP is pushed in the forward direction Ha and moves. As the master piston NP moves forward in the forward direction Ha, the master hydraulic pressure Pm is increased. Then, the brake fluid BF adjusted to the master fluid pressure Pm is supplied to the front wheel cylinder CWf to increase its internal pressure (brake fluid pressure) Pwf. Also, the brake fluid BF adjusted to the second adjustment fluid pressure Pb is supplied to the rear wheel cylinder CWr to increase its internal pressure (brake fluid pressure) Pwr. That is, the front wheel braking hydraulic pressure Pwf is adjusted to be equal to the first adjustment hydraulic pressure Pa, and the rear wheel braking hydraulic pressure Pwr is adjusted to be equal to the second adjustment hydraulic pressure Pb.
  • regenerative cooperative control is a combination of the regenerative braking force Fg by the generator GN and the frictional braking force Fm by the braking control device SC so that the kinetic energy of the vehicle JV is efficiently recovered (regenerated) as electrical energy during braking. are controlled cooperatively.
  • the regenerative coordinated control algorithm is programmed into the microprocessor MP of the braking controller ECU.
  • the regenerative capacity of the front wheel regenerative braking device KCf is relatively large compared to the regenerative capacity of the rear wheel regenerative braking device KCr. That is, in regenerative braking, the front wheel regenerative braking device KCf is dominant. Therefore, in the cooperative regenerative control, although the regenerative braking force Fg and the frictional braking force Fm can be individually adjusted between the front and rear wheels, there is a constraint of "Pwf ⁇ Pwr".
  • signals such as the braking operation amount Ba, the first and second adjustment hydraulic pressures Pa and Pb, the vehicle speed Vx, the target deceleration Gd, etc. are read.
  • the manipulated variable Ba is calculated based on the detected value of the manipulated variable sensor BA (simulator hydraulic pressure sensor PS, manipulation displacement sensor SP, manipulation force sensor FP, etc.).
  • the first and second adjustment hydraulic pressures Pa, Pb are calculated based on the detection values of the first and second adjustment hydraulic pressure sensors PA, PB provided in the fluid unit HU.
  • the vehicle body speed Vx is calculated based on the wheel speed Vw (detected value of the wheel speed sensor VW).
  • the target deceleration Gd is transmitted from the driving assistance controller ECA.
  • the target vehicle system power Fv is calculated based on the braking operation amount Ba.
  • the "target vehicle system power Fv” is a target value corresponding to the braking force Fb acting on the vehicle body (that is, the braking force of the vehicle JV as a whole).
  • the target vehicle system power Fv is calculated to be "0" when the braking operation amount Ba is less than the predetermined amount bo based on the braking operation amount Ba and the calculation map Zfv.
  • the target vehicle system power Fv is calculated to increase from “0" as the braking operation amount Ba increases from "0".
  • the predetermined amount bo is a predetermined value (constant) that represents the play of the braking operation member BP.
  • the target vehicle system power Fv is calculated. Specifically, the target vehicle system power Fv is calculated to be “0" when “Gd ⁇ bo", and when “Gd ⁇ bo", as the target deceleration Gd increases, " It is calculated so as to increase from "0".
  • the predetermined amount bo is a preset predetermined value (constant) representing a dead zone in automatic braking control.
  • "Front and rear wheel required braking forces Fqf, Fqr” are target values corresponding to the actual front and rear wheel braking forces Fbf, Fbr acting on the front wheels WHf and rear wheels WHr. Therefore, the required braking force Fq is a target value corresponding to the sum of the regenerative braking force Fg and the frictional braking force Fm.
  • the required front wheel braking force Fqf corresponds to the front two wheels (that is, the two front wheels WHf) of the vehicle
  • the required rear wheel braking force Fqr corresponds to two wheels behind the vehicle (that is, two rear wheels WHr).
  • front wheel and rear wheel required braking forces Fqf and Fqr are calculated so that the following two conditions are satisfied.
  • the limit regenerative braking force Fx is a state quantity representing the limit of the regenerative braking force Fg.
  • the limit regenerative braking force Fx is restricted by the operating state of the regenerative braking device KC. Therefore, the limit regenerative braking force Fx is determined based on the operating state of the regenerative braking device KC.
  • the operating state of the regenerative braking device KC includes the rotational speed Ng of the generator GN (that is, the front and rear wheel rotational speeds Ngf and Ngr), the state of the regenerative controller EG (in particular, power transistors such as IGBTs) (temperature etc.), and the state of the storage battery BT (charge acceptance amount, temperature, etc.).
  • the limit regenerative braking force Fx is determined (calculated) by the regenerative controller EG and obtained by the braking controller ECU via the communication bus BS.
  • the regenerative controller EG determines the limit regenerative braking force Fx by the following method.
  • the front wheel limit regenerative braking force Fxf (the upper limit of the front wheel regenerative braking force) is determined based on the upper characteristic Zxf (calculation map) of block X140. This is because the amount of regeneration by the regenerative braking device KC (result, regenerative braking force) is determined by the rating of the power transistor (IGBT, etc.) of the regenerative controller EG, and the charge acceptance amount of the storage battery BT (full charge minus the current charge amount). remaining amount).
  • the limit regenerative braking force Fx is determined so that (power) is constant (that is, the product of the limit regenerative braking force Fx and the front wheel rotation speed Ngf is constant). Therefore, when "Ngf ⁇ vp", the limit regenerative braking force Fx is calculated to increase in inverse proportion to the rotational speed Ngf as the front wheel rotational speed Ngf decreases.
  • the calculation map Zxf when the front wheel rotation speed Ngf is less than the second front wheel predetermined speed vo, the front wheel limit regeneration is reduced as the rotation speed Ngf decreases. It is calculated so that the braking force Fxf decreases. Further, the calculation map Zxf is provided with a preset front wheel upper limit value fxf so that the front wheel WHf does not excessively decelerate and slip (in extreme cases, wheel lock) due to the front wheel regenerative braking force Fgf.
  • the first front wheel predetermined speed vp, the second front wheel predetermined speed vo, and the front wheel upper limit value fxf are preset predetermined values (constants).
  • the rear wheel limit regenerative braking force Fxr (the upper limit of the rear wheel regenerative braking force) is determined based on the characteristic Zxr (calculation map) in the lower part of block X140.
  • the rear wheel regenerative braking device determines whether the rotation speed Ngr of the rear wheel generator GNr (also referred to simply as the "rear wheel rotation speed") so that the regenerative power (work rate) of KCr is constant (that is, the product of the limit regenerative braking force Fx and the rear wheel rotational speed Ngr is constant). Therefore, when "Ngr ⁇ up", the limit regenerative braking force Fx is calculated to increase in inverse proportion to the rotational speed Ngr as the rear wheel rotational speed Ngr decreases.
  • the amount of regeneration decreases. Therefore, in the calculation map Zxr, when the rear wheel rotation speed Ngr is less than the second rear wheel predetermined speed uo, as the rotation speed Ngr decreases, It is calculated so that the rear wheel limit regenerative braking force Fxr is reduced. Furthermore, a preset rear wheel upper limit value fxr is provided in the calculation map Zxr so that the rear wheel WHr is not excessively decelerated and slipped (in extreme cases, wheel lock) due to the rear wheel regenerative braking force Fgr. .
  • the first rear wheel predetermined speed up, the second rear wheel predetermined speed uo, and the rear wheel upper limit value fxr are preset predetermined values (constants).
  • the rear wheel reference regenerative braking force Fkr is calculated based on the front wheel limit regenerative braking force Fxf.
  • the "rear wheel reference regenerative braking force Fkr" is set even when the front wheel limit regenerative braking force Fxf decreases due to a malfunction of the front wheel regenerative braking device KCf (for example, temperature rise of the front wheel regenerative controller EGf).
  • State variable for limiting the rear wheel target regenerative braking force Fhr (result, rear wheel regenerative braking force Fgr) so that the ratio Kq of the rear wheel required braking force Fqr to the front wheel required braking force Fqf is maintained at a constant value hb is.
  • step S160 front and rear wheel target regenerative braking forces Fhf, Fhr, Front wheel and rear wheel target frictional braking forces Fnf and Fnr are calculated.
  • step S160 "whether or not the front wheel required braking force Fqf is greater than the front wheel limit regenerative braking force Fxf (referred to as 'front wheel limit determination')" is determined.
  • the front wheel required braking force Fqf is equal to or less than the front wheel limit regenerative braking force Fxf (i.e., "Fqf ⁇ Fxf" and the front wheel limit determination is denied)
  • the front wheel target regenerative braking force Fhf is equal to or lower than the front wheel required braking force.
  • the front wheel required braking force Fqf is greater than the front wheel limit regenerative braking force Fxf (that is, when "Fqf>Fxf" and the front wheel limit determination is affirmative)
  • step S160 it is determined whether or not the rear wheel required braking force Fqr is greater than the rear wheel reference regenerative braking force Fkr (referred to as "rear wheel limit determination").
  • the rear wheel required braking force Fqr is equal to or less than the rear wheel reference regenerative braking force Fkr (that is, when "Fqr ⁇ Fkr” and the rear wheel limit judgment is denied)
  • the rear wheel target regenerative braking force Fhr is calculated as the rear wheel reference regenerative braking force Fkr
  • the front wheel and rear wheel target regenerative braking forces Fhf and Fhr calculated in step S160 are transmitted from the braking controller ECU to the front wheel and rear wheel regenerative controllers EGf and EGr.
  • the front and rear wheel regenerative controllers EGf and EGr control the front and rear wheels so that the actual front and rear wheel regenerative braking forces Fgf and Fgr approach and match the front and rear wheel target regenerative braking forces Fhf and Fhr.
  • Generators GNf and GNr are controlled.
  • the front wheel regenerative braking device KCf fails, the front wheel and rear wheel target regenerative braking forces Fhf and Fhr are both determined to be "0", so the front wheel and rear wheel regenerative braking forces Fgf and Fgr are not generated. .
  • the front and rear wheel target hydraulic pressures Ptf and Ptr are calculated based on the front and rear wheel target frictional braking forces Fnf and Fnr.
  • step S180 the front and rear wheel braking hydraulic pressures Pwf and Pwr (actual values) are adjusted based on the front and rear wheel target hydraulic pressures Ptf and Ptr (target values).
  • the brake controller ECU drives the solenoid valves and electric motors that make up the hydraulic unit HU so that the actual front and rear wheel braking hydraulic pressures Pwf and Pwr approach and match the front and rear wheel target hydraulic pressures Ptf and Ptr. controlled by
  • the front wheel and rear wheel regenerative braking forces Fgf and Fgr are controlled so that the ratio Kq of the rear wheel required braking force Fqr to the front wheel required braking force Fqf is always constant (value hb).
  • front and rear wheel frictional braking forces Fmf and Fmr are adjusted.
  • the ratio Kb of the rear wheel braking force Fbr to the front wheel braking force Fbf is always constant (value hb) even when the front and rear wheel regenerative braking devices KCf and KCr malfunction. Since the front-rear distribution of the braking force is always optimized, the directional stability of the vehicle is improved even during regenerative braking.
  • the restriction of the fluid unit HU (that is, the condition of "Pwf ⁇ Pwr") does not affect the regenerative cooperative control.
  • the braking force distribution ratio Kb is kept at a constant value hb without limiting the generation of the front wheel regenerative braking force Fgf. can be maintained.
  • the amount of regeneration by the front wheel regenerative braking device KCf (that is, the front wheel regenerative braking force Fgf) is not intentionally limited.
  • the rear wheel regenerative braking device KCr has completely failed and the rear wheel regenerative braking force Fgr cannot be generated at all, generation of the front wheel regenerative braking force Fgf is permitted. If the system fails completely and the front wheel regenerative braking force Fgf cannot be generated at all, the generation of the rear wheel regenerative braking force Fgr is prohibited.
  • ⁇ Distribution of braking force before and after starting braking in cooperative regenerative control according to the first embodiment Distribution of front and rear braking forces at the start of braking in cooperative regenerative control in the first embodiment will be described with reference to characteristic diagrams of FIGS. 4(a) and 4(b).
  • regenerative cooperative control a target value is calculated, and the actual value is controlled so as to match the target value.
  • actual front wheel and rear wheel braking forces Fbf and Fbr are shown as the control results of the front wheel and rear wheel required braking forces Fqf and Fqr.
  • the target value of the braking force acting on the entire vehicle is the target vehicle system power Fv
  • the actual value, which is the control result, is the braking force Fb. Since the actual value Fb is generated by the front and rear wheels, the actual value for the front wheels WHf (for two wheels) is the front wheel braking force Fbf, and the actual value for the rear wheels WHr (for two wheels) is the rear wheel braking force Fbr. is.
  • the front and rear wheel required braking forces Fqf and Fqr are obtained by distributing the target vehicle system power Fv to the front and rear wheel braking forces.
  • the control results corresponding to the target values Fqf and Fqr are the actual front wheel and rear wheel braking forces Fbf and Fbr.
  • the front and rear wheel required braking forces (target values) Fqf and Fqr are the target values (target regenerative braking forces) Fhf and Fhr for regenerative braking, and friction braking (for example, brake fluid pressure Pw) to move the friction member MS to the rotating member KT.
  • Control results corresponding to target values Fhf and Fhr are actual values Fgf and Fgr
  • control results corresponding to target values Fnf and Fnr are actual values Fmf and Fmr.
  • FIGS. 4(a) and 4(b) show a case where both the front wheel and rear wheel regenerative braking devices KCf and KCr operate properly
  • FIG. 4(b) shows a case where the front wheel regenerative braking device KCf malfunctions and its regeneration amount decreases. case (that is, the front wheel limit regenerative braking force Fxf decreases).
  • the front wheel and rear wheel limit regenerative braking forces Fxf and Fxr change according to the rotational speeds Ngf and Ngr of the front wheel and rear wheel generators GNf and GNr.
  • Zxr shows a state in which the front and rear wheel limit regenerative braking forces Fxf and Fxr are both limited to the front and rear wheel upper limit values fxf and fxr.
  • the notation of ":" in the figure indicates that it is the value at the relevant point in time. For example, "point (A: t1)" represents the operating point at time t1, and "Fmf: t3" represents the value of the front wheel frictional braking force Fmf at time t3.
  • the slope hb (constant value) of the reference characteristic Cb is determined by the "pressure receiving areas of the front and rear wheel cylinders CWf and CWr", the "effective braking radius of the rotary members KTf and KTr", and the “strength of the friction material MS of the front and rear wheels.” It is set in advance based on the "friction coefficient" and the "effective radius of the wheel WH (tire)". For example, in order to prevent the rear wheels WHr from being locked ahead of the front wheels WHf, the reference characteristic Cb is , is set to be smaller than the so-called ideal distribution characteristics.
  • braking force distribution control (so-called EBD control) is executed based on the wheel speed Vw so that the deceleration slip of the rear wheels WHr does not become larger than the deceleration slip of the front wheels WHf. .
  • the operation of the braking control device SC accompanying the transition of time T (in the order of "t0 ⁇ t1 ⁇ t2 ⁇ t3" will be described below.
  • the operation of the braking operation member BP is started, and the braking operation amount Ba is increased from "0". Therefore, at time t0, the operation of regenerative cooperative control starts from the origin (O: t0).
  • the rear wheel required braking force Fqr (resulting in the rear wheel braking force Fbr) reaches the rear wheel limit regenerative braking force Fxr, as indicated by the operating point (A: t1).
  • the front wheel required braking force Fqf (resulting in the front wheel braking force Fbf) reaches the front wheel limit regenerative braking force Fxf, as indicated by the operating point (B:t2). That is, in the first embodiment, in the front and rear wheel regenerative braking devices KCf and KCr, the regenerative capacity of the front wheel regenerative braking device KCf is relatively larger than the regenerative capacity of the rear wheel regenerative braking device KCr. The wheel regenerative braking device KCr reaches its limit before the front wheel regenerative braking device KCf.
  • the front wheel required braking force Fqf is equal to or less than the front wheel limit regenerative braking force Fxf
  • the front and rear wheel frictional braking forces Fmf and Fmr are not generated, and the front and rear wheel required braking forces Fqf and Fqr are achieved (realized) only by the front and rear wheel regenerative braking forces Fgf and Fgr. .
  • the rear wheel regenerative braking device KCr reaches its limit (that is, rear wheel limit regenerative braking force Fxr). Therefore, between times t1 and t2 (that is, while the operating point transitions from point (A: t1) to point (B: t2)), the rear wheel required braking force Fqr is lower than the rear wheel reference regenerative braking force Fkr. growing. Therefore, the rear wheel target regenerative braking force Fhr is calculated to be equal to the rear wheel reference regenerative braking force Fkr, and the rear wheel regenerative braking force Fhr is calculated so as to compensate for the shortage of the rear wheel required braking force Fqr (that is, "Fqr-Fkr").
  • the front wheel required braking force Fqf is achieved only by the front wheel regenerative braking force Fgf
  • the rear wheel required braking force Fqr is achieved by the rear wheel regenerative braking force Fgr and the rear wheel frictional braking force Fmr.
  • front wheel braking force Fqf is achieved as front wheel braking force Fbf by front wheel regenerative braking force Fgf: t3 and front wheel frictional braking force Fmf: t3.
  • the distribution of the front and rear wheel required braking forces Fqf and Fqr (result, the actual front and rear wheel braking forces Fbf and Fbr) (that is, the ratio of the front wheel braking force Fbr to the front wheel braking force Fbf) Kq and Kb is always It is maintained at a constant value hb and optimized. Therefore, the directional stability of the vehicle is not impaired due to the balance between the front and rear wheel braking forces Fbf and Fbr.
  • the front and rear wheel regenerative braking devices KCf and KCr can sufficiently recover kinetic energy. As a result, at the start of braking, both directional stability and energy regeneration of the vehicle can be achieved at a high level.
  • the regenerative cooperative control operation starts from the origin (O: v0).
  • the front wheel required braking force Fqf reaches the front wheel limit regenerative braking force Fxf
  • the front wheel required braking force Fqf is equal to or less than the front wheel limit regenerative braking force Fxf
  • the rear wheel required braking force Fqr is equal to or less than the rear wheel reference regenerative braking force Fkr
  • the front and rear wheel target regenerative braking forces Fhf and Fhr are calculated to be equal to the front and rear wheel required braking forces Fqf and Fqr.
  • Fmf and Fmr are not generated, and the front and rear wheel required braking forces Fqf and Fqr are achieved (realized) only by the front and rear wheel regenerative braking forces Fgf and Fgr.
  • the front wheel target regenerative braking force Fhf is determined to be equal to the front wheel limit regenerative braking force Fxf, and the front wheel target friction is reduced so as to compensate for the shortage of the front wheel required braking force Fqf (that is, "Fqf-Fxf").
  • the rear wheel target regenerative braking force Fhr is determined to be equal to the rear wheel reference regenerative braking force Fkr, and the front wheel target friction control force is set so as to compensate for the shortage of the front wheel required braking force Fqf (that is, "Fqf-Fkr").
  • the front wheel required braking force Fqf is greater than the front wheel limit regenerative braking force Fxf
  • the rear wheel required braking force Fqr is greater than the rear wheel reference regenerative braking force Fkr.
  • the front wheel limit regenerative braking force Fxf is set to "0".
  • the rear wheel limited regenerative braking force Fsr is "0"
  • the rear wheel reference regenerative braking force Fkr is determined to be "0”. Therefore, when the front wheel regenerative braking device KCf fails, the generation of the rear wheel regenerative braking force Fgr by the rear wheel regenerative braking device KCr is prohibited.
  • the braking control device SC (especially, the fluid unit HU) according to the first embodiment, there is a restriction that "the front wheel braking hydraulic pressure Pwf is equal to or lower than the rear wheel braking hydraulic pressure Pwr". Therefore, in a situation where the front wheel regenerative braking device KCf malfunctions and a sufficient front wheel regenerative braking force Fgf cannot be generated, the rear wheel regenerative braking force Fgr is limited by the rear wheel limited regenerative braking force Fsr (that is, the rear wheel reference regenerative braking force Fkr).
  • the front wheel required braking force Fqf:u1 is smaller than the front wheel limit regenerative braking force Fxf:u1
  • the front and rear wheel required braking forces Fqf and Fqr are achieved (realized) only by the front and rear wheel regenerative braking forces Fgf and Fgr.
  • the distribution of the front and rear wheel braking forces Fbf and Fbr is adjusted appropriately, and then the regenerative braking force Fg has priority over the frictional braking force Fm.
  • the directional stability of the vehicle is improved and a sufficient amount of energy is regenerated even during the switching operation.
  • the front wheel required braking force Fqf:z1 is greater than the front wheel limit regenerative braking force Fxf:z1
  • the rear wheel required braking force Fqr:z1 is greater than the rear wheel reference regenerative braking force Fkr:z1.
  • the generation of the rear wheel regenerative braking force Fgr is limited by the rear wheel reference regenerative braking force Fkr (that is, the rear wheel limited regenerative braking force Fsr).
  • the distribution ratios Kq and Kb of the front and rear braking forces are kept constant, so that the vehicle stability is favorably ensured.
  • the front wheel regenerative braking device KCf is relatively larger than the rear wheel regenerative braking device KCr.
  • the device KCr reached the generation limit of the regenerative braking force before the front wheel regenerative braking device KCf.
  • the rear wheel regenerative braking device KCr has a relatively larger regenerative capacity than the front wheel regenerative braking device KCf.
  • the generation limit is higher than the generation limit of the regenerative braking force of the front wheel regenerative braking device KCf. Therefore, the front wheel regenerative braking device KCf reaches the generation limit of the regenerative braking force before the rear wheel regenerative braking device KCr.
  • FIG. 2 and the flow diagram of FIG. ] corresponds to the description of the second embodiment. Differences between the first embodiment and the second embodiment will be described below. Note that the first embodiment and the second embodiment are the same except for the differences.
  • the magnitude relationship between the front wheel brake fluid pressure Pwf and the rear wheel brake fluid pressure Pwr is such that "the front wheel brake fluid pressure Pwf is always equal to the rear wheel brake fluid pressure Pwr or more" restriction.
  • the front wheel reference regenerative braking force Fkf is calculated based on the rear wheel limit regenerative braking force Fxr at step S150 in the flow chart of FIG.
  • the "front wheel reference regenerative braking force Fkf" is set when the rear wheel limit regenerative braking force Fxr decreases due to malfunction of the rear wheel regenerative braking device KCr (for example, temperature rise of the rear wheel regenerative controller EGr).
  • the generation of the front wheel regenerative braking force Fgf is limited.
  • the rear wheel limit regenerative braking force Fxr is "0"
  • the fluid unit HU has a restriction of "Pwf ⁇ Pwr" (restriction opposite to that in the first embodiment), but this restriction is for regenerative braking when the front wheel regenerative braking device KCf is out of order. Coordinated control is not affected. Therefore, even if the generation of the rear wheel regenerative braking force Fgr is not limited when the front wheel regenerative braking device KCf malfunctions, the front and rear braking force distribution ratios Kq and Kb can be kept constant.
  • the front wheel limit regenerative braking force Fxf may decrease due to a malfunction of the front wheel regenerative braking device KCf
  • the amount of regeneration of the rear wheel regenerative braking device KCr (that is, the rear wheel regenerative braking force Fgr) is intentionally not be restricted.
  • the front wheel regenerative braking device KCf fails completely and the front wheel regenerative braking force Fgf cannot be generated at all
  • generation of the rear wheel regenerative braking force Fgr is permitted, but the rear wheel regenerative braking device KCr is allowed to generate. If the system fails completely and the rear wheel regenerative braking force Fgr cannot be generated at all, generation of the front wheel regenerative braking force Fgf is prohibited.
  • FIGS. 6(a) and 6(b) show that both the front and rear wheel regenerative braking devices KCf and KCr are operating properly
  • FIG. 6B shows that the front wheel regenerative braking device KCf operates properly, but the rear wheel regenerative braking device KCr When it is a malfunction operation, it corresponds respectively.
  • the rear wheel regenerative braking device KCr reaches its limit (that is, rear wheel limit regenerative braking force Fxr) (see operating point (J: a2)).
  • the front wheel regenerative braking device KCf reaches its limit before the rear wheel regenerative braking device KCr.
  • the front wheel required braking force Fqf is achieved by the front wheel regenerative braking force Fgf and the front wheel friction braking force Fmf
  • the rear wheel required braking force Fqr is achieved only by the rear wheel regenerative braking force Fgr.
  • the rear wheel target regenerative braking force Fhr is determined to be equal to the rear wheel limit regenerative braking force Fxr, and the shortage of the rear wheel required braking force Fqr is compensated.
  • front and rear wheel braking forces Fqf and Fqr are both achieved by the front and rear wheel regenerative braking forces Fgf and Fgr and the front and rear wheel frictional braking forces Fmf and Fmr.
  • front wheel braking force Fqf is achieved as front wheel braking force Fbf by front wheel regenerative braking force Fgf: a3 and front wheel frictional braking force Fmf: a3.
  • the ratio Kb of the front wheel braking force Fbr to the front wheel braking force Fbf (distribution ratio of the front and rear braking forces) is It is always maintained at a constant value hb. Since the distribution ratios Kq and Kb are optimized in this manner, the directional stability of the vehicle JV is improved. Also, in regenerative cooperative control, regenerative braking is prioritized over friction braking, so sufficient energy regeneration is achieved. That is, directional stability of the vehicle and energy regeneration can be achieved at a high level.
  • the front and rear wheel frictional braking forces Fmf and Fmr are not generated, and the front and rear wheel required braking forces Fqf and Fqr are achieved only by the front and rear wheel regenerative braking forces Fgf and Fgr.
  • the rear wheel limit regenerative braking force Fxr is divided by a preset constant value hb in each calculation cycle to calculate the front wheel limit regenerative braking force Fsf.
  • the front wheel limit regenerative braking force Fxf is calculated as the front wheel reference regenerative braking force Fkf. .
  • the state is "Fqf ⁇ Fkf, Fqr ⁇ Fxr".
  • front wheel required braking force Fqf and front wheel reference regenerative braking force Fkf match.
  • rear wheel required braking force Fqr and the rear wheel limit regenerative braking force Fxr match.
  • the state becomes "Fqf>Fkf, Fqr>Fxr”.
  • the front wheel required braking force Fqf is achieved by the front wheel regenerative braking force Fgf and the front wheel friction braking force Fmf
  • the front and rear wheel required braking forces Fqf and Fqr are achieved by the front and rear wheel regenerative braking forces Fgf and Fgr and the front and rear wheel frictional braking forces Fmf and Fmr.
  • the distribution adjustment of the front and rear braking forces is adjusted to a constant value hb, and the regenerative braking force Fg is prioritized over the frictional braking force Fm. be.
  • the directional stability of the vehicle is improved and sufficient energy regeneration is achieved during the switching operation of the cooperative regenerative control.
  • Embodiments of the braking control device SC are summarized below.
  • the braking control device SC is applied to a vehicle JV equipped with a front wheel regenerative braking device KCf that generates a front wheel regenerative braking force Fgf on the front wheels WHf and a rear wheel regenerative braking device KCr that generates a rear wheel regenerative braking force Fgr on the rear wheels WHr. be done.
  • the braking control device SC is configured to supply the front wheel brake fluid pressure Pwf to the front wheel cylinder CWf to generate the front wheel frictional braking force Fmf in the front wheel WHf and supply the rear wheel brake fluid pressure Pwr to the rear wheel cylinder CWr. and an actuator HU for generating a rear wheel frictional braking force Fmr on the rear wheels WHr, and a controller ECU for controlling the front wheels, the rear wheel regenerative braking devices KCf and KCr, and the actuator HU.
  • the actuator HU has a restriction that "the rear wheel braking hydraulic pressure Pwr is greater than or equal to the front wheel braking hydraulic pressure Pwf (that is, 'Pwf ⁇ Pwr')".
  • the controller ECU calculates the braking force required for the entire vehicle JV as the target vehicle system power Fv, and the sum of the front wheel and rear wheel required braking forces Fqf, Fqr matches the target vehicle system power Fv, Further, the front wheel and rear wheel braking forces Fqf and Fqr are calculated so that the ratio Kq of the rear wheel braking force Fqr to the front wheel braking force Fqf is constant (constant value hb).
  • the controller ECU defines the maximum values of the front and rear wheel regenerative braking forces Fgf and Fgr that can be generated depending on the operation states of the front and rear wheel regenerative braking devices KCf and KCr as the front and rear wheel limit regenerative braking forces Fxf and Fxr. get. Then, the controller ECU multiplies the front wheel limit regenerative braking force Fxf by the ratio (constant value) hb to calculate the rear wheel limit regenerative braking force Fsr. The smaller one of Fsr is determined as the rear wheel reference regenerative braking force Fkr.
  • the front wheel required braking force Fqf is equal to or less than the front wheel limit regenerative braking force Fxf (that is, "Fqf ⁇ Fxf")
  • the front wheel required braking force Fqf is achieved only by the front wheel regenerative braking force Fgf, and the front wheel required braking force Fqf reaches the front wheel limit.
  • the front wheel required braking force Fqf is achieved by the front wheel regenerative braking force Fgf and the front wheel frictional braking force Fmf.
  • the rear wheel required braking force Fqr is equal to or less than the rear wheel reference regenerative braking force Fkr (that is, "Fqr ⁇ Fkr”)
  • the rear wheel required braking force Fqr is achieved only by the rear wheel regenerative braking force Fgr
  • the rear wheel When the required braking force Fqr is greater than the rear wheel reference regenerative braking force Fkr (that is, "Fqr>Fkr”), the rear wheel required braking force Fqr is reduced by the rear wheel regenerative braking force Fgr and the rear wheel frictional braking force Fmr. Achieve.
  • the braking control device SC there is a limit of "Pwf ⁇ Pwr", so that the braking force distribution ratio Kq (result, Kb) is maintained at a constant value hb by the rear wheel regenerative braking device KCr
  • a limit is provided to the rear wheel regenerative braking force Fgr.
  • the rear wheel regenerative braking force Fgr is limited based on the smaller one of the rear wheel limit regenerative braking force Fxr and the rear wheel limited regenerative braking force Fsr (that is, the rear wheel reference regenerative braking force Fkr). is done.
  • An extreme situation in the first embodiment is a case where the front wheel regenerative braking device KCf fails and the front wheel regenerative braking force Fgf cannot be generated.
  • the controller ECU prohibits the generation of the rear wheel regenerative braking force Fgr to maintain vehicle stability.
  • the restriction on the fluid unit HU has no effect when the rear wheel regenerative braking device KCr malfunctions, so generation of the front wheel regenerative braking force Fgf is not restricted.
  • the front wheel regenerative braking force Fgf is generated. be done.
  • the rear wheel regenerative braking device KCr cannot generate the rear wheel regenerative braking force Fgr (that is, when the rear wheel regenerative braking device KCr fails), the front wheel regenerative braking force Fgf is not generated. (that is, generation of the front wheel regenerative braking force Fgf is permitted).
  • the wheel regenerative braking force Fgr is not generated (that is, generation of the rear wheel regenerative braking force Fgr is prohibited).
  • the actuator HU has a restriction that "the front wheel braking hydraulic pressure Pwf is greater than or equal to the rear wheel braking hydraulic pressure Pwr (that is, 'Pwf ⁇ Pwr')".
  • the controller ECU calculates the target vehicle system power Fv and the front and rear wheel required braking forces Fqf and Fqr in the same manner as in the first embodiment, and calculates the front and rear wheel limit regenerative braking forces. Get Fxf and Fxr. Then, the rear wheel limit regenerative braking force Fxr is divided by the distribution ratio hb (constant value) to calculate the front wheel limit regenerative braking force Fsf.
  • the front wheel required braking force Fqf is equal to or less than the front wheel reference regenerative braking force Fkf (that is, "Fqf ⁇ Fkf")
  • the front wheel required braking force Fqf is achieved only by the front wheel regenerative braking force Fgf
  • the front wheel required braking force Fqf is the front wheel reference.
  • the front wheel required braking force Fqf is achieved by the front wheel regenerative braking force Fgf and the front wheel frictional braking force Fmf.
  • the rear wheel required braking force Fqr is equal to or less than the rear wheel limit regenerative braking force Fxr (that is, "Fqr ⁇ Fxr”)
  • the rear wheel required braking force Fqr is achieved only by the rear wheel regenerative braking force Fgr
  • the rear wheel When the required braking force Fqr is greater than the rear wheel limit regenerative braking force Fxr (that is, "Fqr>Fxr”), the rear wheel required braking force Fqr is reduced by the rear wheel regenerative braking force Fgr and the rear wheel frictional braking force Fmr. Achieve.
  • a limit is placed on the generation of the front wheel regenerative braking force Fgf.
  • the front wheel regenerative braking force Fgf is limited based on the smaller one of the front wheel limit regenerative braking force Fxf and the front wheel limited regenerative braking force Fsf (that is, the front wheel reference regenerative braking force Fkf).
  • An extreme situation in the second embodiment is a case where the rear wheel regenerative braking device KCr fails and the front wheel regenerative braking force Fgr cannot be generated.
  • the controller ECU prohibits generation of the front wheel regenerative braking force Fgf, thereby reliably maintaining vehicle stability.
  • the restriction on the fluid unit HU does not affect the generation of the rear wheel regenerative braking force Fgr when the front wheel regenerative braking device KCf malfunctions, so the generation of the rear wheel regenerative braking force Fgr is not restricted.
  • the rear wheel regenerative braking device KCf when the front wheel regenerative braking device KCf cannot generate the front wheel regenerative braking force Fgf (that is, when the front wheel regenerative braking device KCf fails), the rear wheel regenerative braking When the power Fgr is generated (that is, generation of the rear wheel regenerative braking force Fgr is permitted), but the rear wheel regenerative braking device KCr cannot generate the rear wheel regenerative braking force Fgr (that is, the rear wheel regenerative braking device KCr failure), the front wheel regenerative braking force Fgf is not generated (that is, generation of the front wheel regenerative braking force Fgf is prohibited).
  • Ngf, Ngr the front wheel and rear wheel generators GNf and GNr are rotationally driven by the front wheel WHf and rear wheel WHr. Therefore, instead of the front and rear wheel rotation speeds Ngf and Ngr, the rotation speeds of the rotating components from the front and rear wheel generators GNf and GNr to the front wheels WHf and rear wheels WHr can be employed.
  • the vehicle body speed Vx calculated based on the wheel speed Vw may be employed. That is, the limit regenerative braking force Fx is determined (calculated) based on at least one of the generator rotation speed Ng, the wheel speed Vw, and the vehicle body speed Vx.
  • the dimension of "force" was adopted.
  • the limit regenerative braking force Fx the target regenerative braking force
  • the physical quantity of the power Fh other convertible physical quantity (for example, torque amount, electric power amount) may be employed.

Abstract

アクチュエータは、前輪制動液圧を供給するとともに、前輪制動液圧以上の後輪制動液圧を供給して、前輪、後輪摩擦制動力を発生させる。コントローラは、車両全体の目標車体制動力を演算し、前輪、後輪要求制動力の和が目標車体制動力に一致し、且つ、前輪要求制動力に対する後輪要求制動力の比率が一定値になるように、前輪、後輪要求制動力を演算する。また、前輪、後輪回生制動装置の発生可能な前輪、後輪限界回生制動力を取得する。前輪限界回生制動力に一定値を乗算して後輪制限回生制動力を演算し、後輪限界回生制動力、及び、後輪制限回生制動力のうちの小さい方を後輪基準回生制動力として決定する。そして、後輪基準回生制動力に基づいて、後輪回生制動力を制限する。

Description

車両の制動制御装置
 本開示は、車両の制動制御装置に関する。
 特許文献1には、「前輪と後輪の制動力を独立制御するブレーキシステムの安全性を確保し、燃費を向上させ、優れた制動力を配分する回生制動協調制御時の制動力制御方法の提供」を目的に、「制動時に前輪及び後輪の一つ以上に対する回生制動力を基準減速度まで発生させて前輪と後輪の制動力を配分する第1段階では、基準制動配分比によって前輪回生制動力と後輪回生制動力を配分して発生させた後、後輪回生制動力制限値まで後輪回生制動力のみを発生させ、前記後輪回生制動力が後輪回生制動力制限値まで増加すれば、その後には前輪制動力の割合を増加させ、前記後輪回生制動力が後輪回生制動力制限値まで増加すれば、その後は前輪油圧制動力のみを発生させて前輪制動力の割合を増加させ、前記前輪制動力の割合が増加して前輪制動力と後輪制動力間の配分比が基準制動配分比と同じになれば、その後は後輪回生制動力最大値まで後輪回生制動力を発生させる」ことが記載されている。
 出願人は、特許文献2に記載されような、「電気モータを用いた1系統の加圧構成により、前輪と後輪に対して別々の液圧を同時に付与することができる制動制御装置」を開発している。該制動制御装置は、「車両の前輪に備えられた前輪ホイールシリンダ71、72の前輪制動液圧、及び車両の後輪に備えられた後輪ホイールシリンダ73、74の後輪制動液圧を調整するものであって、電気モータ11によって発生された液圧を調整して調整液圧とし、調整液圧を後輪制動液圧として付与する液圧発生ユニット1Aと、調整液圧を減少調整して修正液圧とし、修正液圧を前輪制動液圧として付与する液圧修正ユニット1B」と、を備える。従って、該制動制御装置の構成では、前輪制動液圧は、必ず後輪制動液圧以下である。つまり、前輪制動力と後輪制動力との間には、それらの発生において制約が存在する。
 ところで、車両が制動される際の方向安定性の観点では、回生制動装置が回生制動力を発生する回生制動中であっても、前輪制動力と後輪制動力との関係が一定であること(即ち、前輪制動力に対する後輪制動力の比率が一定であること)が好適である。更に、この関係が、上述した制約がある構成で達成されることが望まれている。
特開2017-052502号 特開2019-059458号
 本発明の目的は、前後輪に回生制動装置を備えた車両に適用される制動制御装置において、前後制動力の発生に制約があっても、前後制動力の関係が適正化され得るものを提供することである。
 本発明に係る車両の制動制御装置は、前輪、後輪(WHf、WHr)に前輪、後輪回生制動力(Fgf、Fgr)を発生させる前輪、後輪回生制動装置(KCf、KCr)を備える車両に適用されるものであって、前輪ホイールシリンダ(CWf)に前輪制動液圧(Pwf)を供給するとともに、後輪ホイールシリンダ(CWr)に前記前輪制動液圧(Pwf)以上の後輪制動液圧(Pwr)を供給して、前記前輪、後輪(WHf、WHr)に前輪、後輪摩擦制動力(Fmf、Fmr)を発生させるアクチュエータ(HU)と、前記前輪、後輪回生制動装置(KCf、KCr)、及び、前記アクチュエータ(HU)を制御するコントローラ(ECU)と、を備える。
 本発明に係る車両の制動制御装置では、前記コントローラ(ECU)は、前記車両の全体として要求される制動力を目標車体制動力(Fv)として演算し、前輪、後輪要求制動力(Fqf、Fqr)の和が前記目標車体制動力(Fv)に一致し、且つ、前記前輪要求制動力(Fqf)に対する前記後輪要求制動力(Fqr)の比率(Kq)が一定値(hb)になるよう、前記前輪、後輪要求制動力(Fqf、Fqr)を演算し(即ち、「Fv=Fqf+Fqr」、且つ、「Kq=Fqr/Fqf=hb」)、前記前輪、後輪回生制動装置(KCf、KCr)の作動状態で定まる発生可能な前記前輪、後輪回生制動力(Fgf、Fgr)の最大値を前輪、後輪限界回生制動力(Fxf、Fxr)として取得し、前記前輪限界回生制動力(Fxf)に前記一定値(hb)を乗算して後輪制限回生制動力(Fsr)を演算し、前記後輪限界回生制動力(Fxr)、及び、前記後輪制限回生制動力(Fsr)のうちの小さい方を後輪基準回生制動力(Fkr)として決定する。そして、前記前輪要求制動力(Fqf)が前記前輪限界回生制動力(Fxf)以下の場合(Fqf≦Fxf)には前記前輪要求制動力(Fqf)を前記前輪回生制動力(Fgf)のみによって達成し、前記前輪要求制動力(Fqf)が前記前輪限界回生制動力(Fxf)よりも大きい場合(Fqf>Fxf)には前記前輪要求制動力(Fqf)を前記前輪回生制動力(Fgf)、及び、前記前輪摩擦制動力(Fmf)によって達成する。また、前記後輪要求制動力(Fqr)が前記後輪基準回生制動力(Fkr)以下の場合(Fqr≦Fkr)には前記後輪要求制動力(Fqr)を前記後輪回生制動力(Fgr)のみによって達成し、前記後輪要求制動力(Fqr)が前記後輪基準回生制動力(Fkr)よりも大きい場合(Fqr>Fkr)には前記後輪要求制動力(Fqr)を前記後輪回生制動力(Fgr)、及び、前記後輪摩擦制動力(Fmr)によって達成する。例えば、前記コントローラ(ECU)は、前記前輪回生制動装置(KCf)が前記前輪回生制動力(Fgf)を発生できない場合には、前記後輪回生制動力(Fgr)を発生させない。
 アクチュエータHUには、後輪制動液圧Pwrが前輪制動液圧Pwf以上であることの制約がある。しかしながら、上記構成によれば、前輪回生制動装置KCfが不調に陥り、前輪回生制動力Fgfが発生され難くなる場合には、後輪基準回生制動力Fkrに基づいて、後輪回生制動力Fgrの発生が制限される。このため、前後制動力の発生に制約があっても、前輪要求制動力Fqfに対する後輪要求制動力Fqrの比率Kqが常に一定に維持される。従って、前後制動力の関係が適正化され、車両安定性が向上される。
 本発明に係る車両の制動制御装置は、前輪、後輪(WHf、WHr)に前輪、後輪回生制動力(Fgf、Fgr)を発生させる前輪、後輪回生制動装置(KCf、KCr)を備える車両に適用されるものであって、後輪ホイールシリンダ(CWr)に後輪制動液圧(Pwr)を供給するとともに、前輪ホイールシリンダ(CWf)に前記後輪制動液圧(Pwf)以上の前輪制動液圧(Pwf)を供給して、前記前輪、後輪(WHf、WHr)に前輪、後輪摩擦制動力(Fmf、Fmr)を発生させるアクチュエータ(HU)と、前記前輪、後輪回生制動装置(KCf、KCr)、及び、前記アクチュエータ(HU)を制御するコントローラ(ECU)と、を備える。
 本発明に係る車両の制動制御装置では、前記コントローラ(ECU)は、前記車両の全体として要求される制動力を目標車体制動力(Fv)として演算し、前輪、後輪要求制動力(Fqf、Fqr)の和が前記目標車体制動力(Fv)に一致し、且つ、前記前輪要求制動力(Fqf)に対する前記後輪要求制動力(Fqr)の比率(Kq)が一定値(hb)になるよう、前記前輪、後輪要求制動力(Fqf、Fqr)を演算し(即ち、「Fv=Fqf+Fqr」、且つ、「Kq=Fqr/Fqf=hb」)、前記前輪、後輪回生制動装置(KCf、KCr)の作動状態で定まる発生可能な前記前輪、後輪回生制動力(Fgf、Fgr)の最大値を前輪、後輪限界回生制動力(Fxf、Fxr)として取得し、前記後輪限界回生制動力(Fxr)を前記一定値(hb)にて除算して前輪制限回生制動力(Fsf)を演算し、前記前輪限界回生制動力(Fxf)、及び、前記前輪制限回生制動力(Fsf)のうちの小さい方を前輪基準回生制動力(Fkf)として決定する。そして、前記前輪要求制動力(Fqf)が前記前輪基準回生制動力(Fkf)以下の場合(Fqf≦Fkf)には前記前輪要求制動力(Fqf)を前記前輪回生制動力(Fgf)のみによって達成し、前記前輪要求制動力(Fqf)が前記前輪基準回生制動力(Fkf)よりも大きい場合(Fqf>Fkf)には前記前輪要求制動力(Fqf)を前記前輪回生制動力(Fgf)、及び、前記前輪摩擦制動力(Fmf)によって達成する。また、前記後輪要求制動力(Fqr)が前記後輪限界回生制動力(Fxr)以下の場合(Fqr≦Fxr)には前記後輪要求制動力(Fqr)を前記後輪回生制動力(Fgr)のみによって達成し、前記後輪要求制動力(Fqr)が前記後輪限界回生制動力(Fxr)よりも大きい場合(Fqr>Fxr)には前記後輪要求制動力(Fqr)を前記後輪回生制動力(Fgr)、及び、前記後輪摩擦制動力(Fmr)によって達成する。例えば、前記コントローラ(ECU)は、前記後輪回生制動装置(KCr)が前記後輪回生制動力(Fgr)を発生できない場合には、前記前輪回生制動力(Fgf)を発生させない。
 アクチュエータHUには、前輪制動液圧Pwfが後輪制動液圧Pwr以上であることの制約がある。しかしながら、上記構成によれば、後輪回生制動装置KCrが不調に陥り、後輪回生制動力Fgrが発生され難くなる場合には、前輪基準回生制動力Fkfに基づいて、前輪回生制動力Fgfの発生が制限される。このため、前後制動力の発生に制約があっても、前輪要求制動力Fqfに対する後輪要求制動力Fqrの比率Kqが常に一定に維持される。従って、前後制動力の関係が適正化され、車両安定性が向上される。
制動制御装置SCを搭載した車両JVの全体を説明するための構成図である。 制動制御装置SCの第1の実施形態を説明するための概略図である。 回生協調制御の処理を説明するためのフロー図である。 第1の実施形態について、制動開始時の制動力前後配分を説明するための特性図である。 第1の実施形態について、すり替え作動時の制動力前後配分を説明するための特性図である。 第2の実施形態について、制動開始時の制動力前後配分を説明するための特性図である。 第2の実施形態について、すり替え作動時の制動力前後配分を説明するための特性図である。
<構成要素の記号等>
 以下の説明において、「CW」等の如く、同一記号を付された部材、信号、値等の構成要素は同一機能のものである。車輪に係る各種記号の末尾に付された添字「f」、「r」は、それが前輪、後輪の何れに関する要素であるかを示す包括記号である。具体的には、「f」は「前輪に係る要素」を、「r」は「後輪に係る要素」を、夫々示す。例えば、ホイールシリンダCWにおいて、「前輪ホイールシリンダCWf、後輪ホイールシリンダCWr」というように表記される。更に、添字「f」、「r」は省略されることがある。これらが省略される場合には、各記号は、その総称を表す。
<制動制御装置SCを搭載した車両JV>
 図1の構成図を参照して、第1の実施形態に係る制動制御装置SCを搭載した車両全体について説明する。ここで、制動制御装置SCを搭載した車両を、他の車両(例えば、先行車両SV)と区別するため、「自車両JV」とも称呼する。
 車両JVは、駆動用の電気モータGNを備えたハイブリッド車両、又は、電気自動車である。駆動用の電気モータGNは、エネルギ回生用のジェネレータ(発電機)としても機能する。ジェネレータGNは、前輪WHf、及び、後輪WHrに備えられる。前輪、後輪ジェネレータGNf、GNr(=GN)は、ジェネレータ用のコントローラEGf、EGrによって制御(駆動)される。ここで、前輪ジェネレータGNf、及び、そのコントローラEGfを含んで構成される装置が、「前輪回生制動装置KCf」と称呼される。また、後輪ジェネレータGNr、及び、そのコントローラEGrにて構成される装置が、「後輪回生制動装置KCr」と称呼される。車両JVには、前輪、後輪回生制動装置KCf、KCr用に蓄電池BTが備えられる。つまり、前輪、後輪回生制動装置KCf、KCrには、蓄電池BTも含まれる。
 電気モータ/ジェネレータGN(=GNf、GNr)が駆動用の電気モータとして作動する場合(車両JVの加速時)には、回生制動装置用のコントローラEG(単に、「回生コントローラ」ともいう)を介して、蓄電池BTから電気モータ/ジェネレータGNに電力が供給される。一方、電気モータ/ジェネレータGNが発電機として作動する場合(車両JVの減速時)には、ジェネレータGNからの電力が、回生コントローラEGを介して、蓄電池BTに蓄えられる(所謂、回生制動が行われる)。回生制動では、前輪、後輪ジェネレータGNf、GNrによって、前輪、後輪回生制動力Fgf、Fgrが、独立且つ個別に発生される。
 第1の実施形態では、前輪、後輪回生制動装置KCf、KCrの回生容量において、前輪回生制動装置KCfの方が、後輪回生制動装置KCrよりも、相対的に大きい。即ち、前輪、後輪回生制動装置KCf、KCrは、車体速度Vxに応じて、前輪、後輪回生制動力Fgf、Fgrを発生するが、前輪回生制動装置KCfの回生制動力の発生限界の方が、後輪回生制動装置KCrの回生制動力の発生限界よりも高い。従って、後輪回生制動装置KCrの方が、前輪回生制動装置KCfよりも先に、回生制動力の発生限界に到達する。
 車両JVには、制動装置SXが備えられる。制動装置SXによって、前輪WHf、後輪WHrには、前輪、後輪摩擦制動力Fmf、Fmrが発生される。制動装置SXは、回転部材(例えば、ブレーキディスク)KT、及び、ブレーキキャリパCPを含んで構成される。回転部材KTは、車輪WHに固定され、回転部材KTを挟み込むようにブレーキキャリパCPが設けられる。ブレーキキャリパCPには、ホイールシリンダCWが設けられている。ホイールシリンダCWには、制動制御装置SCから、制動液圧Pwに調整された制動液BFが供給される。制動液圧Pwによって、摩擦部材(例えば、ブレーキパッド)MSが、回転部材KTに押し付けられる。回転部材KTと車輪WHとは、一体的に回転するよう固定されているため、このときに生じる摩擦力によって、車輪WHに摩擦制動力Fmが発生される。
 車両JVには、制動操作部材BP、及び、各種センサ(BA等)が備えられる。制動操作部材(例えば、ブレーキペダル)BPは、運転者が車両を減速するために操作する部材である。車両JVには、制動操作部材BPの操作量(制動操作量)Baを検出する制動操作量センサBAが設けられる。制動操作量センサBAとして、ストロークシミュレータSS(後述)の液圧(シミュレータ液圧)Psを検出するシミュレータ液圧センサPS、制動操作部材BPの操作変位Spを検出する操作変位センサSP、及び、制動操作部材BPの操作力Fpを検出する操作力センサFPのうちの少なくとも1つが採用される。つまり、操作量センサBAによって、制動操作量Baとして、シミュレータ液圧Ps、制動操作変位Sp、及び、制動操作力Fpのうちの少なくとも1つが検出される。制動操作量Baは、制動制御装置SC用のコントローラECU(単に、「制動コントローラ」ともいう)に入力される。車両JVには、車輪WHの回転速度(車輪速度)Vwを検出する車輪速度センサVWを含む各種センサが備えられる。これらセンサの検出信号(Ba等)は、制動コントローラECUに入力される。制動コントローラECUでは、車輪速度Vwに基づいて、車体速度Vxが演算される。
 車両JVには、所謂、回生協調制御(回生制動力Fgと摩擦制動力Fmとを協同して作動させる制御)が実行されるよう、制動制御装置SCが備えられる。制動制御装置SCでは、2系統の制動系統として、所謂、前後型(「II型」ともいう)のものが採用される。制動制御装置SCは、制動操作部材BPの操作量Baに応じて、実際の制動液圧Pwを調節し、前輪、後輪連絡路HSf、HSrを介して、制動装置SX(特に、ホイールシリンダCW)に制動液圧Pwを供給する。制動制御装置SCは、マスタシリンダCMを含む流体ユニットHU(「アクチュエータ」ともいう)、及び、制動制御装置SC用のコントローラECU(制動コントローラ)にて構成される。
 流体ユニットHU(後述)は、制動コントローラECUによって制御される。制動制御装置SC用のコントローラECUは、信号処理を行うマイクロプロセッサMP、及び、電磁弁、電気モータを駆動する駆動回路DDにて構成される。制動コントローラECU、回生制動装置用のコントローラEG(=EGf、EGr)、運転支援装置用のコントローラECA(後述)の夫々は、通信バスBSに接続されている。従って、これらのコントローラの間では、通信バスBSを介して情報(検出値、演算値)が共有されている。例えば、車体速度Vxが、制動コントローラECUにて演算され、通信バスBSを通して、運転支援装置用のコントローラECA(単に、「運転支援コントローラ」ともいう)に送信される。目標減速度Gdが、運転支援コントローラECAにて演算され、通信バスBSを介して、制動コントローラECUに送信される。目標回生制動力Fh(=Fhf、Fhr)(後述)が、制動コントローラECUにて演算され、通信バスBSを介して、回生コントローラEG(=EGf、EGr)に送信される。限界回生制動力Fx(=Fxf、Fxr)(後述)は、回生コントローラEG(=EGf、EGr)にて演算され、通信バスBSを介して、制動コントローラECUに送信される。制動コントローラECUには、制動操作量Ba、車輪速度Vw、目標減速度Gd、限界回生制動力Fx等が入力される。これら信号に基づいて、制動コントローラECUによって、流体ユニットHUが制御される。
 車両JVには、運転者に代わって、或いは、運転者を補助するように、自動制動を行う運転支援装置UCが設けられる。運転支援装置UCは、自車両JVの前方の物体OJ(自車両JVの前方を走行する先行車両SVを含む)までの距離Ds(相対距離)を検出する物体検出センサOB、及び、運転支援装置用のコントローラECAにて構成される。例えば、物体検出センサOBとして、レーダセンサ、ミリ波センサ、画像センサ等が採用される。運転支援コントローラECAにて、物体検出センサOBの検出結果Ds(相対距離)に基づいて、自車両JVの目標減速度Gd(自車両JVの前後方向における車体加速度の目標値)が演算される。目標減速度(目標車体前後加速度)Gdは、通信バスBSを介して、運転支援コントローラECAから制動コントローラECUに伝達される。そして、制動制御装置SCによって、目標減速度Gdに応じた制動力Fg、Fmが発生される。
<制動制御装置SCの第1の実施形態>
 図2の概略図を参照して、制動制御装置SCの第1の実施形態(特に、流体ユニットHUの構成例)について説明する。制動制御装置SCには、4つのホイールシリンダCWの液圧(制動液圧)Pwを増加するための加圧源として、流体ユニットHUが含まれている。例示する制動制御装置SCでは、流体ユニットHUとマスタシリンダCMとが、一体化されている。また、制動制御装置SCには、前後型(「II型」ともいう)の制動系統が採用されている。流体ユニットHUは、マスタシリンダCMを含むアプライユニットAU、及び、加圧ユニットKUにて構成される。
 アプライユニットAU、及び、加圧ユニットKUは、制動コントローラECUによって制御される。詳細には、コントローラECUには、制動操作量Ba(シミュレータ液圧Ps、操作変位Sp、操作力Fpのうちの少なくとも1つ)、目標減速度Gd、第1、第2調整液圧Pa、Pb、前輪、後輪限界回生制動力Fxf、Fxrが入力される。そして、これら信号に基づいて、第1、第2開閉弁VA、VBの駆動信号Va、Vb、第1、第2調圧弁UA、UBの駆動信号Ua、Ub、電気モータMAの駆動信号Ma、及び、前輪、後輪目標回生制動力Fhf、Fhrが演算される。駆動信号「Va、Vb、Ua、Ub、Ma」に応じて、流体ユニットHUを構成する電磁弁「VA、VB、UA、UB」、及び、電気モータMAが制御(駆動)される。
 後述するように、流体ユニットHU、ホイールシリンダCW等は、リザーバ路HR、連絡路HS(=HSf、HSr)、入力路HN、サーボ路HV、還流路HKにて接続される。これらは、制動液BFが移動される流体路である。流体路(HS等)としては、流体配管、流体ユニットHU内の流路、ホース等が該当する。
≪アプライユニットAU≫
 アプライユニットAUは、マスタリザーバRV、マスタシリンダCM,マスタピストンNP、マスタばねDP、入力シリンダCN、入力ピストンNN、入力ばねDN、第1、第2開閉弁VA、VB、ストロークシミュレータSS、及び、シミュレータ液圧センサPSにて構成される。
 マスタリザーバ(「大気圧リザーバ」ともいう)RVは、作動液体用のタンクであり、その内部に制動液BFが貯蔵されている。マスタリザーバRVは、マスタシリンダCM(特に、マスタ室Rm)に接続されている。
 マスタシリンダCMは、底部を有するシリンダ部材である。マスタシリンダCMの内部には、マスタピストンNPが挿入され、その内部が、シール部材SLによって封止されて、マスタ室Rmが形成されている。マスタシリンダCMは、所謂、シングル型である。マスタピストンNPを後退方向Hb(マスタ室Rmの体積が増加する方向であり、前進方向Haとは逆方向)に押圧するように、マスタ室Rm内には、マスタばねDPが設けられる。マスタ室Rmは、前輪連絡路HSf、及び、液圧モジュレータMJを介して、最終的には前輪ホイールシリンダCWfに接続されている。マスタピストンNPが前進方向Ha(マスタ室Rmの体積が減少する方向)に移動されると、流体ユニットHU(特に、マスタシリンダCM)から前輪ホイールシリンダCWfに向けて制動液BFが、液圧Pmで圧送される。マスタ室Rmの液圧Pmが、「マスタ液圧」と称呼される。
 マスタピストンNPには、つば部(フランジ)Tpが設けられている。このつば部Tpによって、マスタシリンダCMの内部は、更に、サーボ室Ruと後方室Roとに仕切られている。サーボ室Ruは、マスタピストンNPを挟んで、マスタ室Rmに相対するように配置される。また、後方室Roは、マスタ室Rmとサーボ室Ruとに挟まれ、それらの間に配置されている。サーボ室Ru、及び、後方室Roも、上記同様に、シール部材SLによって封止されている。
 例えば、マスタピストンNPのつば部Tpの受圧面積(即ち、サーボ室Ruの受圧面積)ruと、マスタピストンNPの端部の受圧面積(即ち、マスタ室Rmの受圧面積)rmとが、等しくなるように設定される。この場合、サーボ室Ruの液圧Pa(後述)と、マスタ室Rmの液圧Pm(マスタ液圧)とは等しくなる。
 入力シリンダCNは、マスタシリンダCMに固定されている。入力シリンダCNの内部には、入力ピストンNNが挿入され、シール部材SLによって封止されて、入力室Rnが形成されている。入力ピストンNNは、クレビス(U字リンク)を介して、制動操作部材BPに機械的に接続されている。入力ピストンNNには、つば部(フランジ)Tnが設けられる。つば部TnとマスタシリンダCMに対する入力シリンダCNの取付面との間に、入力ばねDNが設けられる。入力ばねDNによって、入力ピストンNNは、後退方向Hbに押圧されている。
 入力ピストンNN、及び、マスタピストンNPが最も後退方向Hbに押圧されている状態で、入力ピストンNNとマスタピストンNPとは、隙間Ks(「離間距離」ともいう)を有している。隙間Ksによって、制動操作部材BPの変位Spが発生しても、制動液圧Pwが変化しない状態が形成される。換言すれば、入力ピストンNNとマスタピストンNPとが隙間Ksを有して離間されていることによって、制動制御装置SCは、ブレーキバイワイヤ化され、回生協調制御が達成可能とされている。
 アプライユニットAUには、入力室Rn、サーボ室Ru、後方室Ro、及び、マスタ室Rmの液圧室が設けられる。ここで、「液圧室」は、制動液BFが満たされ、シール部材SLによって封止されたチャンバである。夫々の液圧室の体積は、入力ピストンNN、マスタピストンNPの移動によって変化される。液圧室の配置においては、マスタシリンダCMの中心軸線Jmに沿って、制動操作部材BPに近い方から、入力室Rn、サーボ室Ru、後方室Ro、マスタ室Rmの順で並んでいる。
 入力室Rnと後方室Roとは、入力路HNを介して接続されている。そして、入力路HNには、第1開閉弁VAが設けられる。入力路HNは、後方室Roと第1開閉弁VAとの間で、リザーバ路HRを介して、マスタリザーバRVに接続される。リザーバ路HRには、第2開閉弁VBが設けられる。第1、第2開閉弁VA、VBは、開位置(連通状態)と閉位置(遮断状態)とを有する2位置の電磁弁(「オン・オフ弁」ともいう)である。第1開閉弁VAとして常閉型の電磁弁が採用される。また、第2開閉弁VBとして常開型の電磁弁が採用される。なお、第1、第2開閉弁VA、VBは、制動コントローラECUからの駆動信号Va、Vbによって駆動(制御)される。
 後方室Roには、ストロークシミュレータ(単に、「シミュレータ」ともいう)SSが接続されている。シミュレータSSによって、制動操作部材BPの操作力Fpが発生される。シミュレータSSの内部には、ピストン、及び、弾性体(例えば、圧縮ばね)が備えられる。制動液BFがシミュレータSSに流入する際に、制動液BFによってピストンが押される。ピストンには、弾性体によって制動液BFの流入を阻止する方向に力が加えられるため、制動操作部材BPの操作力Fpが発生される。制動操作部材BPの操作特性(操作変位Spと操作力Fpとの関係)は、シミュレータSSによって形成される。
 シミュレータSSの液圧(シミュレータ液圧であり、入力室Rn、後方室Roの液圧でもある)Psを検出するよう、シミュレータ液圧センサPSが設けられる。シミュレータ液圧センサPSは、上記の制動操作量センサBAの1つである。シミュレータ液圧Psは、制動操作量Baとして、制動用のコントローラECUに入力される。
 流体ユニットHUには、シミュレータ液圧センサPSの他に、制動操作量センサBAとして、制動操作部材BPの操作変位Spを検出する操作変位センサSP、及び/又は、制動操作部材BPの操作力Fpを検出する操作力センサFPが設けられる。つまり、制動操作量センサBAとしては、シミュレータ液圧センサPS、操作変位センサSP(ストロークセンサ)、及び、操作力センサFPのうちの少なくとも1つが採用される。従って、制動操作量Baは、シミュレータ液圧Ps、操作変位Sp、及び、操作力Fpのうちの少なくとも1つである。
≪加圧ユニットKU≫
 加圧ユニットKUによって、前輪ホイールシリンダCWfの液圧Pwfと、後輪ホイールシリンダCWrの液圧Pwrとが、独立、且つ、個別に調節される。ただし、前輪制動液圧Pwfと後輪制動液圧Pwrとの大小関係においては、前輪制動液圧Pwfは、後輪制動液圧Pwr以下である。加圧ユニットKUは、電気モータMA、流体ポンプQA、第1、第2調圧弁UA、UB、及び、第1、第2調整液圧センサPA、PBを備えている。
 1つの電気モータMA、及び、1つの流体ポンプQAの組によって、電動ポンプが構成される。流体ポンプQAは電気モータMAによって駆動され、流体ポンプQAが吐出する制動液BFによって、制動液圧Pwが増加される。従って、電気モータMAが、ホイールシリンダCWの液圧(制動液圧)Pwを増加するための動力源である。電気モータMAは、駆動信号Maに応じて、制動コントローラECUによって制御される。
 流体ポンプQAの吸込部は、リザーバ路HRを介して、マスタリザーバRVに接続されている。また、流体ポンプQAの吸込部と吐出部とは、還流路HKを介して接続されている。従って、電気モータMAが駆動されると、還流路HKには、流体ポンプQAが吐出する制動液BFによって、制動液BFの循環流KN(図中で破線矢印にて示し、単に、「還流」ともいう)が発生される。ここで、還流KNにおいて、流体ポンプQAの吐出部に近い側が「上流側」、遠い側が「下流側」と称呼される。
 還流路HKには、2つの調圧弁UA、UBが直列に設けられる。具体的には、還流路HKには、第1調圧弁UAが設けられる。そして、第1調圧弁UAと流体ポンプQAの吐出部との間に、第2調圧弁UBが設けられる。従って、還流KNにおいて、第2調圧弁UBは、第1調圧弁UAに対して上流側に配置される。第1、第2調圧弁UA、UBは、通電状態(例えば、供給電流)に基づいて開弁量(リフト量)が連続的に制御されるリニア型の電磁弁(「比例弁」、又は、「差圧弁」ともいう)である。第1、第2調圧弁UA、UBとして、常開型の電磁弁が採用される。第1、第2調圧弁UA、UBは、駆動信号Ua、Ubに基づいて、制動コントローラECUによって制御される。
 電気モータMAが駆動され、流体ポンプQAが作動されている場合には、制動液BFは、「QA→UB→UA→QA」の順で循環される。第1、第2調圧弁UA、UBに電力供給が行われず、全開状態にある場合には、還流路HK内の液圧Pa、Pbは、共に、略「0(大気圧)」である(即ち、「Ia=Ib=0、Pa=Pb=0」)。第2調圧弁UBが非通電の状態において、第1調圧弁UAに電力が供給され始め、その通電量Iaが増加されると、第1調圧弁UAによって還流KNが絞られる。これにより、流体ポンプQAと第1調圧弁UAと間の液圧Pa(「第1調整液圧」という)が「0」から増加される。
 この状態で、第2調圧弁UBに電力が供給され始め、その通電量Ibが増加されると、第2調圧弁UBによって、更に還流KNが絞られる。これにより、流体ポンプQAの吐出部と第2調圧弁UBと間の液圧Pb(「第2調整液圧」という)が、第1調整液圧Paから増加される。従って、第1調整液圧Paと第2調整液圧Pbとの大小関係において、常に、第2調整液圧Pbは、第1調整液圧Pa以上である(即ち、「Pb≧Pa」)。なお、第2調圧弁UBに電力供給が行われず、それが全開状態である場合には、第1調整液圧Paと第2調整液圧Pbとは等しい(即ち、「Ib=0」で「Pa=Pb」)。
 還流路HKは、第1調圧弁UAと第2調圧弁UBとの間で、サーボ路HVを通して、サーボ室Ruに接続される。従って、第1調整液圧Paは、サーボ室Ruに供給される。そして、サーボ室Ruの受圧面積ruと、マスタ室Rmの受圧面積rmとが同じであるため、マスタ液圧Pm(結果、前輪制動液圧Pwf)は、第1調整液圧Paに等しい。換言すれば、第1調整液圧Paは、前輪ホイールシリンダCWfに供給される。また、還流路HKは、流体ポンプQA(特に、吐出部)と第2調圧弁UBとの間で、後輪連絡路HSr、及び、液圧モジュレータMJを介して、後輪ホイールシリンダCWrに接続される。従って、第2調整液圧Pbは、後輪ホイールシリンダCWrに供給される。加圧ユニットKUには、第1、第2調整液圧Pa、Pbを検出するよう、第1、第2調整液圧センサPA、PBが設けられる。
 制動制御装置SCと、前輪、後輪ホイールシリンダCWf、CWrとの間には、前輪、後輪制動液圧Pwf、Pwrを、各ホイールシリンダCWにおいて個別に制御できるよう、液圧モジュレータMJが設けられる。液圧モジュレータMJの内部にて、前輪、後輪連絡路HSf、HSrは、夫々、2つに分岐されて、前輪、後輪ホイールシリンダCWf、CWrに接続される。液圧モジュレータMJによって、アンチロックブレーキ制御、車両安定性制御等の各ホイールシリンダCWの液圧Pwが、独立、且つ、個別に制御される。なお、回生協調制御(後述)では、液圧モジュレータMJは作動されない。
≪流体ユニットHUの作動≫
 非制動時(即ち、制動操作部材BPの操作が行われていない場合)には、ピストンNN、NPは、ばねDN、DPによって押し付けられ、それらの初期位置(最も後退方向Hbに移動された位置)にまで戻されている。この状態では、マスタ室RmとマスタリザーバRVとは連通状態であって、マスタ室Rmのマスタ液圧Pmは「0(大気圧)」である。また、ピストンNN、NPの初期位置においては、入力ピストンNNとマスタピストンNPとは隙間Ksを有している。非制動時には、第1、第2調圧弁UA、UBは開弁されているので、第1、第2調整液圧Pa、Pbは「0(大気圧)」である。
 制動時(即ち、制動操作部材BPが操作される場合)には、第1開閉弁VAが開弁され、第2開閉弁VBが閉弁される。即ち、入力室Rnと後方室Roとが連通状態され、後方室RoとマスタリザーバRVとの連通状態が遮断され、非連通状態にされている。制動操作部材BPの操作量Baの増加に伴い、入力ピストンNNは前進方向Haに移動され、入力室Rnから制動液BFが排出される。この制動液BFは、ストロークシミュレータSSに吸収されるので、入力室Rnの液圧Pn(入力液圧)、及び、後方室Roの液圧Po(後方液圧)が増加され、制動操作部材BPに操作力Fpが発生される。このとき、制動操作量Ba(シミュレータ液圧Ps、操作変位Sp、操作力Fpのうちの少なくとも1つ)に応じて、第1、第2調圧弁UA、UBが制御され、第1、第2調整液圧Pa、Pbが増加される。
 第1調整液圧Paは、サーボ室Ruに供給されるので、マスタピストンNPは、前進方向Haに押圧され、移動する。マスタピストンNPの前進方向Haの移動に伴って、マスタ液圧Pmが増加される。そして、マスタ液圧Pmに調節された制動液BFが前輪ホイールシリンダCWfに供給され、その内圧(制動液圧)Pwfが増加される。また、第2調整液圧Pbに調節された制動液BFが後輪ホイールシリンダCWrに供給され、その内圧(制動液圧)Pwrが増加される。つまり、前輪制動液圧Pwfが第1調整液圧Paに等しく調節され、後輪制動液圧Pwrが第2調整液圧Pbに等しく調節される。このとき、流体ユニットHU(特に、加圧ユニットKU)の制約により、前輪制動液圧Pwf(=Pa)は、後輪制動液圧Pwr(=Pb)以下の範囲で調整が可能である。
 制動制御装置SCは、ブレーキバイワイヤ型であり、回生協調制御が実行される。入力ピストンNNとマスタピストンNPとは隙間Ksを有しているので、第1調整液圧Paが制御されることによって、この隙間Ksの範囲内で、入力ピストンNNとマスタピストンNPとの相対的な位置関係が任意に調節可能である。例えば、前輪回生制動装置KCfによる制動力Fgfのみが必要な場合には、「Pa=0」にされ、マスタ液圧Pmは「0」のままにされる。前輪制動液圧Pwfが増加されず、「0」のままであるため、回転部材KTと摩擦部材MSとの摩擦による制動力(前輪摩擦制動力)Fmfは発生されない。従って、前輪制動力Fbfは、前輪回生制動力Fgfのみによって発生される。
<回生協調制御の処理>
 図3のフロー図を参照して、第1の実施形態に係る回生協調制御の処理について説明する。「回生協調制御」は、制動時に車両JVの有する運動エネルギが効率的に、電気エネルギとして回収(回生)されるよう、ジェネレータGNによる回生制動力Fgと、制動制御装置SCによる摩擦制動力Fmとが協調して制御されるものである。回生協調制御のアルゴリズムは、制動コントローラECUのマイクロプロセッサMPにプログラムされている。
 第1の実施形態では、後輪回生制動装置KCrの回生容量に比較して、前輪回生制動装置KCfの回生容量が相対的に大きい。つまり、回生制動において、前輪回生制動装置KCfが支配的である。このため、回生協調制御においては、回生制動力Fg、及び、摩擦制動力Fmが、前後輪間で個別に調整可能ではあるが、「Pwf≦Pwr」の制約が存在する。
 ステップS110にて、制動操作量Ba、第1、第2調整液圧Pa、Pb、車体速度Vx、目標減速度Gd等の信号が読み込まれる。操作量Baは、操作量センサBA(シミュレータ液圧センサPS、操作変位センサSP、操作力センサFP等)の検出値に基づいて演算される。第1、第2調整液圧Pa、Pbは、流体ユニットHUの設けられた第1、第2調整液圧センサPA、PBの検出値に基づいて演算される。車体速度Vxは、車輪速度Vw(車輪速度センサVWの検出値)に基づいて演算される。目標減速度Gdは、運転支援コントローラECAから送信される。
 ステップS120にて、制動操作量Baに基づいて、目標車体制動力Fvが演算される。「目標車体制動力Fv」は、車体に作用する制動力Fb(即ち、車両JVの全体としての制動力)に対応する目標値である。目標車体制動力Fvは、制動操作量Ba、及び、演算マップZfvに基づいて、制動操作量Baが所定量bo未満の場合には「0」に演算される。そして、制動操作量Baが所定量bo以上の場合には、制動操作量Baが「0」から増加するに従い、目標車体制動力Fvが「0」から増加するように演算される。ここで、所定量boは、制動操作部材BPの遊びを表す、予め設定された所定値(定数)である。
 制動が、運転支援装置UCによって自動的に行われる場合(即ち、制動操作部材BPの操作には依らない自動制動制御の場合)には、ステップS120にて、制動操作量Baの場合と同様に、目標減速度Gdに基づいて、目標車体制動力Fvが演算される。具体的には、目標車体制動力Fvは、「Gd<bo」の場合には、「0」に演算され、「Gd≧bo」の場合には、目標減速度Gdの増加に伴って、「0」から増加するように演算される。ここで、所定量boは、自動制動制御における不感帯を表す、予め設定された所定値(定数)である。
 ステップS130にて、目標車体制動力Fvに基づいて、前輪、後輪要求制動力Fqf、Fqr(=Fq)が演算される。「前輪、後輪要求制動力Fqf、Fqr」は、前輪WHf、後輪WHrに作用する、実際の前輪、後輪制動力Fbf、Fbrに対応する目標値である。従って、要求制動力Fqは、回生制動力Fgと摩擦制動力Fmとの和に対応する目標値である。制動制御装置SCでは、左右車輪の制動力は同じ値として演算されるため、前輪要求制動力Fqfは、車両前方の2輪分(即ち、前2輪WHf)に対応し、後輪要求制動力Fqrは、車両後方の2輪分(即ち、後2輪WHr)に対応している。ステップS130は、以下の2つの条件が満足されるように、前輪、後輪要求制動力Fqf、Fqrが演算される。
   条件1:前輪要求制動力Fqfと後輪要求制動力Fqrとを合算した値が、目標車体制動力Fvに一致する(即ち、「Fv=Fqf+Fqr」)。
   条件2:前輪要求制動力Fqfに対する後輪要求制動力Fqrの比率Kqが一定(値hb)である(即ち、「Kq=Fqr/Fqf=hb、ここで、hbは予め設定された所定値(定数)」)。
 詳細には、ステップS130では、上記比率Kqを「hb(一定値)」として、前輪、後輪要求制動力Fqf、Fqrが、以下の式(1)のように演算される。
   Fqf=Fv/(1+hb)、及び、Fqr=Fv・hb/(1+hb)   …式(1)
 ステップS140にて、前輪、後輪限界回生制動力Fxf、Fxr(=Fx)が取得される。「限界回生制動力Fx」は、前輪、後輪回生制動装置KCf、KCr(=KC)が発生し得る前輪、後輪回生制動力Fgf、Fgrの最大値(限界値)である。換言すれば、限界回生制動力Fxは、回生制動力Fgの限度を表す状態量である。
 限界回生制動力Fxは、回生制動装置KCの作動状態によって制約を受ける。従って、限界回生制動力Fxは、回生制動装置KCの作動状態に基づいて定まる。具体的には、回生制動装置KCの作動状態は、ジェネレータGNの回転速度Ng(即ち、前輪、後輪回転速度Ngf、Ngr)、回生コントローラEG(特に、IGBT等のパワートランジスタ)の状態(温度等)、及び、蓄電池BTの状態(充電受入量、温度等)のうちの少なくとも1つに該当する。限界回生制動力Fxは、回生コントローラEGにて決定(演算)され、通信バスBSを介して、制動コントローラECUにて取得される。例えば、回生コントローラEGでは、以下の方法で、限界回生制動力Fxが決定される。
 前輪限界回生制動力Fxf(前輪回生制動力の上限値)は、ブロックX140の上段の特性Zxf(演算マップ)に基づいて決定される。これは、回生制動装置KCによる回生量(結果、回生制動力)は、回生コントローラEGのパワートランジスタ(IGBT等)の定格、及び、蓄電池BTの充電受入量(満充電から現在の充電量を差し引いた残量)によって定まることに因る。具体的には、演算マップZxfでは、前輪ジェネレータGNfの回転速度Ngf(単に、「前輪回転速度」ともいう)が第1前輪所定速度vp以上である場合には、前輪回生制動装置KCfの回生電力(仕事率)が一定となるよう(つまり、限界回生制動力Fxと前輪回転速度Ngfとの積が一定となるよう)、限界回生制動力Fxが決定される。従って、「Ngf≧vp」では、前輪回転速度Ngfの減少に伴い、回転速度Ngfに対して反比例の関係で、限界回生制動力Fxが増加するように演算される。また、前輪回転速度Ngfが低下すると、回生量は減少するので、演算マップZxfでは、前輪回転速度Ngfが第2前輪所定速度vo未満の場合には、回転速度Ngfの減少に伴い、前輪限界回生制動力Fxfが減少するように演算される。更に、前輪回生制動力Fgfによって、前輪WHfに過度な減速スリップ(極端な場合が、車輪ロック)が生じないよう、演算マップZxfには、予め設定された前輪上限値fxfが設けられる。なお、第1前輪所定速度vp、第2前輪所定速度vo、及び、前輪上限値fxfは、予め設定された所定値(定数)である。
 前輪限界回生制動力Fxfと同様に、後輪限界回生制動力Fxr(後輪回生制動力の上限値)は、ブロックX140の下段の特性Zxr(演算マップ)に基づいて決定される。具体的には、演算マップZxrでは、後輪ジェネレータGNrの回転速度Ngr(単に、「後輪回転速度」ともいう)が第1後輪所定速度up以上である場合には、後輪回生制動装置KCrの回生電力(仕事率)が一定となるよう(つまり、限界回生制動力Fxと後輪回転速度Ngrとの積が一定となるよう)、限界回生制動力Fxが決定される。従って、「Ngr≧up」では、後輪回転速度Ngrの減少に伴い、回転速度Ngrに対して反比例の関係で、限界回生制動力Fxが増加するように演算される。また、後輪回転速度Ngrが低下すると、回生量は減少するので、演算マップZxrでは、後輪回転速度Ngrが第2後輪所定速度uo未満の場合には、回転速度Ngrの減少に伴い、後輪限界回生制動力Fxrが減少するように演算される。更に、後輪回生制動力Fgrによって、後輪WHrに過度な減速スリップ(極端な場合が、車輪ロック)が生じないよう、演算マップZxrには、予め設定された後輪上限値fxrが設けられる。なお、第1後輪所定速度up、第2後輪所定速度uo、及び、後輪上限値fxrは、予め設定された所定値(定数)である。
 以上、前輪、後輪限界回生制動力Fxf、Fxr(=Fx)について、各ジェネレータGNにおける前輪、後輪回転速度Ngf、Ngr(=Ng)に基づく決定方法について説明した。更に、限界回生制動力Fxは、温度等の回生コントローラEGの状態に基づいて決定される。回生コントローラEGの温度が高い場合には、回転速度Ngに応じて決定された限界回生制動力Fxから、更に、限界回生制動力Fxが減少するように決定される。また、蓄電池BTの温度が高い場合にも、同様に、限界回生制動力Fxが減少するように演算される。
 ステップS150にて、前輪限界回生制動力Fxfに基づいて、後輪基準回生制動力Fkrが演算される。「後輪基準回生制動力Fkr」は、前輪回生制動装置KCfの不調(例えば、前輪回生コントローラEGfの温度上昇)に起因して前輪限界回生制動力Fxfが低下するような場合であっても、前輪要求制動力Fqfに対する後輪要求制動力Fqrの比率Kqが一定値hbに維持されるよう、後輪目標回生制動力Fhr(結果、後輪回生制動力Fgr)に制限をかけるための状態変数である。具体的には、前輪限界回生制動力Fxfに上記一定値hb(予め設定された定数)が乗算されて、後輪制限回生制動力Fsrが演算される(即ち、「Fsr=hb・Fxf」)。そして、ステップS150では、後輪限界回生制動力Fxr、及び、前記後輪制限回生制動力Fsrのうちの小さい方が、後輪基準回生制動力Fkrとして決定される(即ち、「Fkr=MIN(Fxr,Fsr)」)。例えば、前輪回生制動装置KCfが完全に失陥した場合には、前輪限界回生制動力Fxfは「0」であるため、後輪基準回生制動力Fkrは「0」に演算される(即ち、「Fxf=0、Fkr=0」)。
 ステップS160にて、前輪、後輪要求制動力Fqf、Fqr、前輪限界回生制動力Fxf、及び、後輪基準回生制動力Fkrに基づいて、前輪、後輪目標回生制動力Fhf、Fhr、及び、前輪、後輪目標摩擦制動力Fnf、Fnrが演算される。「前輪、後輪目標回生制動力Fhf、Fhr(=Fh)」は、前輪、後輪回生制動装置KCf、KCrによって実現されるべき実際の前輪、後輪回生制動力Fgf、Fgr(=Fg)に対応する目標値である。また、「前輪、後輪目標摩擦制動力Fnf、Fnr(=Fn)」は、制動制御装置SCによって実現されるべき実際の前輪、後輪摩擦制動力Fmf、Fmr(=Fm)に対応する目標値である。
 ステップS160では、「前輪要求制動力Fqfが前輪限界回生制動力Fxfよりも大きいか、否か(「前輪限界判定」という)」が判定される。前輪要求制動力Fqfが前輪限界回生制動力Fxf以下の場合(即ち、「Fqf≦Fxf」であり、前輪限界判定が否定される場合)には、前輪目標回生制動力Fhfは、前輪要求制動力Fqfに演算されるとともに、前輪目標摩擦制動力Fnfは「0」に演算される(即ち、「Fhf=Fqf、Fnf=0」)。一方、前輪要求制動力Fqfが前輪限界回生制動力Fxfよりも大きい場合(即ち、「Fqf>Fxf」であり、前輪限界判定が肯定される場合)には、前輪目標回生制動力Fhfは、前輪限界回生制動力Fxfに演算されるとともに、前輪目標摩擦制動力Fnfは、前輪要求制動力Fqfから前輪限界回生制動力Fxfを減じた値に演算される(即ち、「Fhf=Fxf、Fnf=Fqf-Fxf」)。
 また、ステップS160では、「後輪要求制動力Fqrが後輪基準回生制動力Fkrよりも大きいか、否か(「後輪限界判定」という)」が判定される。後輪要求制動力Fqrが後輪基準回生制動力Fkr以下の場合(即ち、「Fqr≦Fkr」であり、後輪限界判定が否定される場合)には、後輪目標回生制動力Fhrは、後輪要求制動力Fqrに演算されるとともに、後輪目標摩擦制動力Fnrは「0」に演算される(即ち、「Fhr=Fqr、Fnr=0」)。一方、後輪要求制動力Fqrが後輪基準回生制動力Fkrよりも大きい場合(即ち、「Fqr>Fkr」であり、後輪限界判定が肯定される場合)には、後輪目標回生制動力Fhrは、後輪基準回生制動力Fkrに演算されるとともに、後輪目標摩擦制動力Fnrは、後輪要求制動力Fqrから後輪基準回生制動力Fkrを減じた値に演算される(即ち、「Fhr=Fkr、Fnr=Fqr-Fkr」)。なお、前輪限界判定と後輪限界判定とは、夫々が個別に行われる。
 ステップS160にて演算された前輪、後輪目標回生制動力Fhf、Fhrは、制動コントローラECUから前輪、後輪回生コントローラEGf、EGrに送信される。そして、前輪、後輪回生コントローラEGf、EGrによって、実際の前輪、後輪回生制動力Fgf、Fgrが、前輪、後輪目標回生制動力Fhf、Fhrに近付き、一致するように、前輪、後輪ジェネレータGNf、GNrが制御される。なお、前輪回生制動装置KCfが失陥した場合には、前輪、後輪目標回生制動力Fhf、Fhrが共に「0」に決定されるので、前輪、後輪回生制動力Fgf、Fgrは発生されない。
 ステップS170にて、前輪、後輪目標摩擦制動力Fnf、Fnrに基づいて、前輪、後輪目標液圧Ptf、Ptrが演算される。「前輪、後輪目標液圧Ptf、Ptr(=Pt)」は、実際の前輪、後輪制動液圧Pwf、Pwr(=Pw)に対応する目標値である。具体的には、制動装置SX等の諸元(ホイールシリンダCWの受圧面積、回転部材KTの有効制動半径、摩擦部材MSの摩擦係数、車輪(タイヤ)の有効半径等)に基づいて、目標摩擦制動力Fnが目標液圧Ptに変換される。
 ステップS180にて、前輪、後輪目標液圧Ptf、Ptr(目標値)に基づいて、前輪、後輪制動液圧Pwf、Pwr(実際値)が調整される。制動コントローラECUによって、流体ユニットHUを構成する電磁弁、電気モータが駆動され、実際の前輪、後輪制動液圧Pwf、Pwrが、前輪、後輪目標液圧Ptf、Ptrに近付き、一致するように制御される。
 制動制御装置SCは、前輪、後輪回生制動装置KCf、KCr(特に、前輪、後輪ジェネレータGNf、GNr)を介して、前輪、後輪回生制動力Fgf、Fgrを、前後輪間で別々に制御することができる。また、制動制御装置SCは、制動液圧Pwを、前後輪のホイールシリンダCWf、CWrで別々に制御することが可能である。つまり、制動制御装置SCは、前輪、後輪摩擦制動力Fmf、Fmrを、前後輪間で別々に制御することができる。ただし、制動制御装置SCには、前輪制動液圧Pwf(=Pa)の調整は、後輪制動液圧Pwr(=Pb)以下であることの制約が存在する。
 制動制御装置SCでの回生協調制御では、前輪要求制動力Fqfに対する後輪要求制動力Fqrの比率Kqが、常時一定(値hb)になるように、前輪、後輪回生制動力Fgf、Fgrと、前輪、後輪摩擦制動力Fmf、Fmrと、が調整される。その結果、前輪制動力Fbfに対する後輪制動力Fbrの比率Kbは、前輪、後輪回生制動装置KCf、KCrが不調になるような場合であっても、常に一定(値hb)である。制動力の前後配分が常時適正化されるため、回生制動時においても車両の方向安定性が向上される。
 なお、第1の実施形態において、後輪回生制動装置KCrが不調の場合には、流体ユニットHUの制約(即ち、「Pwf≦Pwr」の条件)は回生協調制御に影響を及ぼさない。換言すれば、後輪回生制動装置KCrによる後輪回生制動力Fgrの発生が低下した場合に、前輪回生制動力Fgfの発生を制限しなくても、制動力配分の比率Kbは一定値hbに維持され得る。つまり、後輪回生制動装置KCrの不調に起因して後輪限界回生制動力Fxrが低下することはあるが、制動力配分比率Kb(=Fbr/Fbf)を一定値hbに維持するために、前輪回生制動装置KCfの回生量(即ち、前輪回生制動力Fgf)が意図的に制限されることはない。以上をまとめると、後輪回生制動装置KCrが完全に失陥し、後輪回生制動力Fgrが全く発生できない場合には前輪回生制動力Fgfの発生は許可されるが、前輪回生制動装置KCfが完全に失陥し、前輪回生制動力Fgfが全く発生できない場合には後輪回生制動力Fgrの発生は禁止される。
<第1の実施形態に係る回生協調制御での制動開始時の制動力前後配分>
 図4(a)(b)の特性図を参照して、第1の実施形態での回生協調制御において、制動開始の際の前後制動力の配分について説明する。回生協調制御では、目標値が演算され、該目標値に一致するように実際値が制御される。特性図では、前輪、後輪要求制動力Fqf、Fqrの制御結果として、実際の前輪、後輪制動力Fbf、Fbrが示されている。
 先ず、制動力に係る各種の状態量について整理する。車両全体に作用する制動力の目標値が、目標車体制動力Fvであり、その制御結果である実際値が、制動力Fbである。実際値Fbは、前後輪で発生されるため、前輪WHf(2輪分)に係る実際値が前輪制動力Fbfであり、後輪WHr(2輪分)に係る実際値が後輪制動力Fbrである。目標車体制動力Fvが前後輪の制動力に配分されたものが、前輪、後輪要求制動力Fqf、Fqrである。従って、目標値Fqf、Fqrに対応する制御結果が、実際の前輪、後輪制動力Fbf、Fbrである。更に、前輪制動力に対する後輪制動力の比率(「配分比率」ともいう)においては、目標値では比率Kq(=Fqr/Fqf)であり、実際値では比率Kb(=Fbr/Fbf)である。実際値は、目標値に一致するように制御されるため、実質的には、配分比率Kqと配分比率Kbとは等しく、一定値hbである(即ち、「Kq=Kb=hb」)。
 前輪、後輪要求制動力(目標値)Fqf、Fqrは、回生制動による目標値(目標回生制動力)Fhf、Fhrと、摩擦制動(例えば、制動液圧Pwで摩擦部材MSを回転部材KTに押圧する際の摩擦力による制動)による目標値(目標摩擦制動力)Fnf、Fnrと、に振り分けられる。目標値Fhf、Fhrに対応する制御結果が実際値Fgf、Fgrであり、目標値Fnf、Fnrに対応する制御結果が実際値Fmf、Fmrである。従って、目標値においては、「Fv=Fqf+Fqr、Fqf=Fhf+Fnf、Fqr=Fhr+Fnr」の関係があり、実際値においては、「Fb=Fbf+Fbr、Fbf=Fgf+Fmf、Fbr=Fgr+Fmr」の関係がある。
 図4(a)(b)の特性図(前輪制動力Fbfに対する後輪制動力Fbrの関係が表現される図)では、非制動の状態から、制動力が増加される状況が想定されている。図4(a)は、前輪、後輪回生制動装置KCf、KCrが共に適正に作動する場合を示し、図4(b)は、前輪回生制動装置KCfが不調に陥り、その回生量が低下した場合(即ち、前輪限界回生制動力Fxfが減少した場合)を示している。前輪、後輪限界回生制動力Fxf、Fxrは、前輪、後輪ジェネレータGNf、GNrの回転速度Ngf、Ngrに応じて変化するが、説明の煩雑さを考慮して、図3の演算マップZxf、Zxr(ブロックX140を参照)において、前輪、後輪限界回生制動力Fxf、Fxrが、共に、前輪、後輪上限値fxf、fxrに制限されている状態が図示されている。ここで、図中の「: 」の表記は、該当する時点での値であることを表示している。例えば、「点(A:t1)」は、時点t1における作動点を表し、「Fmf:t3」は、時点t3における前輪摩擦制動力Fmfの値を表している。
≪前輪、後輪回生制動装置KCf、KCrが共に適正に作動する場合≫
 図4(a)の特性図を参照して、前輪、後輪回生制動装置KCf、KCrが共に適正状態である場合の作動について説明する。制動制御装置SCにおける回生協調制御では、実際の前輪、後輪制動力Fbf、Fbrが、基準特性Cbに沿うように、回生制動力Fg、及び、摩擦制動力Fmが調整される。具体的には、基準特性Cbでは、前輪制動力Fbfに対する後輪制動力Fbrの比率Kb(即ち、「Kb=Fbr/Fbf=Fqr/Fqf」)が一定値hbとなるように設定される。従って、前輪制動力Fbfと後輪制動力Fbrとの関係を表す特性図では、基準特性Cbは、原点(O)(「Fbf=Fbr=0」の点)を通り、傾きhb(定数)を有する直線として表される。ここで、基準特性Cbの傾きhb(一定値)は、「前輪、後輪ホイールシリンダCWf、CWrの受圧面積」、「回転部材KTf、KTrの有効制動半径」、「前後輪の摩擦材MSの摩擦係数」、及び、「車輪WH(タイヤ)の有効半径」に基づいて、予め設定されている。例えば、後輪WHrが、前輪WHfに対して先行してロック状態に陥らないよう、通常制動の範囲内(制動力が、その最大値を発生する領域を除く領域内)で、基準特性Cbが、所謂、理想配分特性よりも小さくなるように設定されている。なお、制動力が最大となる領域では、後輪WHrの減速スリップが、前輪WHfの減速スリップよりも大きくならないよう、車輪速度Vwに基づいて制動力配分制御(所謂、EBD制御)が実行される。
 以下、時間Tの遷移(「t0→t1→t2→t3」の順)に伴う、制動制御装置SCの作動について説明する。時点t0にて、制動操作部材BPの操作が開始され、制動操作量Baが「0」から増加される。従って、時点t0にて、回生協調制御の作動は原点(O:t0)から開始される。時点t1にて、作動点(A:t1)で示すように、後輪要求制動力Fqr(結果、後輪制動力Fbr)が、後輪限界回生制動力Fxrに達する。更に、時点t2にて、作動点(B:t2)で示すように、前輪要求制動力Fqf(結果、前輪制動力Fbf)が、前輪限界回生制動力Fxfに達する。つまり、第1の実施形態では、前輪、後輪回生制動装置KCf、KCrにおいて、前輪回生制動装置KCfの回生容量が、後輪回生制動装置KCrの回生容量よりも、相対的に大きいので、後輪回生制動装置KCrの方が、前輪回生制動装置KCfよりも先に限界に到達する。
 演算周期毎に、前輪限界回生制動力Fxf、及び、配分比率hbに基づいて、後輪制限回生制動力Fsrが演算される。具体的には、後輪制限回生制動力Fsrは、前輪限界回生制動力Fxfに配分比率hb(定数)が乗算されて演算される(即ち、「Fsr=hb・Fxf」)。更に、後輪限界回生制動力Fxrと後輪制限回生制動力Fsrとが比較され、それらのうちの小さい方が、後輪基準回生制動力Fkrとして決定される。前輪、後輪回生制動装置KCf、KCrが適正作動する場合には、「Fxr<Fsr」であるので、後輪限界回生制動力Fxrが後輪基準回生制動力Fkrとして決定される(即ち、「Fkr=Fxr」)。
 時点t0~t1の間(即ち、作動点が点(O:t0)から点(A:t1)に遷移する間)は、前輪要求制動力Fqfは前輪限界回生制動力Fxf以下であり、後輪要求制動力Fqrは後輪基準回生制動力Fkr(=Fxr)以下である。このため、前輪目標回生制動力Fhfは前輪要求制動力Fqfと等しく演算され、後輪目標回生制動力Fhrは後輪要求制動力Fqrと等しく演算される(即ち、「Fhf=Fqf、Fhr=Fqr」)。また、摩擦制動は不要であるため、前輪、後輪目標摩擦制動力Fnf、Fnrは、共に「0」に演算される(即ち、「Fnf=Fnr=0」)。その結果、前輪、後輪摩擦制動力Fmf、Fmrは発生されず、前輪、後輪要求制動力Fqf、Fqrは、共に、前輪、後輪回生制動力Fgf、Fgrのみによって達成(実現)される。
 時点t1にて、後輪回生制動装置KCrが限界(即ち、後輪限界回生制動力Fxr)に達する。従って、時点t1~t2の間(即ち、作動点が点(A:t1)から点(B:t2)に遷移する間)は、後輪要求制動力Fqrは後輪基準回生制動力Fkrよりも大きくなる。このため、後輪目標回生制動力Fhrは後輪基準回生制動力Fkrと等しく演算され、後輪要求制動力Fqrの不足分(即ち、「Fqr-Fkr」)が補完されるように、後輪目標摩擦制動力Fnrが「0」から増加される(即ち、「Fhr=Fkr、Fnr=Fqr-Fkr」)。前輪回生制動装置KCfは限界には達しておらず、前輪要求制動力Fqfは、未だ、前輪限界回生制動力Fxf以下である。このため、前輪目標回生制動力Fhfは前輪要求制動力Fqfと等しく演算され、後輪目標摩擦制動力Fnrは「0」に演算される(即ち、「Fhf=Fqf、Fnf=0」)。時点t1~t2では、前輪要求制動力Fqfは前輪回生制動力Fgfのみによって達成され、後輪要求制動力Fqrは、後輪回生制動力Fgr、及び、後輪摩擦制動力Fmrによって達成される。
 時点t2にて、前輪回生制動装置KCfが限界(即ち、前輪限界回生制動力Fxf)に達する。従って、時点t2以降は、前輪目標回生制動力Fhfも前輪限界回生制動力Fxfに等しく決定され、前輪要求制動力Fqfの不足分(即ち、「Fqf-Fxf」)が補完されるように、前輪目標摩擦制動力Fnfが「0」から増加される(即ち、「Fhf=Fxf、Fnf=Fqf-Fxf」)。その結果、時点t3の後は、前輪、後輪要求制動力Fqf、Fqrは、共に、前輪、後輪回生制動力Fgf、Fgr、及び、前輪、後輪摩擦制動力Fmf、Fmrによって達成される。例えば、時点t3(即ち、作動点(C:t3))では、前輪要求制動力Fqfは、前輪回生制動力Fgf:t3、及び、前輪摩擦制動力Fmf:t3によって、前輪制動力Fbfとして達成され、後輪要求制動力Fqrは、後輪回生制動力Fgr:t3、及び、後輪摩擦制動力Fmr:t3によって、後輪制動力Fbrとして達成される(即ち、「Fbf:t3=Fgf:t3+Fmf:t3、Fbr:t3=Fgr:t3+Fmr:t3」)。
 前輪、後輪回生制動装置KCf、KCrが共に正常に作動する場合には、制動開始時には、目標車体制動力Fvの増加に伴い、回生協調制御の作動点は、「(O:t0)→(A:t1)→(B:t2)→(C:t3)」の順で、基準特性Cb(原点Oを通る傾きhbの直線)上を遷移する。つまり、前輪、後輪要求制動力Fqf、Fqr(結果、実際の前輪、後輪制動力Fbf、Fbr)の配分(即ち、前輪制動力Fbfに対する前輪制動力Fbrの比率)Kq、Kbが、常に一定値hbに維持されて、適正化される。このため、前輪、後輪制動力Fbf、Fbrのバランスに起因して、車両の方向安定性が損なわれることがない。加えて、回生制動力Fgの発生が、摩擦制動力Fmの発生よりも優先されるため、前輪、後輪回生制動装置KCf、KCrは、十分に運動エネルギを回収することができる。結果、制動開始時に、車両の方向安定性とエネルギ回生とが高次元で両立され得る。
≪前輪回生制動装置KCfの作動が不調の場合≫
 次に、図4(b)の特性図を参照して、後輪回生制動装置KCrは適正作動するが、前輪回生制動装置KCfが不調作動である場合について説明する。以下、前輪回生制動装置KCfの適正作動時には値fv3であった前輪限界回生制動力Fxfが、前輪回生制動装置KCfの不調によって、値fv1に低下した場合を想定して説明する(図中の白抜き矢印を参照)。
 時点v0にて、回生協調制御の作動が原点(O:v0)から開始される。前輪限界回生制動力Fxfに、配分比率hbが乗算されることによって、後輪制限回生制動力Fsrが演算される(即ち、「Fsr=hb・Fxf」)。後輪制限回生制動力Fsrは後輪限界回生制動力Fxrよりも小さいため、後輪制限回生制動力Fsrが後輪基準回生制動力Fkrとして決定される(即ち、「Fkr=Fsr」)。
 時点v1にて、前輪要求制動力Fqfが前輪限界回生制動力Fxfに達するとともに、後輪要求制動力Fqrが後輪基準回生制動力Fkr(=Fsr)に達する(作動点(D:v1)を参照)。従って、時点v0~v1の間(即ち、作動点が点(O:v0)から点(D:v1)に遷移する間)は、前輪要求制動力Fqfが前輪限界回生制動力Fxf以下であり、且つ、後輪要求制動力Fqrが後輪基準回生制動力Fkr以下であるため、前輪、後輪目標回生制動力Fhf、Fhrは前輪、後輪要求制動力Fqf、Fqrに等しく演算され、前輪、後輪目標摩擦制動力Fnf、Fnrは、共に「0」に演算される(即ち、「Fhf=Fqf、Fhf=Fqr、Fnf=Fnr=0」)。その結果、前輪、後輪摩擦制動力Fmf、Fmrは発生されず、前輪、後輪要求制動力Fqf、Fqrは、前輪、後輪回生制動力Fgf、Fgrのみによって達成(実現)される。
 時点v1以降は、前輪目標回生制動力Fhfは前輪限界回生制動力Fxfに等しく決定され、前輪要求制動力Fqfの不足分(即ち、「Fqf-Fxf」)が補完されるように、前輪目標摩擦制動力Fnfが「0」から増加される(即ち、「Fhf=Fxf、Fnf=Fqf-Fxf」)。また、後輪目標回生制動力Fhrは後輪基準回生制動力Fkrに等しく決定され、前輪要求制動力Fqfの不足分(即ち、「Fqf-Fkr」)が補完されるように、前輪目標摩擦制動力Fnfが「0」から増加される(即ち、「Fhr=Fkr=hb・Fxf、Fnr=Fqr-Fkr」)。例えば、時点v2では、前輪要求制動力Fqfは前輪限界回生制動力Fxfよりも大きく、後輪要求制動力Fqrは後輪基準回生制動力Fkrよりも大きい。このため、前輪要求制動力Fqf:v2は、前輪回生制動力Fgf:v2、及び、前輪摩擦制動力Fmf:v2によって、前輪制動力Fbf:v2として達成され、後輪要求制動力Fqr:v2は、後輪回生制動力Fgr:v2、及び、後輪摩擦制動力Fmr:v2によって、後輪制動力Fbr:v2として達成される(即ち、「Fbf:v2=Fgf:v2+Fmf:v2、Fbr:v2=Fgr:v2+Fmr:v2」)(作動点(E:v2)を参照)。
 なお、前輪回生制動装置KCfの失陥により、前輪回生制動力Fgfが全く発生できない場合には、前輪限界回生制動力Fxfは「0」にされる。この場合、後輪制限回生制動力Fsrは「0」であるため、後輪基準回生制動力Fkrは「0」に決定される。従って、前輪回生制動装置KCfが失陥した場合には、後輪回生制動装置KCrによる後輪回生制動力Fgrの発生は禁止される。つまり、後輪回生制動力Fgrは発生可能であっても、後輪目標回生制動力Fhrは「0」に演算されるので、後輪回生制動力Fgrは発生されない(即ち、「Fhr=Fgr=0」)。
 第1の実施形態に係る制動制御装置SC(特に、流体ユニットHU)では、「前輪制動液圧Pwfが後輪制動液圧Pwr以下であること」の制約が存在する。このため、前輪回生制動装置KCfが不調に陥り、前輪回生制動力Fgfが十分に発生され得ない状況では、後輪回生制動装置KCrの回生量に余裕があっても、後輪回生制動力Fgrの発生が、後輪制限回生制動力Fsr(即ち、後輪基準回生制動力Fkr)によって制限される。これにより、前輪制動力Fbfに対する前輪制動力Fbrの比率(配分比率)Kb(=Fbr/Fbf)は、常に一定値hbに維持されるので、車両JVの方向安定性が確保される。
<第1の実施形態に係る回生協調制御でのすり替え作動時の制動力前後配分>
 図5(a)(b)の特性図を参照して、第1の実施形態での回生協調制御において、すり替え作動の際の前後制動力の配分について説明する。「すり替え作動」は、車体速度Vxが減少に伴い、回生制動力Fgが低下した際に、その低下分を摩擦制動力Fmによって補うものである。つまり、すり替え作動によって、前輪、後輪制動力Fbf、Fbrの発生が、回生制動力Fgから摩擦制動力Fmに徐々に切り替えられる。
≪前輪、後輪回生制動装置KCf、KCrが共に適正に作動する場合≫
 図5(a)の特性図を参照して、前輪、後輪回生制動装置KCf、KCrが共に適正作動状態である場合について説明する。特性図では、車体減速度Gx(即ち、目標車体制動力Fv)が一定に維持された状態で、時点u1から順に車両が減速され、すり替え作動(回生制動から摩擦制動への遷移)が行われる状況が想定されている。特性図では、目標車体制動力Fvが一定であるため、時間Tが経過し、車両が順次減速されても、回生協調制御の作動点は点(G)に留まる。上述したように、「: 」は、該当する時点の値であることを表示している。
 車体速度Vx(即ち、前輪、後輪ジェネレータ回転速度Ngf、Ngr)の減少に伴い、前輪限界回生制動力Fxfは、値fu1(=Fxf:u1)→fu2(=Fxf:u2)→fu3(=Fxf:u3)→fu4(=Fxf:u4)の順で減少するとともに、後輪限界回生制動力Fxrは、値ru1(=Fxr:u1)→ru2(=Fxr:u2)→ru3(=Fxr:u3)→ru4(=Fxr:u4)の順で減少する。また、前輪限界回生制動力Fxfの減少に応じて、後輪制限回生制動力Fsr(=hb・Fxf)は、値ru5(=Fsr:u1)→ru6(=Fsr:u2)→ru2(=Fsr:u3)→ru7(=Fsr:u4)の順で減少する。前輪、後輪回生制動装置KCf、KCrが共に適正作動する場合には、常に「Fsr>Fxr」であるため、後輪限界回生制動力Fxrが、後輪基準回生制動力Fkrとして演算される(即ち、「Fkr=Fxr」)。
 時点u1では、前輪要求制動力Fqf:u1は前輪限界回生制動力Fxf:u1よりも小さく、後輪要求制動力Fqr:u1は後輪基準回生制動力Fkr:u1(=Fxr:u1)よりも小さい。その後、時点t2にて、後輪要求制動力Fqr:u2と後輪基準回生制動力Fkr:u2(=Fxr:u2)とが一致する。従って、時点u1~u2までの間は、「Fhf=Fqf、Fhr=Fqr、Fnf=Fnr=0」が演算される。結果、前輪、後輪要求制動力Fqf、Fqrは、前輪、後輪回生制動力Fgf、Fgrのみによって達成(実現)される。
 時点t3にて、前輪要求制動力Fqf:u3と前輪限界回生制動力Fxf:u3とが一致する。従って、時点u2~時点u3までの間は、「Fhf=Fqf、Fhr=Fkr(=Fxr)、Fnf=0、Fnr=Fqr-Fkr」が演算される。結果、前輪要求制動力Fqfは、前輪回生制動力Fgfのみによって達成され、後輪要求制動力Fqrは、後輪回生制動力Fgr、及び、後輪摩擦制動力Fmrによって達成される。
 時点t3の後は、前輪要求制動力Fqfは前輪限界回生制動力Fxfよりも大きくなり、後輪要求制動力Fqrは後輪基準回生制動力Fkr(=Fxr)よりも大きくなる。従って、時点u3以降は、「Fhf=Fxf、Fhr=Fkr、Fnf=Fqf-Fxf、Fnr=Fqr-Fkr」が演算される。結果、前輪、後輪要求制動力Fqf、Fqrは、前輪、後輪回生制動力Fgf、Fgr、及び、前輪、後輪摩擦制動力Fmf、Fmrによって達成される。
 以上で説明したように、前輪、後輪回生制動装置KCf、KCrが適正に作動する場合には、前輪、後輪制動力Fbf、Fbrの配分調整が適正化された上で、回生制動力Fgが摩擦制動力Fmよりも優先される。制動開始時と同様に、すり替え作動時でも、車両の方向安定性が向上されるとともに、十分なエネルギ回生量が確保される。
≪前輪回生制動装置KCfの作動が不調の場合≫
 図5(b)の特性図を参照して、後輪回生制動装置KCrは適正作動するが、前輪回生制動装置KCfが不調作動である場合について説明する。以下、図中の白抜き矢印で示すように、前輪限界回生制動力Fxfが値fz1(適正作動時)から値fz3に低下した場合を想定して説明する。ここで、回生協調制御の作動点は点(G)である。
 時点z1では、前輪限界回生制動力Fxf:z1は値fz3であるので、後輪制限回生制動力Fsr:z1は値rz3(=hb・fz3)に演算される。時点z1では、後輪制限回生制動力Fsr:z1は後輪限界回生制動力Fxr:z1よりも小さい。このため、後輪制限回生制動力Fsr:z1が、後輪基準回生制動力Fkr:z1として演算される(即ち、「Fkr:z1=Fsr:z1」)。時点z1では、前輪要求制動力Fqf:z1は前輪限界回生制動力Fxf:z1よりも大きく、後輪要求制動力Fqr:z1は後輪基準回生制動力Fkr:z1よりも大きいので、「Fhf=Fxf、Fhr=Fkr、Fnf=Fqf-Fxf、Fnr=Fqr-Fkr」が演算される。結果、前輪、後輪要求制動力Fqf、Fqrは、前輪、後輪回生制動力Fgf、Fgr、及び、前輪、後輪摩擦制動力Fmf、Fmrによって達成される(即ち、「Fqf:z1=Fgf:z1+Fmf:z1、Fqr:z1=Fgr:z1+Fmr:z1」)。回生協調制御のすり替え作動において、前輪回生制動装置KCfの不調時には後輪基準回生制動力Fkr(即ち、後輪制限回生制動力Fsr)によって後輪回生制動力Fgrの発生が制限される。これにより、前後制動力の配分比率Kq、Kbが一定に維持されるため、車両安定性が良好に確保される。
<制動制御装置SCの第2の実施形態>
 次に、制動制御装置SCの第2の実施形態について説明する。第1の実施形態では、前輪、後輪回生制動装置KCf、KCrの回生容量において、前輪回生制動装置KCfの方が、後輪回生制動装置KCrよりも相対的に大であり、後輪回生制動装置KCrの方が、前輪回生制動装置KCfよりも先に、回生制動力の発生限界に達した。第2の実施形態は、これとは逆で、後輪回生制動装置KCrの方が、前輪回生制動装置KCfよりも、相対的に回生容量が大きく、後輪回生制動装置KCrの回生制動力の発生限界の方が、前輪回生制動装置KCfの回生制動力の発生限界よりも高い。従って、前輪回生制動装置KCfの方が、後輪回生制動装置KCrよりも先に、回生制動力の発生限界に到達する。図2の概略図、及び、図3のフロー図において、[
 ]内に示す記号が第2の実施形態の説明に対応している。以下、第1の実施形態と第2の実施形態との相違点について説明する。なお、相違点以外は第1の実施形態と第2の実施形態とは同じである。
 図2の概略図において、第2の実施形態では、マスタシリンダCMと後輪ホイールシリンダCWrとが、後輪連絡路HSrを介して接続される。従って、マスタ液圧Pm(=Pa)が後輪ホイールシリンダCWrに供給される。また、還流路HKは、流体ポンプQA(特に、吐出部)と第2調圧弁UBとの間で、前輪連絡路HSfを介して前輪ホイールシリンダCWfに接続される。従って、第2調整液圧Pbが前輪ホイールシリンダCWfに供給される。このため、第2に実施形態における流体ユニットHU(アクチュエータ)では、前輪制動液圧Pwfと後輪制動液圧Pwrとの大小関係において、「前輪制動液圧Pwfは、常に、後輪制動液圧Pwr以上」の制約がある。
 第2の実施形態では、図3のフロー図のステップS150にて、後輪限界回生制動力Fxrに基づいて、前輪基準回生制動力Fkfが演算される。「前輪基準回生制動力Fkf」は、後輪回生制動装置KCrの不調(例えば、後輪回生コントローラEGrの温度上昇)に起因して後輪限界回生制動力Fxrが低下する場合に、前後制動力の配分比率Kq、Kbが一定値hbに維持されるよう、前輪目標回生制動力Fhf(結果、前輪回生制動力Fgf)に制限をかけるための状態変数である。具体的には、後輪限界回生制動力Fxrが一定値hb(配分比率)によって除算されて、前輪制限回生制動力Fsfが演算される(即ち、「Fsf=Fxr/hb」)。前輪限界回生制動力Fxf、及び、前輪制限回生制動力Fsfのうちの小さい方が、前輪基準回生制動力Fkfとして決定される(即ち、「Fkf=MIN(Fxf,Fsf)」)。そして、前輪基準回生制動力Fkfに基づいて、前輪回生制動力Fgfの発生に制限が設けられる。例えば、後輪回生制動装置KCrが完全に失陥した場合には、後輪限界回生制動力Fxrは「0」であるため、前輪基準回生制動力Fkfは「0」に演算される(即ち、「Fxr=0、Fkf=0」)。従って、後輪回生制動装置KCrが失陥した場合には、前輪回生制動力Fgfの発生が禁止される。
 第2の実施形態では、流体ユニットHUに「Pwf≧Pwr」の制約(第1の実施形態とは逆の制約)があるが、この制約は、前輪回生制動装置KCfが不調である場合の回生協調制御には影響を及ぼさない。従って、前輪回生制動装置KCfの不調時に、後輪回生制動力Fgrの発生が制限されなくても、前後制動力の配分比率Kq、Kbは一定に保たれ得る。つまり、前輪回生制動装置KCfの不調に起因して前輪限界回生制動力Fxfは低下することはあるが、後輪回生制動装置KCrの回生量(即ち、後輪回生制動力Fgr)が意図的に制限されることはない。以上をまとめると、前輪回生制動装置KCfが完全に失陥し、前輪回生制動力Fgfが全く発生できない場合には後輪回生制動力Fgrの発生は許可されるが、後輪回生制動装置KCrが完全に失陥し、後輪回生制動力Fgrが全く発生できない場合には前輪回生制動力Fgfの発生は禁止される。
<第2の実施形態に係る回生協調制御での制動開始時の制動力前後配分>
 図6(a)(b)の特性図を参照して、第2の実施形態での回生協調制御において、制動開始の際の制動力の前後配分について説明する。図6(a)が前輪、後輪回生制動装置KCf、KCrが共に適正作動状態である場合に、図6(b)が前輪回生制動装置KCfは適正作動するが、後輪回生制動装置KCrが不調作動である場合に、夫々対応している。
≪前輪、後輪回生制動装置KCf、KCrが共に適正に作動する場合≫
 図6(a)の特性図を参照して、前輪、後輪回生制動装置KCf、KCrが共に適正作動状態である場合について説明する。制動開始に伴い、時点a0にて、回生協調制御の作動が原点(O:a0)から始まる。時点a1にて、前輪回生制動装置KCfが限界(即ち、前輪限界回生制動力Fxf)に達する(作動点(H:a1)を参照)。その後、時点a2にて、後輪回生制動装置KCrが限界(即ち、後輪限界回生制動力Fxr)に達する(作動点(J:a2)を参照)。このように、第2の実施形態では、前輪回生制動装置KCfが、後輪回生制動装置KCrよりも先に限界に到達する。
 演算周期毎に、後輪限界回生制動力Fxr、及び、配分比率hbに基づいて、前輪制限回生制動力Fsfが演算される。具体的には、前輪制限回生制動力Fsfは、後輪限界回生制動力Fxrが配分比率hb(定数)にて除算されて演算される(即ち、「Fsf=Fxr/hb」)。前輪限界回生制動力Fxfと前輪制限回生制動力Fsfとが比較され、それらのうちの小さい方が、前輪基準回生制動力Fkfとして決定される。後輪回生制動装置KCrが適正作動する場合には、「Fxf<Fsf」であるため、前輪限界回生制動力Fxfが前輪基準回生制動力Fkfとして決定される(即ち、「Fkf=Fxf」)。
 時点a0~a1の間(即ち、作動点が点(O:a0)から点(H:a1)に遷移する間)は、「Fqf≦Fkf(=Fxf)、Fqr≦Fxr」であるため、前輪目標回生制動力Fhfは前輪要求制動力Fqfに等しく演算され、後輪目標回生制動力Fhrは後輪要求制動力Fqrに等しく演算される(即ち、「Fhf=Fqf、Fhr=Fqr」)。このとき、摩擦制動は不要であるため、前輪、後輪目標摩擦制動力Fnf、Fnrは「0」に演算される(即ち、「Fnf=Fnr=0」)。その結果、前輪、後輪摩擦制動力Fmf、Fmrは発生されず、前輪、後輪要求制動力Fqf、Fqrは、共に、前輪、後輪回生制動力Fgf、Fgrのみによって達成される。
 時点a1~a2の間(即ち、作動点が点(H:a1)から点(J:a2)に遷移する間)は、「Fqf>Fkf(=Fxf)」であるため、前輪目標回生制動力Fhfは前輪基準回生制動力Fkfに等しく演算され、前輪要求制動力Fqfの不足分が補完されるように、前輪目標摩擦制動力Fnfが増加される(即ち、「Fhf=Fkf、Fnf=Fqf-Fkf」)。なお、「Fqr≦Fxr」であるため、「Fhr=Fqr、Fnr=0」が決定される。従って、前輪要求制動力Fqfは、前輪回生制動力Fgf、及び、前輪摩擦制動力Fmfによって達成され、後輪要求制動力Fqrは、後輪回生制動力Fgrのみによって達成される。
 時点a2以降は、前輪目標回生制動力Fhfと同様に、後輪目標回生制動力Fhrは後輪限界回生制動力Fxrに等しく決定され、後輪要求制動力Fqrの不足分が補完されるように、後輪目標摩擦制動力Fnrが「0」から増加される(即ち、「Fhf=Fkf、Fnf=Fqf-Fkf、Fhr=Fxr、Fnr=Fqr-Fxr」)。その結果、時点a3の後は、前輪、後輪要求制動力Fqf、Fqrは、共に、前輪、後輪回生制動力Fgf、Fgr、及び、前輪、後輪摩擦制動力Fmf、Fmrによって達成される。例えば、時点a3(即ち、作動点(K:a3))では、前輪要求制動力Fqfは、前輪回生制動力Fgf:a3、及び、前輪摩擦制動力Fmf:a3によって、前輪制動力Fbfとして達成され、後輪要求制動力Fqrは、後輪回生制動力Fgr:a3、及び、後輪摩擦制動力Fmr:a3によって、後輪制動力Fbrとして達成される(即ち、「Fbf:a3=Fgf:a3+Fmf:a3、Fbr:a3=Fgr:a3+Fmr:a3」)。
 前輪、後輪回生制動装置KCf、KCrが共に正常に作動する場合には、第2の実施形態においても、前輪制動力Fbfに対する前輪制動力Fbrの比率Kb(前後制動力の配分比率)は、常時、一定値hbに維持される。このように配分比率Kq、Kbが適正化されるため、車両JVの方向安定性が改善される。また、回生協調制御では、回生制動が摩擦制動よりも優先されるので、十分なエネルギ回生が達成される。即ち、車両の方向安定性とエネルギ回生とが、高次元で両立され得る。
≪後輪回生制動装置KCrの作動が不調の場合≫
 図6(b)の特性図を参照して、前輪回生制動装置KCfは適正作動するが、後輪回生制動装置KCrが不調作動である場合について説明する。以下、後輪回生制動装置KCrの適正作動時には値rb3であった後輪限界回生制動力Fxrが、後輪回生制動装置KCrの不調によって、値rb1に低下した場合を想定して説明する(図中の白抜き矢印を参照)。
 時点b0にて、回生協調制御の作動が原点(O:b0)から開始される。時点b0から、後輪限界回生制動力Fxr、及び、配分比率hbに基づいて、前輪制限回生制動力Fsfが演算される。後輪回生制動装置KCrの不調により、後輪限界回生制動力Fxrは低下しているので、前輪制限回生制動力Fsf(=Fxr/hb)は前輪限界回生制動力Fxfよりも小さい。このため、前輪制限回生制動力Fsfが、前輪基準回生制動力Fkfとして決定される(即ち、「Fkf=Fsf=Fxr/hb」)。
 時点b1にて、前輪要求制動力Fqfが前輪基準回生制動力Fkf(=Fsf)に達するとともに、後輪要求制動力Fqrが後輪限界回生制動力Fxrに達する(作動点(L:b1)を参照)。従って、時点b0~b1の間(即ち、作動点が点(O:b0)から点(L:b1)に遷移する間)は、前輪要求制動力Fqfが前輪基準回生制動力Fkf以下であり、且つ、後輪要求制動力Fqrが後輪限界回生制動力Fxr以下である。このため、前輪、後輪目標回生制動力Fhf、Fhrは前輪、後輪要求制動力Fqf、Fqrに等しく演算され、前輪、後輪目標摩擦制動力Fnf、Fnrは「0」に演算される(即ち、「Fhf=Fqf、Fhf=Fqr、Fnf=Fnr=0」)。その結果、前輪、後輪摩擦制動力Fmf、Fmrは発生されず、前輪、後輪要求制動力Fqf、Fqrは、前輪、後輪回生制動力Fgf、Fgrのみによって達成される。
 時点b1以降は、「Fqf>Fkf、Fqr>Fxr」となるため、「Fhf=Fkf、Fnf=Fqf-Fkf、Fhr=Fxr、Fnr=Fqr-Fxr」が演算される。即ち、前輪、後輪要求制動力Fqf、Fqrが、前輪、後輪回生制動力Fgf、Fgr、及び、前輪、後輪摩擦制動力Fmf、Fmrによって達成される。例えば、時点b2では、「Fbf:b2=Fgf:b2+Fmf:b2、Fbr:b2=Fgr:b2+Fmr:b2」である(作動点(M:b2)を参照)。なお、後輪回生制動装置KCrの失陥時には、後輪限界回生制動力Fxrは「0」であるため、「Fsf=0、Fkf=0」が決定され、前輪回生制動力Fgfの発生は禁止される。つまり、前輪回生制動装置KCfによって、前輪回生制動力Fgfは発生可能であっても、前輪目標回生制動力Fhfは「0」に演算されるので、前輪回生制動力Fgfは発生されない(即ち、「Fhf=Fgf=0」)。
 第2の実施形態に係る制動制御装置SC(特に、流体ユニットHU)には、常時、「後輪制動液圧Pwrが前輪制動液圧Pwf以下」の制約がある。このため、後輪回生制動装置KCrが不調に陥り、後輪回生制動力Fgrが十分に発生され得ない状況では、前輪回生制動装置KCfの回生量に余裕があっても、前輪回生制動力Fgfが、前輪制限回生制動力Fsf(=Fxr/hb)に制限される。これにより、前後制動力の配分比率は、常に一定値hbに維持されるので、車両安定性が確保される。
<第2の実施形態に係る回生協調制御でのすり替え作動時の制動力前後配分>
 図7(a)(b)の特性図を参照して、第2の実施形態での回生協調制御において、すり替え作動の際の前後制動力の配分について説明する。図7(a)が前輪、後輪回生制動装置KCf、KCrが共に適正作動状態である場合に、図7(b)が前輪回生制動装置KCfは適正作動するが、後輪回生制動装置KCrが不調作動である場合に、夫々対応している。
≪前輪、後輪回生制動装置KCf、KCrが共に適正に作動する場合≫
 図7(a)の特性図を参照して、前輪、後輪回生制動装置KCf、KCrが共に適正作動状態である場合について説明する。例では、目標車体制動力Fvが一定であり、回生協調制御が作動点(N)に留まる状況が想定されている。車体速度Vx(即ち、前輪、後輪ジェネレータ回転速度Ngf、Ngr)の減少に伴い、前輪限界回生制動力Fxfは、値fc1(=Fxf:c1)→fc2(=Fxf:c2)→fc3(=Fxf:c3)の順で減少するとともに、後輪限界回生制動力Fxrは、値rc1(=Fxr:c1)→rc2(=Fxr:c2)→rc3(=Fxr:c3)の順で減少する。また、演算周期毎に、後輪限界回生制動力Fxrが、予め設定された一定値hbにて除算されて、前輪制限回生制動力Fsfが演算される。従って、前輪制限回生制動力Fsf(=Fxr/hb)は、後輪限界回生制動力Fxrの減少に応じて、値fc4(=Fsf:c1)→fc5(=Fsf:c2)→fc6(=Fsf:c3)の順で減少する。ここで、前輪、後輪回生制動装置KCf、KCrが適正に作動する場合には、常に「Fsf>Fxf」であるため、前輪限界回生制動力Fxfが、前輪基準回生制動力Fkfとして演算される。
 時点c1では、「Fqf≦Fkf、Fqr≦Fxr」の状態である。時点c1の後に、前輪要求制動力Fqfと前輪基準回生制動力Fkf(=Fxf)とが一致する。その後、時点c2にて、後輪要求制動力Fqrと後輪限界回生制動力Fxr:c2とが一致する。時点c2の後は、「Fqf>Fkf、Fqr>Fxr」の状態になる。
 「Fqf≦Fkf、Fqr≦Fxr」の間は、「Fhf=Fqf、Fhr=Fqr、Fnf=Fnr=0」が演算される。結果、前輪、後輪要求制動力Fqf、Fqrは、前輪、後輪回生制動力Fgf、Fgrのみによって達成(実現)される。その後、「Fqf>Fkf、Fqr≦Fxr」の期間は、「Fhf=Fkf(=Fxf)、Fhr=Fqr、Fnf=Fqf-Fkf、Fnr=0」が演算される。結果、前輪要求制動力Fqfは、前輪回生制動力Fgf、及び、前輪摩擦制動力Fmfによって達成され、後輪要求制動力Fqrは、後輪回生制動力Fgrのみによって達成される。時点c2以降は、「Fqf>Fkf、Fqr>Fxr」となるため、「Fhf=Fkf(=Fxf)、Fhr=Fxr、Fnf=Fqf-Fkf、Fnr=Fqr-Fxr」が演算される。結果、前輪、後輪要求制動力Fqf、Fqrは、前輪、後輪回生制動力Fgf、Fgr、及び、前輪、後輪摩擦制動力Fmf、Fmrによって達成される。
 前輪、後輪回生制動装置KCf、KCrが適正に作動する場合には、前後制動力の配分調整が一定値hbに適正化された上で、回生制動力Fgが摩擦制動力Fmよりも優先される。第1の実施形態と同様に、第2の実施形態でも、回生協調制御のすり替え作動時に、車両の方向安定性が向上されるとともに、十分なエネルギ回生が達成される。
≪後輪回生制動装置KCrの作動が不調の場合≫
 図7(b)の特性図を参照して、前輪回生制動装置KCfは適正作動するが、後輪回生制動装置KCrが不調作動である場合について説明する。以下、図中の白抜き矢印で示すように、後輪限界回生制動力Fxrが、値rd1(適正作動時)から値rd3に低下した場合を想定して説明する。なお、回生協調制御は、点(N)にて作動している。
 時点d1では、後輪限界回生制動力Fxr:d1は値rd3であるので、前輪制限回生制動力Fsf:d1は値fd3(=rd3/hb)に演算される。時点d1では、「Fsf:d1<Fxf:d1」であるため、前輪制限回生制動力Fsf:d1が、前輪基準回生制動力Fkf:d1として演算される(即ち、「Fkf:d1=Fsf:d1」)。時点d1では、「Fqf>Fkf、Fqr>Fxr」であるため、「Fhf=Fkf(=Fsf)、Fhr=Fxr、Fnf=Fqf-Fkf、Fnr=Fqr-Fxr」が演算される。結果、前輪、後輪要求制動力Fqf、Fqrは、前輪、後輪回生制動力Fgf、Fgr、及び、前輪、後輪摩擦制動力Fmf、Fmrによって達成される(即ち、「Fqf:d1=Fgf:d1+Fmf:d1、Fqr:d1=Fgr:d1+Fmr:d1」)。後輪回生制動装置KCrが不調である際のすり替え作動でも、制動制御装置SCにおける回生協調制御では、前後制動力の配分比率Kq(目標値)、Kb(実際値)が一定値hbに維持されるので、車両安定性が確保される。
<制動制御装置SCの第1、第2実施形態のまとめ>
 以下、制動制御装置SCの実施形態についてまとめる。制動制御装置SCは、前輪WHfに前輪回生制動力Fgfを発生させる前輪回生制動装置KCfと、後輪WHrに後輪回生制動力Fgrを発生させる後輪回生制動装置KCrとを備える車両JVに適用される。制動制御装置SCには、「前輪ホイールシリンダCWfに前輪制動液圧Pwfを供給して、前輪WHfに前輪摩擦制動力Fmfを発生させるとともに、後輪ホイールシリンダCWrに後輪制動液圧Pwrを供給して、後輪WHrに後輪摩擦制動力Fmrを発生させるアクチュエータHU」と、前輪、後輪回生制動装置KCf、KCr、及び、アクチュエータHUを制御するコントローラECU」と、が備えられる。
 制動制御装置SCの第1の実施形態では、アクチュエータHUには、「後輪制動液圧Pwrは前輪制動液圧Pwf以上(即ち、「Pwf≦Pwr」)」の制限がある。該構成では、コントローラECUは、車両JVの全体として要求される制動力を目標車体制動力Fvとして演算し、前輪、後輪要求制動力Fqf、Fqrの和が目標車体制動力Fvに一致し、且つ、前輪要求制動力Fqfに対する後輪要求制動力Fqrの比率Kqが一定(一定値hb)になるよう、前輪、後輪要求制動力Fqf、Fqrを演算する。また、コントローラECUは、前輪、後輪回生制動装置KCf、KCrの作動状態で定まる発生可能な前輪、後輪回生制動力Fgf、Fgrの最大値を前輪、後輪限界回生制動力Fxf、Fxrとして取得する。そして、コントローラECUは、前輪限界回生制動力Fxfに比率(一定値)hbを乗算して後輪制限回生制動力Fsrを演算し、後輪限界回生制動力Fxr、及び、後輪制限回生制動力Fsrのうちの小さい方を後輪基準回生制動力Fkrとして決定する。前輪要求制動力Fqfが前輪限界回生制動力Fxf以下の場合(即ち、「Fqf≦Fxf」)には前輪要求制動力Fqfを前輪回生制動力Fgfのみによって達成し、前輪要求制動力Fqfが前輪限界回生制動力Fxfよりも大きい場合(即ち、「Fqf>Fxf」)には前輪要求制動力Fqfを前輪回生制動力Fgf、及び、前輪摩擦制動力Fmfによって達成する。また、後輪要求制動力Fqrが後輪基準回生制動力Fkr以下の場合(即ち、「Fqr≦Fkr」)には後輪要求制動力Fqrを後輪回生制動力Fgrのみによって達成し、後輪要求制動力Fqrが後輪基準回生制動力Fkrよりも大きい場合(即ち、「Fqr>Fkr」)には後輪要求制動力Fqrを後輪回生制動力Fgr、及び、後輪摩擦制動力Fmrによって達成する。
 制動制御装置SCの第1の実施形態では「Pwf≦Pwr」の制限があるため、制動力の配分比率Kq(結果、Kb)が一定値hbに維持されるよう、後輪回生制動装置KCrによる後輪回生制動力Fgrに制限が設けられる。具体的には、後輪限界回生制動力Fxr、及び、後輪制限回生制動力Fsrのうちの小さい方(即ち、後輪基準回生制動力Fkr)に基づいて、後輪回生制動力Fgrの制限が行われる。これにより、前輪回生制動装置KCfが不調になり、前輪限界回生制動力Fxfが低下した場合であっても、前後制動力Fbf、Fbrの配分比率Kbが一定に維持される。つまり、前後制動力の関係が適正化されるので、車両安定性が確保される。
 第1の実施形態における極端な状況が、前輪回生制動装置KCfが失陥し、前輪回生制動力Fgfを発生できない場合である。この場合、コントローラECUによって、後輪回生制動力Fgrの発生が禁止され、車両安定性が維持される。なお、流体ユニットHUの制限は、後輪回生制動装置KCrの不調時には影響を及ぼさないため、前輪回生制動力Fgfの発生については制限されない。例えば、第1の実施形態に係る制動制御装置SCでは、後輪回生制動装置KCrが失陥し、後輪回生制動力Fgrが発生され得ない場合であっても、前輪回生制動力Fgfは発生される。つまり、制動制御装置SCでは、後輪回生制動装置KCrが後輪回生制動力Fgrを発生できない場合(即ち、後輪回生制動装置KCrの失陥時)には、前輪回生制動力Fgfは発生される(即ち、前輪回生制動力Fgfの発生は許可される)が、前輪回生制動装置KCfが前輪回生制動力Fgfを発生できない場合(即ち、前輪回生制動装置KCfの失陥時)には、後輪回生制動力Fgrは発生されない(即ち、後輪回生制動力Fgrの発生が禁止される)ように構成されている。
 制動制御装置SCの第2の実施形態では、アクチュエータHUには、「前輪制動液圧Pwfは後輪制動液圧Pwr以上(即ち、「Pwf≧Pwr」)」の制限がある。該構成では、コントローラECUは、第1の実施形態と同様の方法で、目標車体制動力Fv、及び、前輪、後輪要求制動力Fqf、Fqrを演算するとともに、前輪、後輪限界回生制動力Fxf、Fxrを取得する。そして、後輪限界回生制動力Fxrを配分比率hb(一定値)にて除算して前輪制限回生制動力Fsfを演算し、前輪限界回生制動力Fxf、及び、前輪制限回生制動力Fsfのうちの小さい方を前輪基準回生制動力Fkfとして決定する。前輪要求制動力Fqfが前輪基準回生制動力Fkf以下の場合(即ち、「Fqf≦Fkf」)には前輪要求制動力Fqfを前輪回生制動力Fgfのみによって達成し、前輪要求制動力Fqfが前輪基準回生制動力Fkfよりも大きい場合(即ち、「Fqf>Fkf」)には前輪要求制動力Fqfを前輪回生制動力Fgf、及び、前輪摩擦制動力Fmfによって達成する。また、後輪要求制動力Fqrが後輪限界回生制動力Fxr以下の場合(即ち、「Fqr≦Fxr」)には後輪要求制動力Fqrを後輪回生制動力Fgrのみによって達成し、後輪要求制動力Fqrが後輪限界回生制動力Fxrよりも大きい場合(即ち、「Fqr>Fxr」)には後輪要求制動力Fqrを後輪回生制動力Fgr、及び、後輪摩擦制動力Fmrによって達成する。
 制動制御装置SCの第2の実施形態では「Pwf≧Pwr」の制限があるため、制動力の配分比率Kb(=Fbr/Fbf)が一定値hbに維持されるよう、前輪回生制動装置KCfによる前輪回生制動力Fgfの発生に制限が設けられる。具体的には、前輪限界回生制動力Fxf、及び、前輪制限回生制動力Fsfのうちの小さい方(即ち、前輪基準回生制動力Fkf)に基づいて、前輪回生制動力Fgfの制限が行われる。これにより、後輪回生制動装置KCrが不調になり、後輪限界回生制動力Fxrが低下した場合であっても、前後制動力Fbf、Fbrの配分比率Kbが一定に維持される。つまり、前後制動力の関係が適正化されるので、車両安定性が向上される。
 第2の実施形態における極端な状況が、後輪回生制動装置KCrが失陥し、前輪回生制動力Fgrを発生できない場合である。この場合、コントローラECUは、前輪回生制動力Fgfの発生を禁止することにより、車両安定性は確実に維持される。なお、流体ユニットHUの制限は、前輪回生制動装置KCfの不調時には影響を及ぼさないため、後輪回生制動力Fgrの発生については制限されない。つまり、第2の実施形態に係る制動制御装置SCでは、前輪回生制動装置KCfが前輪回生制動力Fgfを発生できない場合(即ち、前輪回生制動装置KCfの失陥時)には、後輪回生制動力Fgrが発生される(即ち、後輪回生制動力Fgrの発生は許可される)が、後輪回生制動装置KCrが後輪回生制動力Fgrを発生できない場合(即ち、後輪回生制動装置KCrの失陥時)には、前輪回生制動力Fgfを発生させない(即ち、前輪回生制動力Fgfの発生が禁止される)ように構成されている。
<他の実施形態>
 以下、他の実施形態について説明する。他の実施形態においても、上記同様の効果(前後制動力配分の適正化と、それに伴う車両安定性の向上)を奏する。
 上記実施形態では、前輪、後輪限界回生制動力Fxf、Fxr(=Fx)が、前輪、後輪回転速度Ngf、Ngr(=Ng)に基づいて決定された。回生制動時には、前輪、後輪ジェネレータGNf、GNrは、前輪WHf、後輪WHrによって回転駆動される。このため、前輪、後輪回転速度Ngf、Ngrに代えて、前輪、後輪ジェネレータGNf、GNrから前輪WHf、後輪WHrに至るまでの回転する構成部材の回転速度が採用され得る。例えば、前輪、後輪回転速度Ngf、Ngrに代えて、前輪WHf、後輪WHrの車輪速度Vwf、Vwr(=Vw)が採用される。或いは、車輪速度Vwに基づいて演算される車体速度Vxが採用されてもよい。即ち、限界回生制動力Fxは、ジェネレータ回転速度Ng、車輪速度Vw、及び、車体速度Vxのうちの少なくとも1つに基づいて決定(演算)される。
 上記実施形態では、制動コントローラECUと前輪、後輪回生コントローラEGf、EGrとの間の通信において、限界回生制動力Fx(=Fxf、Fxr)、及び、目標回生制動力Fh(=Fhf、Fhr)の物理量として、「力」の次元が採用された。制動装置SX、制動制御装置SC、及び、回生制動装置KCの諸元、及び、車両の状態量(車輪速度Vw、車体速度Vx等)は既知であるため、限界回生制動力Fx、目標回生制動力Fhの物理量として、変換可能な他の物理量(例えば、トルク量、電力量)が採用されてもよい。例えば、回生コントローラEGから、回生可能な電力量の限界値(上限値)として、前輪、後輪限界電力量Rxf、Rxr(=Rx)が、制動コントローラECUに送信される。そして、制動コントローラECUにて、限界電力量Rxが、変換演算されて、限界回生制動力Fxが決定され得る。また、制動コントローラECUにて、目標回生制動力Fhに基づいて、目標電力量Rh(=Rhf、Rhr)が演算され、回生コントローラEG(=EGf、EGr)に送信される。そして、回生コントローラEGによって、目標電力量Rhに基づいて、実際の回生電力量Rg(=Rgf、Rgr)が調整される。その結果、回生電力量Rgに応じた、回生制動力Fg(=Fgf、Fgr)が発生される。何れにしても、目標回生制動力Fhに応じた、回生制動力Fgが発生される。
 

Claims (4)

  1.  前輪、後輪に前輪、後輪回生制動力を発生させる前輪、後輪回生制動装置を備える車両に適用される車両の制動制御装置であって、
     前輪ホイールシリンダに前輪制動液圧を供給するとともに、後輪ホイールシリンダに前記前輪制動液圧以上の後輪制動液圧を供給して、前記前輪、後輪に前輪、後輪摩擦制動力を発生させるアクチュエータと、
     前記前輪、後輪回生制動装置、及び、前記アクチュエータを制御するコントローラと、を備え、
     前記コントローラは、
     前記車両の全体として要求される制動力を目標車体制動力として演算し、
     前輪、後輪要求制動力の和が前記目標車体制動力に一致し、且つ、前記前輪要求制動力に対する前記後輪要求制動力の比率が一定値になるよう、前記前輪、後輪要求制動力を演算し、
     前記前輪、後輪回生制動装置の作動状態で定まる発生可能な前記前輪、後輪回生制動力の最大値を前輪、後輪限界回生制動力として取得し、
     前記前輪限界回生制動力に前記一定値を乗算して後輪制限回生制動力を演算し、
     前記後輪限界回生制動力、及び、前記後輪制限回生制動力のうちの小さい方を後輪基準回生制動力として決定し、
     前記前輪要求制動力が前記前輪限界回生制動力以下の場合には前記前輪要求制動力を前記前輪回生制動力のみによって達成し、前記前輪要求制動力が前記前輪限界回生制動力よりも大きい場合には前記前輪要求制動力を前記前輪回生制動力、及び、前記前輪摩擦制動力によって達成し、
     前記後輪要求制動力が前記後輪基準回生制動力以下の場合には前記後輪要求制動力を前記後輪回生制動力のみによって達成し、前記後輪要求制動力が前記後輪基準回生制動力よりも大きい場合には前記後輪要求制動力を前記後輪回生制動力、及び、前記後輪摩擦制動力によって達成する、車両の制動制御装置。
  2.  前輪、後輪に前輪、後輪回生制動力を発生させる前輪、後輪回生制動装置を備える車両に適用される車両の制動制御装置であって、
     前輪ホイールシリンダに前輪制動液圧を供給するとともに、後輪ホイールシリンダに前記前輪制動液圧以上の後輪制動液圧を供給して、前記前輪、後輪に前輪、後輪摩擦制動力を発生させるアクチュエータと、
     前記前輪、後輪回生制動装置、及び、前記アクチュエータを制御するコントローラと、を備え、
     前記コントローラは、前記前輪回生制動装置が前記前輪回生制動力を発生できない場合には、前記後輪回生制動力を発生させない、車両の制動制御装置。
  3.  前輪、後輪に前輪、後輪回生制動力を発生させる前輪、後輪回生制動装置を備える車両に適用される車両の制動制御装置であって、
     後輪ホイールシリンダに後輪制動液圧を供給するとともに、前輪ホイールシリンダに前記後輪制動液圧以上の前輪制動液圧を供給して、前記前輪、後輪に前輪、後輪摩擦制動力を発生させるアクチュエータと、
     前記前輪、後輪回生制動装置、及び、前記アクチュエータを制御するコントローラと、を備え、
     前記コントローラは、
     前記車両の全体として要求される制動力を目標車体制動力として演算し、
     前輪、後輪要求制動力の和が前記目標車体制動力に一致し、且つ、前記前輪要求制動力に対する前記後輪要求制動力の比率が一定値になるよう、前記前輪、後輪要求制動力を演算し、
     前記前輪、後輪回生制動装置の作動状態で定まる発生可能な前記前輪、後輪回生制動力の最大値を前輪、後輪限界回生制動力として取得し、
     前記後輪限界回生制動力を前記一定値にて除算して前輪制限回生制動力を演算し、
     前記前輪限界回生制動力、及び、前記前輪制限回生制動力のうちの小さい方を前輪基準回生制動力として決定し、
     前記前輪要求制動力が前記前輪基準回生制動力以下の場合には前記前輪要求制動力を前記前輪回生制動力のみによって達成し、前記前輪要求制動力が前記前輪基準回生制動力よりも大きい場合には前記前輪要求制動力を前記前輪回生制動力、及び、前記前輪摩擦制動力によって達成し、
     前記後輪要求制動力が前記後輪限界回生制動力以下の場合には前記後輪要求制動力を前記後輪回生制動力のみによって達成し、前記後輪要求制動力が前記後輪限界回生制動力よりも大きい場合には前記後輪要求制動力を前記後輪回生制動力、及び、前記後輪摩擦制動力によって達成する、車両の制動制御装置。
  4.  前輪、後輪に前輪、後輪回生制動力を発生させる前輪、後輪回生制動装置を備える車両に適用される車両の制動制御装置であって、
     後輪ホイールシリンダに後輪制動液圧を供給するとともに、前輪ホイールシリンダに前記後輪制動液圧以上の前輪制動液圧を供給して、前記前輪、後輪に前輪、後輪摩擦制動力を発生させるアクチュエータと、
     前記前輪、後輪回生制動装置、及び、前記アクチュエータを制御するコントローラと、を備え、
     前記コントローラは、前記後輪回生制動装置が前記後輪回生制動力を発生できない場合には、前記前輪回生制動力を発生させない、車両の制動制御装置。
     
PCT/JP2022/013005 2021-03-22 2022-03-22 車両の制動制御装置 WO2022202763A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280022284.7A CN117043024A (zh) 2021-03-22 2022-03-22 车辆的制动控制装置
DE112022001650.7T DE112022001650T5 (de) 2021-03-22 2022-03-22 Bremssteuervorrichtung für ein Fahrzeug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021046766A JP2022145999A (ja) 2021-03-22 2021-03-22 車両の制動制御装置
JP2021-046766 2021-03-22

Publications (1)

Publication Number Publication Date
WO2022202763A1 true WO2022202763A1 (ja) 2022-09-29

Family

ID=83397412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013005 WO2022202763A1 (ja) 2021-03-22 2022-03-22 車両の制動制御装置

Country Status (4)

Country Link
JP (1) JP2022145999A (ja)
CN (1) CN117043024A (ja)
DE (1) DE112022001650T5 (ja)
WO (1) WO2022202763A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009278840A (ja) * 2008-05-19 2009-11-26 Nissan Motor Co Ltd 電動車両の回生制動制御装置
JP5181847B2 (ja) * 2008-06-05 2013-04-10 日産自動車株式会社 複合ブレーキの協調制御装置
JP6120010B2 (ja) * 2014-06-13 2017-04-26 トヨタ自動車株式会社 車両
WO2018221269A1 (ja) * 2017-06-02 2018-12-06 日立オートモティブシステムズ株式会社 電動車両の制御装置、電動車両の制御システム及び電動車両の制御方法
WO2019156035A1 (ja) * 2018-02-09 2019-08-15 株式会社アドヴィックス 車両の制動制御装置
WO2021020371A1 (ja) * 2019-07-31 2021-02-04 株式会社アドヴィックス 車両の制動制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170029344A (ko) 2015-09-07 2017-03-15 현대자동차주식회사 회생제동 협조제어시 제동력 제어방법
JP6600031B2 (ja) 2017-09-25 2019-10-30 株式会社アドヴィックス 制動制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009278840A (ja) * 2008-05-19 2009-11-26 Nissan Motor Co Ltd 電動車両の回生制動制御装置
JP5181847B2 (ja) * 2008-06-05 2013-04-10 日産自動車株式会社 複合ブレーキの協調制御装置
JP6120010B2 (ja) * 2014-06-13 2017-04-26 トヨタ自動車株式会社 車両
WO2018221269A1 (ja) * 2017-06-02 2018-12-06 日立オートモティブシステムズ株式会社 電動車両の制御装置、電動車両の制御システム及び電動車両の制御方法
WO2019156035A1 (ja) * 2018-02-09 2019-08-15 株式会社アドヴィックス 車両の制動制御装置
WO2021020371A1 (ja) * 2019-07-31 2021-02-04 株式会社アドヴィックス 車両の制動制御装置

Also Published As

Publication number Publication date
CN117043024A (zh) 2023-11-10
DE112022001650T5 (de) 2024-01-04
JP2022145999A (ja) 2022-10-05

Similar Documents

Publication Publication Date Title
US8523297B2 (en) Brake control system for an electrically driven vehicle
US8042886B2 (en) Vehicle brake system
US10059208B2 (en) Braking control apparatus and braking control method for vehicle
US20050269875A1 (en) Vehicle brake device
JP5229290B2 (ja) 車両用ブレーキ装置
US8818671B2 (en) Vehicle brake control device
JP7146165B2 (ja) 車両の制動制御装置
JP5402578B2 (ja) ブレーキ制御装置
WO2019156034A1 (ja) 車両の制動制御装置
JP2015030427A (ja) 車両の制動装置
US20220314812A1 (en) Braking control device for vehicle
CN112313124B (zh) 车辆制动控制装置
WO2022202763A1 (ja) 車両の制動制御装置
KR102187631B1 (ko) 차량의 제동 장치 및 제동 제어 방법
JP4355164B2 (ja) 車両の制動装置
US20220314814A1 (en) Vehicle brake system
WO2023033021A1 (ja) 車両の制動制御装置
JP2023034693A (ja) 車両の制動制御装置
WO2022202764A1 (ja) 車両の制動制御装置
JP5521657B2 (ja) ブレーキ制御装置
JP7476494B2 (ja) 車両の制動制御装置
WO2023157874A1 (ja) 車両の制動制御装置
Watanabe et al. Electronically Controlled Brake System with Two-Channel Pressure Control for Electric Vehicles
JP3565254B2 (ja) 電動車両の制動装置
WO2022181644A1 (ja) 車両の制動制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775547

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280022284.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18551666

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112022001650

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775547

Country of ref document: EP

Kind code of ref document: A1