WO2022199208A1 - 车端抗侧滚减振装置及轨道车辆、列车 - Google Patents

车端抗侧滚减振装置及轨道车辆、列车 Download PDF

Info

Publication number
WO2022199208A1
WO2022199208A1 PCT/CN2022/070345 CN2022070345W WO2022199208A1 WO 2022199208 A1 WO2022199208 A1 WO 2022199208A1 CN 2022070345 W CN2022070345 W CN 2022070345W WO 2022199208 A1 WO2022199208 A1 WO 2022199208A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
rod
vibration damping
rolling
swing
Prior art date
Application number
PCT/CN2022/070345
Other languages
English (en)
French (fr)
Inventor
杨东晓
冯永华
冯军
张国平
梁海啸
李贵宇
王强
Original Assignee
中车青岛四方机车车辆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车青岛四方机车车辆股份有限公司 filed Critical 中车青岛四方机车车辆股份有限公司
Priority to US18/280,644 priority Critical patent/US20240140500A1/en
Priority to JP2023544323A priority patent/JP7562869B2/ja
Priority to EP22773873.9A priority patent/EP4286238A4/en
Publication of WO2022199208A1 publication Critical patent/WO2022199208A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61GCOUPLINGS; DRAUGHT AND BUFFING APPLIANCES
    • B61G5/00Couplings for special purposes not otherwise provided for
    • B61G5/02Couplings for special purposes not otherwise provided for for coupling articulated trains, locomotives and tenders or the bogies of a vehicle; Coupling by means of a single coupling bar; Couplings preventing or limiting relative lateral movement of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • B61F5/24Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes

Definitions

  • the present application relates to the technical field of rail vehicles, and in particular, to a vehicle end anti-rolling vibration damping device, a rail vehicle, and a train.
  • the car body With the increase of the speed of the existing EMU and the increase of the number of layers of the car body, the car body has the technical characteristics of heavy weight and high center of gravity, and thus the requirements for the anti-rolling of rail vehicles are getting higher and higher.
  • Rolling resistance of rail vehicles refers to the ability of the vehicle body to resist roll vibration.
  • the car body of the double-deck EMU is significantly higher than that of the traditional train, and there are unfavorable problems that the damping ratio of the rolling vibration of the car body is too low, the roll stability decreases, and the roll angular velocity increases. .
  • the existing anti-roll device is usually installed in the secondary suspension system between the bogie and the vehicle body, and can generate a damping force between the bogie and the vehicle body, so as to achieve the effect of restraining the rolling motion.
  • the secondary vertical shock absorber is usually installed in the suspension system or the damping of the secondary air spring is increased, which can suppress the rolling vibration. Will adversely affect vertical ride stability.
  • the secondary vertical shock absorber will provide vertical damping while providing anti-roll damping; If there is a roll effect, it is necessary to set a larger damping of the secondary vertical shock absorber, which will adversely affect the vertical vibration transmission of the vehicle system and cause the deterioration of vertical stability.
  • the present application provides an anti-rolling vibration damping device at a vehicle end, which is used to solve the defect that the anti-rolling device used in the prior art has an adverse effect on the vertical riding stability, and can at least achieve a performance without affecting the vertical stability. Rolling vibration is suppressed under the premise.
  • the application also provides a rail vehicle.
  • the application also provides a train.
  • the present application provides a vehicle end anti-rolling vibration damping device, comprising:
  • a pair of vibration damping mechanisms suitable for being respectively installed on a pair of end walls oppositely arranged on a pair of connected vehicle bodies, and a pair of the vibration damping mechanisms are respectively arranged on both sides of the axis of the vehicle body along the length direction;
  • a connecting rod both ends are hinged to a pair of said vibration damping mechanisms respectively, and the length of said connecting rod is greater than the vertical movement displacement of any one of said vehicle bodies, so as to balance the rolling motion and vertical movement of said vehicle body. decoupling.
  • the damping mechanism comprises:
  • shock absorber arranged on the end wall, and the fixed end of the shock absorber is hinged to the end wall;
  • the swing rod is provided with a swing fulcrum, the first end of the swing rod is hinged to the end of the connecting rod, the second end of the swing rod is hinged to the telescopic end of the shock absorber, the The first end and the second end can swing relative to the swing fulcrum.
  • a vehicle end anti-rolling vibration damping device provided by the present application, when the vehicle body rolls, the swing rod is swung by the restriction of the connecting rod, and drives the shock absorber Telescopic motion occurs to generate damping force;
  • the connecting rod moves along the vertical direction of the vehicle body, and the shock absorber does not generate damping force.
  • the swing rod includes a first rod body and a second rod body, the first rod body and the second rod body are connected in an L shape, and the swing rod has an L-shaped connection.
  • the swinging fulcrum is set at the connection between the first rod body and the second rod body; the first end of the swing rod is set at the end of the first rod body away from the swinging fulcrum, and the first end of the swing rod
  • the two ends are arranged at the end of the second rod body away from the swinging fulcrum;
  • the anti-rolling damping coefficient of the vehicle-end anti-rolling vibration damping device is inversely proportional to the length proportional coefficient of the pendulum rod, and the length proportional coefficient of the pendulum rod is the length of the first rod body and the third The scaling factor between the lengths of the two rod bodies.
  • the swing speed of the first end of the swing rod is the relative roll speed between a pair of the vehicle bodies; the swing speed of the second end of the swing rod The swing speed is the movement speed of the telescopic end of the shock absorber;
  • the swing speed of the second end of the pendulum rod satisfies:
  • the damping force generated by the shock absorber on the second end of the pendulum rod satisfies:
  • v A represents the swing speed of the first end of the pendulum rod
  • v B represents the swing speed of the second end of the pendulum rod
  • l A represents the length of the first rod body
  • l B represents the length of the second rod body
  • F A represents the force generated by the first end of the pendulum rod
  • FB represents the damping force generated by the shock absorber on the second end of the pendulum rod
  • c represents the damping coefficient of the shock absorber
  • c A represents the equivalent damping coefficient of the first end of the swing rod, that is, the anti-rolling damping coefficient of the vehicle-end anti-rolling vibration damping device.
  • the damping mechanism further comprises:
  • the first mounting seat is fixed on the end wall and is hinged with the swing fulcrum of the swing rod;
  • the second mounting seat is fixed on the end wall and is hinged with the fixed end of the shock absorber.
  • a vehicle end anti-side roll vibration damping device provided by the present application, between the first mounting seat and the swing fulcrum of the swing rod, the second end of the swing rod and the extension of the shock absorber The ends and the second mounting seat and the fixed end of the shock absorber are respectively connected by sliding bearings.
  • a vehicle end anti-rolling vibration damping device provided according to the present application further includes a reset mechanism, and the reset mechanism is connected between the vibration damping mechanism and the corresponding end wall.
  • the reset mechanism includes a reset elastic member and a reset mounting seat, a first end of the reset elastic member is connected to the swing rod, and the reset elastic member The second end of the device is connected to the reset mounting seat, and the reset mounting seat is fixed on the end wall.
  • the first end of the restoring elastic member is connected between the swing fulcrum of the swing rod and the first end of the swing rod.
  • both ends of the connecting rod are respectively hinged with a pair of the vibration damping mechanisms through ball bearings.
  • the present application also provides a rail vehicle, which includes several vehicle bodies, and the above-mentioned vehicle end anti-rolling vibration damping device is installed between a pair of adjacent vehicle bodies.
  • the present application provides a vehicle end anti-rolling vibration damping device, comprising: a pair of vibration damping mechanisms, suitable for being respectively installed on a pair of end walls oppositely arranged on a pair of connected vehicle bodies, and the pair of vibration damping mechanisms are respectively It is arranged on both sides of the axis of the vehicle body along the length direction; the connecting rod is hinged to a pair of vibration damping mechanisms at both ends, and the length of the connecting rod is greater than the vertical movement displacement of any vehicle body, so as to adjust the rolling motion of the vehicle body to the vibration reduction mechanism. Decoupling between vertical motions.
  • the anti-rolling vibration damping device at the vehicle end uses a connecting rod to connect a pair of vibration damping mechanisms arranged symmetrically in the center to ensure that the length of the connecting rod connected between the pair of vehicle bodies can be much greater than the displacement of the vertical movement of the vehicle body.
  • the connecting rod can be used to limit the movement of the vibration damping mechanism, so as to at least realize the decoupling between the rolling movement and the vertical movement of the car body, so as to realize the stability without affecting the vertical stability.
  • the roll vibration can be suppressed more reliably, and the running stability and riding comfort of the rail vehicle can be greatly improved.
  • the anti-rolling vibration damping device at the vehicle end can, on the one hand, use the damping mechanism to generate damping force under the limiting action of the connecting rod during the rolling motion of the vehicle body, thereby effectively and reliably restraining the vehicle.
  • the overall vertical movement of the connecting rod can be used to limit the relative displacement of the vertical movement of a pair of car bodies, so that a No damping force is generated for the damping mechanism, so as to achieve reliable decoupling between the rolling motion and the vertical motion of the vehicle body.
  • the vehicle end anti-rolling vibration damping device provided by the present application is installed between the oppositely arranged end walls of adjacent vehicle bodies, and can generate damping between the adjacent vehicle bodies. It will not affect the bogie; and the above structure can realize the decoupling between the rolling motion and the vertical motion of the car body, that is, in the process of the rolling motion of the car body, only anti-rolling damping is generated , and does not provide vertical damping, thereby effectively avoiding the suspension system described in the prior art from generating large vertical damping in order to achieve a suitable anti-rolling effect, so that the vertical vibration transmission is adversely affected. It can be seen that the anti-rolling vibration damping device at the vehicle end described in the present application can avoid the bogie and directly provide anti-rolling damping between the vehicle bodies, thereby effectively improving the vertical running stability of the vehicle.
  • the present application also provides a rail vehicle, which includes several vehicle bodies, and the above-mentioned vehicle end anti-rolling vibration damping device is installed between a pair of adjacent vehicle bodies.
  • the rail vehicle has all the advantages of the above-mentioned vehicle-end anti-lateral rolling vibration damping device, which will not be repeated here.
  • the present application also provides a train including several rail vehicles. Wherein, at least a pair of adjacent rail vehicles are installed with the vehicle end anti-rolling vibration damping device as described above.
  • the train By arranging the above-mentioned vehicle-end anti-rolling vibration damping device, the train has all the advantages of the above-mentioned vehicle-end anti-rolling vibration damping device, and details are not repeated here.
  • FIG. 1 is a schematic structural diagram of a vehicle-end anti-rolling vibration damping device provided by the present application assembled on a rail vehicle;
  • FIG. 2 is a schematic structural diagram of the vehicle end anti-roll vibration damping device provided by the present application assembled between adjacent vehicle bodies;
  • FIG. 3 is a schematic structural diagram of a vehicle-end anti-rolling vibration damping device provided by the present application.
  • FIG. 4 is a schematic view of the working state of the anti-rolling vibration damping device provided by the present application when the vehicle body rolls;
  • FIG. 5 is a schematic view of the working state of the vehicle-end anti-rolling vibration damping device provided by the present application when the vehicle body undergoes vertical motion;
  • FIG. 6 is a simplified schematic diagram of the working principle of the vibration damping mechanism provided by the present application.
  • 100 damping mechanism
  • 101 shock absorber
  • 102 pendulum rod
  • 1021 The first rod body; 1022: The second rod body; 1023: Swing fulcrum;
  • 300 car body; 301: first end wall; 302: second end wall.
  • A The first end of the pendulum rod; B: The second end of the pendulum rod.
  • the vehicle-end anti-rolling vibration damping device described in the present application is described in detail by taking a double-deck EMU vehicle as an example. Due to the increased weight, inertia, center of gravity, and windward area of the double-deck EMU with a speed of 350 kilometers per hour, in order to ensure that the vehicle has strong anti-rolling ability, and can effectively attenuate the vehicle body under random wind loads Rolling vibration, reducing the lateral vibration acceleration of the car body, and improving the dynamic performance of the vehicle, the anti-rolling vibration damping device at the end of the car body is arranged at the end of the car body.
  • the vehicle end anti-roll vibration damping device of the present application (may be referred to as a "vibration damping device" for short in the embodiment of the present application) of the present application is described below with reference to FIGS. 1 to 6 .
  • the vibration damping device As shown in FIG. 1 , the vibration damping device according to the embodiment of the present application is connected between a pair of adjacent car bodies 300 , and can prevent the relative rolling motion and the relative vertical direction between the adjacent front and rear car bodies 300 .
  • the motion that is, the floating and sinking motion
  • the vibration damping device specifically includes a connecting rod 200 and a pair of vibration damping mechanisms 100 .
  • a pair of vibration damping mechanisms 100 are suitable for being respectively mounted on a pair of connected vehicle bodies, and are respectively mounted on a pair of opposite end walls.
  • the pair of vibration damping mechanisms 100 are respectively disposed on both sides of the axis of the vehicle body in the longitudinal direction, that is, with the center line of the workshop area between the pair of end walls described above as the axis of symmetry, the pair of vibration damping mechanisms 100 are relative to each other.
  • the axis of symmetry is centrally symmetric; wherein, the center line of the workshop area is set to be located at the center along the length direction of the vehicle body and the center along the width direction of the vehicle body in the workshop area.
  • Both ends of the connecting rod 200 are hinged to a pair of vibration damping mechanisms 100 respectively.
  • the length of the connecting rod 200 is greater than the vertical movement displacement of any vehicle body, so as to decouple the rolling movement and the vertical movement of the vehicle body. Based on the fact that the length of the workshop area of the front and rear car bodies is much larger than the displacement of the vertical movement of the car body, and the two ends of the connecting rod 200 are respectively connected to the two sides of the pair of car bodies, the vibration damping device can ensure the connection between the pair of car bodies.
  • the length of the connecting rod 200 can be far greater than the displacement of the vertical movement of the vehicle body, so that the connecting rod 200 can be used to limit the movement of the vibration damping mechanism 100 during different movements of the vehicle body, so as to realize at least the lateral movement of the vehicle body.
  • the decoupling between the rolling motion and the vertical motion realizes a more reliable suppression of the rolling vibration of the car body without affecting the vertical stability of the car body.
  • the vehicle body will undergo various rigid body motions including vertical motion and roll motion during operation.
  • the vertical damping of the secondary suspension system is usually used to attenuate the rolling motion of the vehicle body, specifically: setting a secondary vertical shock absorber or increasing the damping coefficient of the air spring.
  • the above arrangement will increase the vertical damping of the secondary system at the same time, resulting in a decrease in the ride comfort of the vehicle.
  • the vibration damping device described in the embodiment of the present application has at least the following differences:
  • the existing anti-rolling vibration damping device is usually installed between the bogie and the car body, and the rolling motion of the car body is suppressed by the bogie. While suppressing the rolling motion of the car body, the force on the bogie is The situation has certain adverse effects.
  • the vibration damping device described in the present application is installed between adjacent vehicle bodies, and drives the vibration damping device to act through the relative motion between the adjacent vehicle bodies, thereby playing the role of restraining the rolling motion of the vehicle.
  • the existing anti-rolling vibration damping device can only provide anti-rolling stiffness, but not anti-rolling damping, so it can only moderate the rolling impact, but cannot attenuate the rolling vibration;
  • Rolling vibration usually requires the above-mentioned secondary vertical vibration damper to be additionally installed on the basis of the existing anti-rolling vibration damping device.
  • the vibration damping device described in the present application can provide anti-roll damping by itself, so that the energy of the rolling motion can be effectively attenuated; at the same time, the vibration damping device of the present application can realize the balance between the rolling motion and the vertical motion of the vehicle body. Decoupling, which can solve the adverse effect of the excessive damping force of the secondary vertical shock absorber on the vertical stability of the vehicle body, that is, it can only increase the anti-side effect without increasing the original vertical damping Roll damping.
  • the vibration damping device described in the embodiments of the present application can use the damping mechanism 100 to generate damping force under the limiting action of the connecting rod 200 during the rolling motion of the vehicle body, so as to be efficient and reliable.
  • the overall vertical movement of the connecting rod 200 can be used to limit the relative displacement of the vertical movement of a pair of car bodies during the vertical movement of the car body (that is, the floating and sinking movement). , so that neither of the pair of damping mechanisms 100 generates damping force, so as to achieve reliable decoupling between the rolling motion and the vertical motion of the vehicle body.
  • the vibration damping device of the embodiment of the present application is installed between the oppositely arranged end walls of adjacent vehicle bodies, and can generate damping between the adjacent vehicle bodies without affecting the steering.
  • the above-mentioned structure can realize the decoupling between the rolling motion and the vertical motion of the vehicle body, that is, in the process of the rolling motion of the vehicle body, only anti-rolling damping is generated, not providing Vertical damping, thereby effectively avoiding the large vertical damping produced by the suspension system described in the prior art in order to achieve a suitable anti-rolling effect, so that the vertical vibration transmission is adversely affected.
  • the vibration damping device of the embodiment of the present application can avoid the bogie and directly provide anti-roll damping between vehicle bodies, thereby effectively improving the vertical running stability of the vehicle.
  • one of the pair of damping mechanisms 100 is installed on the left side of the first end wall 301
  • the other of the pair of damping mechanisms 100 is installed on the side of the second end wall 302
  • the pair of vibration damping mechanisms 100 can be arranged centrally symmetrically with respect to the above-mentioned axis of symmetry.
  • the first end wall 301 and the second end wall 302 are a pair of end walls that are oppositely arranged by two train bodies connected in the front and rear respectively, that is, the first end wall 301 is the end wall of the previous car body, and the second end wall 302 It is the end wall of the rearward moving body.
  • the settings of the above-mentioned pair of vibration damping mechanisms 100 can be reversed from left to right, that is, if one of the pair of vibration damping mechanisms 100 is installed on the right side of the first end wall 301 , the pair of vibration damping mechanisms 100 The other one is installed on the left side of the second end wall 302 . It suffices that the pair of vibration damping mechanisms 100 can be arranged centrally symmetrically with respect to the above-mentioned axis of symmetry.
  • the vibration damping devices between each pair of adjacent car bodies in the same train of rail vehicles as follows: all the vibration damping devices are installed on the first end wall.
  • the damping mechanisms 100 on the 301 are all mounted on the same side of the first end wall 301
  • all the damping mechanisms 100 mounted on the second end wall 302 are mounted on the other side of the second end wall 302 . That is, it is ensured that in the same row of rail vehicles, the installation directions of the connecting rods 200 in each workshop area are consistent.
  • the vibration damping mechanisms 100 on the first end wall 301 and the vibration damping mechanisms 100 on the second end wall 302 are arranged oppositely.
  • the damping mechanism 100 includes a damper 101 and a pendulum rod 102 .
  • the shock absorber 101 is arranged on the corresponding end wall, and the fixed end of the shock absorber 101 is hinged to the end wall.
  • the shock absorber 101 is vertically arranged on the end wall.
  • the shock absorber 101 is used to generate damping force to damp the vibration of the vehicle body.
  • the swing rod 102 is used to convert the lateral motion (ie, the rolling motion) between the vehicle bodies into the vertical telescopic motion of the shock absorber 101, and is used to adjust the anti-rolling damping coefficient between the vehicle bodies.
  • the swinging fulcrum 1023 is provided on the swinging rod 102 .
  • the first end of the swing rod is hinged to the end of the connecting rod 200 .
  • the second end of the swing rod is hinged to the telescopic end of the shock absorber 101 .
  • the first end and the second end of the swing rod can swing relative to the swing fulcrum 1023 .
  • the pendulum rod 102 can drive the shock absorber 101 to perform telescopic motion on the one hand, and can be limited and driven by the connecting rod 200 on the other hand, so that the rolling motion and vertical motion of the vehicle body can be reliably performed. Decoupling.
  • the swing rod 102 includes a first rod body 1021 and a second rod body 1022 .
  • the first rod body 1021 and the second rod body 1022 are connected in an L shape.
  • the swing fulcrum 1023 of the swing rod 102 is disposed at the connection between the first rod body 1021 and the second rod body 1022 .
  • the first end of the swing rod is disposed at the end of the first rod body 1021 away from the swing fulcrum 1023 .
  • the second end of the swing rod is disposed at the end of the second rod body 1022 away from the swing fulcrum 1023 .
  • the swing rod 102 of the L-shaped structure can transmit the damping effect of the shock absorber 101 to the connecting rod 200 during the swinging process, and transmit the limiting and driving effects of the connecting rod 200 to the shock absorber 101;
  • the pendulum rod 102 can also adjust the anti-rolling damping coefficient of the vibration damping device by adjusting the length proportional relationship between the first rod body 1021 and the second rod body 1022 . By adjusting the damping coefficient of the shock absorber 101 and the structural parameters of the pendulum rod 102, the anti-rolling damping can be adjusted reliably without affecting the vertical damping.
  • this arrangement can greatly improve the rolling stability without affecting the vertical stability;
  • the length proportional relationship between the shock absorbers 101 can be flexibly adjusted, so that the same type of shock absorber 101 can be adapted to different vehicles, while reducing the speed of the shock absorber 101 telescopic movement, and improving the operation reliability of the shock absorber 101 .
  • the swing rod 102 swings due to the restriction of the connecting rod 200 , and drives the shock absorber 101 to perform telescopic motion to generate damping force.
  • the connecting rod 200 moves along the vertical direction of the vehicle body, and the shock absorber 101 does not generate damping force.
  • FIG. 4 shows the working state of the vibration damping device when the vehicle body rolls.
  • the solid line part shown in FIG. 4 is the initial state before the vehicle body rolls, and the dotted line part is the vehicle body.
  • Figure 5 shows the working state of the vibration damping device when the vehicle body moves vertically. state of motion after exercise.
  • L1 represents the total length of the shock absorber 101 in the initial state
  • L2 represents the total length of the shock absorber 101 in the motion state.
  • the first end of the L-shaped swing rod is restricted by the horizontally arranged connecting rod 200 due to the lateral movement of the vehicle body, so that a large gap occurs between the first end and the second end of the swing rod.
  • the angle swings and drives the shock absorber 101 to stretch and compress, so that the shock absorber 101 generates a damping force, that is, the shock absorber has an anti-roll damping coefficient, thereby restraining the relative rolling motion of the vehicle body.
  • the connecting rod 200 is set to be no less than 2000 mm. Since the vertical movement displacement of the car body of the existing rail vehicle is about 30 mm, the length of the connecting rod 200 is far greater than the relative vertical movement displacement of the car body. .
  • the vibration damping device described in the embodiment of the present application realizes the decoupling between the rolling motion and the vertical motion of the vehicle body.
  • the vibration damping device only needs to adjust the damping coefficient of the shock absorber 101 and adjust the length proportional coefficient between the first rod body 1021 and the second rod body 1022 of the pendulum rod 102, so that the vertical damping is not affected. , adjust the anti-roll damping. For the vibration reduction system of the entire vehicle, this can improve the rolling stability without affecting the vertical flat stability.
  • the anti-rolling damping coefficient of the vibration damping device is inversely proportional to the length proportional coefficient of the pendulum rod 102 .
  • the length proportional coefficient of the pendulum rod 102 is the proportional coefficient between the length of the first rod body 1021 and the length of the second rod body 1022 .
  • the swing speed of the first end A of the swing rod is the relative roll speed between a pair of vehicle bodies; the swing speed of the second end B of the swing rod is the speed of the telescopic end of the shock absorber 101 . Movement speed.
  • the damping force generated by the shock absorber 101 on the second end B of the pendulum rod satisfies:
  • v A represents the swing speed of the first end A of the pendulum rod
  • v B represents the swing speed of the second end B of the pendulum rod
  • l A represents the length of the first rod body 1021
  • l B represents the length of the second rod body 1022
  • F A represents the force generated by the first end A of the pendulum rod
  • FB represents the damping force generated by the shock absorber 101 on the second end B of the pendulum rod
  • c represents the damping coefficient of the shock absorber 101
  • c A represents the equivalent damping coefficient of the first end A of the pendulum rod, that is, the anti-rolling damping coefficient of the vibration damping device.
  • the swing speed of the first end A of the swing rod is related to the relative roll angular velocity ⁇ between the pair of vehicle bodies and the height of the connecting rod 200 from the air spring support surface H of the vehicle body.
  • the pendulum rod 102 of the vibration damping mechanism 100 has at least the following advantages:
  • the arrangement of the L-shaped rod body of the pendulum rod 102 can effectively reduce the movement speed transmitted from the vehicle body to the shock absorber 101, which is more conducive to the structural design difficulty of each component in the shock absorber device, and simplifies the shock absorber device.
  • the service life of the components of the vibration damping device is greatly improved.
  • the vibration damping mechanism 100 further includes a first mounting seat 103 and a second mounting seat 104 .
  • the first mounting seat 103 is fixed on the end wall, and is hinged with the swing fulcrum 1023 of the swing rod 102 .
  • the second mounting base 104 is fixed on the end wall and is hinged with the fixed end of the shock absorber 101 .
  • the first mounting seat 103 and the second mounting seat 104 are respectively used to provide reliable fixed support for the swing of the swing rod 102 and the telescopic motion of the shock absorber 101 .
  • the first mounting seat 103 and the swing fulcrum 1023 of the swing rod 102 are connected through the first sliding bearing 108 , and the second end of the swing rod is connected to the shock absorber 101 .
  • the protruding ends of the shock absorber 101 are connected through a second sliding bearing 109 , and the second mounting seat 104 and the fixed end of the shock absorber 101 are connected through a third sliding bearing 110 .
  • the arrangement of the sliding bearing can ensure that the motion plane of each component of the vibration damping mechanism 100 is always kept parallel or coincident with the plane where the end wall is located.
  • both ends of the connecting rod 200 are hinged to the pair of vibration damping mechanisms 100 through ball bearings 107, respectively. 107 can ensure multi-dimensional rotation between the end of the connecting rod 200 and the first end of the pendulum rod.
  • the damping mechanism 100 further includes a reset mechanism.
  • the reset mechanism is connected between the damping mechanism 100 and the corresponding end wall.
  • the reset mechanism is used to ensure that the damping mechanism 100 can be reset in time after the rigid motion of the vehicle body occurs, so as to ensure that the damping mechanism 100 can more reliably cope with the next sudden vehicle body motion change.
  • the reset mechanism includes a reset elastic member 105 and a reset mount 106 .
  • the first end of the restoring elastic member 105 is connected to the swing rod 102 .
  • the second end of the reset elastic member 105 is connected to the reset mount 106 .
  • the reset mounting base 106 is fixed on the end wall.
  • the first end of the reset elastic member 105 is connected between the swing fulcrum 1023 of the swing rod 102 and the first end of the swing rod, so as to reset the swing of the swing rod 102 by the reset mechanism.
  • the return elastic member 105 is preferably a return spring.
  • the rail vehicle described in the embodiments of the present application includes several vehicle bodies. It should be noted that the vehicle body may be a driver's cab vehicle body or an intermediate vehicle body.
  • the vehicle end anti-rolling vibration damping device as described above is installed between the adjacent pair of vehicle bodies. By arranging the above-mentioned vehicle-end anti-rolling vibration damping device, the rail vehicle has all the advantages of the above-mentioned vehicle-end anti-lateral rolling vibration damping device, which will not be repeated here.
  • the train described in the embodiments of the present application includes several rail vehicles. Wherein, at least a pair of adjacent rail vehicles are installed with the vehicle end anti-rolling vibration damping device as described above.
  • the train has all the advantages of the above-mentioned vehicle-end anti-rolling vibration damping device, and details are not repeated here.
  • connection and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection, Or integral connection; it can be mechanical connection or electrical connection; it can be directly connected or indirectly connected through an intermediate medium.
  • connection should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection, Or integral connection; it can be mechanical connection or electrical connection; it can be directly connected or indirectly connected through an intermediate medium.
  • the first feature "on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features pass through the middle indirect contact with the media.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

本申请提供一种车端抗侧滚减振装置及轨道车辆。该车端抗侧滚减振装置包括:一对减振机构,适于分别安装在相连的一对车体上相对设置的一对端墙上,且一对减振机构分别设置于车体沿长度方向的轴线两侧;连接杆,两端分别铰接于一对减振机构,连接杆的长度大于任一车体的垂向运动位移,以将车体的侧滚运动与垂向运动之间解耦。该车端抗侧滚减振装置能确保连接于一对车体间的连接杆的长度能够远大于车体垂向运动的位移,从而在车体进行不同运动过程中能利用连接杆对减振机构的运动进行限位,以至少实现车体的侧滚运动与垂向运动之间的解耦,进而实现在不影响垂向平稳性的前提下更可靠的抑制侧滚振动,大大提升轨道车辆运行的平稳性和乘坐舒适度。

Description

车端抗侧滚减振装置及轨道车辆、列车
相关申请的交叉引用
本申请要求于2021年03月26日提交的申请号为202110328578.X,名称为“车端抗侧滚减振装置及轨道车辆、列车”的中国专利申请的优先权,其通过引用方式全部并入本公开。
技术领域
本申请涉及轨道车辆技术领域,尤其涉及一种车端抗侧滚减振装置及轨道车辆、列车。
背景技术
随着现有的动车组的时速提升以及车体层数的增加,车体具有重量大、重心高的技术特点,进而对于轨道车辆抗侧滚的要求越来越高。轨道车辆抗侧滚是指车体抵抗侧滚振动的能力。以双层动车组为例,双层动车组的车体明显高于传统列车,并且存在有车体侧滚振动的阻尼比过低,侧滚稳定性下降,侧滚角角速度增大的不利问题。
现有的抗侧滚装置通常安装在转向架与车体之间的二系悬挂系统中,能够在转向架与车体之间产生阻尼力,以达到抑制侧滚运动的作用。为了实现可靠的抗侧滚作用,现有的轨道车辆中,通常在悬挂系统中设置二系垂向减振器或增大二系空气弹簧的阻尼,均可达到抑制侧滚振动的效果,但是会对垂向乘坐平稳性造成不利的影响。特别是,二系垂向减振器在提供抗侧滚阻尼的情况下,还会提供垂向阻尼;并且,对于车体重心较高、侧滚转动惯量较大的车辆,为达到合适的抗侧滚效果,则需要设置较大的二系垂向减振器阻尼,这会对车辆系统的垂向振动传递造成不利影响,引起垂向平稳性恶化。
发明内容
本申请提供一种车端抗侧滚减振装置,用以解决现有技术中采用的抗侧滚装置对垂向乘坐平稳性造成不利影响的缺陷,至少能实现在不影响垂向平稳性的前提下抑制侧滚振动。
本申请还提供一种轨道车辆。
本申请还提供一种列车。
本申请提供一种车端抗侧滚减振装置,包括:
一对减振机构,适于分别安装在相连的一对车体上相对设置的一对端墙上,且一对所述减振机构分别设置于所述车体沿长度方向的轴线两侧;
连接杆,两端分别铰接于一对所述减振机构,所述连接杆的长度大于任一所述车体的垂向运动位移,以将所述车体的侧滚运动与垂向运动之间解耦。
根据本申请提供的一种车端抗侧滚减振装置,所述减振机构包括:
减振器,设置于所述端墙上,并且所述减振器的固定端铰接于所述端墙;
摆杆,设有摆动支点,所述摆杆的第一端铰接于所述连接杆的端部,所述摆杆的第二端铰接于所述减振器的伸缩端,所述摆杆的所述第一端与所述第二端能相对于所述摆动支点摆动。
根据本申请提供的一种车端抗侧滚减振装置,所述车体发生侧滚运动的情况下,所述摆杆受到所述连接杆的限制作用而摆动,并带动所述减振器发生伸缩运动以产生阻尼力;
所述车体发生垂向运动的情况下,所述连接杆沿所述车体的垂向运动,且所述减振器不产生阻尼力。
根据本申请提供的一种车端抗侧滚减振装置,所述摆杆包括第一杆体和第二杆体,所述第一杆体和所述第二杆体成L形连接,所述摆杆的摆动支点设置于所述第一杆体和所述第二杆体的连接处;所述摆杆的第一端设置于所述第一杆体的远离所述摆动支点的端部,所述摆杆的第二端设置于所述第二杆体的远离所述摆动支点的端部;
其中,所述车端抗侧滚减振装置的抗侧滚阻尼系数与所述摆杆的长度比例系数成反比,所述摆杆的长度比例系数为所述第一杆体的长度与所述第二杆体的长度之间的比例系数。
根据本申请提供的一种车端抗侧滚减振装置,所述摆杆的第一端的摆动速度为一对所述车体之间的相对侧滚速度;所述摆杆的第二端的摆动速度为所述减振器的伸缩端的运动速度;
所述摆杆的第二端的摆动速度满足:
Figure PCTCN2022070345-appb-000001
所述减振器对所述摆杆的第二端产生的阻尼力满足:
F B=cv B
则所述摆杆的第一端产生的力满足:
Figure PCTCN2022070345-appb-000002
则所述摆杆的第一端的等效阻尼系数满足:
Figure PCTCN2022070345-appb-000003
其中:
v A表示所述摆杆的第一端的摆动速度;
v B表示所述摆杆的第二端的摆动速度;
l A表示所述第一杆体的长度;
l B表示所述第二杆体的长度;
F A表示所述摆杆的第一端产生的力;
F B表示所述减振器对所述摆杆的第二端产生的阻尼力;
c表示所述减振器的阻尼系数;
Figure PCTCN2022070345-appb-000004
表示所述摆杆的长度比例系数;
c A表示所述摆杆的第一端的等效阻尼系数,即所述车端抗侧滚减振装置的抗侧滚阻尼系数。
根据本申请提供的一种车端抗侧滚减振装置,所述减振机构还包括:
第一安装座,固接于所述端墙上,并与所述摆杆的摆动支点之间铰接;
第二安装座,固接于所述端墙上,并与所述减振器的固定端之间铰接。
根据本申请提供的一种车端抗侧滚减振装置,所述第一安装座与所述摆杆的摆动支点之间、所述摆杆的第二端与所述减振器的伸出端之间、以及所述第二安装座与所述减振器的固定端之间分别通过滑动轴承连接。
根据本申请提供的一种车端抗侧滚减振装置,还包括复位机构,所述复位机构连接于所述减振机构与相应的所述端墙之间。
根据本申请提供的一种车端抗侧滚减振装置,所述复位机构包括复位弹性件和复位安装座,所述复位弹性件的第一端连接于所述摆杆,所述复位弹性件的第二端连接于所述复位安装座,所述复位安装座固接于所述端墙上。
根据本申请提供的一种车端抗侧滚减振装置,所述复位弹性件的第一端连接于所述摆杆的摆动支点与所述摆杆的第一端之间。
根据本申请提供的一种车端抗侧滚减振装置,所述连接杆的两端分别通过球轴承与一对所述减振机构铰接。
本申请还提供一种轨道车辆,包括若干个车体,相邻的一对所述车体之间安装有如上所述的车端抗侧滚减振装置。
本申请提供一种车端抗侧滚减振装置,包括:一对减振机构,适于分别安装在相连的一对车体上相对设置的一对端墙上,且一对减振机构分别设置于车体沿长度方向的轴线两侧;连接杆,两端分别铰接于一对减振机构,连接杆的长度大于任一车体的垂向运动位移,以将车体的侧滚运动与垂向运动之间解耦。该车端抗侧滚减振装置利用连接杆连接中心对称设置的一对减振机构,以确保连接于一对车体间的连接杆的长度能够远大于车体垂向运动的位移,从而在车体进行不同运动过程中能利用连接杆对减振机构的运动进行限位,以至少实现车体的侧滚运动与垂向运动之间的解耦,进而实现在不影响垂向平稳性的前提下更可靠的抑制侧滚振动,大大提升轨道车辆运行的平稳性和乘坐舒适度。
进一步的,该车端抗侧滚减振装置一方面能在车体产生侧滚运动的过程中,在连接杆的限位作用下,利用减振机构产生阻尼力,从而高效并可靠的抑制车体的侧滚运动;另一方面能在车体产生垂向运动(即浮沉运动)的过程中,利用连接杆的整体垂向运动而限制一对车体的垂向运动相对位移,以使一对减振机构均不产生阻尼力,从而达到车体的侧滚运动与垂向运动之间的可靠解耦。
由此可见,与现有技术相比,本申请提供的车端抗侧滚减振装置安装于相邻车体的相对设置的端墙之间,能够在相邻的车体之间产生阻尼,不会对转向架产生影响;并且,利用上述的结构能够实现车体的侧滚运动与垂向运动之间的解耦,即在车体产生侧滚运动的过程中,仅产生抗侧滚阻 尼,而不提供垂向阻尼,从而有效避免现有技术中所述的悬挂系统为达到合适的抗侧滚效果而产生较大的垂向阻尼,从而使垂向振动传递受到不利影响。可见本申请所述的车端抗侧滚减振装置能够避开转向架而直接提供车体之间的抗侧滚阻尼,从而有效提升车辆的垂向运行平稳性。
本申请还提供一种轨道车辆,包括若干个车体,相邻的一对车体之间安装有如上所述的车端抗侧滚减振装置。通过设置上述的车端抗侧滚减振装置,使得该轨道车辆具备上述的车端抗侧滚减振装置的全部优点,具体在此不再赘述。
本申请还提供一种列车,包括若干轨道车辆。其中,至少一对相邻的轨道车辆之间安装有如上所述的车端抗侧滚减振装置。通过设置上述的车端抗侧滚减振装置,使得该列车具备上述的车端抗侧滚减振装置的全部优点,具体在此不再赘述。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的车端抗侧滚减振装置装配于轨道车辆上的结构示意图;
图2是本申请提供的车端抗侧滚减振装置装配于相邻车体之间的结构示意图;
图3是本申请提供的车端抗侧滚减振装置的结构示意图;
图4是本申请提供的车端抗侧滚减振装置在车体发生侧滚运动情况下的工作状态示意图;
图5是本申请提供的车端抗侧滚减振装置在车体发生垂向运动情况下的工作状态示意图;
图6是本申请提供的减振机构的工作原理简化示意图。
附图标记:
100:减振机构;     101:减振器;        102:摆杆;
1021:第一杆体;    1022:第二杆体;     1023:摆动支点;
103:第一安装座;    104:第二安装座;    105:复位弹性件;
106:复位安装座;    107:球轴承;        108:第一滑动轴承;
109:第二滑动轴承;  110:第三滑动轴承;  200:连接杆;
300:车体;          301:第一端墙;      302:第二端墙。
A:摆杆的第一端;    B:摆杆的第二端。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例以双层动车组车辆为例对本申请所述的车端抗侧滚减振装置进行具体说明。由于时速350公里双层动车组车辆重量增加、惯量增大、重心提高、车体迎风面积增大,为了保证车辆具有较强的抗侧滚能力,且能够在随机风载下有效衰减车体的侧滚振动、降低车体横向振动加速度、以及提升车辆动力学性能,在车体端部布置车端抗侧滚减振装置。
下面结合图1至图6描述本申请的车端抗侧滚减振装置(本申请实施例中可简称为“减振装置”)。
如图1所示,本申请实施例所述的减振装置连接于相邻的一对车体300之间,能够对相邻的前后两列车体300之间的相对侧滚运动以及相对垂向运动(即浮沉运动)产生解耦作用,从而在不影响垂向平稳性的前提下抑制侧滚振动,大大提升轨道车辆运行的平稳性和乘坐舒适度。
如图1、图2和图3所示,该减振装置具体包括连接杆200和一对减振机构100。
一对减振机构100适于分别安装在相连的一对车体上、并分别安装在成相对设置的一对端墙上。并且,一对减振机构100分别设置于车体沿长度方向的轴线两侧,即,以上述的一对端墙之间的车间区域的中心线为对称轴,一对减振机构100相对于该对称轴成中心对称设置;其中,车间区域的中心线设置为位于在车间区域中沿车体长度方向的中心以及沿车体宽度方向的中心。
连接杆200的两端分别铰接于一对减振机构100。并且,连接杆200的长度大于任一车体的垂向运动位移,以将车体的侧滚运动与垂向运动之间解耦。基于前后车体的车间区域长度远大于车体垂向运动的位移,且连接杆200的两端分别连接在一对车体的两侧,故而该减振装置能确保连接于一对车体间的连接杆200的长度能够远大于车体垂向运动的位移,从而在车体进行不同运动过程中能利用连接杆200对减振机构100的运动进行限位,进而能至少实现车体的侧滚运动与垂向运动之间的解耦,实现在不影响车体垂向平稳性的前提下更可靠的抑制车体的侧滚振动。
可理解的,在转向架悬挂系统的支撑下,车体在运行过程中会发生包括垂向运动和侧滚运动在内的多种刚体运动。现有技术中,通常依靠二系悬挂系统的垂向阻尼实现衰减车体的侧滚运动,具体为:设置二系垂向减振器或增加空气弹簧的阻尼系数。但是,上述设置在增加车体侧滚阻尼力矩的情况下,会同时增加二系垂向阻尼,从而导致车辆的乘坐舒适度下降。
而本申请实施例所述的减振装置与现有的抗侧滚减振装置相比,至少具有以下区别:
首先,现有的抗侧滚减振装置通常安装在转向架与车体之间,通过转向架来抑制车体的侧滚运动,在抑制车体侧滚运动的同时,对于转向架的受力情况有一定的不良影响。而本申请所述的减振装置安装在相邻的车体之间,通过相邻车体间的相对运动带动减振装置动作,从而起到抑制车辆侧滚运动的作用。
其次,现有的抗侧滚减振装置仅能提供抗侧滚刚度,而不提供抗侧滚阻尼,因此仅能缓和侧滚冲击,而不能衰减侧滚振动;并且,为实现衰减车体的侧滚振动,通常需要在现有的抗侧滚减振装置基础上额外设置上述的二系垂向减振器。而本申请所述的减振装置自身即可提供抗侧滚阻尼,从而可以有效衰减侧滚运动的能量;同时,本申请的减振装置由于实现了车体的侧滚运动与垂向运动的解耦,从而能够解决二系垂向减振器的阻尼力过大而对于车体垂向平稳性的不利影响,即,可以在不增大原有垂向阻尼的情况下,仅增大抗侧滚阻尼。
具体的,本申请实施例所述的减振装置一方面能在车体产生侧滚运动的过程中,在连接杆200的限位作用下,利用减振机构100产生阻尼力, 从而高效并可靠的抑制车体的侧滚运动;另一方面能在车体产生垂向运动(即浮沉运动)的过程中,利用连接杆200的整体垂向运动而限制一对车体的垂向运动相对位移,以使一对减振机构100均不产生阻尼力,从而达到车体的侧滚运动与垂向运动之间的可靠解耦。
由此可见,与现有技术相比,本申请实施例的减振装置安装于相邻车体的相对设置的端墙之间,能够在相邻的车体之间产生阻尼,不会对转向架产生影响;并且,利用上述的结构能够实现车体的侧滚运动与垂向运动之间的解耦,即在车体产生侧滚运动的过程中,仅产生抗侧滚阻尼,而不提供垂向阻尼,从而有效避免现有技术中所述的悬挂系统为达到合适的抗侧滚效果而产生较大的垂向阻尼,从而使垂向振动传递受到不利影响。可见本申请实施例的减振装置能够避开转向架而直接提供车体之间的抗侧滚阻尼,从而有效提升车辆的垂向运行平稳性。
以图1和图3为例,一对减振机构100中的一者安装在第一端墙301的左侧,则一对减振机构100中的另一者安装在第二端墙302的右侧,以使一对减振机构100能相对于上述的对称轴成中心对称设置。其中,第一端墙301和第二端墙302分别为前后相连的两列车体相对设置的一对端墙,即,第一端墙301为前一车体的端墙,第二端墙302为后移车体的端墙。
需要说明的是,上述的一对减振机构100的设置可以左右调换,即:一对减振机构100中的一者安装在第一端墙301的右侧,则一对减振机构100中的另一者安装在第二端墙302的左侧。只要满足一对减振机构100能相对于上述的对称轴成中心对称设置即可。
可理解的,为了进一步提高整列轨道车辆的运行平稳性和乘坐舒适度,优选将同一列轨道车辆中的每一对相邻车体之间的减振装置设置为:所有安装在第一端墙301上的减振机构100均安装于第一端墙301的同一侧,且所有安装在第二端墙302上的减振机构100均安装于第二端墙302的另一侧。即,保证同一列轨道车辆中,每一车间区域内的连接杆200的设置方向保持一致。
可理解的,为了保证一对减振机构100之间能成中心对称设置,优选第一端墙301上的减振机构100与第二端墙302上的减振机构100之间相反设置。
在一些实施例中,如图3所示,该减振机构100包括减振器101和摆杆102。其中,减振器101设置于相应的端墙上,并且减振器101的固定端铰接于该端墙。优选减振器101沿垂向设置在端墙上。减振器101用于产生衰减阻尼力以衰减车体振动。摆杆102用于将车体间的横向运动(即侧滚运动)转化为减振器101的垂向伸缩运动,并用于调节车体间的抗侧滚阻尼系数。
可理解的,摆杆102上设有摆动支点1023。摆杆的第一端铰接于连接杆200的端部。摆杆的第二端铰接于减振器101的伸缩端。并且,摆杆的第一端与第二端能相对于摆动支点1023摆动。摆杆102在摆动过程中一方面能够带动减振器101作伸缩运动,另一方面能够受到连接杆200的限位和驱动作用,从而能够实现对车体的侧滚运动和垂向运动进行可靠解耦。
在一些实施例中,如图3和图6所示,摆杆102包括第一杆体1021和第二杆体1022。第一杆体1021和第二杆体1022成L形连接。摆杆102的摆动支点1023设置于第一杆体1021和第二杆体1022的连接处。摆杆的第一端设置于第一杆体1021的远离摆动支点1023的端部。摆杆的第二端设置于第二杆体1022的远离摆动支点1023的端部。L形结构的摆杆102能够在摆动过程中将减振器101的阻尼作用传递至连接杆200,并且将连接杆200的限位和驱动作用传递至减振器101;并且,L形结构的摆杆102还能够通过调节第一杆体1021和第二杆体1022之间的长度比例关系,从而调节该减振装置的抗侧滚阻尼系数。依靠调整减振器101的阻尼系数和摆杆102的结构参数,即可实现在不影响垂向阻尼的情况下,可靠调整抗侧滚阻尼。该设置对于整个轨道车辆的抗振系统而言,能够实现在不影响垂向平稳定的基础上,大大提高侧滚稳定性;并且,通过对摆杆102的第一杆体1021和第二杆体1022之间的长度比例关系进行灵活调节,从而可以实现基于相同型号的减振器101适配不同车辆,同时降低减振器101的伸缩运动的速度,并提升减振器101的运行可靠性。
在一些实施例中,车体发生侧滚运动的情况下,摆杆102受到连接杆200的限制作用而摆动,并带动减振器101发生伸缩运动以产生阻尼力。车体发生垂向运动的情况下,连接杆200沿车体的垂向运动,且减振器101不产生阻尼力。
具体的,图4示出了减振装置在车体发生侧滚运动情况下的工作状态,图4中所示的实线部分为车体发生侧滚运动以前的初始状态,虚线部分为车体发生侧滚运动以后的运动状态。图5示出了减振装置在车体发生垂向运动情况下的工作状态,图5中所示的实线部分为车体发生垂向运动以前的初始状态,虚线部分为车体发生垂向运动以后的运动状态。其中,L1表示初始状态下减振器101的总长度,L2表示运动状态下减振器101的总长度。
由图4可以看出,L形的摆杆的第一端由于车体横移而受到水平设置的连接杆200的限制作用,从而使摆杆的第一端与第二端之间发生较大角度的摆动,并带动减振器101作拉伸和压缩运动,从而使减振器101产生阻尼力,即该减振装置具有抗侧滚阻尼系数,进而抑制车体的相对侧滚运动。
由图5可以看出,由于水平设置的连接杆200的长度远大于车体的相对垂向运动位移,故而仅有连接杆200产生小角度的摆动;连接杆200对两端连接的摆杆102产生限制作用,从而使减振机构100的摆杆102几乎不发生摆动,因此减振器101几乎不发生拉伸和压缩运动,从而使减振器101不会产生阻尼力。
可理解的,优选连接杆200设置为不小于2000mm,由于现有的轨道车辆的车体的垂向运动位移约为30mm,故而可得连接杆200的长度远大于车体的相对垂向运动位移。
由图4和图5所示可知,本申请实施例所述的减振装置实现了车体侧滚运动与垂向运动之间的解耦。该减振装置只需依靠调整减振器101的阻尼系数、以及调整摆杆102的第一杆体1021和第二杆体1022之间的长度比例系数,即可实现在不影响垂向阻尼的情况下,调整抗侧滚阻尼。这对于整个车辆的减振系统而言,能够实现在不影响垂向平稳定的基础上,提高侧滚稳定性。
在一些实施例中,为了实现灵活调节减振装置的抗侧滚阻尼系数,优选确定减振装置的抗侧滚阻尼系数与摆杆102的长度比例系数成反比。其中,摆杆102的长度比例系数为第一杆体1021的长度与第二杆体1022的长度之间的比例系数。
具体的,如图6所示,摆杆的第一端A的摆动速度为一对车体之间的相对侧滚速度;摆杆的第二端B的摆动速度为减振器101的伸缩端的运动速度。
则摆杆的第二端B的摆动速度满足:
Figure PCTCN2022070345-appb-000005
减振器101对摆杆的第二端B产生的阻尼力满足:
F B=cv B
则摆杆的第一端A产生的力满足:
Figure PCTCN2022070345-appb-000006
则摆杆的第一端A的等效阻尼系数满足:
Figure PCTCN2022070345-appb-000007
其中:
v A表示摆杆的第一端A的摆动速度;
v B表示摆杆的第二端B的摆动速度;
l A表示第一杆体1021的长度;
l B表示第二杆体1022的长度;
F A表示摆杆的第一端A产生的力;
F B表示减振器101对摆杆的第二端B产生的阻尼力;
c表示减振器101的阻尼系数;
Figure PCTCN2022070345-appb-000008
表示摆杆102的长度比例系数;
c A表示摆杆的第一端A的等效阻尼系数,即该减振装置的抗侧滚阻尼系数。
可理解的,上述的摆杆的第一端A的摆动速度与一对车体之间的相对侧滚角速度ω和连接杆200距离车体的空气弹簧支撑面H的高度有关。
基于上述内容可知,减振机构100的摆杆102至少具有以下优点:
(1)在使用同一型号的减振器101的情况下,通过调整摆杆102的长度比例系数,即可灵活的改变该减振装置的等效阻尼系数,从而使该减 振装置能够适应不同的车辆参数;
(2)摆杆102的L形杆体设置,能够有效降低由车体传至减振器101处的运动速度,从而更有利于减振装置中的各部件结构设计难度,简化该减振装置,进而大大提高减振装置的部件使用寿命。
在一些实施例中,如图3所示,该减振机构100还包括第一安装座103和第二安装座104。第一安装座103固接于端墙上,并与摆杆102的摆动支点1023之间铰接。第二安装座104固接于端墙上,并与减振器101的固定端之间铰接。第一安装座103和第二安装座104分别用于为摆杆102的摆动以及减振器101的伸缩运动提供可靠的固定支撑作用。
可理解的,为了进一步提高上述铰接结构的结构可靠性,优选第一安装座103与摆杆102的摆动支点1023之间通过第一滑动轴承108连接,摆杆的第二端与减振器101的伸出端之间通过第二滑动轴承109连接,以及,第二安装座104与减振器101的固定端之间通过第三滑动轴承110连接。滑动轴承的设置能够保证减振机构100的各个部件的运动平面始终保持在平行或重合于端墙所在平面。
可理解的,为了进一步提高连接杆200两端与一对减振机构100之间的铰接结构可靠性,优选连接杆200的两端分别通过球轴承107与一对减振机构100铰接,球轴承107能够保证连接杆200的端部与摆杆的第一端之间的多维度转动。
在一些实施例中,如图3所示,该减振机构100还包括复位机构。复位机构连接于减振机构100与相应的端墙之间。复位机构用于保证减振机构100能够在车体发生上述的刚性运动以后及时复位,从而确保该减振机构100能够更可靠的应对下一次突发的车体运动变化。优选的,复位机构包括复位弹性件105和复位安装座106。复位弹性件105的第一端连接于摆杆102。复位弹性件105的第二端连接于复位安装座106。复位安装座106固接于端墙上。其中,复位弹性件105的第一端连接于摆杆102的摆动支点1023与摆杆的第一端之间,以便利用复位机构对摆杆102的摆动进行复位。
可理解的,复位弹性件105优选为复位弹簧。
本申请实施例所述的轨道车辆包括若干个车体。需要说明的是,该车 体可以为司机室车体,也可以为中间车体。相邻的一对车体之间安装有如上所述的车端抗侧滚减振装置。通过设置上述的车端抗侧滚减振装置,使得该轨道车辆具备上述的车端抗侧滚减振装置的全部优点,具体在此不再赘述。
本申请实施例所述的列车,包括若干轨道车辆。其中,至少一对相邻的轨道车辆之间安装有如上所述的车端抗侧滚减振装置。通过设置上述的车端抗侧滚减振装置,使得该列车具备上述的车端抗侧滚减振装置的全部优点,具体在此不再赘述。
在本申请实施例的描述中,需要说明的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请实施例中的具体含义。
在本申请实施例中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体 特征、结构、材料或者特点包含于本申请实施例的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (13)

  1. 一种车端抗侧滚减振装置,其特征在于,包括:
    一对减振机构,适于分别安装在相连的一对车体上相对设置的一对端墙上,且一对所述减振机构分别设置于所述车体沿长度方向的轴线两侧;
    连接杆,两端分别铰接于一对所述减振机构,所述连接杆的长度大于任一所述车体的垂向运动位移,以将所述车体的侧滚运动与垂向运动之间解耦。
  2. 根据权利要求1所述的车端抗侧滚减振装置,其特征在于,所述减振机构包括:
    减振器,设置于所述端墙上,并且所述减振器的固定端铰接于所述端墙;
    摆杆,设有摆动支点,所述摆杆的第一端铰接于所述连接杆的端部,所述摆杆的第二端铰接于所述减振器的伸缩端,所述摆杆的所述第一端与所述第二端能相对于所述摆动支点摆动。
  3. 根据权利要求2所述的车端抗侧滚减振装置,其特征在于,
    所述车体发生侧滚运动的情况下,所述摆杆受到所述连接杆的限制作用而摆动,并带动所述减振器发生伸缩运动以产生阻尼力;
    所述车体发生垂向运动的情况下,所述连接杆沿所述车体的垂向运动,且所述减振器不产生阻尼力。
  4. 根据权利要求2所述的车端抗侧滚减振装置,其特征在于,所述摆杆包括第一杆体和第二杆体,所述第一杆体和所述第二杆体成L形连接,所述摆杆的摆动支点设置于所述第一杆体和所述第二杆体的连接处;所述摆杆的第一端设置于所述第一杆体的远离所述摆动支点的端部,所述摆杆的第二端设置于所述第二杆体的远离所述摆动支点的端部;
    其中,所述车端抗侧滚减振装置的抗侧滚阻尼系数与所述摆杆的长度比例系数成反比,所述摆杆的长度比例系数为所述第一杆体的长度与所述第二杆体的长度之间的比例系数。
  5. 根据权利要求4所述的车端抗侧滚减振装置,其特征在于,所述摆杆的第一端的摆动速度为一对所述车体之间的相对侧滚速度;所述摆杆的第二端的摆动速度为所述减振器的伸缩端的运动速度;
    所述摆杆的第二端的摆动速度满足:
    Figure PCTCN2022070345-appb-100001
    所述减振器对所述摆杆的第二端产生的阻尼力满足:
    F B=cv B
    则所述摆杆的第一端产生的力满足:
    Figure PCTCN2022070345-appb-100002
    则所述摆杆的第一端的等效阻尼系数满足:
    Figure PCTCN2022070345-appb-100003
    其中:
    v A表示所述摆杆的第一端的摆动速度;
    v B表示所述摆杆的第二端的摆动速度;
    l A表示所述第一杆体的长度;
    l B表示所述第二杆体的长度;
    F A表示所述摆杆的第一端产生的力;
    F B表示所述减振器对所述摆杆的第二端产生的阻尼力;
    c表示所述减振器的阻尼系数;
    Figure PCTCN2022070345-appb-100004
    表示所述摆杆的长度比例系数;
    c A表示所述摆杆的第一端的等效阻尼系数,即所述车端抗侧滚减振装置的抗侧滚阻尼系数。
  6. 根据权利要求2所述的车端抗侧滚减振装置,其特征在于,所述减振机构还包括:
    第一安装座,固接于所述端墙上,并与所述摆杆的摆动支点之间铰接;
    第二安装座,固接于所述端墙上,并与所述减振器的固定端之间铰接。
  7. 根据权利要求6所述的车端抗侧滚减振装置,其特征在于,所述第一安装座与所述摆杆的摆动支点之间、所述摆杆的第二端与所述减振器的伸出端之间、以及所述第二安装座与所述减振器的固定端之间分别通过滑动轴承连接。
  8. 根据权利要求2所述的车端抗侧滚减振装置,其特征在于,还包括复位机构,所述复位机构连接于所述减振机构与相应的所述端墙之间。
  9. 根据权利要求8所述的车端抗侧滚减振装置,其特征在于,所述复位机构包括复位弹性件和复位安装座,所述复位弹性件的第一端连接于所述摆杆,所述复位弹性件的第二端连接于所述复位安装座,所述复位安装座固接于所述端墙上。
  10. 根据权利要求9所述的车端抗侧滚减振装置,其特征在于,所述复位弹性件的第一端连接于所述摆杆的摆动支点与所述摆杆的第一端之间。
  11. 根据权利要求1至10任一项所述的车端抗侧滚减振装置,其特征在于,所述连接杆的两端分别通过球轴承与一对所述减振机构铰接。
  12. 一种轨道车辆,包括若干个车体,其特征在于,至少一对相邻的所述车体之间安装有如权利要求1至11任一项所述的车端抗侧滚减振装置。
  13. 一种列车,其特征在于,包括若干轨道车辆,至少一对相邻的所述轨道车辆之间安装有如权利要求1至11任一项所述的车端抗侧滚减振装置。
PCT/CN2022/070345 2021-03-26 2022-01-05 车端抗侧滚减振装置及轨道车辆、列车 WO2022199208A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/280,644 US20240140500A1 (en) 2021-03-26 2022-01-05 Anti-side-rolling damping vehicle-end device, and rail vehicle and train
JP2023544323A JP7562869B2 (ja) 2021-03-26 2022-01-05 車体端部の横転防止制振装置及び鉄道車両、列車
EP22773873.9A EP4286238A4 (en) 2021-03-26 2022-01-05 SIDE ROLL DAMPING VEHICLE END DEVICE AS WELL AS RAIL VEHICLES AND TRAIN

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110328578.X 2021-03-26
CN202110328578.XA CN113002581B (zh) 2021-03-26 2021-03-26 车端抗侧滚减振装置及轨道车辆、列车

Publications (1)

Publication Number Publication Date
WO2022199208A1 true WO2022199208A1 (zh) 2022-09-29

Family

ID=76408028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070345 WO2022199208A1 (zh) 2021-03-26 2022-01-05 车端抗侧滚减振装置及轨道车辆、列车

Country Status (5)

Country Link
US (1) US20240140500A1 (zh)
EP (1) EP4286238A4 (zh)
JP (1) JP7562869B2 (zh)
CN (1) CN113002581B (zh)
WO (1) WO2022199208A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113002581B (zh) * 2021-03-26 2023-02-21 中车青岛四方机车车辆股份有限公司 车端抗侧滚减振装置及轨道车辆、列车

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2422825A1 (de) * 1973-06-05 1975-01-09 Breda Cost Ferroviarie Rollschwingungsdaempfer fuer schienenoder strassenfahrzeuge
JP2006044425A (ja) * 2004-08-03 2006-02-16 Hitachi Ltd 鉄道車両用アンチローリング装置
CN201272365Y (zh) * 2008-09-12 2009-07-15 南车四方机车车辆股份有限公司 车端减振装置
CN205971343U (zh) * 2016-07-26 2017-02-22 西南交通大学 一种轨道交通用的抗侧滚扭杆装置
CN107826141A (zh) * 2017-11-02 2018-03-23 中车青岛四方机车车辆股份有限公司 一种抗侧滚扭杆装置及轨道车辆
CN109969211A (zh) * 2019-04-04 2019-07-05 中车青岛四方机车车辆股份有限公司 车端抗侧滚装置安装组件、轨道车辆的端墙及轨道车辆
CN113002581A (zh) * 2021-03-26 2021-06-22 中车青岛四方机车车辆股份有限公司 车端抗侧滚减振装置及轨道车辆、列车

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940976A (ja) * 1982-09-01 1984-03-06 三菱重工業株式会社 車両の車端ダンパ装置
JPS5937168U (ja) * 1982-09-03 1984-03-08 三菱重工業株式会社 車両の車端ダンパ装置
JP2586537Y2 (ja) * 1992-03-30 1998-12-09 住友金属工業株式会社 鉄道車両用車体間ダンパ
JP3574702B2 (ja) * 1995-10-14 2004-10-06 東急車輛製造株式会社 鉄道車両用車端ダンパ装置
JP3428261B2 (ja) * 1995-12-12 2003-07-22 株式会社日立製作所 鉄道車両
JP4452117B2 (ja) * 2004-04-05 2010-04-21 三菱重工業株式会社 車両の車体間走行安定化装置
JP5094029B2 (ja) 2006-03-22 2012-12-12 川崎重工業株式会社 車両の車体間安定化装置
JP5209220B2 (ja) * 2007-02-16 2013-06-12 東海旅客鉄道株式会社 鉄道車両の連結部構造
JP5127412B2 (ja) 2007-11-16 2013-01-23 川崎重工業株式会社 車体間アンチロール装置及び鉄道車両
CN205168529U (zh) * 2015-11-04 2016-04-20 南车青岛四方机车车辆股份有限公司 一种轨道车辆用车端阻尼装置
WO2018016035A1 (ja) * 2016-07-20 2018-01-25 株式会社日立製作所 車体間ダンパ装置を備える編成車両
CN107539333A (zh) * 2017-08-30 2018-01-05 中车株洲电力机车有限公司 一种抗侧滚与减振集成装置及其转向架
CN109334702A (zh) * 2018-11-06 2019-02-15 中车青岛四方机车车辆股份有限公司 轨道车辆用车间减振装置及轨道车辆
CN211166896U (zh) * 2019-11-22 2020-08-04 中振汉江装备科技有限公司 一种适用于低速磁悬浮列车的减振装置
CN112046508B (zh) * 2020-08-26 2021-11-26 株洲时代新材料科技股份有限公司 一种空轨列车主动控制车厢车端的铰接减振方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2422825A1 (de) * 1973-06-05 1975-01-09 Breda Cost Ferroviarie Rollschwingungsdaempfer fuer schienenoder strassenfahrzeuge
JP2006044425A (ja) * 2004-08-03 2006-02-16 Hitachi Ltd 鉄道車両用アンチローリング装置
CN201272365Y (zh) * 2008-09-12 2009-07-15 南车四方机车车辆股份有限公司 车端减振装置
CN205971343U (zh) * 2016-07-26 2017-02-22 西南交通大学 一种轨道交通用的抗侧滚扭杆装置
CN107826141A (zh) * 2017-11-02 2018-03-23 中车青岛四方机车车辆股份有限公司 一种抗侧滚扭杆装置及轨道车辆
CN109969211A (zh) * 2019-04-04 2019-07-05 中车青岛四方机车车辆股份有限公司 车端抗侧滚装置安装组件、轨道车辆的端墙及轨道车辆
CN113002581A (zh) * 2021-03-26 2021-06-22 中车青岛四方机车车辆股份有限公司 车端抗侧滚减振装置及轨道车辆、列车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4286238A4 *

Also Published As

Publication number Publication date
EP4286238A1 (en) 2023-12-06
US20240140500A1 (en) 2024-05-02
EP4286238A4 (en) 2024-07-31
CN113002581A (zh) 2021-06-22
JP2024503740A (ja) 2024-01-26
CN113002581B (zh) 2023-02-21
JP7562869B2 (ja) 2024-10-07

Similar Documents

Publication Publication Date Title
WO2016173390A1 (zh) 组合弹簧补偿悬挂装置
JP5782617B2 (ja) 走行装置への車体の接続が側方に柔軟な車両
WO2017219554A1 (zh) 转向架的摇枕
CN1148299C (zh) 悬挂装置
CN109435800B (zh) 低频隔振座椅
WO2017219556A1 (zh) 转向架
WO2017219555A1 (zh) 转向架的构架
CN109532589A (zh) 双层隔振座椅
WO2022199208A1 (zh) 车端抗侧滚减振装置及轨道车辆、列车
CN112356866B (zh) 一种用于轨道车辆转向架的一系悬挂装置
CN118457125B (zh) 一种面向全矢量动力底盘的主动悬架系统及控制方法
CN114776757A (zh) 一种高铁用减震缓冲装置
CN204674327U (zh) 组合弹簧补偿悬挂装置
RU2826169C2 (ru) Устройство демпфирования на конце подвижного состава для противодействия боковой качке, а также железнодорожный подвижной состав и поезд
CN110641501A (zh) 高速列车侧滚、点头、摇头动态行为的力矩控制方法
CN213776189U (zh) 一种具有强阻尼特性的轴箱弹簧
CN221498333U (zh) 前悬挂及全地形车
CN110481583B (zh) 悬挂式单轨车及其悬挂装置
CN221340937U (zh) 全地形车的前悬挂
CN201300683Y (zh) 一种橡胶后悬架
CN221023159U (zh) 一种四轮独立悬挂机构
CN219927402U (zh) 后桥总成及全地形车
CN218112364U (zh) 一种汽车车身对接件的固定结构
CN219056431U (zh) 一种自稳定平衡模块及系统
CN114161892B (zh) 一种悬浮式悬挂装置及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22773873

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023544323

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022773873

Country of ref document: EP

Effective date: 20230901

WWE Wipo information: entry into national phase

Ref document number: 2023126588

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE