WO2022199592A1 - 一种结合选择性溶胀和熔纺拉伸法制备嵌段共聚物中空纤维膜的方法 - Google Patents

一种结合选择性溶胀和熔纺拉伸法制备嵌段共聚物中空纤维膜的方法 Download PDF

Info

Publication number
WO2022199592A1
WO2022199592A1 PCT/CN2022/082365 CN2022082365W WO2022199592A1 WO 2022199592 A1 WO2022199592 A1 WO 2022199592A1 CN 2022082365 W CN2022082365 W CN 2022082365W WO 2022199592 A1 WO2022199592 A1 WO 2022199592A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
block copolymer
fiber membrane
stretching
mixed solvent
Prior art date
Application number
PCT/CN2022/082365
Other languages
English (en)
French (fr)
Inventor
汪勇
钟丁磊
周洁梅
Original Assignee
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京工业大学 filed Critical 南京工业大学
Priority to US18/001,092 priority Critical patent/US11766640B2/en
Publication of WO2022199592A1 publication Critical patent/WO2022199592A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/002Organic membrane manufacture from melts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0086Mechanical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/521Aliphatic polyethers
    • B01D71/5211Polyethylene glycol or polyethyleneoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/80Block polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/08Addition of substances to the spinning solution or to the melt for forming hollow filaments

Definitions

  • the invention belongs to the technical field of porous material separation membranes, and in particular relates to a method for preparing a block copolymer hollow fiber membrane based on a selective swelling method.
  • Hollow fiber membrane is a kind of membrane material with fibrous shape and self-supporting effect. Due to the advantages of high packing density per unit volume, simple operation and stable structure, hollow fiber membranes are widely used in water treatment, catalytic reaction, food processing, biotechnology and medical technology.
  • the present invention proposes a method for preparing a hollow fiber membrane by combining melt-spinning stretching and selective swelling.
  • the method can prepare the hollow fiber membrane with only a small amount of solvent, and the pore structure and performance of the hollow fiber membrane can be continuously adjusted by adjusting the stretching and swelling conditions.
  • a method for preparing a hollow fiber membrane by melt-spinning stretching-selective swelling comprising:
  • the nascent hollow fiber is prepared by melt spinning under the protection of an inert gas, and the nascent hollow fiber is stretched during the cooling process, and the stretching rate is controlled at Between 200-540mm/min, the stretching ratio is between 150-600%;
  • the amphiphilic block copolymer described in step 1) consists of a block A and a block B (A-B), wherein the block A is selected from polysulfone (PSF), polyethersulfone ( Any one of PES), polyphenylsulfone (PPSU), polylactic acid (PLA), the block B is selected from any one of polyethylene glycol (PEG), polyethylene oxide (PEO),
  • the total molecular weight of the amphiphilic block copolymer is 50,000 to 200,000 Daltons; preferably, the block A is polysulfone (PSF), and the block B is polyethylene glycol (PEG).
  • the amphiphilic block copolymer and its molecular weight are any one of PSF 75 -PEG 20 , PES 73 -PEG 19 , PPSU 78 -PEG 22 , PLA 75 -PEO 21 , and the unit is for kilodaltons.
  • the melt spinning in step 1) specifically includes: after melting the solid amphiphilic block copolymer, using a single-screw or twin-screw extruder to make the said amphiphilic block copolymer through a spinneret hollow fiber.
  • the solid amphiphilic block copolymer is melted at 100-250°C, preferably at 200-210°C.
  • an inert gas such as nitrogen gas or helium gas is used for protection to prevent the block copolymer from being oxidized or degraded in the process.
  • the cooling process of the nascent hollow fiber described in step 1) is specifically: after obtaining the nascent hollow fiber membrane through the spinneret, it is cooled by water cooling, air cooling or natural cooling.
  • step 1) the drawing rate of the nascent hollow fibers in the cooling process is controlled at 250-500 mm/min, and the drawing ratio is 300-550%.
  • the swelling agent in step 2) is a mixed solvent composed of n-propanol and a polar solvent, and the proportion of the polar solvent in the mixed solvent is 0-50wt%; more preferably, the polar solvent accounts for The ratio of the mixed solvent is 10wt%-25wt%; the polar solvent is further preferably selected from any one of acetone, tetrahydrofuran or toluene, that is, the mixed solvent of n-propanol and acetone, the mixed solvent of n-propanol and tetrahydrofuran, Or a mixed solvent of n-propanol and toluene; most preferably a mixed solvent of n-propanol and acetone containing 20wt% of acetone, a mixed solvent of n-propanol and tetrahydrofuran containing 20wt% of tetrahydrofuran, or a mixed solvent of n-propanol and to
  • the long-chain alkane solvent in step 2) is preferably any one or a mixture of two or more of n-pentane, n-hexane, n-heptane, n-octane, n-nonane and n-decane ; most preferably n-heptane.
  • the long-chain alkane treatment time in step 2) is 1-12h, preferably 1h, 6h or 12h.
  • the solid block copolymer block is heated and melted at high temperature to obtain a molten polymer, and the molten polymer is made into the nascent hollow fiber through a spinneret with a single-screw or twin-screw extruder under the protection of an inert gas , the nascent hollow fiber is stretched during its cooling process, the stretching rate is controlled to be 250-500 mm/min, and the stretching ratio is 300-550%;
  • the amphiphilic block copolymer is composed of block A and block B to form (A-B), wherein the block A is selected from polysulfone (PSF), and the block B is selected from any one of polyethylene glycol (PEG) and polyethylene oxide (PEO) species; wherein the percentage of the block B in the total mass of the amphiphilic block copolymer is 10-40%; the total molecular weight of the amphiphilic block copolymer is 5-200,000 Daltons;
  • the amphiphilic block copolymer hollow fiber obtained in step 1) was placed in a container equipped with a swelling agent, and then placed in a 65°C water bath for heating for 1 h to generate an open-pore structure, and then transferred to a long-chain alkane solvent. After treatment for 1-12 hours, and finally drying, the amphiphilic block copolymer hollow fiber membrane with bicontinuous porous structure is obtained.
  • the present invention has the following beneficial technical effects:
  • the long-chain alkane solvent treatment can make the polar segments that are over-enriched on the membrane surface migrate inward to improve the performance of the hollow fiber membrane.
  • polar segments eg, PEG
  • PEG polyethylene glycol
  • the polar segments can migrate inwardly, thereby avoiding the appearance of dense layers and improving the performance of hollow fiber membranes.
  • Fig. 1 is the SEM image of the porous structure of the outer surface of the block copolymer hollow fiber membrane obtained in Example 3;
  • Fig. 2 is the SEM image of the block copolymer hollow fiber membrane cross-sectional structure obtained in Example 3;
  • the pure water flux of the polysulfone/polyethylene glycol hollow fiber membrane prepared in this example is about 84L ⁇ m -2 ⁇ h -1 ⁇ bar -1 , and the rejection rate for bovine serum albumin with a diameter of about 6nm is about 60%. .
  • the pure water flux of the polysulfone/polyethylene glycol hollow fiber membrane prepared in this example is about 89L ⁇ m -2 ⁇ h -1 ⁇ bar -1 , and the rejection rate for bovine serum albumin with a diameter of about 6nm is about 68%. .
  • FIG. 1 and FIG. 2 are respectively the SEM images of the outer surface and the cross-section of the polysulfone/polyethylene glycol hollow fiber membrane prepared in this example. It can be seen from the figure that the polysulfone/polyethylene glycol hollow fiber membrane after high-speed stretching has a good open pore structure, the pore channel has obvious transverse stretching phenomenon, and the pore channel size is small.
  • the polysulfone/polyethylene glycol wall thickness after high-speed stretching and swelling is about 413 ⁇ m, which is much smaller than that of Comparative Example 1 in the case of low-speed stretching.
  • the pure water flux of the polysulfone/polyethylene glycol hollow fiber membrane prepared in this example is about 94L ⁇ m -2 ⁇ h -1 ⁇ bar -1 , and the rejection rate for bovine serum albumin with a diameter of about 6nm is about 78%. .
  • the pure water flux of the polyethersulfone/polyethylene glycol hollow fiber membrane prepared in this example is about 85L ⁇ m -2 ⁇ h -1 ⁇ bar -1 , and the rejection rate for bovine serum albumin with a diameter of about 6nm is 82%. about.
  • the pure water flux of the polyphenylsulfone/polyethylene glycol hollow fiber membrane prepared in this example is about 80L ⁇ m -2 ⁇ h -1 ⁇ bar -1 , and the rejection rate for bovine serum albumin with a diameter of about 6nm is 77 %about.
  • the pure water flux of the polyphenylsulfone/polyethylene glycol hollow fiber membrane prepared in this example is about 103L ⁇ m -2 ⁇ h -1 ⁇ bar -1 , and the rejection rate for bovine serum albumin with a diameter of about 6nm is 75%. %about.
  • the hollow fiber membrane was prepared with reference to the method described in Example 3, but with a lower stretching rate and a lower stretching ratio.
  • the specific scheme is as follows:
  • FIG. 3 and FIG. 4 are the SEM images of the outer surface and the cross-section of the polysulfone/polyethylene glycol hollow fiber membrane prepared by the comparative example, respectively. It can be seen from the figure that there are a lot of unopened areas on the surface of the polysulfone/polyethylene glycol hollow fiber membrane after low-speed stretching, the pores have no obvious stretching phenomenon, and the size of the pores is large.
  • the polysulfone/polyethylene glycol wall thickness after low-speed stretching and swelling is about 700 ⁇ m, which is much higher than that of Example 3 in the case of high-speed stretching.
  • the pure water flux of the polysulfone/polyethylene glycol hollow fiber membrane prepared in this comparative example is about 49L ⁇ m -2 ⁇ h -1 ⁇ bar -1 , and the rejection rate for bovine serum albumin with a diameter of about 6nm is about 37%. .
  • the hollow fiber membrane was prepared with reference to the method described in Example 3, but with a lower stretching rate and a lower stretching ratio.
  • the specific scheme is as follows:
  • the pure water flux of the polysulfone/polyethylene glycol hollow fiber membrane prepared in this comparative example is about 68L ⁇ m -2 ⁇ h -1 ⁇ bar -1 , and the rejection rate for bovine serum albumin with a diameter of about 6nm is about 54%. .
  • the hollow fiber membrane was prepared with reference to the method described in Example 3, but with too high stretching rate and too high stretching ratio.
  • the specific scheme is as follows:
  • the pure water flux of the polysulfone/polyethylene glycol hollow fiber membrane prepared in this comparative example is about 68.3L ⁇ m -2 ⁇ h -1 ⁇ bar -1 , and the rejection rate for bovine serum albumin with a diameter of about 6nm is 66.3% about.
  • the hollow fiber membrane was prepared with reference to the method described in Example 3, but the long-chain alkane solvent was not used after swelling.
  • the specific scheme is as follows:
  • the pure water flux of the prepared polysulfone/polyethylene glycol hollow fiber membrane is about 10L ⁇ m -2 ⁇ h -1 ⁇ bar -1 , and the rejection rate for bovine serum albumin with a diameter of about 6nm is about 75%.
  • Example 3 Compared with Example 3, it can be seen that when the same raw materials, the same stretching rate and the same swelling method are used, such as without the treatment of long-chain alkanes after swelling, the hollow fiber membrane still maintains a high retention rate, but its normal volume will drop significantly.
  • the hollow fiber membrane was prepared by using a mixture of polyvinyl butyral and polyethylene glycol (non-amphiphilic block copolymer) as raw materials, and the melt spinning and stretching conditions were also different, and no swelling and long-chain alkane treatment were performed after stretching.
  • the specific scheme is as follows:
  • the pure water flux of the polyvinyl butyral hollow fiber membrane prepared at the stretching rate of 112 mm/min was about 3.3 L ⁇ m -2 ⁇ h -1 ⁇ bar -1 .
  • the retention rate of ethylene latex particles is about 93.2%.
  • the hollow fiber membrane was prepared by using a mixture of polyvinyl butyral and polyethylene glycol (non-amphiphilic block copolymer) as raw materials, and the melt spinning and stretching conditions were also different, and no swelling and long-chain alkane treatment were performed after stretching.
  • the specific scheme is as follows:
  • the pure water flux of the polyvinyl butyral hollow fiber membrane prepared at the stretching rate of 225mm/min was about 11.4L ⁇ m -2 ⁇ h -1 ⁇ bar -1 .
  • the retention rate of ethylene latex particles is about 52.1%.
  • the solution of the present invention is to select a suitable amphiphilic block copolymer for melt-spinning spinning, drawing the obtained hollow fiber at a specific rate, and then combining selective swelling and swelling. After the long-chain alkane treatment, the hollow fiber membrane with ideal flux and rejection rate can be finally obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Artificial Filaments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种结合选择性溶胀和熔纺拉伸法制备嵌段共聚物中空纤维膜的方法,包括:以两亲嵌段共聚物为成膜材料,通过熔融纺丝在惰性气体保护下制备初生中空纤维,对所述的初生中空纤维在其降温过程中进行拉伸处理,控制拉伸速率在200-540mm/min之间,拉伸比率在150-600%之间;将所得中空纤维浸没于溶胀剂中,在65℃水浴加热下处理1h;随后将其转移至相同温度下的长链烷烃溶剂中处理1-12h,处理结束后将所述中空纤维立即取出干燥,得到双连续开孔结构的中空纤维膜。

Description

一种结合选择性溶胀和熔纺拉伸法制备嵌段共聚物中空纤维膜的方法 技术领域
本发明属于多孔材料分离膜技术领域,具体涉及一种基于选择性溶胀法制备嵌段共聚物中空纤维膜的方法。
背景技术
中空纤维膜是一种外形为纤维状,具有自支撑作用的膜材料。由于中空纤维膜本身具有单位体积内装填密度大、操作简单、结构稳定等优势,因此被广泛应用于水处理、催化反应、食品加工、生物技术及医疗技术等方面。
现阶段使用高分子材料制备中空纤维膜的方法主要为3种,分别是:熔融纺丝-拉伸法(MSCS)、热致相分离法(TIPS)和非溶剂诱导相分离法(NIPS)。为了提升制备得到的中空纤维膜的性能,往往会在制备过程中对初生中空纤维膜进行拉伸处理。然而,对于上述方法,拉伸后的中空纤维膜仅通量性能得到提升,对应的截留性能会发生明显下降,表现为典型的trade-off效应。同时,随着中空纤维膜拉伸比率的增加,中空纤维膜的截留性能下降更为严重,最终影响中空纤维膜的应用。
因此,有必要提供一种工艺方法,以解决中空纤维膜拉伸处理后截留性能下降的问题。
发明内容
为了克服现有技术的缺陷与不足,本发明的提出一种通过结合熔纺拉伸和选择性溶胀制备中空纤维膜的方法。该方法只需使用少量溶剂就能够制备得到中空纤维膜,且通过拉伸和溶胀条件的调控即可连续调控中空纤维膜的孔道结构和性能。
本发明实现上述目的的技术方案为:
一种通过熔纺拉伸-选择性溶胀制备中空纤维膜的方法,包括:
1)以两亲嵌段共聚物为成膜材料,通过熔融纺丝在惰性气体保护下制备初生中空纤维,对所述的初生中空纤维在其降温过程中进行拉伸处理,控制拉伸速率在200-540mm/min之间,拉伸比率在150-600%之间;
2)将1)所得中空纤维浸没于溶胀剂中,在65℃水浴加热下处理1h;随后将其转移至 相同温度下的长链烷烃溶剂中处理1-12h,处理结束后将所述中空纤维立即取出干燥,得到双连续开孔结构的中空纤维膜。
本发明所述方案中,步骤1)所述的两亲嵌段共聚物由嵌段A和嵌段B组成(A-B),其中所述嵌段A选自聚砜(PSF)、聚醚砜(PES)、聚苯砜(PPSU)、聚乳酸(PLA)中的任意一种,所述嵌段B选自聚乙二醇(PEG)、聚环氧乙烷(PEO)中的任意一种,所述两亲嵌段共聚物的总分子量为5-20万道尔顿;优选所述的嵌段A是聚砜(PSF),且所述的嵌段B是聚乙二醇(PEG)。
本发明进一步优选方案中,所述的两亲嵌段共聚物及其分子量为PSF 75-PEG 20、PES 73-PEG 19、PPSU 78-PEG 22、PLA 75-PEO 21中的任意一种,单位为千道尔顿。
本发明所述方案中,步骤1)所述的熔融纺丝具体包括:将固态的所述两亲嵌段共聚物熔融后,使用单螺杆或双螺杆挤出机经喷丝头制成所述中空纤维。
本发明更优选的方案中,固态的所述两亲嵌段共聚物在100-250℃下被熔融,优选在200-210℃下被熔融。
本发明所述方案中,在步骤1)所述熔融过程中使用氮气或者氦气等惰性气体进行保护,防止嵌段共聚物在该过程中发生氧化或者降解。
本发明所述方案中,步骤1)所述的初生中空纤维的降温过程具体是:在经喷丝头得到初生中空纤维膜后,通过水冷、风冷或自然冷却的方法对其进行降温处理。
本发明优选的方案中,步骤1)所述对在降温过程中的初生中空纤维进行拉伸速率控制在250-500mm/min,所述的拉伸比率为300-550%。
本发明所述方案中,步骤2)所述的溶胀剂为正丙醇与极性溶剂构成的混合溶剂,所述极性溶剂占混合溶剂的比例为0-50wt%;更优选极性溶剂占混合溶剂的比例为10wt%-25wt%;所述的极性溶剂进一步优选自丙酮、四氢呋喃或甲苯中的任意一种,即正丙醇与丙酮的混合溶剂、正丙醇与四氢呋喃的混合溶剂、或者正丙醇与甲苯的混合溶剂;最优选含20wt%丙酮的正丙醇丙酮混合溶剂、含20wt%四氢呋喃的正丙醇四氢呋喃混合溶剂、或者含10wt%甲苯的正丙醇甲苯混合溶剂。
本发明所述方案中,步骤2)所述长链烷烃溶剂优选为正戊烷、正己烷、正庚烷、正辛烷、正壬烷和正癸烷中的任意一种或两种以上的混合物;最优选正庚烷。
本发明所述方案中,步骤2)所述长链烷烃处理时间为1-12h,优选1h、6h或12h。
本发明优选的一种实施方式,其具体步骤如下:
1)熔纺拉伸过程
将固态的嵌段共聚物块体在高温下加热熔融得到熔融聚合物,将所述熔融聚合物用单螺杆或双螺杆挤出机在惰性气体保护下经喷丝头制成所述初生中空纤维,对初生中空纤维在其降温过程中进行拉伸处理,控制拉伸速率为250-500mm/min,所述拉伸比率为300-550%;所述的两亲嵌段共聚物由嵌段A和嵌段B组成(A-B),其中所述嵌段A选自聚砜(PSF),所述嵌段B选自聚乙二醇(PEG)、聚环氧乙烷(PEO)中的任意一种;其中所述的嵌段B占所述两亲嵌段共聚物总质量的百分比为10-40%;所述两亲嵌段共聚物的总分子量为5-20万道尔顿;
2)选择性溶胀开孔过程
将步骤1)所得两亲嵌段共聚物中空纤维置于装有溶胀剂的容器中,随即将其放于65℃水浴加热下处理1h,从而产生开孔结构,随后转移至长链烷烃溶剂中处理1-12h,最后干燥,得到双连续多孔结构的两亲嵌段共聚物中空纤维膜。
与现有技术相比,本发明具有以下几方面有益的技术效果:
(1)通过结合熔纺拉伸和选择性溶胀,解决了在制备中空纤维膜随拉伸程度的增加膜通量上升而膜截留下降的trade-off效应。
现有技术中,通过MSCS、TIPS或NIPS法结合拉伸过程制备中空纤维膜会发生通量上升而截留下降的现象,严重的甚至会影响中空纤维膜的后续应用。本发明通过将熔纺拉伸和选择性溶胀结合,可以使得中空纤维膜的性能在特定范围内随拉伸比的增加而得到同步提升,且性能变化可以连续调节。
(2)通过长链烷烃溶剂处理可以使在膜表面过度富集的极性链段向内迁移从而使中空纤维膜性能提升。
由于极性链段(如PEG)活性极强,在溶胀过程中会向膜表面发生迁移。但是在膜表面的过量富集会导致表面致密层的产生从而发生膜性能下降。通过使用对极性链段有抑制作用的长链烷烃溶剂进行处理,可以使极性链段发生向内迁移,从而避免致密层的出现,并提升中空纤维膜性能。
总之,本发明中通过结合熔纺拉伸和选择性溶胀建立了一种简单有效且能够有效提升中空纤维膜性能的方法,并且随着拉伸比率的增加,中空纤维膜的通量和截留性能能够得到同步提升。
附图说明
图1是实施例3中得到的嵌段共聚物中空纤维膜外表面多孔结构SEM图;
图2是实施例3中得到的嵌段共聚物中空纤维膜截面结构SEM图;
图3是对比例1中得到的嵌段共聚物中空纤维膜截面多孔结构SEM图;
图4是对比例1中得到的嵌段共聚物中空纤维膜截面结构SEM图。
具体实施方式
下面结合实施例对本发明做更进一步地解释。下列实施例仅用于说明本发明,但并不用来限定本发明的实施范围。
实施例1
将20g PSF 75-PEG 20嵌段共聚物加入到双螺杆挤出机中,于200/210℃氮气保护条件下熔融,然后在200℃下经喷丝头挤出,在水冷下调节拉伸速率为260mm/min,得到拉伸比为247%的中空纤维。将得到的中空纤维浸没在含20wt%丙酮的正丙醇与丙酮的混合溶剂中,65℃水浴处理1h,之后转移至正辛烷中处理12h。处理结束后立即将中空纤维取出,在40℃下干燥,得到中空纤维膜。
本实施例制备得到的聚砜/聚乙二醇中空纤维膜纯水通量为84L·m -2·h -1·bar -1左右,对直径6nm左右的牛血清蛋白截留率为60%左右。
实施例2
将20g PSF 75-PEG 20嵌段共聚物加入到双螺杆挤出机中,于200/210℃氮气保护条件下熔融,然后在200℃下经喷丝头挤出,在自然冷却下调节拉伸速率为360mm/min,得到拉伸比为380%的中空纤维。将得到的中空纤维浸没在含20wt%丙酮的正丙醇与丙酮的混合溶剂中,65℃水浴处理1h,之后转移至正庚烷中处理6h。处理结束后立即将中空纤维取出,在40℃下干燥,得到中空纤维膜。
本实施例制备得到的聚砜/聚乙二醇中空纤维膜纯水通量为89L·m -2·h -1·bar -1左右,对直径 6nm左右的牛血清蛋白截留率为68%左右。
实施例3
将20g PSF 75-PEG 20嵌段共聚物加入到双螺杆挤出机中,于200/210℃氮气保护条件下熔融,然后在200℃下经喷丝头挤出,在自然冷却下调节拉伸速率为470mm/min,得到拉伸比为527%的中空纤维。将得到的中空纤维浸没在含20wt%丙酮的正丙醇与丙酮的混合溶剂中,65℃水浴处理1h,之后转移至正庚烷中处理1h。处理结束后立即将中空纤维取出,在40℃下干燥,得到中空纤维膜。
图1、图2分别为本实施例制备得到的聚砜/聚乙二醇中空纤维膜的外表面和截面SEM图。由图可见:高速拉伸后的聚砜/聚乙二醇中空纤维膜具有良好的开孔结构,孔道有明显的横向拉伸现象,且孔道尺寸较小。高速拉伸并溶胀后的聚砜/聚乙二醇壁厚约为413μm,远小于低速拉伸情况下的对比例1。
本实施例制备得到的聚砜/聚乙二醇中空纤维膜纯水通量为94L·m -2·h -1·bar -1左右,对直径6nm左右的牛血清蛋白截留率为78%左右。
实施例4
将20g PES 73-PEG 19嵌段共聚物加入到双螺杆挤出机中,于200/210℃氮气保护条件下熔融,然后在200℃下经喷丝头挤出,在自然冷却下调节拉伸速率为470mm/min,得到拉伸比为506%的中空纤维。将得到的中空纤维浸没在含20wt%丙酮的正丙醇与丙酮的混合溶剂中,65℃水浴处理1h,之后转移至正庚烷中处理1h。处理结束后立即将中空纤维取出,在40℃下干燥,得到中空纤维膜。
本实施例制备得到的聚醚砜/聚乙二醇中空纤维膜纯水通量为85L·m -2·h -1·bar -1左右,对直径6nm左右的牛血清蛋白截留率为82%左右。
实施例5
将20g PPSU 78-PEG 22嵌段共聚物加入到双螺杆挤出机中,于220/230℃氮气保护条件下熔融,然后在220℃下经喷丝头挤出,在自然冷却下调节拉伸速率为470mm/min,得到拉伸比为540%的中空纤维。将得到的中空纤维浸没在含10wt%甲苯的正丙醇与甲苯的混合溶剂中,65℃水浴处理1h,之后转移至正庚烷中处理1h。处理结束后立即将中空纤维取出,在 40℃下干燥,得到中空纤维膜。
本实施例制备得到的聚聚苯砜/聚乙二醇中空纤维膜纯水通量为80L·m -2·h -1·bar -1左右,对直径6nm左右的牛血清蛋白截留率为77%左右。
实施例6
将20g PLA 75-PEO 21嵌段共聚物加入到双螺杆挤出机中,于130/140℃氮气保护条件下熔融,然后在130℃下经喷丝头挤出,在自然冷却下调节拉伸速率为470mm/min,得到拉伸比为550%的中空纤维。将得到的中空纤维浸没在含20wt%四氢呋喃的正丙醇与四氢呋喃的混合溶剂中,65℃水浴处理1h,之后转移至正庚烷中处理1h。处理结束后立即将中空纤维取出,在40℃下干燥,得到中空纤维膜。
本实施例制备得到的聚聚苯砜/聚乙二醇中空纤维膜纯水通量为103L·m -2·h -1·bar -1左右,对直径6nm左右的牛血清蛋白截留率为75%左右。
对比例1.
参照实施例3所述的方法制备中空纤维膜,但采用较低拉伸速率和较低拉伸比率,具体方案如下:
将20g PSF 75-PEG 20嵌段共聚物加入到双螺杆挤出机中,于200/210℃氮气保护条件下熔融,然后在200℃下经喷丝头挤出,在自然冷却下调节拉伸速率为85mm/min,得到拉伸比为13%的中空纤维。将得到的中空纤维浸没在含20wt%丙酮的正丙醇与丙酮的混合溶剂中,65℃水浴处理1h,之后转移至正庚烷中处理1h。处理结束后立即将中空纤维取出,在40℃下干燥,得到中空纤维膜。
图3、图4分别为本对比例制备的聚砜/聚乙二醇中空纤维膜的外表面和截面SEM图。由图可见:低速拉伸后的聚砜/聚乙二醇中空纤维膜表面有大量未开孔区域,孔道无明显拉伸现象,且孔道尺寸较大。低速拉伸并溶胀后的聚砜/聚乙二醇壁厚约为700μm,远高于高速拉伸情况下的实施例3。
本对比例制备得到的聚砜/聚乙二醇中空纤维膜纯水通量为49L·m -2·h -1·bar -1左右,对直径6nm左右的牛血清蛋白截留率为37%左右。
可见,采用相同原料和相同的溶胀方法时,过低的拉伸速率和拉伸比率不能使中空纤维获得理想的结构、通量和截留率。
对比例2
参照实施例3所述的方法制备中空纤维膜,但采用较低拉伸速率和较低拉伸比率,具体方案如下:
将20g PSF 75-PEG 20嵌段共聚物加入到双螺杆挤出机中,于200/210℃氮气保护条件下熔融,然后在200℃下经喷丝头挤出,在风冷条件下调节拉伸速率为150mm/min,得到拉伸比为100%的中空纤维。将得到的中空纤维浸没在含20wt%丙酮的正丙醇与丙酮的混合溶剂中,65℃水浴处理1h,之后转移至正庚烷中处理1h。处理结束后立即将中空纤维取出,在40℃下干燥,得到中空纤维膜。
本对比例制备得到的聚砜/聚乙二醇中空纤维膜纯水通量为68L·m -2·h -1·bar -1左右,对直径6nm左右的牛血清蛋白截留率为54%左右。
可见,采用相同原料和相同的溶胀方法时,较低的拉伸速率和拉伸比率不能使中空纤维获得理想的通量和截留率。
对比例3
参照实施例3所述的方法制备中空纤维膜,但采用过高的拉伸速率和过高的拉伸比率,具体方案如下:
将20g PSF 75-PEG 20嵌段共聚物加入到双螺杆挤出机中,于200/210℃氮气保护条件下熔融,然后在200℃下经喷丝头挤出,在风冷条件下调节拉伸速率为550mm/min,得到拉伸比为633%的中空纤维。将得到的中空纤维浸没在含20wt%丙酮的正丙醇与丙酮的混合溶剂中,65℃水浴处理1h,之后转移至正庚烷中处理1h。处理结束后立即将中空纤维取出,在40℃下干燥,得到中空纤维膜。
本对比例制备得到的聚砜/聚乙二醇中空纤维膜纯水通量为68.3L·m -2·h -1·bar -1左右,对直径6nm左右的牛血清蛋白截留率为66.3%左右。
可见,采用相同原料和相同的溶胀方法时,过高的拉伸速率和拉伸比率使中空纤维的通量和截留率发生下降。
对比例4
参照实施例3所述的方法制备中空纤维膜,但溶胀后不采用长链烷烃溶剂处理,具体方案如下:
将20g PSF 75-PEG 20嵌段共聚物加入到双螺杆挤出机中,于200/210℃氮气保护条件下熔融,然后在200℃下经喷丝头挤出,在自然冷却下调节拉伸速率为470mm/min,得到拉伸比为527%的中空纤维。将得到的中空纤维浸没在含20wt%丙酮的正丙醇与丙酮的混合溶剂中,65℃水浴处理1h。溶胀结束后立即将中空纤维取出,在40℃下干燥,得到中空纤维膜。
制备得到的聚砜/聚乙二醇中空纤维膜纯水通量为10L·m -2·h -1·bar -1左右,对直径6nm左右的牛血清蛋白截留率为75%左右。
与实施例3相比可知,采用相同原料、相同拉伸速率和相同的溶胀方法时,如溶胀后不经过长链烷烃的处理,中空纤维膜虽然仍保持着很高的截留率,但其通量会显著下降。
对比例5
采用聚乙烯基缩丁醛与聚乙二醇混合物(非两亲嵌段共聚物)为原料制备中空纤维膜,且熔纺、拉伸条件也不同,拉伸后不进行溶胀和长链烷烃处理,具体方案如下:
将20g聚乙烯基缩丁醛与聚乙二醇混合物(聚乙烯基缩丁醛质量分数为20wt%)加入到双螺杆挤出机中,于180℃条件下氮气保护下熔融并混合均匀,然后在160℃下经喷丝头挤出,在经过水冷发生相分离并固化后在拉伸速率112mm/min下得到中空纤维膜。
在112mm/min拉伸速率下制备得到的聚乙烯基缩丁醛中空纤维膜纯水通量为3.3L·m -2·h -1·bar -1左右,对直径为102nm的单分散聚苯乙烯乳胶粒子截留率为93.2%左右。
相比本发明各实施例可知,未采用本发明所选的两亲嵌段共聚物作为原料、在相转化成膜后采用拉伸处理而非溶胀和长链烷烃处理,中空纤维膜的通量很差。
对比例6
采用聚乙烯基缩丁醛与聚乙二醇混合物(非两亲嵌段共聚物)为原料制备中空纤维膜,且熔纺、拉伸条件也不同,拉伸后不进行溶胀和长链烷烃处理,具体方案如下:
将20g聚乙烯基缩丁醛与聚乙二醇混合物(聚乙烯基缩丁醛质量分数为20wt%)加入到双螺杆挤出机中,于180℃条件下氮气保护下熔融并混合均匀,然后在160℃下经喷丝头挤出,在经过水冷发生相分离并固化后在拉伸速率225mm/min下得到中空纤维膜。
在225mm/min拉伸速率下制备得到的聚乙烯基缩丁醛中空纤维膜纯水通量为11.4L·m -2·h -1·bar -1左右,对直径为102nm的单分散聚苯乙烯乳胶粒子截留率为52.1%左右。
与对比例5相比可知,对于相同原料的中空纤维的处理,单纯提高拉伸速率后,仅使得 其通量上升,而其截留率却显著下降。
与实施例1、2相比可知,在成膜方法不同的情况下、对相转化法制备的中空纤维膜采用拉伸处理在通量提升情况下无法保证其截留性能。
总之,由上述实施例和对比例可知,本发明的方案通过选择合适的两亲嵌段共聚物进行熔纺喷丝、对得到的中空纤维进行特定速率的拉伸、再结合选择性溶胀和溶胀后的长链烷烃处理,最终可以获得通量和截留率都较为理想的中空纤维膜。

Claims (12)

  1. 一种结合选择性溶胀和熔纺拉伸法制备中空纤维膜的方法,包括:
    1)以两亲嵌段共聚物为成膜材料,通过熔融纺丝在惰性气体保护下制备初生中空纤维,对所述的初生中空纤维在其降温过程中进行拉伸处理,控制拉伸速率在200-540mm/min之间,拉伸比率在150-600%之间;
    2)将1)所得中空纤维浸没于溶胀剂中,在65℃水浴加热下处理1h;随后将其转移至相同温度下的长链烷烃溶剂中处理1-12h,处理结束后将所述中空纤维立即取出干燥,得到双连续开孔结构的中空纤维膜。
  2. 权利要求1所述的方法,其特征在于:1)所述的两亲嵌段共聚物由嵌段A和嵌段B组成(A-B),其中所述嵌段A为聚砜(PSF)、聚醚砜(PES)、聚苯砜(PPSU)、聚乳酸(PLA)中的任意一种,所述嵌段B选自聚乙二醇(PEG)、聚环氧乙烷(PEO)中的任意一种,所述两亲嵌段共聚物的总分子量为5-20万道尔顿;优选所述的嵌段A是聚砜(PSF),且所述的嵌段B是聚乙二醇(PEG)。
  3. 权利要求2所述的方法,其特征在于:所述的两亲嵌段共聚物及其分子量为PSF 75-PEG 20、PES 73-PEG 19、PPSU 78-PEG 22、PLA 75-PEO 21中的任意一种,单位为千道尔顿。
  4. 权利要求1所述的方法,其特征在于:步骤1)所述的熔融纺丝具体包括:将固态的所述两亲嵌段共聚物熔融后,使用单螺杆或双螺杆挤出机经喷丝头制成所述中空纤维。
  5. 权利要求4所述的方法,其特征在于:固态的所述两亲嵌段共聚物在100-250℃下被熔融,优选在200-210℃下被熔融。
  6. 权利要求4所述的方法,其特征在于:在所述熔融过程中使用氮气或者氦气等惰性气体进行保护,防止嵌段共聚物在该过程中发生氧化或者降解。
  7. 权利要求1所述的方法,其特征在于:步骤1)所述的初生中空纤维的降温过程具体是:在经喷丝头得到初生中空纤维膜后,通过水冷、风冷或自然冷却的方法对其进行降温处理。
  8. 权利要求1所述的方法,其特征在于:步骤1)所述的拉伸速率为250-500mm/min,所述的拉伸比率为300-550%。
  9. 权利要求1所述的方法,其特征在于:步骤2)所述溶胀剂为正丙醇与极性溶剂构成的混合溶剂,且所述极性溶剂占混合溶剂的比例为0-50wt%;更优选极性溶剂占混合溶剂的比例为10wt%-25wt%;所述的极性溶剂进一步优选自丙酮、四氢呋喃或甲苯中的任意一种,即正丙醇与丙酮的混合溶剂、正丙醇与四氢呋喃的混合溶剂、或者正丙醇与甲苯的混合溶剂;最优选含20wt%丙酮的正丙醇丙酮混合溶剂、含20wt%四氢呋喃的正丙醇四氢呋喃混合溶剂、或者含10wt%甲苯的正丙醇甲苯混合溶剂。
  10. 权利要求1所述的方法,其特征在于:步骤2)所述长链烷烃溶剂为正戊烷、正己烷、正庚烷、正辛烷、正壬烷和正癸烷中的任意一种或两种以上的混合物;优选正庚烷。
  11. 权利要求1所述的方法,其特征在于:步骤2)所述长链烷烃处理时间为1h、6h或12h。
  12. 结合选择性溶胀和熔纺拉伸法制备中空纤维膜的方法,其特征在于,具体步骤如下:
    1)熔纺拉伸过程
    将固态的嵌段共聚物块体在高温下加热熔融得到熔融聚合物,将所述熔融聚合物用单螺杆或双螺杆挤出机在惰性气体保护下经喷丝头制成所述初生中空纤维,对初生中空纤维在其降温过程中进行拉伸处理,控制拉伸速率为250-500mm/min,所述拉伸比率为300-550%;所述的两亲嵌段共聚物由嵌段A和嵌段B组成(A-B),其中所述嵌段A选自聚砜(PSF),所述嵌段B选自聚乙二醇(PEG)、聚环氧乙烷(PEO)中的任意一种;其中所述的嵌段B占所述两亲嵌段共聚物总质量的百分比为10-40%;所述两亲嵌段共聚物的总分子量为5-20万道尔顿;
    2)选择性溶胀开孔过程
    将步骤1)所得两亲嵌段共聚物中空纤维置于装有溶胀剂的容器中,随即将其放于65℃水浴加热下处理1h,从而产生开孔结构,随后转移至长链烷烃溶剂中处理1-12h,最后干燥,得到双连续多孔结构的两亲嵌段共聚物中空纤维膜。
PCT/CN2022/082365 2021-03-24 2022-03-23 一种结合选择性溶胀和熔纺拉伸法制备嵌段共聚物中空纤维膜的方法 WO2022199592A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/001,092 US11766640B2 (en) 2021-03-24 2022-03-23 Method for preparing block copolymer hollow fiber membrane by melt spinning-stretching and selective swelling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110313177.7A CN113041848B (zh) 2021-03-24 2021-03-24 一种结合选择性溶胀和熔纺拉伸法制备嵌段共聚物中空纤维膜的方法
CN202110313177.7 2021-03-24

Publications (1)

Publication Number Publication Date
WO2022199592A1 true WO2022199592A1 (zh) 2022-09-29

Family

ID=76514799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082365 WO2022199592A1 (zh) 2021-03-24 2022-03-23 一种结合选择性溶胀和熔纺拉伸法制备嵌段共聚物中空纤维膜的方法

Country Status (3)

Country Link
US (1) US11766640B2 (zh)
CN (1) CN113041848B (zh)
WO (1) WO2022199592A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113041848B (zh) * 2021-03-24 2022-09-16 南京工业大学 一种结合选择性溶胀和熔纺拉伸法制备嵌段共聚物中空纤维膜的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1278948A (en) * 1968-10-09 1972-06-21 Pechiney Saint Gobain Improvements in or relating to the production of polyvinyl chloride fibres and the like
GB1449644A (en) * 1972-08-18 1976-09-15 Matsushita Electric Ind Co Ltd Process for manufacturing porous polymer film
US5294338A (en) * 1990-11-28 1994-03-15 Mitsubishi Rayon Co., Ltd. Porous polyethylene hollow fiber membrane of large pore diameter, production process thereof, and hydrophilized porous polyethylene hollow fiber membranes
CN106087453A (zh) * 2016-06-22 2016-11-09 武汉纺织大学 一种热塑性嵌段共聚物纳米纤维膜材料及其制备方法
CN109316971A (zh) * 2018-10-19 2019-02-12 武汉大学深圳研究院 一种中空纤维膜抗压性和水通量增强方法
CN111318174A (zh) * 2020-02-28 2020-06-23 南京工业大学 基于选择性溶胀法制备嵌段共聚物中空纤维膜的方法
CN113041848A (zh) * 2021-03-24 2021-06-29 南京工业大学 一种结合选择性溶胀和熔纺拉伸法制备嵌段共聚物中空纤维膜的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3161546B2 (ja) * 1991-09-13 2001-04-25 東洋紡績株式会社 高強度、低収縮ポリエステル系繊維の製造方法
CN106457163A (zh) * 2014-05-01 2017-02-22 沙特基础工业全球技术有限公司 不对称聚(亚苯基醚)共聚物膜、其分离组件及制备方法
KR20170002516A (ko) * 2014-05-01 2017-01-06 사빅 글로벌 테크놀러지스 비.브이. 스킨형 비대칭 폴리(페닐렌 에테르) 공중합체 막, 기체 분리 장치, 및 그 제조 방법
EP3506998A2 (en) * 2016-08-30 2019-07-10 Basf Se Multilayer hollow fibre membranes comprising amphiphlic copolymers
EP3603782A4 (en) * 2017-03-27 2020-04-01 Mitsubishi Chemical Corporation POROUS MEMBRANE, MEMBRANE MODULE, WATER TREATMENT DEVICE AND METHOD FOR PRODUCING A POROUS MEMBRANE
CN108530658B (zh) * 2018-03-21 2021-06-08 苏州科技大学 嵌段聚合物fpeg-co-ca改性ca滤膜及其制备方法
CN111167316B (zh) * 2020-01-06 2021-01-01 南京工业大学 一种用于制备分离膜的常温选择性溶胀开孔方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1278948A (en) * 1968-10-09 1972-06-21 Pechiney Saint Gobain Improvements in or relating to the production of polyvinyl chloride fibres and the like
GB1449644A (en) * 1972-08-18 1976-09-15 Matsushita Electric Ind Co Ltd Process for manufacturing porous polymer film
US5294338A (en) * 1990-11-28 1994-03-15 Mitsubishi Rayon Co., Ltd. Porous polyethylene hollow fiber membrane of large pore diameter, production process thereof, and hydrophilized porous polyethylene hollow fiber membranes
CN106087453A (zh) * 2016-06-22 2016-11-09 武汉纺织大学 一种热塑性嵌段共聚物纳米纤维膜材料及其制备方法
CN109316971A (zh) * 2018-10-19 2019-02-12 武汉大学深圳研究院 一种中空纤维膜抗压性和水通量增强方法
CN111318174A (zh) * 2020-02-28 2020-06-23 南京工业大学 基于选择性溶胀法制备嵌段共聚物中空纤维膜的方法
CN113041848A (zh) * 2021-03-24 2021-06-29 南京工业大学 一种结合选择性溶胀和熔纺拉伸法制备嵌段共聚物中空纤维膜的方法

Also Published As

Publication number Publication date
CN113041848B (zh) 2022-09-16
CN113041848A (zh) 2021-06-29
US11766640B2 (en) 2023-09-26
US20230191336A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
Qin et al. Effect of dope flow rate on the morphology, separation performance, thermal and mechanical properties of ultrafiltration hollow fibre membranes
US9289730B2 (en) Hollow fiber membranes and methods for forming same
CN101342465B (zh) 一种中空纤维多孔膜及其制备方法
EP1669128A1 (en) The preparation method of exo-pressure type poly(vinylidene fluoride) hollow fiber membrane spinned utilizing a immersion-coagulation method and the product thereof
WO2022199592A1 (zh) 一种结合选择性溶胀和熔纺拉伸法制备嵌段共聚物中空纤维膜的方法
CN108499369A (zh) 聚醚醚酮中空纤维膜、其孔径控制方法及制备方法
KR20160116466A (ko) 세미 열유도 상분리법을 이용한 기체분리용 비대칭 중공사막의 제조방법 및 그에 의하여 제조된 기체분리용 비대칭 중공사막
KR101305798B1 (ko) 다공성 분리막 및 이의 제조방법
CN109621744B (zh) 一种基于双临界溶解温度体系的中空纤维膜的制备方法
KR101381080B1 (ko) 열유도상분리에 의한 지지층과 비용매유도상분리에 의한 친수화 활성층으로 이루어진 복층구조의 친수성 중공사막 및 이의 제조방법
CN106268356B (zh) 一种热致相分离制备超高分子量聚乙烯复合中空纤维的方法
CN111318174A (zh) 基于选择性溶胀法制备嵌段共聚物中空纤维膜的方法
JP2539799B2 (ja) ガス選択透過性膜の製造方法
CN109621755B (zh) 一种用于有机蒸汽回收的硅橡胶复合膜的制备方法
CN115634583A (zh) 一种复合结构分离膜制备方法及复合结构分离膜
CN110350131A (zh) 一种相转化法制备复合聚丙烯微孔膜的方法及其制品和用途
CN109621741B (zh) 一种正渗透复合膜的制备方法
KR102584858B1 (ko) 여과막 형성용 조성물, 이를 이용한 여과막 제조방법 및 여과막
CN109621747B (zh) 一种中空纤维微/超滤膜的制备方法
CN110721597B (zh) 一种简易制备优异贯通性多孔膜的方法
CN111495198A (zh) 一种聚合物多孔膜的制备方法
JPS588504A (ja) ポリスルホン中空繊維気体分離膜
KR101818167B1 (ko) 중공사막의 제조 방법 및 중공사막
CN111587146B (zh) 中空纤维膜及其制造方法
CN117563437A (zh) 一种用于疫苗病毒浓缩纯化的双层复合中空纤维膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774248

Country of ref document: EP

Kind code of ref document: A1