CN108608822B - 一种agv悬挂系统弹性调节方法及系统 - Google Patents

一种agv悬挂系统弹性调节方法及系统 Download PDF

Info

Publication number
CN108608822B
CN108608822B CN201810814757.2A CN201810814757A CN108608822B CN 108608822 B CN108608822 B CN 108608822B CN 201810814757 A CN201810814757 A CN 201810814757A CN 108608822 B CN108608822 B CN 108608822B
Authority
CN
China
Prior art keywords
spring
max
elastic
motor
agv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810814757.2A
Other languages
English (en)
Other versions
CN108608822A (zh
Inventor
章逸丰
曹慧赟
赵永生
马辰斌
张德星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Jiazi Robot Technology Co ltd
Binhai Industrial Technology Research Institute of Zhejiang University
Original Assignee
Tianjin Jiazi Robot Technology Co ltd
Binhai Industrial Technology Research Institute of Zhejiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Jiazi Robot Technology Co ltd, Binhai Industrial Technology Research Institute of Zhejiang University filed Critical Tianjin Jiazi Robot Technology Co ltd
Priority to CN201810814757.2A priority Critical patent/CN108608822B/zh
Publication of CN108608822A publication Critical patent/CN108608822A/zh
Application granted granted Critical
Publication of CN108608822B publication Critical patent/CN108608822B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/42Electric actuator

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

本发明公开了一种AGV悬挂系统弹性调节方法及系统,包括安装在AGV小车车轮底板上的若干弹性可调的丝杆弹性单元;所述丝杆弹性单元包括电机、联轴器、丝杆,滑块、弹簧;所述弹簧上端挂在滑块上,下端与车轮底板连接;所述电机通过联轴器带动丝杠,控制滑块上下,进而调整弹簧伸缩量。本发明通过AGV悬挂系统弹性可调来适应不同的路况,具有弹性调节范围广,实时性强等特点。

Description

一种AGV悬挂系统弹性调节方法及系统
技术领域
本发明涉及AGV技术领域,特别涉及到一种AGV悬挂系统弹性调节方法及系统。
背景技术
AGV是(Automated Guided Vehicle)的缩写,意即“自动导引运输车”,随着AGV 技术的兴起,对AGV小车的稳定性的要求越来越高,减震性能是AGV小车的基本要求。目前AGV普遍采用的悬挂系统为1个弹簧被动减震,无法实现等效弹性系数可调,当小车承载货物较轻时,弹簧压缩量较小,此时悬挂系统弹性偏硬,容易出现小车频繁跳动现象;当小车承载货物较重时,弹簧压缩量较大,此时悬挂系统弹性偏软,遇到凹凸不平地面时,小车上下震动幅度较大。因此如何实现悬挂系统的弹性调节,是目前亟需解决的问题。
发明内容
针对上述问题,本发明提供了一种AGV悬挂系统弹性调节方法及系统,通过AGV悬挂系统弹性可调来适应不同的路况,具有弹性调节范围广,实时性强等特点。
为达到上述目的,本发明的技术方案是这样实现的:
一种AGV悬挂系统弹性调节方法,包括:
步骤1、AGV小车各车轮底板上都安装由若干弹性可调的弹性单元组成的弹簧组合单元;
步骤2、AGV小车开始工作,所有弹性单元均承重,工控机采集IMU数据流,获取垂直方向上的加速度数据,并绘制曲线a(t);
该曲线周期
该曲线最大正值amax=Ak/m=A4π2/T2
得:A=mamax/k=amaxT2/4π2
其中m为小车及载物总质量;k为等效弹性系数;A为小车上下振动振幅;T为加速度曲线周期;amax可直接从曲线a(t)获取数据;
步骤3、判断是否需要进行弹性调整:
步骤4:如需要调整,工控机通过算法,控制电机调整弹簧组合单元的等效弹性系数。
进一步的,步骤1所述弹性单元包括电机、联轴器、丝杆,滑块、弹簧;所述弹簧上端挂在滑块上,下端与车轮底板连接;所述电机受工控机控制,通过联轴器带动丝杠,控制滑块上下,进而调整弹簧伸缩量。
更进一步的,所述每个车轮底板的弹性单元通过固定板固定在一起,组成该底板的弹簧组合单元。
进一步的,步骤2所述IMU数据流由惯性测量单元IMU采集,所述惯性测量单元IMU设置在小车重心位置,与所述工控机通讯连接。
进一步的,步骤3所述判断方法为:
设定加速度曲线周期阈值Tmin和小车上下振动振幅Amax,即T≥Tmin且A=mamax/k≤Amax
步骤301、如果加速度曲线的周期T≥Tmin,且A=amaxT2/4π2≤Amax即amax≤Amax2/T2
则说明弹性单元软硬度适中,不需要介入控制。
步骤302、当加速度曲线的周期T<Tmin,说明此时弹性单元刚度过大,此时需要电机介入控制,降低弹性单元等效弹性系数k,直到周期大于等于Tmin且amax≤Amax2/T2。电机停止工作。
步骤303、当小车上下振幅A>Amax,说明此时弹性单元刚度过小,此时需要电机介入控制,调大弹性单元等效弹性系数k,直到amax≤Amax2/T2,且周期大于等于Tmin,电机停止工作。
更进一步的,步骤4所述调整方法为工控机通过算法,控制电机,调整丝杆上滑块的位置,从而控制弹簧压缩量。
本发明的另一方面,还提供了一种AGV悬挂系统弹性调节系统,包括安装在AGV小车车轮底板上的若干弹性可调的弹性单元;所述弹性单元包括电机、联轴器、丝杆,滑块、弹簧;所述弹簧上端挂在滑块上,下端与驱动轮底板连接;所述电机受工控机控制,通过联轴器带动丝杠,控制滑块上下,进而调整弹簧伸缩量。
进一步的,所述每个车轮底板的弹性单元通过固定板固定在一起,组成该底板的弹簧组合单元。
进一步的,还包括惯性测量单元IMU,所述惯性测量单元IMU设置在小车重心位置,与所述工控机通讯连接。
与现有技术相比,本发明具有如下的有益效果:
(1)本发明采用多个弹簧并联结构,且每个弹簧都能独立控制其压缩量组成一个弹性单元系统,多个弹簧通过协同工作组成的弹性单元系统,等效弹性系数可调,弹簧越多,等效弹性系数可调范围越大,灵活性越强;
(2)本发明根据惯性测量单元IMU对路面颠簸时AGV小车波动数据的侦测和计算,控制电机驱动单元实现弹性单元弹性系数变化的自动控制。
附图说明
图1是本发明的结构示意图;
图2是本发明弹性单元自适应控制流程图;
图3是本发明深度确定性策略梯度框架图。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
本发明的目的是提供一种电控可调弹簧组合刚度的弹性单元,可使AGV悬挂系统弹性可调,来适应不同的路况,具有弹性调节范围广,实时性强等特点。目前AGV普遍采用的悬挂系统为1个弹簧被动减震,无法实现弹性可调。若采用多个弹簧并联结构,且每个弹簧都能独立控制其压缩量组成一个弹性单元系统,多个弹簧通过协同工作组成的弹性单元系统,其最大优势是等效弹性系数可调,且弹簧越多,其等效弹性系数可调范围越大,灵活性越强。可以根据实际需求选择最适合的弹簧数量,使弹性单元软硬度在一个合理范围内,将对AGV小车在运动中的稳定性大大提升。本发明正是利用上述弹性单元系统等效弹性系数可调的特点,通过将多个弹簧并联组合成悬挂系统弹性单元,且每个弹簧搭载一个电机驱动,通过独立控制每个弹簧压缩量及启用不同的弹簧组合,从而控制弹性单元的等效弹性系数。另外,本发明采用深度确定性策略梯度算法学习弹性组合单元的等效弹性系数自适应变化控制规律,以神经网络为载体,根据传感器对当前弹性单元软硬度的感知,自动计算各个弹簧丝杆电机的输出量,实现弹性单元弹性系数变化的自动控制。
本发明所述的等效弹性系数,定义如下:
等效弹性系数:由n个平行弹簧构成的弹簧组,弹簧1的弹性系数为k1,弹簧2的弹性系数为k2,……弹簧n的弹性系数为kn
当此弹簧组受到外力F的作用时,根据胡克定律可知:
F=kΔx (1)
此时,k为此弹簧组的等效弹性系数,Δx为弹簧组等效伸缩量。
等效弹性系数在本发明中应用在弹簧组合单元上,如图1所示,在AGV小车车轮底板1 上分别安装弹簧组合单元:
弹簧组合单元包括固定板2和若干个丝杆弹性单元组成。
每个丝杆弹性单元由电机3、联轴器4、丝杆5,滑块6、弹簧7组成。
弹簧个数可以是2个或更多,布局为中心对称。
弹簧7上端挂在滑块6上,下端与底板1连接。
电机3连接工控机,接受工控机控制用来控制滑块6上下,进而调整弹簧伸缩量。
在AGV小车通过安装一个惯性测量单元IMU来感知路面颠簸情况。采集加速度传感器数据,在路面平整的情况下,小车平稳运行,在竖直方向上,其加速度约等于0,以时间为自变量,则可以描述为一条接近恒等于0的直线。在路面不平整的情况下,小车在竖直方向上的发生颠簸,加速度反映为一条上下波动的周期性曲线。该曲线与两个关键参数相关:小车上下波动位移z和波动周期T。
根据牛顿定律与胡克定律可知:
F=kZ ②
其中z为小车上下波动位移;F为弹性单元弹力,m为小车及载物总质量。k为弹簧组合单元的等效弹性系数。
由①和②得:
其特征方程为:
其特征根为:i为虚数;
则微分方程通解为:
其中,C1和C2为任意常数。
当t=0时,在平衡位置,其特征解:
z(t=0)=0=C1
假定振幅为A,C2=A
由此可知:加速度曲线的周期
时,求得加速度曲线的最大正值:
amax=Ak/m;
A=mamax/k; ④
由公式③④得知:
波动周期T和小车上下振动振幅A均与弹性单元等效弹性系数k负相关。
路面颠簸情况分为两种:一种为弹性单元等效弹性系数太大,即弹性单元偏硬,容易导致跳车行为,此时反映在曲线上的状态是波动周期T过小;另一种为弹性单元等效弹性系数太小,即弹性单元偏软,小车上下振动幅度A过大,此时反映在加速度曲线上的状态是最大加速度amax过大。
设置小车上下振动振幅阈值为Amax,加速度曲线周期阈值为Tmin
当电机未介入弹性单元,即初始状态,所有弹簧均承重。
AGV行驶过程中,当小车上下振幅大于Amax,说明此时弹性单元刚度过小,此时主控单元向电机驱动单元发送指令,通过调整电机压缩量或增加弹簧使用个数,调大弹性单元等效弹性系数k,直到振幅数值小于等于Amax,且周期大于Tmin,电机停止工作。
即:A=mamax/k≤Amax
得:k≥mamax/Amax
当采集的加速度传感器曲线周期小于Tmin,说明此时弹性单元刚度过大,此时主控单元向电机驱动单元发送指令,通过降低电机对弹簧的施压力或减少弹簧使用个数,来降低弹性单元刚度,直到周期大于等于Tmin且振幅数值小于Amax。电机停止工作。
即:
得:k≤4mπ2/Tmin 2
本专利通过调整弹性单元中的弹簧伸缩量,调整等效弹性系数,使等效弹性系数k满足条件⑤⑥。
本专利采取深度学习算法来调整弹性单元等效弹性系数。
深度学习算法描述:
由n个平行弹簧构成的弹簧组,弹簧1的弹性系数为k1,弹簧2的弹性系数为k2,……弹簧n的弹性系数为kn
当此弹簧组受到外力F的作用时,根据胡克定律可知:
F=kΔx (1)
此时,k为此弹簧组的等效弹性系数,Δx为弹簧组等效伸缩量;
根据牛顿力学定律可知:
F=k1Δx1+k2Δx2+……+knΔxn (2)
Δx1,Δx2,Δxn为弹簧1、弹簧2及弹簧n的伸缩量。
弹簧组合单元的初始位置为X0,形变量为Δx,
弹簧组合单元每一个弹簧的初始位置分别为形变量分别为Δx1,Δx2,……,Δxn
注意,弹簧组合单元一般收到外部压力的作用,因此ΔX通常为正;内部的弹簧长度可由丝杆控制,因此Δx可正可负。
根据公式(1)和(2)可知,通过调节Δx1,Δx2,……,Δxn可以实现弹性组合单元等效弹性系数的变化。具体调节规律采用端到端的深度强化学习方法学习得到。
因为惯性测量单元(以下简称IMU)测量的加速度信息和各个弹簧的Δx都是连续变量,所以我们采用深度确定性策略梯度(Deep Deterministic Policy Gradient,DDPG)算法学习弹性组合单元的等效弹性系数自适应变化控制规律。DDPG是一种基于行动者- 评论家(Actor-Critic,AC)框架的算法,即采用两个神经网络,一个神经网络作为Actor,输入为系统的状态,输出为系统的动作;另外一个神经网络作为Critic,输入为系统的状态,系统的动作,输出为评估函数。两个神经网络的训练采用梯度下降法,循环迭代直至收敛。
算法策略控制的原则:
弹簧使用个数由少至多,越少越好。
深度确定性策略梯度的框架具体如图3所示。
根据以上原理,
定义Actor网络的输入为IMU一段时间内(Δt)的加速度均值μa和方差σa以及当前各个弹簧的位置x1,x2,……,xn,输出为各个弹簧的Δx1,Δx2,……,Δxn
Actor神经网络为三层全连接层,第一层的神经元数量由输入的状态维度决定,第二层的神经元数量包含256个神经元,第三层的神经元数量由输出的动作维度决定,具体由弹簧的数量决定,两层神经元之间的激活函数为sigmoid函数,具体为
定义Critic网络的输入为Actor网络的输入以及Actor网络的输出,Critic网络的输出为反应震动状态的加速度均值μa和方差σa得线性相关的评估函数,具体为:
feval=-||μa||-||σa||
与Actor神经网络类似,Critic神经网络同样为三层全连接层,第一层的神经元数量由Actor神经网络输入的状态维度以及Actor神经网络输出的动作维度共同决定,第二层的神经元数量包含128个神经元,第三层的神经元数量为1,两层神经元之间的激活函数为sigmoid函数。
以评估函数最大化为训练目标,借助梯度下降法和反向梯度传播方法可对神经网络的参数逐级进行训练,迭代训练直至网络收敛,训练过程可用公式表示为:
其中E为上一层神经元的误差,W为本层神经元的参数,W*为本层神经网络参数更新后的结果。
由于神经网络训练需要大量的数据保证收敛,现实中很难获取大量的真实数据,我们采用先在仿真环境里训练,然后再在实物上Fine-Tune的策略保证学习的效率和质量。
如图2,流程描述:
步骤1:小车开始工作,此时电机驱动暂未介入弹性单元,即初始状态,所有弹簧均承重。采集IMU数据流,获取垂直方向上的加速度数据,并绘制曲线a(t)。
该曲线周期
该曲线最大正值amax=Ak/m=A4π2/T2
得:A=mamax/k=amaxT2/4π2
步骤2:判断是否需要调整等效弹性系数:
①如果加速度曲线的周期T≥Tmin,且A=amaxT2/4π2≤Amax即amax≤Amax2/T2,则说明弹性单元软硬度适中,不需要介入控制。
②当加速度曲线的周期T<Tmin,说明此时弹性单元刚度过大,此时需要电机介入控制,降低弹性单元等效弹性系数k,直到周期大于等于Tmin且amax≤Amax2/T2。电机停止工作。
③当小车上下振幅A大于Amax,说明此时弹性单元刚度过小,此时需要电机介入控制,调大弹性单元等效弹性系数k,直到amax≤Amax2/T2,且周期大于等于Tmin,电机停止工作。
步骤3:当收到需要电机介入控制的信号后,神经网络开始计算调整动作。
步骤4:通过算法,控制电机,调整丝杆上滑块的位置,从而控制弹簧压缩量。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明构思的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明保护范围内。

Claims (7)

1.一种AGV悬挂系统弹性调节方法,其特征在于,包括:
步骤1、AGV小车各车轮底板上都安装由若干弹性可调的弹性单元组成的弹簧组合单元;
步骤2、AGV小车开始工作,所有弹性单元均承重,工控机采集IMU数据流,获取垂直方向上的加速度数据,并绘制曲线a(t);
该曲线周期T=
该曲线最大正值amax=Ak/m=A4π2/T2
得出:A=mamax/k= amaxT2/4π2
其中m为小车及载物总质量;k为等效弹性系数;A为小车上下振动振幅;T为加速度曲线周期;amax可直接从曲线a(t)获取数据;
步骤3、判断是否需要进行弹性调整:
步骤4:如需要调整,工控机通过算法,控制电机调整弹簧组合单元的等效弹性系数;
步骤3所述判断方法为:
设定加速度曲线周期阈值Tmin和小车上下振动振幅Amax,即T≥Tmin且A= mamax/k≤Amax
步骤301、如果加速度曲线的周期T≥Tmin,且A= amaxT2/4π2≤Amax即amax≤Amax2/T2
则说明弹性单元软硬度适中,不需要介入控制;
步骤302、当加速度曲线的周期T<Tmin,说明此时弹性单元刚度过大,此时需要电机介入控制,降低弹性单元等效弹性系数k,直到周期大于等于Tmin且amax≤Amax2/T2,电机停止工作;
步骤303、当小车上下振幅A>Amax,说明此时弹性单元刚度过小,此时需要电机介入控制,调大弹性单元等效弹性系数k,直到amax≤Amax2/T2,且周期大于等于Tmin,电机停止工作;
步骤1所述弹性单元包括电机、联轴器、丝杆,滑块、弹簧;所述弹簧上端挂在滑块上,下端与车轮底板连接;所述电机受工控机控制,通过联轴器带动丝杠,控制滑块上下,进而调整弹簧伸缩量。
2.根据权利要求1所述的一种AGV悬挂系统弹性调节方法,其特征在于,所述每个车轮底板的弹性单元通过固定板固定在一起,组成该底板的弹簧组合单元。
3.根据权利要求1所述的一种AGV悬挂系统弹性调节方法,其特征在于,步骤2所述IMU数据流由惯性测量单元IMU采集,所述惯性测量单元IMU设置在小车重心位置,与所述工控机通讯连接。
4.根据权利要求1所述的一种AGV悬挂系统弹性调节方法,其特征在于,步骤4所述调整方法为工控机通过算法,控制电机,调整丝杆上滑块的位置,从而控制弹簧压缩量。
5.一种应用权利要求1-4任一所述的AGV悬挂系统弹性调节方法的AGV悬挂系统弹性调节系统,其特征在于,包括安装在AGV小车车轮底板上的若干弹性可调的弹性单元;所述弹性单元包括电机、联轴器、丝杆,滑块、弹簧;所述弹簧上端挂在滑块上,下端与车轮底板连接;所述电机受工控机控制,通过联轴器带动丝杠,控制滑块上下,进而调整弹簧伸缩量。
6.根据权利要求5所述的一种AGV悬挂系统弹性调节系统,其特征在于,所述每个车轮底板的弹性单元通过固定板固定在一起,组成该底板的弹簧组合单元。
7.根据权利要求6所述的一种AGV悬挂系统弹性调节系统,其特征在于,还包括惯性测量单元IMU,所述惯性测量单元IMU设置在小车重心位置,与所述工控机通讯连接。
CN201810814757.2A 2018-07-23 2018-07-23 一种agv悬挂系统弹性调节方法及系统 Active CN108608822B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810814757.2A CN108608822B (zh) 2018-07-23 2018-07-23 一种agv悬挂系统弹性调节方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810814757.2A CN108608822B (zh) 2018-07-23 2018-07-23 一种agv悬挂系统弹性调节方法及系统

Publications (2)

Publication Number Publication Date
CN108608822A CN108608822A (zh) 2018-10-02
CN108608822B true CN108608822B (zh) 2023-12-08

Family

ID=63666644

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810814757.2A Active CN108608822B (zh) 2018-07-23 2018-07-23 一种agv悬挂系统弹性调节方法及系统

Country Status (1)

Country Link
CN (1) CN108608822B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107014578B (zh) * 2017-04-06 2019-11-26 内蒙古工业大学 车辆对桥面现浇混凝土影响的模拟实验装置及其实验方法
CN112078318B (zh) * 2020-08-28 2024-05-07 的卢技术有限公司 一种基于深度强化学习算法的汽车主动悬架智能控制方法
CN112694033B (zh) * 2020-12-24 2024-07-05 天津迦自机器人科技有限公司 一种重载agv转运车

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624621A (ja) * 1985-06-28 1987-01-10 Hino Motors Ltd シヨツクアブソ−バの制御装置
CN1623813A (zh) * 2003-11-26 2005-06-08 株式会社万都 电控悬架装置以及减振力控制方法
CN103158476A (zh) * 2011-12-16 2013-06-19 通用汽车环球科技运作有限责任公司 改变车辆悬架刚度的悬架系统和方法
DE102013013324A1 (de) * 2013-08-09 2015-02-12 Audi Ag Radaufhängung für ein Fahrzeug
CN106004310A (zh) * 2016-06-22 2016-10-12 北京长安汽车工程技术研究有限责任公司 一种汽车及悬架偏频调节装置
CN106985627A (zh) * 2017-02-24 2017-07-28 江苏大学 一种车辆路面识别系统以及悬架模式切换方法
JP2018514440A (ja) * 2015-04-27 2018-06-07 席玉林XI, Yulin 複合スプリング補償式サスペンション装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624621A (ja) * 1985-06-28 1987-01-10 Hino Motors Ltd シヨツクアブソ−バの制御装置
CN1623813A (zh) * 2003-11-26 2005-06-08 株式会社万都 电控悬架装置以及减振力控制方法
CN103158476A (zh) * 2011-12-16 2013-06-19 通用汽车环球科技运作有限责任公司 改变车辆悬架刚度的悬架系统和方法
DE102013013324A1 (de) * 2013-08-09 2015-02-12 Audi Ag Radaufhängung für ein Fahrzeug
JP2018514440A (ja) * 2015-04-27 2018-06-07 席玉林XI, Yulin 複合スプリング補償式サスペンション装置
CN106004310A (zh) * 2016-06-22 2016-10-12 北京长安汽车工程技术研究有限责任公司 一种汽车及悬架偏频调节装置
CN106985627A (zh) * 2017-02-24 2017-07-28 江苏大学 一种车辆路面识别系统以及悬架模式切换方法

Also Published As

Publication number Publication date
CN108608822A (zh) 2018-10-02

Similar Documents

Publication Publication Date Title
US6212466B1 (en) Optimization control method for shock absorber
Theunissen et al. Preview-based techniques for vehicle suspension control: A state-of-the-art review
CN108973578B (zh) 基于深度强化学习的agv悬挂系统弹性调节方法
CN108608822B (zh) 一种agv悬挂系统弹性调节方法及系统
Canale et al. Semi-active suspension control using “fast” model-predictive techniques
CN110654195B (zh) 车辆、车辆悬架系统及其调节方法、装置
CN110154666B (zh) 一种可实现路况预测的车辆悬架系统自适应反推控制方法
US20140297119A1 (en) Context aware active suspension control system
CN100363194C (zh) 车辆的悬架以及控制该悬架的方法
CN109334378B (zh) 一种基于单神经元pid控制的车辆isd悬架主动控制方法
KR102654627B1 (ko) 차량 제어 장치, 차량 제어 방법 및 차량 제어 시스템
CN112506043B (zh) 轨道车辆及垂向减振器的控制方法和控制系统
JP4609767B2 (ja) システムの最適制御方法
Zareh et al. Semi-active vibration control of an eleven degrees of freedom suspension system using neuro inverse model of magnetorheological dampers
CN113911172A (zh) 一种基于自适应动态规划的高速列车优化运行控制方法
CN114261251A (zh) 目标车辆悬架控制方法、系统、车辆、设备及存储介质
Kaldas et al. Development of a semi-active suspension controller using adaptive-fuzzy with kalman filter
Kaldas et al. Rule optimized fuzzy logic controller for full vehicle semi-active suspension
CN107839425B (zh) 一种履带车辆垂直振动与俯仰振动协同控制方法
CN112434407A (zh) 一种履带式车辆多悬挂动力学参数分配优化设计方法
Hanafi et al. A quarter car arx model identification based on real car test data
Chiang et al. Optimized sensorless antivibration control for semiactive suspensions with cosimulation analysis
US20230017774A1 (en) Proactive control of vehicle systems
Gustafsson et al. Neural network controller for semi-active suspension systems with road preview
CN117015494A (zh) 衰减车身纵向加速度振荡的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant