WO2016173390A1 - 组合弹簧补偿悬挂装置 - Google Patents

组合弹簧补偿悬挂装置 Download PDF

Info

Publication number
WO2016173390A1
WO2016173390A1 PCT/CN2016/078637 CN2016078637W WO2016173390A1 WO 2016173390 A1 WO2016173390 A1 WO 2016173390A1 CN 2016078637 W CN2016078637 W CN 2016078637W WO 2016173390 A1 WO2016173390 A1 WO 2016173390A1
Authority
WO
WIPO (PCT)
Prior art keywords
spring
suspension
compensating
vehicle
free
Prior art date
Application number
PCT/CN2016/078637
Other languages
English (en)
French (fr)
Inventor
席玉林
Original Assignee
席玉林
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 席玉林 filed Critical 席玉林
Priority to EP16785821.6A priority Critical patent/EP3290244A4/en
Priority to KR1020177033338A priority patent/KR20170140286A/ko
Priority to JP2017556229A priority patent/JP2018514440A/ja
Publication of WO2016173390A1 publication Critical patent/WO2016173390A1/zh
Priority to US15/721,818 priority patent/US20180022178A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/021Spring characteristics, e.g. mechanical springs and mechanical adjusting means the mechanical spring being a coil spring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G15/00Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type
    • B60G15/02Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring
    • B60G15/06Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and fluid damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G11/00Resilient suspensions characterised by arrangement, location or kind of springs
    • B60G11/14Resilient suspensions characterised by arrangement, location or kind of springs having helical, spiral or coil springs only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G11/00Resilient suspensions characterised by arrangement, location or kind of springs
    • B60G11/32Resilient suspensions characterised by arrangement, location or kind of springs having springs of different kinds
    • B60G11/34Resilient suspensions characterised by arrangement, location or kind of springs having springs of different kinds including leaf springs
    • B60G11/36Resilient suspensions characterised by arrangement, location or kind of springs having springs of different kinds including leaf springs and also helical, spiral or coil springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G11/00Resilient suspensions characterised by arrangement, location or kind of springs
    • B60G11/32Resilient suspensions characterised by arrangement, location or kind of springs having springs of different kinds
    • B60G11/34Resilient suspensions characterised by arrangement, location or kind of springs having springs of different kinds including leaf springs
    • B60G11/46Resilient suspensions characterised by arrangement, location or kind of springs having springs of different kinds including leaf springs and also fluid springs
    • B60G11/465Resilient suspensions characterised by arrangement, location or kind of springs having springs of different kinds including leaf springs and also fluid springs with a flexible wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G11/00Resilient suspensions characterised by arrangement, location or kind of springs
    • B60G11/32Resilient suspensions characterised by arrangement, location or kind of springs having springs of different kinds
    • B60G11/48Resilient suspensions characterised by arrangement, location or kind of springs having springs of different kinds not including leaf springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G13/00Resilient suspensions characterised by arrangement, location or type of vibration dampers
    • B60G13/001Arrangements for attachment of dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G13/00Resilient suspensions characterised by arrangement, location or type of vibration dampers
    • B60G13/02Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G15/00Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type
    • B60G15/02Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring
    • B60G15/04Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and mechanical damper or dynamic damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/10Type of spring
    • B60G2202/11Leaf spring
    • B60G2202/112Leaf spring longitudinally arranged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/10Type of spring
    • B60G2202/12Wound spring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/30Spring/Damper and/or actuator Units
    • B60G2202/32The spring being in series with the damper and/or actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/12Mounting of springs or dampers
    • B60G2204/121Mounting of leaf springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/12Mounting of springs or dampers
    • B60G2204/124Mounting of coil springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/12Mounting of springs or dampers
    • B60G2204/126Mounting of pneumatic springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/45Stops limiting travel
    • B60G2204/4502Stops limiting travel using resilient buffer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/20Spring action or springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/44Vibration noise suppression

Definitions

  • the invention relates to a suspension device for a vehicle, which is composed of a free spring, a compensation spring, a pretensioning device, a vibration isolating block, a light damping damper and a guiding mechanism.
  • the invention is designed with a load compensation function in the vicinity of the static deflection stroke of the vehicle, which can effectively reduce the undesired stroke change of the vehicle suspension device and improve the comfort and handling of the vehicle.
  • the average vehicle In normal driving, the average vehicle will be subjected to impact from the road surface or track. If these impacts are directly transmitted to the vehicle body or the body through the wheels and suspension devices, the vehicle body and parts will be damaged and the occupant's comfort will be damaged. . Therefore, the general vehicle is equipped with a flexible suspension system to slow the impact from the wheel, but the elasticity of the suspension itself will cause the vibration of the car body or the body, because the impact or the change of the state of the car will cause the suspension load to change, and cause The pitch and roll vibration of the vehicle body and the change in the attitude of the wheel result in a decrease in stability and handling of the vehicle.
  • the suspension device is composed of an elastic member, a guiding mechanism, a damper and a stabilizer bar.
  • the elastic element is mainly used to withstand and transmit vertical loads, and to mitigate the impact on the vehicle body caused by uneven road surface.
  • the most important of the elastic components are springs, which include leaf springs, coil springs, torsion bar springs, oil and gas springs, gas springs and rubber springs.
  • the damper is used to attenuate the vibration caused by the elastic system.
  • the type of the damper is a barrel damper, a resistance adjustable damper, and an inflatable damper.
  • the guiding mechanism is used to transmit the force and moment between the wheel and the body, while keeping the wheel beating against the body according to a certain movement trajectory.
  • the guiding mechanism is composed of a control swing arm member.
  • the types are single pole or multi-link.
  • the leaf spring is used as the elastic member, there is no need for a separate guiding mechanism, and it also serves as a guiding function.
  • a stabilizer bar is added to the suspension system to increase the lateral stiffness, so that the car has insufficient steering characteristics and improves the handling stability of the car. And ride comfort.
  • Suspended elastic and damping elements designed with current technology have two main performance requirements: ride comfort and handling stability.
  • the suspension of a normal vehicle mainly affects the vertical vibration of the vehicle.
  • the traditional suspension is not adjustable, and the variation in the height of the vehicle during driving depends on the deformation of the spring. Therefore, there is naturally a phenomenon that when the vehicle is unloaded and loaded, the ground clearance of the vehicle body is different.
  • some cars use relatively soft coil springs, and the deformation stroke of the spring after loading will be relatively large, resulting in a difference of tens of millimeters from the ground clearance when the vehicle is unloaded and loaded, which affects the passing of the car.
  • the vehicle is in different driving conditions The state has different requirements for suspension.
  • the commonly used passive suspension has a fixed suspension stiffness and damping coefficient, and cannot meet the requirements of ride comfort and handling stability at the same time.
  • an electronically controlled suspension technology has been developed.
  • the hydraulic control form of the electronically controlled suspension is a relatively advanced form.
  • Active suspension belongs to this type of form. It uses an active method to suppress the impact of the road surface on the body and the body tilting force.
  • the form of air pressure control of the electronically controlled suspension also known as adaptive suspension, responds to changes in the road surface by adjusting within a certain range. Whether it is active suspension or adaptive suspension, they all have electronic control elements (ECUs), and ECUs must have sensors. The sensor is an important part of the electronically controlled suspension, and it will not work properly if the entire suspension system fails. All of these inevitably make the existing electronically controlled suspension system complicated in structure, high in technical requirements, high in cost, and high in power consumption, which limits the wide application of this high-performance suspension in vehicles.
  • a well-known patent closest to the present invention is "a wheel suspension device using a spring incorporating a flexible skeleton to improve the stiffness curve" (CN97181615.8), which relates to a wheel suspension device using a coil spring and a holding sum Connecting the flexible skeleton, compressing a part of the spring in the normal driving position to keep it in a compressed state to obtain two different stiffness curves, the turning point is near the normal driving position; when compressing, all the coil springs are compressed, and when relaxed, Only the uncompressed portion of the spring is relaxed, so the suspension is asymmetrical and the stiffness when relaxed is greater than the stiffness at compression.
  • each of the skeletons includes two fixing members, one fixing member cooperating with all or a portion of a coil spring, and the other fixing member is matched with all or a portion of the other coil of the spring, or The housing of the vibrator cooperates.
  • each of the skeletons comprises a longitudinal member which is deformable when compressed, does not deform when relaxed, is connected to the two fixing members, and the skeleton limits and compresses the coil spring. At least two coils.
  • the invention is limited to changing the stiffness of the spring in a small range, and can improve the running performance of the vehicle without the need of a stabilizer bar, but the change in the stiffness of the same spring attachment device is limited, and there is no reduction involved.
  • the damping content of the damper does not fundamentally improve the handling and comfort of the suspension.
  • a primary object of the present invention is to provide a combined spring-compensated suspension that allows the vehicle to roll, pitch, yaw, jump, and body height during normal vehicle travel and during acceleration, deceleration, or cornering within a safe range.
  • the control is very effective, so that the impact from the ground or the imbalance generated by the car body can be effectively absorbed by the suspension, and the adhesion of the wheel to the ground can be maximized to fully exert the driving and braking effect of the wheel.
  • the stability of the vehicle at high speeds and corners is greatly improved.
  • the vehicle when the load of the vehicle changes, the vehicle can always maintain a certain height of the vehicle body, so the geometric relationship of the suspension can be ensured, so that the vehicle body and the road surface or the track plane are always maintained in the required parallel state, reaching or exceeding the current state.
  • the effectiveness of the universal active suspension when the load of the vehicle changes, the vehicle can always maintain a certain height of the vehicle body, so the geometric relationship of the suspension can be ensured, so that the vehicle body and the road surface or the track plane are always maintained in the required parallel state, reaching or exceeding the current state.
  • the above object is achieved by the combination of the elastic elements of the suspension system, ie the springs, and the load compensation.
  • the suspension travels when the vehicle is under load, and the suspension is the static deflection.
  • the load on the suspension is the empty load G 0 , which is the suspension when the vehicle is stationary while lying on the plane.
  • the load is G
  • the stroke at the maximum compression of the suspension is the dynamic deflection.
  • the suspended elastic component of the invention is composed of a free spring and a compensating spring.
  • the elastic spring provides the elastic supporting force when the suspension stroke of the vehicle is in the static and dynamic deflection.
  • the compensating spring and the free spring jointly provide the elastic supporting force or the compensating spring provides the elastic supporting force alone.
  • the most important feature of this technology is that the maximum stroke of the compensating spring is limited by the pre-tightening member, only the static deflection of the suspension. Work within the range of dynamic deflection.
  • the above design method enables the elastic element of the suspension system to have ideal stiffness characteristics for some vehicles with less load change: automatic load compensation function near the static deflection of the suspension, on the one hand, when the suspension load changes within the compensation interval At the same time, although the load of the suspension increases or decreases, the suspended compensation spring does not change in length under the action of the pretensioning device. On the other hand, when the suspension load exceeds the range of the compensation interval, that is, less than A. The length of the free spring changes, and the length of the compensation spring does not change. When it is greater than B, the lengths of the free spring and the compensation spring change simultaneously.
  • the suspension stroke does not change or change very little when it is loaded to the load; at this time, due to the preloading force of the compensation spring, the suspended elastic element has the function of automatic compensation of the load during the stroke, in the suspension Near the static deflection, the stiffness of the entire suspended elastic component becomes very large, far exceeding the stiffness of the spring itself, so that the vehicle has good maneuverability, and the free spring and the compensating spring are restored when the suspension stroke leaves the static deflection. The original stiffness, the travel of the suspension will still change with the change of the load, keeping the ride comfort of the vehicle.
  • a typical vehicle has four or more suspension devices.
  • the load subjected to the suspension will exceed the compensation interval of the suspension load, and the suspension stroke will change.
  • the load on the body of the suspension will also change and pass through the body Conducted to the joint of other suspension devices.
  • the other suspension devices work in the compensation interval near the static deflection. If the load change is less than the load range of the compensation interval, the changed load is compensated, and the affected suspension stroke is compensated. No change or change is small, so that the entire body can be kept still.
  • the suspension with this design has two functions at the same time. Firstly, it has good geometric deformation ability, because such elastic components have less rigidity in their main stroke, although there is a small rigidity in the middle. By design it is possible to reduce this range to within the parameters allowed by the comfort of the vehicle. When the impact exceeds this range, the suspended elastic element will undergo the required deformation, and the change of the elastic supporting force caused by this deformation will be absorbed by other suspensions in a high-rigidity working state, so that it is generated on the vehicle body. The impact is reduced to a small extent. Secondly, the suspended elastic element has a tendency to automatically work in a high stiffness interval. Under the influence of this trend, the suspension works most of the time in a high-stiffness state.
  • the body's roll, pitch and load are affected by the high rigidity. Changes, etc. will be effectively absorbed by the high-rigidity suspension, even without the need of lateral and longitudinal stabilizers, and can maintain a good balance. Under normal driving conditions, the vehicle will not have obvious turning roll, brake nodding and acceleration back. phenomenon. These are the most advanced technologies in suspension technology and are difficult to achieve.
  • the suspension relies on the action of the compensation spring in the elastic element to achieve better characteristics, the vibration of the vehicle body is reduced, and the damper in the suspension is weakened.
  • the function of the maintenance can be achieved by using a lightly damped damper, which can effectively reduce the cost, and has a health-related effect on simplifying the structure of the damper in suspension and reducing the cost of suspension.
  • the present invention is implemented as follows:
  • a combined spring compensating suspension device characterized in that it comprises a free spring, a compensating spring, a compensating spring pretensioning device (2), a light damping damper (7) and a guiding mechanism (5); said free spring
  • the compensation spring and the lightly damper damper are disposed between the frame (1) and the guiding mechanism (5), and the compensation spring is connected with the frame (1) or the guiding mechanism (5), and is installed at one end of the compensation spring.
  • Compensating the spring pretensioning device (2), the guiding mechanism (5) is used to connect the wheel and the body, and provides a positioning installation for the free spring (6), the compensating spring (3) and the light damping damper (7).
  • the upper end of the free spring (6) is connected with the frame (1), and the lower end is connected with the guiding mechanism (5), and the upper end of the light damping damper (7) is connected with the frame (1), and the lower end is connected with
  • the guiding mechanism (5) is connected;
  • the upper end of the compensating spring (3) is connected to the frame (1) or the lower end is fixedly connected with the guiding mechanism (5), and a compensating spring pretensioning device (2) is mounted at the connecting end,
  • An anti-vibration block is mounted on the lower end or the upper end of the compensating spring (3);
  • the light damping damper (7), the free spring (6) and the compensating spring (3) are in the frame (1) and the guiding mechanism (5) Parallel installation is formed between them.
  • the lower end of the free spring (6) is connected with the guiding mechanism (5), the upper end is connected with the lower end of the light damping damper (7), and the guiding tube (11) is connected to the lower end of the outer wall of the light damping damper (7).
  • the lower end of the compensation spring (3) is connected to the upper end of the light damping damper (7), the upper end of the compensation spring (3) is connected with the frame (1), and a compensating spring pretensioning device is installed at the connecting end (2)
  • the compensation spring (3), the lightly damper damper (7), and the free spring (6) are sequentially connected between the frame (1) and the guiding mechanism (5) to form a series connection. In this type of installation, it can also be installed upside down.
  • the upper end of the free spring (6) is connected to the frame (1), the lower end is connected to the upper end of the light damper (7), and the upper end of the outer wall of the light damper (7) is connected with a guiding cylinder (11);
  • the upper end of the compensating spring (3) is connected to the lower end of the light damper, the lower end of the compensating spring (3) is connected with the guiding mechanism (5), and a compensating spring pretensioning device (2) is mounted at the connecting end, the free spring (6)
  • the light damping damper (7) and the compensation spring (3) are sequentially connected between the frame (1) and the guiding mechanism (5) to form a series connection.
  • the lower end of the free spring (6) is connected with the guiding mechanism (5), the upper ends of the two sides are connected with the frame (1), and the upper end of the compensating spring (3) is connected with the frame (1), the compensation A vibration isolating block (4) is mounted on the lower end of the spring (3), and the vibration isolating block (4) is disposed in center with the free spring (6).
  • the elastic spring (6) provides the elastic supporting force f ⁇ G 0 to the vehicle when the vehicle is near the static deflection value.
  • the pre-tightening force F ⁇ 1.1 (GG 0 ) of the suspension-compensating spring is designed, and the elastic support force provided to the vehicle when the spiral free spring is near the vehicle's static deflection value f ⁇ 0.9G 0 . If it is a vehicle that needs to be highly maneuverable, you can design a large multiple, such as a racing car, which can be F ⁇ 2 (GG 0 ), f ⁇ 0.5G 0
  • the load that the suspension bears when the vehicle is idling is G 0
  • the load that the suspension bears when loading is G, which constitutes the compensating spring (3) of the suspension.
  • the pre-tightening force F>G when the free spring (6) is near the static deflection value of the vehicle, the elastic supporting force provided to the vehicle satisfies f ⁇ G 0 .
  • This type of suspension is generally used on vehicles with long suspension strokes, such as motorcycles, and is used in relatively few race cars. Of course, it can also be designed in multiples of parallel.
  • the range of the compensation interval can be adjusted at any time according to the size of the load and the operation requirements.
  • the pre-tightening force of the compensation spring can be dynamically adjusted by the adjusting device.
  • the usual adjustment devices have electronic automatic adjustment or manual adjustment.
  • the pre-tightening force F of the compensating spring (3) constituting the suspension is F>1.1G, and the elastic supporting force f ⁇ 0.9G 0 provided to the vehicle when the free spring (6) is near the static deflection value of the vehicle.
  • the damping coefficient of the light damping damper is less than 0.25 in the stretching stroke, and the compression stroke is less than 0.15. Since the balance of the body is compensated by the spring and the vibration of the body is reduced, the damper with a smaller damping coefficient can maintain the running performance of the vehicle.
  • the invention has the beneficial effects that the performance requirement of the active suspension is achieved by the combination and compensation of the elastic elements in the suspension, and is suitable for most road and rail vehicles, and is particularly suitable for passenger vehicles with small load changes, not only reducing Manufacturing costs also improve handling and comfort.
  • FIG. 1 is a schematic view of a combined spring compensation suspension when the suspension is at the maximum stroke in Embodiment 1 of the present invention, in which the load of the suspension is less than the compensation section, the free spring is in an extended state, and the compensation spring has no load.
  • FIG. 2 is a schematic diagram of a combined spring compensation suspension when the suspension is in a static deflection according to Embodiment 1 of the present invention.
  • the suspension load is within the compensation interval, the free spring shares a part of the load, and the compensation spring shares a part of the load but less than the preload. At this time, the suspension is in a state of equilibrium at the time of load.
  • FIG. 3 is a schematic diagram of a combined spring compensation suspension when the suspension is in a dynamic deflection according to Embodiment 1 of the present invention, wherein the load of the suspension is greater than the compensation interval, the free spring continues to be compressed, and the load shared by the compensation spring is greater than the preload force, and continues to be compressed. At this time, the suspension is in a large compression state.
  • FIG 4 is a schematic view of the compensation suspension of the gas spring when the suspension is at the maximum stroke according to the second embodiment of the present invention.
  • the load of the suspension is smaller than the compensation section
  • the free spring is the state in which the leaf spring is in a relaxed state
  • the compensation spring is that the gas spring has no load.
  • FIG. 5 is a schematic diagram of a gas spring compensation suspension when the suspension is in a static deflection according to Embodiment 2 of the present invention, in which the load of the suspension is within the compensation interval, the free spring is a partial load of the leaf spring, and the compensation spring is a gas spring sharing a part of the load. But it is not compressed, at this time the suspension is in equilibrium at rest.
  • FIG. 6 is a schematic diagram of a gas spring compensation suspension when the suspension is in a dynamic deflection according to Embodiment 2 of the present invention.
  • the load of the suspension is greater than the compensation interval, the leaf spring continues to be compressed, and the gas spring continues to be compressed, and the suspension is at a large compression. status.
  • Fig. 7 is a schematic view showing the free spring compensation suspension when the suspension is at the maximum stroke in the embodiment 3 of the present invention, and the free spring and the compensation spring are designed in series. At this time, the suspended load is less than the compensation interval, the free spring is in a relaxed state, and the compensation spring has no load.
  • FIG. 8 is a schematic view showing a free spring compensation suspension when the suspension is in a static deflection in Embodiment 3 of the present invention.
  • the free spring and the compensating spring are designed in series. At this time, the suspended load is within the compensation interval, and the free spring is all compressed.
  • the compensation spring bears all the load, but it does not continue to be compressed except for the preload, and the suspension is in a balanced static state at the time of the load.
  • FIG. 9 is a schematic diagram of a free spring compensation suspension when the suspension is in a dynamic deflection in Embodiment 3 of the present invention, and the free spring and the compensation spring are designed in series. At this time, the load of the suspension is greater than the compensation interval, the free spring is in the maximum compression state, and the compensation spring continues to be compressed, at which time the suspension is in a relatively large compression state.
  • Figure 10 is a schematic view of the free spring compensating suspension when the suspension is in the maximum stroke in Embodiment 4 of the present invention, and the free spring and the compensating spring are designed in series. At this time, the suspended load is less than the compensation interval, the free spring is in a relaxed state, and the compensation spring has no load.
  • FIG. 11 is a schematic view of a free spring compensation suspension when the suspension is in a static deflection in Embodiment 4 of the present invention, and the free spring and the compensation spring are designed in series.
  • the suspended load is within the compensation interval, the free spring is all compressed, and the compensating spring bears all the load, but in addition to the pre-tightening force, it is not continuously compressed, and the suspension is in a balanced static state at the time of load.
  • Fig. 12 is a schematic view showing the free spring compensation suspension when the suspension is in the dynamic deflection in the embodiment 4 of the present invention, and the free spring and the compensation spring are designed in series. At this time, the load of the suspension is greater than the compensation interval, the free spring is in the maximum compression state, and the compensation spring continues to be compressed, at which time the suspension is in a relatively large compression state.
  • the suspension according to the invention comprises a frame 1, a compensating spring pretensioning device 2, a compensating spring 3, a vibration isolating block 4, a guiding mechanism 5, a free spring 6, a lightly damped damper 7, and a wheel 8.
  • the elastic element is formed by a parallel combination of a free spring 6 (the free spring 6 is a coil spring) and a compensating spring 3 (the compensating spring 3 is a coil spring).
  • the load on the suspension of the wheel is The free spring 6 and the compensating spring 3 are shared by the load, and the suspended load is in the compensation interval (the minimum value of the compensation interval is A, the maximum value is B, the load on the suspension when the vehicle is unloaded is G 0 , and the suspension is subjected to the load load)
  • the load is G
  • a ⁇ G 0 ⁇ G ⁇ B this value is the minimum range of the design.
  • the general design exceeds this range, the lengths of the free spring 6 and the compensation spring 3 do not change. Only the vibration isolation block 4 A certain deformation will occur, that is to say, only a small change in the stroke of the suspension will occur as the load changes.
  • the pre-tightening force F of the compensating spring constituting the suspension is F>1.1 (GG 0 ), and the elastic supporting force f ⁇ G 0 provided by the free spring to the vehicle.
  • the most important feature of this technique is that the maximum stroke of the compensating spring 3 is limited by the pretensioning device 2, operating only in the range of static to dynamic deflection of the suspension.
  • the support force provided by the free spring 6 is less than the static load that the suspension is subjected to, and a part of the load is borne by the compensation spring 3 limited by the preload force.
  • the suspended load satisfies the above requirements, the suspended load
  • the length of the free spring 6 and the compensation spring 3 does not change due to the compensation effect of the preloading force of the compensation spring 3, and even if the suspension stroke changes, it is only vibration isolation.
  • the deformation of the block is subject to compression, but the shape variable is small, the overall effect is that the stroke of the suspension changes little, and the stiffness of the suspension is high within this load range.
  • the two springs will have corresponding stroke changes, which can fully meet the driving requirements of the vehicle.
  • the suspension stroke does not change or only a small change occurs, which is the most desirable characteristic of the vehicle suspension. For example, when a wheel is impacted, the suspension is also impacted, and the load changes will also cause a vibration shock to the car body. This impact is transmitted to other suspensions through the frame, but because other suspensions work in the compensation zone, Changes in the load caused by the impact. If the strokes of other suspensions do not change or change very little in the compensation interval of other suspensions, the entire vehicle body remains relatively balanced; also if the vehicle changes due to speed, direction and load When the range of the compensation interval changes, the change of the suspension load can also be compensated by the suspended compensation spring 3. The suspension stroke maintains the required steady state, and the vehicle can maintain good maneuverability and stability without affecting. Comfortable performance of the vehicle.
  • the compensation spring (3) the vibration isolating block (4), the free spring (6), and the wheel (8).
  • the elastic member of the vehicle suspension of the present invention similarly includes a free spring 6 and a compensating spring. 3, wherein the compensation spring 3 is a gas spring, and the free spring 6 is a leaf spring.
  • the gas compensating spring 3 in this embodiment functions in the same manner as the compensating spring 3 described in the first embodiment, and the leaf spring functions in the same manner as the free spring 6 described in the first embodiment.
  • the difference is that the gas spring itself has the characteristics of pre-tensioning spring. It does not need to add additional pre-tensioning device.
  • the leaf spring can play the role of guiding connection at the same time.
  • the suspension structure can adopt a more simplified design, and the vibration isolation performance of the gas spring has been Very good, the increased vibration isolating block 4 can further reduce the noise, the leaf spring itself has a certain damping effect, if the vibration damping requirements are not high, the design of the damper can be cancelled.
  • the preload force F>1 (GG 0 ) constituting the suspended gas spring is the elastic support force f ⁇ G 0 provided by the free spring to the vehicle.
  • Embodiment 3 a free spring (6), a lightly damped damper (7), a guide cylinder (11), a compensation spring (3), and a wheel (8).
  • the elastic member of the vehicle suspension of the present invention likewise includes a free spring 6 and a compensating spring 3, wherein the compensating spring 3 is a coil spring and the free spring 6 is a coil spring.
  • the action of the compensating spring 3 in this embodiment is the same as that of the compensating spring 3 described in the first embodiment, and the free spring 6 functions in the same manner as the free spring 6 described in the first embodiment.
  • the compensating spring 3 and the free spring 6 are connected in series, and the guiding cylinder 11 of the light damper damper 7 to which the free spring 6 is connected can not only serve as a spring guiding but also limit the free spring 6.
  • the stroke provides the elastic support force to satisfy f ⁇ G 0 and is designed to compensate the spring's preload force F > G.
  • the preloading force F of the compensating spring 3 which normally constitutes the suspension is F>1.1G, and the elastic supporting force f ⁇ 0.9G 0 provided by the free spring 6 to the vehicle.
  • a free spring (6) a lightly damped damper (7), a guide cylinder (11), a compensation spring (3), and a wheel (8).
  • the elastic member of the vehicle suspension of the present invention likewise comprises a free spring 6 and a compensating spring 3, wherein the compensating spring 3 is a coil spring 3, and the free spring 6 is a coil spring 6.
  • the action of the compensating spring 3 in this embodiment is the same as that of the compensating spring 3 described in the third embodiment, and the free spring 6 functions in the same manner as the free spring 6 described in the third embodiment.
  • the compensating spring 3 is at the bottom, the free spring 6 is at the top, and the guiding cylinder 11 of the light damper damper 7 to which the free spring 6 is connected, not only can serve as a spring guiding action, but also can restrict the free spring 6
  • the elastic supporting force provided satisfies f ⁇ G 0 and is designed to make the preload force F>G of the compensating spring 3.
  • the upper end of the free spring 6 is connected to the frame 1 and the lower end is connected to the upper end of the lightly damper damper 7.
  • the upper end of the outer wall of the light damper damper 7 is connected with a guiding cylinder 11; the upper end of the compensating spring 3 is lightly damped
  • the lower end of the damper 7 is connected, the lower end of the compensating spring 3 is connected with the guiding mechanism 5, and a compensating spring pretensioning device 2 is mounted at the connecting end, and the free spring 6, the light damper damper 7, and the compensating spring 3 are sequentially connected to the vehicle.
  • the frame 1 and the guiding mechanism 5 are formed in series.
  • the vehicle suspension design method and structure of the present invention are different from the previous vehicle suspension device.
  • the suspension device realizes automatic mutual suspension of multiple suspensions of the vehicle by combining and compensating two or more elastic components.
  • the compensation characteristics provide a new design method to meet the handling and comfort requirements of the suspension.
  • the range of the compensation interval may not only need to satisfy A ⁇ G 0 ⁇ G ⁇ B, but also BA. More than 50% of the design of (GG 0 ), even more than 1 time for special vehicles, in addition to the size of the load can be dynamically adjusted by the adjustment device to the size of the BA value, to meet the higher comfort requirements, in short, this
  • the compensation interval By designing the compensation interval, the effect on the vehicle body generated by a single suspension can be compensated and corrected by other suspensions, and finally the vibration of the vehicle body can be maintained and reduced, and the maneuverability and comfort can be improved at the same time. Both such designs and devices are achieved by pre-tensioning the compensating springs, and the design and construction of the automatic compensating function for suspension by spring preloading are within the scope of this patent.
  • the suspension with this design has good geometric deformation capability on the one hand, and has the ability to absorb impact from the road surface, effectively reducing or avoiding vibration of the vehicle body; on the other hand, when suspended in static deflection, the suspension load has automatic compensation function.
  • the vehicle changes speed, direction and load, it can effectively reduce or avoid excessive changes in the suspension stroke, effectively solve the contradiction between vehicle ride comfort and handling stability, and has the equivalent or exceeds the electronic control of the general vehicle.
  • the effect of active suspension is very good geometric deformation capability on the one hand, and has the ability to absorb impact from the road surface, effectively reducing or avoiding vibration of the vehicle body; on the other hand, when suspended in static deflection, the suspension load has automatic compensation function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)
  • Springs (AREA)

Abstract

一种用于车辆上的组合弹簧补偿悬挂装置,它包括自由弹簧(6)、补偿弹簧(3)、补偿弹簧预紧装置(2)、隔振块(4)、轻阻尼减振器(7)、导向机构(5),自由弹簧(6)、补偿弹簧(3)、轻阻尼减振器(7)设置在车架(1)与导向机构(5)之间,补偿弹簧(3)与车架(1)或导向机构(5)连接,在补偿弹簧(3)上端安装有补偿弹簧预紧装置(2),导向机构(5)用来连接车轮和车身;车辆的悬挂装置上的弹性元件由自由弹簧(6)和补偿弹簧(3)构成,悬挂的载荷在悬挂的静挠度行程附近有一个补偿区间,悬挂所承受的负荷在这个补偿区间内变化时,其行程不发生变化或变化很小,悬挂的负荷超过补偿区间时,悬挂的行程才会发生变化,采用这种设计的车辆,可以同时提高车辆的操控性和舒适性。

Description

组合弹簧补偿悬挂装置 技术领域
本发明涉及车辆的悬挂装置,由自由弹簧、补偿弹簧,预紧装置,隔振块,轻阻尼减振器,导向机构组成。本发明在车辆的静挠度行程附近设计有载荷补偿功能,可有效减少车辆悬挂装置不需要的行程变化,提高车辆的舒适性和操控性。
背景技术
一般的车辆在正常的行驶过程中,都会受到来自于路面或轨道的冲击,这些冲击如果通过车轮和悬挂装置直接传到车体或车身,会损坏车体和零部件,并破坏乘员的舒适性。因此一般车辆都设置了弹性的悬挂系统以减缓来自于车轮的冲击,但是悬挂本身的弹性又会造成车体或车身的振动,因为冲击或汽车运动状态的改变会引起悬挂负荷的变化,并导致车体的俯仰和侧倾振动以及车轮姿态的变化,从而导致车辆的稳定性和操控性下降。
众所周知,目前的技术设计的车辆,其悬挂装置由弹性元件、导向机构、减振器和横向稳定杆组成。弹性元件主要用来承受并传递垂直载荷,缓和由于路面不平引起的对车身的冲击。弹性元件里最重要的是弹簧,种类包括钢板弹簧、螺旋弹簧、扭杆弹簧、油气弹簧、充气弹簧和橡胶弹簧等。减振器用来衰减由于弹性系统引起的振动,减振器的类型有筒式减振器,阻力可调式减振器,充气式减振器。导向机构用来传递车轮与车身间的力和力矩,同时保持车轮按一定运动轨迹相对车身跳动,通常导向机构由控制摆臂式杆件组成。种类有单杆式或多连杆式的。钢板弹簧作为弹性元件时,可不另设导向机构,它本身兼起导向作用。有些轿车和客车上,为防止车身在转向等情况下发生过大的横向倾斜,在悬挂系统中加设横向稳定杆,目的是提高横向刚度,使汽车具有不足转向特性,改善汽车的操控稳定性和行驶平顺性。
以目前的技术设计的悬挂的弹性元件和减振元件,有两个主要性能要求:乘座舒适性和操控稳定性。普通车辆的悬挂主要影响车辆的垂直振动。传统的悬挂是不可调整的,在行车中车身高度的变化取决于弹簧的变形。因此就自然存在了一种现象,当车辆空载和负载的时候,车身的离地间隙是不一样的。尤其是一些轿车采用比较柔软的螺旋弹簧,负载后弹簧的变形行程会比较大,导致汽车空载和负载的时候离地间隙相差有几十毫米,使汽车的通过性受到影响。同时车辆在不同的行驶状 态时对悬挂有不同的要求。一般行驶时需要柔软一点的悬挂以求舒适感,当急转弯及制动时又需要硬一点的悬挂以求稳定性,这两个主要性能要求存在着冲突和矛盾。普遍使用的被动悬挂因为具有固定的悬挂刚度和阻尼系数,不能同时满足乘坐舒适性和操控稳定性的要求。
为了解决乘坐舒适性和操控稳定性之间的矛盾,产生了电控悬挂技术,目前公知电控悬挂的控制形式主要有两种,由液压控制的形式和由气压控制的形式。电控悬挂的液压控制形式是相对先进的形式,主动悬挂就属于这一类形式,它采用一种有源方式来抑制路面对车身的冲击力及车身倾斜力。电控悬挂的气压控制形式又称为自适应悬挂,它通过在一定范围内的调整来应对路面的变化。不管是主动悬挂还是自适应悬挂,它们都有电子控制元件(ECU),有ECU就必然要有传感器。传感器是电控悬挂上重要的零部件,一旦失灵整个悬挂系统工作就会不正常。所有这些不免使现有的电控悬挂系统的结构复杂,技术要求高,成本昂贵,功耗大等缺陷,限制了这种高性能悬挂在车辆上的广泛应用。
与本发明最相近的公知专利是《使用结合有挠性骨架的弹簧以改善刚度曲线的车轮悬置装置》(CN97181615.8),此发明涉及的车轮悬置装置使用一个螺旋弹簧和一个保持和连接挠性骨架,在正常行驶位置压缩一部分弹簧,使之保持在压缩状态,以获得两种不同的刚度曲线,其转折点位于正常行驶位置附近;压缩时,全部螺旋弹簧被压缩,而放松时,只有弹簧的未压缩部分被放松,因此,悬置装置是不对称的,放松时的刚度大于压缩时的刚度。一方面,每个骨架包括两个固定件,一个固定件与螺旋弹簧一个簧圈的全部或部分相配合,另一个固定件或者与弹簧的另一个簧圈的全部或部分相配合,或者与减振器的壳体相配合,另一方面,每个骨架包括一个纵向件,该纵向件在压缩时可变形,在放松时不变形,与两个固定件相连接,骨架限制和压缩螺旋弹簧的至少两个簧圈。但是此发明仅限于在小范围内改变弹簧的刚度,在不需要横向稳定杆的情况下仍可以改善车辆的行驶性能,但是在同一个弹簧加设装置对其刚度的改变有限,同时没有涉及降低减振器的阻尼内容,并不能从根本上改善悬挂装置的操控和舒适性能。
发明内容
本发明的主要目的是提供一种组合弹簧补偿悬挂装置,当车辆正常行驶以及在安全范围内加减速或转弯过程中,这种悬挂系统使车辆对侧倾、俯仰、横摆、跳动和车身高度的控制都非常有效,使来自于地面的冲击或车体产生的不平衡能被悬挂有效的吸收,最大限度保持车轮对地面的附着力,以充分发挥车轮的驱动制动作用, 使车辆在高速行驶和转弯时的稳定性大大提高。此外车辆的载重量发生变化时,车辆始终能保持一定的车身高度,所以悬挂的几何关系也可以确保不变,从而使车体与路面或轨道平面始终保持所要求的平行状态,达到或超过目前普遍的主动式悬挂的使用效能。
上述目的的实现是通过对悬挂系统的弹性元件也就是弹簧的组合及载荷补偿来实现的。我们以车辆负载时在水平面上平衡静止时悬挂的行程为静挠度,以车辆空载时静止在平面时悬挂所承受的负荷为空载荷G0,以车辆负载时静止在平面时悬挂所承受的负荷为G,悬挂的最大压缩时的行程为动挠度。通过不同弹簧的组合设计,使其在悬挂的静挠度附近,悬挂所承受的负荷一定范围内变化时,悬挂的行程不发生变化或变化很小,悬挂的行程不发生变化的载荷范围称为补偿区间(设最小为A,最大为B,A<G0<G<B),悬挂的负荷在补偿区间内变化时,悬挂的行程不变或变化很小,悬挂的负荷超过补偿区间时,悬挂的行程才会发生变化。
本发明所述的悬挂的弹性元件是由自由弹簧和补偿弹簧组合而成,当车辆的悬挂行程长于静挠度时,由自由弹簧提供弹性支撑力,当车辆的悬挂行程在静挠和动挠度之间变化时,由补偿弹簧和自由弹簧共同提供弹性支撑力或补偿弹簧单独提供弹性支撑力,这种技术的最主要特征就是补偿弹簧的最大行程受到预紧件的限制,仅在悬挂的静挠度到动挠度范围内工作。
以上的设计方法能够使悬挂系统的弹性元件对于一些负荷变化较小的车辆具备理想的刚度特性:在悬挂的静挠度附近具备负荷自动补偿功能,一方面,当悬挂负荷在补偿区间的范围内变化时,虽然悬挂的负荷发生增大或减小的变化,悬挂的补偿弹簧在预紧装置的作用下,长度不变,另一方面,当悬挂负荷超过这个补偿区间的范围时,即小于A时,自由弹簧长度变化,补偿弹簧长度不变,大于B时,自由弹簧和补偿弹簧长度同时变化。也就是说悬挂的行程在空载到负载时都不发生变化或变化很小;这时由于补偿弹簧的预紧力使悬挂的弹性元件在此行程时具有了负荷自动补偿的功能,在悬挂的静挠度附近,整个悬挂的弹性元件的刚度变得很大,远远超过了弹簧本身的刚度,使车辆具有良好的操控性,同时悬挂行程在离开静挠度时,自由弹簧和补偿弹簧就会恢复原来的刚度,悬挂的行程仍然会随着负荷的变化发生相应的变化,保持车辆的乘座舒适性。
一般车辆具备四个或四个以上的悬挂装置,当一个悬挂装置所连接的车轮受到来自于地面或轨道的冲击时,这个悬挂受到的负荷会超过悬挂载荷的补偿区间,悬挂的行程会发生变化,这个悬挂装置作用于车身的负荷也会发生变化,并通过车身 传导到其它悬挂装置的连接处,此时其他悬挂装置工作于静挠度附近的补偿区间,所受的负荷变化如果小于补偿区间的载荷范围,则这个变化的负荷被补偿掉,受到影响的悬挂的行程不发生变化或变化很小,从而使整个车身可以保持不动,如果超过补偿区间的载荷范围,悬挂装置的行程会发生变化,但因为存在载荷补偿区间,悬挂装置的行程会产生一个回到静挠度行程的趋势并很快回到静挠度附近,使车辆的操控性也会很快恢复到最佳状态。
采用这种设计的悬挂就同时具备了两个作用,首先是良好的几何变形能力,因为这样的弹性组件在其主要行程内都有较小的刚度,虽然中间有很小的部分刚度很大,通过设计能够使这个范围减小到车辆的舒适性所允许的参数范围以内。当冲击超过这个范围时,就会使悬挂的弹性元件发生所需要的变形,而这个变形所导致的弹性支撑力的变化会被其它处于高刚度工作状态的悬挂吸收,使其对车体所产生的影响减至很小。其次是悬挂的弹性元件有自动工作在高刚度区间的趋势,在这个趋势的影响下,悬挂大部分时间工作在高刚度状态,此时因为高刚度的作用,车体的侧倾、俯仰和载荷变化等都会被高刚度的悬挂有效吸收,甚至不需要横向和纵向稳定杆,也能保持很好的平衡,在普通驾驶状态下,车辆不会出现明显的转弯侧倾,刹车点头和加速后仰现象。这些是目前悬挂技术中最高级的技术也难以实现的,同时因为悬挂依靠弹性元件中补偿弹簧的作用实现了较理想的特性,减少了车体的振动,弱化了悬挂中减振器对于车身姿态保持的作用,可采用轻阻尼减振器,可有效降低成本,对于简化悬挂中减振器的结构并降低悬挂的成本有关健的作用。
本发明是这样实现的:
一种组合弹簧补偿悬挂装置,其特征在于,它包括有自由弹簧、补偿弹簧、补偿弹簧预紧装置(2)、轻阻尼减振器(7)和导向机构(5);所述的自由弹簧、补偿弹簧、轻阻尼减振器设置在车架(1)与导向机构(5)之间,所述的补偿弹簧与车架(1)或导向机构(5)连接,在补偿弹簧一端安装有补偿弹簧预紧装置(2),导向机构(5)用来连接车轮和车身,为自由弹簧(6)、补偿弹簧(3)和轻阻尼减振器(7)提供定位安装。
其中,所述的自由弹簧(6)上端与车架(1)连接、下端与导向机构(5)连接,所述的轻阻尼减振器(7)上端与车架(1)连接、下端与导向机构(5)连接;所述的补偿弹簧(3)上端与车架(1)连接或下端与导向机构(5)固定连接,并在连接端安装有补偿弹簧预紧装置(2),该补偿弹簧(3)下端或上端安装有隔振块;该轻阻尼减振器(7)、自由弹簧(6)和补偿弹簧(3)在车架(1)与导向机构(5) 之间形成并联安装。
其中,所述的自由弹簧(6)下端与导向机构(5)连接、上端与轻阻尼减振器(7)下端连接,在轻阻尼减振器(7)外壁下端连接有导向筒(11);所述的补偿弹簧(3)下端与轻阻尼减振器(7)上端连接,该补偿弹簧(3)上端与车架(1)连接,并在连接端安装有补偿弹簧预紧装置(2),该补偿弹簧(3)、轻阻尼减振器(7)、自由弹簧(6)依次连接在车架(1)与导向机构(5)之间形成串联安装。在这种安装形式中,也可倒置安装。所述的自由弹簧(6)上端与车架(1)连接、下端与轻阻尼减振器(7)上端连接,在轻阻尼减振器(7)外壁上端连接有导向筒(11);所述的补偿弹簧(3)上端与轻阻尼减振器下端连接,该补偿弹簧(3)下端与导向机构(5)连接,并在连接端安装有补偿弹簧预紧装置(2),该自由弹簧(6)、轻阻尼减振器(7)、补偿弹簧(3)依次连接在车架(1)与导向机构(5)之间形成串联安装。
其中,所述的自由弹簧(6)中心下端与导向机构(5)连接、两侧上端与车架(1)连接,所述的补偿弹簧(3)上端与车架(1)连接,该补偿弹簧(3)下端安装有隔振块(4),该隔振块(4)与自由弹簧(6)对中布置。
其中,自由弹簧(6)和补偿弹簧(3)并联安装时,以车辆空载时悬挂所承受的载荷为G0,负载负载时悬挂所承受的载荷为G,组成悬挂的补偿弹簧(3)的预紧力F>G-G0,自由弹簧(6)在车辆的静挠度值附近时,对车辆所提供的弹性支撑力f<G0。为了增加车辆的操控性,在设计时,组成悬挂的螺旋补偿弹簧的预紧力F≥1.1(G-G0),螺旋自由弹簧在车辆的静挠度值附近时,对车辆所提供的弹性支撑力f≤0.9G0。如果是需要操控性很强的车辆,可以设计很大的倍数,比如赛车,可以F≥2(G-G0),f≤0.5G0
其中,自由弹簧(6)和补偿弹簧(3)串联安装时,以车辆空载时悬挂所承受的载荷为G0,负载时悬挂所承受的载荷为G,组成悬挂的补偿弹簧(3)的预紧力F>G,自由弹簧(6)在车辆的静挠度值附近时,对车辆所提供的弹性支撑力满足f<G0
其中,组成悬挂的补偿弹簧(3)的预紧力F>1.1(G-G0),自由弹簧(6)在车辆的静挠度值附近时,对车辆所提供的弹性支撑力f<0.9G0。这种悬挂一般用于摩托车等悬挂行程很长的车辆上,应用于赛车相对较少,当然也可以按照并联的倍数去设计。
当然为了提高车辆的舒适性,也可以根据负荷的大小和运行要求随时调整补偿区间的范围大小,具体可以通过调节装置对补偿弹簧的预紧力进行动态调整来实 现,通常的调节装置有电子自动调节或手动调节的方式。
其中,组成悬挂的补偿弹簧(3)的预紧力F>1.1G,自由弹簧(6)在车辆的静挠度值附近时,对车辆所提供的弹性支撑力f<0.9G0
其中,所述的轻阻尼减振器的阻尼系数在伸张行程小于0.25,压缩行程小于0.15。因为车身的平衡以补偿弹簧保持,同时车身的振动减轻,所以采用阻尼系数更小的减振器就可保持车辆的行驶性能。
本发明有益效果是:通过悬挂中弹性元件的组合及补偿作用,实现了超过主动式悬挂的性能要求,适合于大部分的公路和轨道车辆,对于负荷变化很小的客运车辆尤其适用,不仅降低制造成本,还提升了操控性及舒适性。
附图说明
图1是本发明实施例1中的悬挂处于最大行程时的组合弹簧补偿悬挂示意图,此时悬挂的负荷小于补偿区间,自由弹簧处于伸长状态,补偿弹簧没有负荷。
图2是本发明实施例1中的悬挂处于静挠度时的组合弹簧补偿悬挂示意图,此时悬挂的负荷在补偿区间范围内,自由弹簧分担一部分负荷,补偿弹簧分担一部分负荷但小于预紧力,此时悬挂处于负载时的平衡静止状态。
图3是本发明实施例1中的悬挂处于动挠度时的组合弹簧补偿悬挂示意图,此时悬挂的负荷大于补偿区间,自由弹簧继续被压缩,补偿弹簧分担的负荷大于预紧力,继续被压缩,此时悬挂处于较大压缩状态。
图4是本发明实施例2中的悬挂处于最大行程时的充气弹簧补偿悬挂示意图,此时悬挂的负荷小于补偿区间,自由弹簧是钢板弹簧处于放松状态,补偿弹簧是充气弹簧没有负荷。
图5是本发明实施例2中的悬挂处于静挠度时的气弹簧补偿悬挂示意图,此时悬挂的负荷在补偿区间范围内,自由弹簧是钢板弹簧分担一部分负荷,补偿弹簧是气弹簧分担一部分负荷但没有被压缩,此时悬挂处于负载时的平衡静止状态。
图6是本发明实施例2中的悬挂处于动挠度时的气弹簧补偿悬挂示意图,此时悬挂的负荷大于补偿区间,钢板弹簧继续被压缩,气弹簧继续被压缩,此时悬挂处于较大压缩状态。
图7是本发明实施例3中的悬挂处于最大行程时的自由弹簧补偿悬挂示意图,自由弹簧和补偿弹簧为串联设计。此时悬挂的负荷小于补偿区间,自由弹簧处于放松状态,补偿弹簧没有负荷。
图8是本发明实施例3中的悬挂处于静挠度时的自由弹簧补偿悬挂示意图, 自由弹簧和补偿弹簧为串联设计。此时悬挂的负荷在补偿区间范围内,自由弹簧全部被压缩,补偿弹簧承担全部负荷,但是除预紧外,没有继续被压缩,此时悬挂处于负载时的平衡静止状态。
图9是本发明实施例3中的悬挂处于动挠度时的自由弹簧补偿悬挂示意图,自由弹簧和补偿弹簧为串联设计。此时悬挂的负荷大于补偿区间,自由弹簧处于最大压缩状态,补偿弹簧继续被压缩,此时悬挂处于较大压缩状态。
图10是本发明实施例4中的悬挂处于最大行程时的自由弹簧补偿悬挂示意图,自由弹簧和补偿弹簧为串联设计。此时悬挂的负荷小于补偿区间,自由弹簧处于放松状态,补偿弹簧没有负荷。
图11是本发明实施例4中的悬挂处于静挠度时的自由弹簧补偿悬挂示意图,自由弹簧和补偿弹簧为串联设计。此时悬挂的负荷在补偿区间范围内,自由弹簧全部被压缩,补偿弹簧承担全部负荷,但是除预紧力外,没有继续被压缩,此时悬挂处于负载时的平衡静止状态。
图12是本发明实施例4中的悬挂处于动挠度时的自由弹簧补偿悬挂示意图,自由弹簧和补偿弹簧为串联设计。此时悬挂的负荷大于补偿区间,自由弹簧处于最大压缩状态,补偿弹簧继续被压缩,此时悬挂处于较大压缩状态。
具体实施方式:
参见图1、图2、图3,实施例1中,图中车架(1),补偿弹簧预紧装置(2),补偿弹簧(3),隔振块(4),导向机构(5),自由弹簧(6),轻阻尼减振器(7),车轮(8)。
本发明所述的悬挂包含车架1,补偿弹簧预紧装置2,补偿弹簧3,隔振块4,导向机构5,自由弹簧6,轻阻尼减振器7,车轮8。其中弹性元件是由自由弹簧6(自由弹簧6是螺旋弹簧)和补偿弹簧3(补偿弹簧3是螺旋弹簧)并联组合而成,当车辆静止或处于平衡状态时,车轮对悬挂所产生的负荷由自由弹簧6和补偿弹簧3共同负担,悬挂的负荷在补偿区间(设补偿区间最小值为A,最大值为B,车辆空载时悬挂所承受的载荷为G0,负载负载时悬挂所承受的载荷为G,则A<G0<G<B,这个数值是设计的最小范围,一般设计都会超过这个范围)时,自由弹簧6和补偿弹簧3的长度均不发生变化,只有隔振块4会发生一定的形变,也就是说随着负荷的变化悬挂的行程仅发生很小的变化。
在这种悬挂中,组成悬挂的补偿弹簧的预紧力F>1.1(G-G0),自由弹簧对车辆所提供的弹性支撑力f<G0
悬挂的负荷小于0.9G0时,悬挂的自由弹簧6伸长,承担全部负荷;补偿弹簧3长度不变,不分担负荷。
悬挂的负荷超过1.1(G-G0)时,悬挂的自由弹簧6继续被压缩,承担一部分负荷;补偿弹簧3被压缩,分担其余负荷。
这种技术的最主要特征就是补偿弹簧3的最大行程受到预紧装置2的限制,仅在悬挂的静挠度到动挠度范围内工作。
在悬挂的静挠度附近,如果悬挂的空载荷是G0,负载时悬挂所承受的载荷荷为G,悬挂的自由弹簧6所提供的支撑力f和补偿弹簧3的预紧力F需要同时满足如下的关系:
Figure PCTCN2016078637-appb-000001
也就是说此时自由弹簧6所提供的支撑力小于悬挂所承受的静载荷,还有一部分载荷由预紧力限制的补偿弹簧3的来承担,当悬挂的载荷满足上述要求时,悬挂的负荷在其静挠度值附近一定范围内发生变化时,由于补偿弹簧3预紧力的补偿作用,自由弹簧6和补偿弹簧3的长度均不发生变化,悬挂的行程即使发生变化,也仅是隔振块受到压缩所发生的形变,不过形变量很小,总体效果就是悬挂的行程变化很小,在这个负荷范围内,悬挂的刚度很高。当悬挂的负荷的变化超过了这个范围,则两个弹簧就会发生相应的行程变化,完全可以满足车辆的行驶要求。
通过合理的设计,使车辆的悬挂负荷一定范围内变化时,悬挂的行程不变或仅发生很小的变化,这正是车辆悬挂所最需要的特性。比如当一个车轮受到冲击时,这个悬挂同时也受到冲击,其负荷的变化也会对车体产生一个振动冲击,这个冲击通过车架传到其它悬挂,但是因为其它悬挂工作在补偿区间内,由冲击所带来的负荷的变化如果在其它悬挂的补偿区间内,其它悬挂的行程不发生变化或者变化很小,整个车身依然保持相对平衡的状态;同样如果车辆因为速度、方向以及载重变化但在补偿区间的范围内发生变化时,悬挂负荷发生的变化也能被悬挂的补偿弹簧3补偿掉,悬挂的行程依然保持所需要的稳定状态,车辆能保持良好的操纵性和稳定性,同时不影响车辆的舒适性能。
参见图,4、图5、图6,实施例2中,补偿弹簧(3),隔振块(4),自由弹簧(6),车轮(8)。
实施例2中,本发明的车辆悬挂的弹性元件同样的包括自由弹簧6和补偿弹簧 3,其中补偿弹簧3为充气弹簧,自由弹簧6为钢板弹簧。
本实施例中气补偿弹簧3所起的作用与实施例1中所述的补偿弹簧3相同,钢板弹簧所起的作用与实施例1中所述的自由弹簧6相同。不同的是充气弹簧本身具有预紧弹簧的特性,不需要另外增加预紧装置,钢板弹簧可以同时起到导向连接的作用,悬挂的结构可以采用更简化的设计,同时充气弹簧的隔振性能已经很好,增加的隔振块4可以更进一步的减少噪音,钢板弹簧本身已具备一定的减振作用,如果对减振的要求不高时,可采用取消减振器的设计。在这种悬挂中,组成悬挂的充气弹簧的预紧力F>1.1(G-G0),自由弹簧对车辆所提供的弹性支撑力f<G0
参见图7、图8、图9,实施例3中,自由弹簧(6),轻阻尼减振器(7),导向筒(11),补偿弹簧(3),车轮(8)。
实施例3中,本发明的车辆悬挂的弹性元件同样的包括自由弹簧6和补偿弹簧3,其中补偿弹簧3为螺旋弹簧,自由弹簧6为螺旋弹簧。
本实施例中补偿弹簧3所起的作用与实施例1中所述的补偿弹簧3相同,自由弹簧6所起的作用与实施例1中所述的自由弹簧6相同。不同的是本实施例中,补偿弹簧3与自由弹簧6是串联连接,轻阻尼减振器7上连接有自由弹簧6的导向筒11,不仅可以起弹簧导向作用,还可以限制自由弹簧6的行程,使其提供的弹性支撑力满足f<G0,同时设计使补偿弹簧的预紧力F>G。
在悬挂的静挠度附近,如果悬挂的空载荷是G0,负载时悬挂所承受的的载荷为G,悬挂的自由弹簧6所提供的支撑力f和补偿弹簧3的预紧力F有如下的关系:
Figure PCTCN2016078637-appb-000002
在这种悬挂中,为增加车辆的操控性,通常组成悬挂的补偿弹簧3的预紧力F>1.1G,自由弹簧6对车辆所提供的弹性支撑力f<0.9G0
参见图10、图11、图12,实施例4中,自由弹簧(6),轻阻尼减振器(7),导向筒(11),补偿弹簧(3),车轮(8)。
实施例4中,本发明的车辆悬挂的弹性元件同样的包括自由弹簧6和补偿弹簧3,其中补偿弹簧3为螺旋弹簧3,自由弹簧6为螺旋弹簧6。
本实施例中补偿弹簧3所起的作用与实施例3中所述的补偿弹簧3相同,自由弹簧6所起的作用与实施例3中所述的自由弹簧6相同。不同的是本实施例中,补 偿弹簧3在下,自由弹簧6是在上,轻阻尼减振器7上连接有自由弹簧6的导向筒11,不仅可以起弹簧导向作用,还可以限制自由弹簧6提供的弹性支撑力满足f<G0,同时设计使补偿弹簧3的预紧力F>G。
具体结构是,自由弹簧6上端与车架1连接、下端与轻阻尼减振器7上端连接,在轻阻尼减振器7外壁上端连接有导向筒11;所述的补偿弹簧3上端与轻阻尼减振器7下端连接,该补偿弹簧3下端与导向机构5连接,并在连接端安装有补偿弹簧预紧装置2,该自由弹簧6、轻阻尼减振器7、补偿弹簧3依次连接在车架1与导向机构5之间形成串联安装。
总结如上说明和实施例,本发明所述的车辆悬挂设计方法和结构不同于以前的车辆悬挂装置,这种悬挂装置依靠悬挂两个以上弹性元件的组合及补偿实现了车辆多个悬挂的互相自动补偿特性,为满足悬挂的操纵性和舒适性要求提供了新的设计方法。
以上的实施例只是对于本发明的设计原理进行的举例说明,实际的设计和结构可能会有更多的变化,比如补偿区间的范围可能不仅仅需要满足A<G0<G<B,也有B-A超过(G-G0)50%以上的设计,对于特种车辆甚至可能超过1倍,另外也可以检测负荷的大小通过调整装置对B-A值的大小进行动态调节,可以满足更高的舒适性要求总之,本专利通过对补偿区间的设计,对一单一悬挂所产生的对车身的影响可以通过其它悬挂进行补偿和修正,最终可以保持和减少车身的振动,可以同时提高操纵性和舒适性。这种设计和装置均通过对补偿弹簧的预紧来实现,对于通过弹簧预紧实现悬挂的自动补偿功能的设计和结构,均在此专利保护范围内。
采用这种设计的悬挂一方面有很好的几何变形能力,具备吸收来自路面冲击的能力,有效减少或避免车身的振动;另一方面在悬挂在静挠度时,对悬挂的负荷具备自动补偿功能,使车辆在速度、方向以及载重发生变化时,能够有效减少或避免悬挂行程过度变化,有效的解决了车辆乘座舒适性和操控稳定性的矛盾,具有相当于或超过一般车辆上电子控制的主动悬挂的使用效果。
以上所述是本发明的较佳实施例及其所运用的技术原理,对于本领域的技术人员来说,在不背离本发明的精神和范围的情况下,任何基于本发明技术方案基础上的等效变换、简单替换等显而易见的改变,均属于本发明保护范围之内。

Claims (10)

  1. 一种组合弹簧补偿悬挂装置,其特征在于,它包括有自由弹簧、补偿弹簧、补偿弹簧预紧装置(2)、轻阻尼减振器(7)和导向机构(5);所述的自由弹簧、补偿弹簧、轻阻尼减振器设置在车架(1)与导向机构(5)之间,所述的补偿弹簧与车架(1)或导向机构(5)连接,在补偿弹簧一端安装有补偿弹簧预紧装置(2),导向机构(5)用来连接车轮和车身,为自由弹簧(6)、补偿弹簧(3)和轻阻尼减振器(7)提供定位安装。
  2. 如权利要求1所述的组合弹簧补偿悬挂装置,其特征在于,所述的自由弹簧(6)上端与车架(1)连接、下端与导向机构(5)连接,所述的轻阻尼减振器(7)上端与车架(1)连接、下端与导向机构(5)连接;所述的补偿弹簧(3)上端与车架(1)连接或下端与导向机构(5)固定连接,并在连接端安装有补偿弹簧预紧装置(2),该补偿弹簧(3)下端或上端安装有隔振块;该轻阻尼减振器(7)、自由弹簧(6)和补偿弹簧(3)在车架(1)与导向机构(5)之间形成并联安装。
  3. 如权利要求1所述的组合弹簧补偿悬挂装置,其特征在于,所述的自由弹簧(6)下端与导向机构(5)连接、上端与轻阻尼减振器(7)下端连接,在轻阻尼减振器(7)外壁下端连接有导向筒(11);所述的补偿弹簧(3)下端与轻阻尼减振器(7)上端连接,该补偿弹簧(3)上端与车架(1)连接,并在连接端安装有补偿弹簧预紧装置(2),该补偿弹簧(3)、轻阻尼减振器(7)、自由弹簧(6)依次连接在车架(1)与导向机构(5)之间形成串联安装。
  4. 如权利要求1所述的组合弹簧补偿悬挂装置,其特征在于,所述的自由弹簧(6)上端与车架(1)连接、下端与轻阻尼减振器(7)上端连接,在轻阻尼减振器(7)外壁上端连接有导向筒(11);所述的补偿弹簧(3)上端与轻阻尼减振器下端连接,该补偿弹簧(3)下端与导向机构(5)连接,并在连接端安装有补偿弹簧预紧装置(2),该自由弹簧(6)、轻阻尼减振器(7)、补偿弹簧(3)依次连接在车架(1)与导向机构(5)之间形成串联安装。
  5. 如权利要求1所述的组合弹簧补偿悬挂装置,其特征在于,所述的自由弹簧(6)中心下端与导向机构(5)连接、两侧上端与车架(1)连接,所述的补偿弹簧(3)上端与车架(1)连接,该补偿弹簧(3)下端安装有隔振块(4),该隔振块(4)与自由弹簧(6)对中布置。
  6. 如权利要求2所述的组合弹簧补偿悬挂装置,其特征在于,自由弹簧(6)和 补偿弹簧(3)并联安装时,以车辆空载时悬挂所承受的载荷为G0,负载时悬挂所承受的载荷为G,组成悬挂的补偿弹簧(3)的预紧力F>G-G0,自由弹簧(6)在车辆的静挠度值附近时,对车辆所提供的弹性支撑力f<G0
  7. 如权利要求3和4所述的组合弹簧补偿悬挂装置,其特征在于,自由弹簧(6)和补偿弹簧(3)串联安装时,以车辆空载时悬挂所承受的载荷为G0,负载时悬挂所承受的载荷为G,组成悬挂的补偿弹簧(3)的预紧力F>G,自由弹簧(6)在车辆的静挠度值附近时,对车辆所提供的弹性支撑力满足f<G0
  8. 如权利要求6所述的组合弹簧补偿悬挂装置,其特征在于,组成悬挂的补偿弹簧(3)的预紧力F>1.1(G-G0),自由弹簧(6)在车辆的静挠度值附近时,对车辆所提供的弹性支撑力f<0.9G0
  9. 如权利要求7所述的组合弹簧补偿悬挂装置,其特征在于,组成悬挂的补偿弹簧(3)的预紧力F>1.1G,自由弹簧(6)在车辆的静挠度值附近时,对车辆所提供的弹性支撑力f<0.9G0
  10. 如权利要求5或6所述组合弹簧补偿悬挂装置,其特征在于,所述的轻阻尼减振器的阻尼系数在伸张行程小于0.25,压缩行程小于0.15。
PCT/CN2016/078637 2015-04-27 2016-04-07 组合弹簧补偿悬挂装置 WO2016173390A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16785821.6A EP3290244A4 (en) 2015-04-27 2016-04-07 Combined spring compensation suspension device
KR1020177033338A KR20170140286A (ko) 2015-04-27 2016-04-07 조합 스프링 보상 서스펜션 장치
JP2017556229A JP2018514440A (ja) 2015-04-27 2016-04-07 複合スプリング補償式サスペンション装置
US15/721,818 US20180022178A1 (en) 2015-04-27 2017-09-30 Combined spring compensation suspension device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510206214.9A CN104773045B (zh) 2015-04-27 2015-04-27 组合弹簧补偿悬挂装置
CN201510206214.9 2015-04-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/721,818 Continuation US20180022178A1 (en) 2015-04-27 2017-09-30 Combined spring compensation suspension device

Publications (1)

Publication Number Publication Date
WO2016173390A1 true WO2016173390A1 (zh) 2016-11-03

Family

ID=53614942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078637 WO2016173390A1 (zh) 2015-04-27 2016-04-07 组合弹簧补偿悬挂装置

Country Status (6)

Country Link
US (1) US20180022178A1 (zh)
EP (1) EP3290244A4 (zh)
JP (1) JP2018514440A (zh)
KR (1) KR20170140286A (zh)
CN (1) CN104773045B (zh)
WO (1) WO2016173390A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10300760B1 (en) 2015-03-18 2019-05-28 Apple Inc. Fully-actuated suspension system
CN104773045B (zh) * 2015-04-27 2017-11-14 席玉林 组合弹簧补偿悬挂装置
CN106476867B (zh) * 2016-10-27 2019-08-30 台州宝诚科技服务有限公司 新型物流推车
CN106844903B (zh) * 2017-01-03 2020-02-28 山东理工大学 非等偏频一级渐变刚度板簧的挠度特性的仿真计算法
WO2018208510A1 (en) 2017-05-08 2018-11-15 Segame Technologies Llc Active suspension system
US10899340B1 (en) 2017-06-21 2021-01-26 Apple Inc. Vehicle with automated subsystems
US11173766B1 (en) 2017-09-07 2021-11-16 Apple Inc. Suspension system with locking structure
US10906370B1 (en) 2017-09-15 2021-02-02 Apple Inc. Active suspension system
US11124035B1 (en) 2017-09-25 2021-09-21 Apple Inc. Multi-stage active suspension actuator
US10960723B1 (en) 2017-09-26 2021-03-30 Apple Inc. Wheel-mounted suspension actuators
CN108608822B (zh) * 2018-07-23 2023-12-08 浙江大学滨海产业技术研究院 一种agv悬挂系统弹性调节方法及系统
US11285773B1 (en) 2018-09-12 2022-03-29 Apple Inc. Control system
US11634167B1 (en) 2018-09-14 2023-04-25 Apple Inc. Transmitting axial and rotational movement to a hub
US11345209B1 (en) * 2019-06-03 2022-05-31 Apple Inc. Suspension systems
US11179991B1 (en) 2019-09-23 2021-11-23 Apple Inc. Suspension systems
US11938922B1 (en) 2019-09-23 2024-03-26 Apple Inc. Motion control system
CN110978926B (zh) * 2019-12-31 2024-02-23 杭州极木科技有限公司 一种多级非独立悬架系统
CN113059972A (zh) * 2020-01-02 2021-07-02 株洲时代新材料科技股份有限公司 一种轻量化悬挂装置
US11707961B1 (en) 2020-04-28 2023-07-25 Apple Inc. Actuator with reinforcing structure for torsion resistance
US11828339B1 (en) 2020-07-07 2023-11-28 Apple Inc. Vibration control system
CN112319169B (zh) * 2020-10-19 2022-02-25 江苏大学 一种基于俯仰侧倾力补偿的顶层车身姿态控制方法
US12017498B2 (en) 2021-06-07 2024-06-25 Apple Inc. Mass damper system
CN114408056A (zh) * 2021-12-30 2022-04-29 上海龙创汽车设计股份有限公司 一种多功能服务机器人底盘

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079823A1 (ja) * 2009-01-09 2010-07-15 日本電気株式会社 半導体装置
CN101395017B (zh) * 2006-03-15 2011-04-13 宝马股份公司 用于汽车车轮悬架的弹性悬架系统
CN104773045A (zh) * 2015-04-27 2015-07-15 席玉林 组合弹簧补偿悬挂装置
CN204674327U (zh) * 2015-04-27 2015-09-30 席玉林 组合弹簧补偿悬挂装置

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US887002A (en) * 1908-05-05 James E Marriner Cushion attachment for automobiles.
GB190928954A (en) * 1909-12-10 1910-06-09 John Edward Anger Improvements in or relating to Bearing Springs or Spring Bearing Devices for Road Vehicles.
BE369139A (zh) * 1929-04-11
FR767306A (fr) * 1933-02-04 1934-07-16 Daimler Benz Ag Amortisseur de chocs à ressort comportant des ressorts supplémentaires
US2902274A (en) * 1957-06-11 1959-09-01 Monroe Auto Equipment Co Vehicle suspension system
GB1145419A (en) * 1967-03-07 1969-03-12 Daimler Benz Ag Improvements relating to axle suspensions for vehicles
US3559976A (en) * 1968-10-17 1971-02-02 Joseph Jerz Jr Variable stiffness suspension system
AU522455B2 (en) * 1977-10-12 1982-06-10 Leonard Jefferson Blee Servo controlled vehicle suspension
FR2506014B1 (fr) * 1981-05-14 1987-08-21 Brisard Gerard Appareil de bord pour controler les amortisseurs de suspension
FR2593256A1 (fr) * 1986-01-22 1987-07-24 Vey Maurice Amortisseur pour suspension de vehicule automobile
DE3608934A1 (de) * 1986-03-18 1987-09-24 Fichtel & Sachs Ag Federungssystem fuer ein kraftfahrzeug
DE3739663A1 (de) * 1987-11-24 1989-06-08 Bayerische Motoren Werke Ag Einstellbares federbein fuer kraftfahrzeuge
US4921272A (en) * 1989-02-10 1990-05-01 Lord Corporation Semi-active damper valve means with electromagnetically movable discs in the piston
FR2654992B1 (fr) * 1989-11-28 1992-03-06 Renault Suspension de vehicule.
DE4104904A1 (de) * 1991-02-18 1992-08-20 Bilstein August Gmbh Co Kg Regelbares federungssystem fuer radaufhaengungen an kraftfahrzeugen
FR2677929A1 (fr) * 1991-06-24 1992-12-24 Bianchi Mauro Sa Procede de suspension pour vehicules utilisant deux raideurs, destinees respectivement a l'obtention d'un bon niveau de confort et d'un bon niveau de comportement.
US5685555A (en) * 1995-02-21 1997-11-11 The Raymond Corporation Lift truck with inertial damper
US5785345A (en) * 1995-10-16 1998-07-28 The Boler Company Means for and method of controlling frame rise in vehicle suspensions
JP3657039B2 (ja) * 1995-10-30 2005-06-08 カヤバ工業株式会社 サスペンション機構
FR2757107B1 (fr) * 1996-12-12 1999-03-12 Bianchi Mauro Sa Suspensions de roue de vehicule utilisant un ressort combine a une armature souple destinee a modifier sa courbe de raideur
DE19855310C2 (de) * 1998-12-01 2000-10-05 Daimler Chrysler Ag Aktives Federungssystem für Fahrzeuge
US20020038929A1 (en) * 2000-06-23 2002-04-04 Now Leo Martin Shock absorber
US6761372B2 (en) * 2001-03-09 2004-07-13 Peter E Bryant Opposing spring resilient tension suspension system
US20030080527A1 (en) * 2001-10-26 2003-05-01 Bryant Peter E. Opposing spring rebound tension suspension system
DE10244361A1 (de) * 2002-09-24 2004-04-01 Daimlerchrysler Ag Vorrichtung zur Schwingungsdämpfung bei einem Fahrzeug
CN2705384Y (zh) * 2004-04-23 2005-06-22 中国嘉陵工业股份有限公司(集团) 摩托车内筒变刚度前减振器
US7665585B2 (en) * 2004-09-03 2010-02-23 Alexandridis Alexander A Vehicle suspension system and method for operating
JP4464798B2 (ja) * 2004-11-24 2010-05-19 トヨタ自動車株式会社 車両用サスペンション装置
DE102004058698B3 (de) * 2004-12-06 2006-02-09 Muhr Und Bender Kg Radaufhängung mit Federverstellung für Kraftfahrzeuge
DE202005006337U1 (de) * 2005-04-21 2005-06-16 Goldschmitt Techmobil Ag Zugfahrzeug mit Achsaufhängung
JP4396611B2 (ja) * 2005-10-07 2010-01-13 トヨタ自動車株式会社 車両用懸架シリンダ装置
JP4500786B2 (ja) * 2006-04-27 2010-07-14 カヤバ工業株式会社 緩衝器
US7850195B2 (en) * 2006-05-25 2010-12-14 Simard Suspensions Inc. Tandem suspension for steerable axles
DE102007042206B4 (de) * 2007-09-05 2016-05-25 Bayerische Motoren Werke Aktiengesellschaft Aktives Fahrwerksystem eines zweispurigen Fahrzeugs
DE102007051971B4 (de) * 2007-10-31 2010-09-16 Audi Ag Stellvorrichtung für Federungseinrichtungen
US7962261B2 (en) * 2007-11-12 2011-06-14 Bose Corporation Vehicle suspension
JP4930411B2 (ja) * 2008-02-26 2012-05-16 トヨタ自動車株式会社 車両用サスペンションシステム
CN102036841A (zh) * 2008-03-20 2011-04-27 Tlc悬浮有限责任公司 用于运载工具的复合悬吊系统
DE102009014201A1 (de) * 2009-03-20 2010-09-23 Audi Ag Aktives elektromechanisches Federungssystem für ein Fahrwerk eines Kraftfahrzeuges
JP5424751B2 (ja) * 2009-07-10 2014-02-26 カヤバ工業株式会社 サスペンション装置
DE102009051469A1 (de) * 2009-10-30 2011-05-05 Audi Ag Radaufhängung für Kraftfahrzeuge
CN201961398U (zh) * 2011-01-25 2011-09-07 三一重工股份有限公司 可变刚度前悬置装置
DE102013002713B4 (de) * 2013-02-16 2014-08-28 Audi Ag Drehstabfederanordnung für eine Radaufhängung eines Kraftfahrzeugs
DE102013002704A1 (de) * 2013-02-16 2014-08-21 Audi Ag Drehstabsystem für eine Fahrzeugachse eines zweispurigen Fahrzeuges
DE102013002714B4 (de) * 2013-02-16 2016-06-30 Audi Ag Drehfederanordnung für eine Radaufhängung eines Kraftfahrzeugs
US20150231942A1 (en) * 2014-02-15 2015-08-20 GM Global Technology Operations LLC Method and apparatus for suspension damping
CN203832186U (zh) * 2014-05-04 2014-09-17 江西远成汽车技术股份有限公司 半挂车复合悬架系统
JP6347248B2 (ja) * 2015-10-07 2018-06-27 トヨタ自動車株式会社 車両用サスペンション制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101395017B (zh) * 2006-03-15 2011-04-13 宝马股份公司 用于汽车车轮悬架的弹性悬架系统
WO2010079823A1 (ja) * 2009-01-09 2010-07-15 日本電気株式会社 半導体装置
CN104773045A (zh) * 2015-04-27 2015-07-15 席玉林 组合弹簧补偿悬挂装置
CN204674327U (zh) * 2015-04-27 2015-09-30 席玉林 组合弹簧补偿悬挂装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3290244A4 *

Also Published As

Publication number Publication date
JP2018514440A (ja) 2018-06-07
CN104773045A (zh) 2015-07-15
KR20170140286A (ko) 2017-12-20
EP3290244A1 (en) 2018-03-07
US20180022178A1 (en) 2018-01-25
EP3290244A4 (en) 2019-01-02
CN104773045B (zh) 2017-11-14

Similar Documents

Publication Publication Date Title
WO2016173390A1 (zh) 组合弹簧补偿悬挂装置
JP5782617B2 (ja) 走行装置への車体の接続が側方に柔軟な車両
US20180162187A1 (en) Vehicle with suspension force decoupling system
US6752408B2 (en) Vehicle suspension
US20050206111A1 (en) Tunable suspension system for enhanced acceleration characteristics of wheeled vehicles
WO2019015604A1 (zh) 双弹簧减震器总成
US20160159180A1 (en) Automobile Having a Suspension with a Highly Progressive Linkage and Method for Configuring Thereof
KR20200128812A (ko) 차량의 리어현가장치
CN204674327U (zh) 组合弹簧补偿悬挂装置
CN106347060B (zh) 一种平衡悬架和汽车
CN211308172U (zh) 一种汽车减震底盘悬架装置
CN104875571B (zh) 一种车辆用减振缓冲机构
CN207111810U (zh) 双弹簧减震器总成
KR101640680B1 (ko) 차량 서스펜션시스템용 완충 장치 및 이를 구비한 차량 서스펜션시스템 보조장치
KR20240034862A (ko) 충격 흡수기 조립체 및 이를 갖는 차량
GB2514258A (en) Leaf spring assembly for a vehicle
CN103486174B (zh) 一种减震弹簧
CN206551812U (zh) 一种液压成型多功能后扭力梁
CN206264743U (zh) 一种平衡悬架和汽车
KR102638576B1 (ko) 줄 꼬임을 이용한 모빌리티용 가변 서스펜션
CN221023159U (zh) 一种四轮独立悬挂机构
CN113602050A (zh) 一种整体桥式悬架
CN207241345U (zh) 一种可伸缩汽车底盘悬架
KR100599477B1 (ko) 차량용 쇽업소버의 어퍼 스프링 시트 장착구조
JP2582044Y2 (ja) 鉄道車両用軸箱支持装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16785821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017556229

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177033338

Country of ref document: KR

Kind code of ref document: A