WO2022198907A1 - 车辆显示屏的控制方法及装置、设备、介质及车辆 - Google Patents

车辆显示屏的控制方法及装置、设备、介质及车辆 Download PDF

Info

Publication number
WO2022198907A1
WO2022198907A1 PCT/CN2021/113563 CN2021113563W WO2022198907A1 WO 2022198907 A1 WO2022198907 A1 WO 2022198907A1 CN 2021113563 W CN2021113563 W CN 2021113563W WO 2022198907 A1 WO2022198907 A1 WO 2022198907A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
driver
vehicle
steering
pillar
Prior art date
Application number
PCT/CN2021/113563
Other languages
English (en)
French (fr)
Inventor
黎建平
王勇
许亮
Original Assignee
上海商汤临港智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海商汤临港智能科技有限公司 filed Critical 上海商汤临港智能科技有限公司
Publication of WO2022198907A1 publication Critical patent/WO2022198907A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/181Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/10Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of camera system used
    • B60R2300/105Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of camera system used using multiple cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/80Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement
    • B60R2300/802Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement for monitoring and displaying vehicle exterior blind spot views
    • B60R2300/8026Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement for monitoring and displaying vehicle exterior blind spot views in addition to a rear-view mirror system

Definitions

  • the present disclosure relates to the technical field of vehicles, and in particular, to a control method and device, equipment, medium and vehicle for a display screen of a vehicle.
  • the ABC pillar of the vehicle is not only a metal pillar that supports the roof of the cabin, but also plays an important role in protecting the occupants in the cabin.
  • the ABC column helps to greatly reduce the possibility of the cabin being squeezed and deformed, which is of great significance to protect the safety of the occupants in the cabin.
  • the A-pillar is the connecting column connecting the roof and the front cabin at the front left and right of the vehicle, usually between the engine compartment and the cockpit, above the left and right rearview mirrors. When turning, the A-pillars tend to obstruct the driver's vision.
  • the present disclosure provides a technical solution for controlling a display screen of a vehicle.
  • a method for controlling a display screen of a vehicle including:
  • control information for controlling the brightness state of the A-pillar display screen of the vehicle is generated, wherein the A-pillar display screen is installed inside the A-pillar of the vehicle and used to display the driver who is blocked by the A-pillar. Outside the car in the blind spot of sight.
  • the generating control information for controlling the brightness state of the A-pillar display screen of the vehicle according to the detection result includes:
  • first control information is generated, wherein the first control information is used to control the brightness state of the A-pillar display screen to switch to a preset high brightness state.
  • the brightness value corresponding to the preset high brightness state is positively correlated with the current ambient light brightness.
  • the generating control information for controlling the brightness state of the A-pillar display screen of the vehicle according to the detection result includes:
  • second control information is generated, wherein the second control information is used to control the brightness state of the A-pillar display screen to switch to a preset low brightness state, the brightness value corresponding to the preset low brightness state is lower than the current ambient light brightness.
  • the preset low-brightness state includes a non-screen-off state.
  • the method further includes:
  • third control information is generated, wherein the third control information is used to control the A The column display goes out.
  • the control information is used to control the brightness state of the A-pillar display screen corresponding to the steering direction indicated by the steering control;
  • the control information is used to control the brightness state of the A-pillar display screens on both sides.
  • the detection of the driver's steering control intention of the vehicle to obtain a detection result includes:
  • the driver's intention to control the steering of the vehicle is detected, and the detection result is obtained.
  • the driver's intention to control the steering of the vehicle is detected, and the detection result is obtained, including:
  • the detection result includes an intention to switch from straight-going control to steering control.
  • the driver's intention to control the steering of the vehicle is detected, and the detection result is obtained, including:
  • determining that the detection result includes switching from straight driving control to steering control intention of.
  • the driver's intention to control the steering of the vehicle is detected, and the detection result is obtained, including:
  • the detection result of the steering information includes an intention to switch from straight-going control to steering control.
  • the driver's intention to control the steering of the vehicle is detected, and the detection result is obtained, including:
  • the detection result includes an intention to switch from straight-going control to steering control.
  • the detection of the driver's steering control intention of the vehicle to obtain a detection result includes:
  • determining that the detection result includes an intention to switch from straight-going control to steering control.
  • the detection of the driver's steering control intention of the vehicle to obtain a detection result includes:
  • the detection result includes an intention to switch from straight driving control to steering control.
  • the detection of the driver's steering control intention of the vehicle to obtain a detection result includes:
  • the gaze direction of the driver the rotation direction of the driver's eyeballs, the rotation angle of the driver's eyeballs, and the orientation of the driver's head , the orientation of the driver's face;
  • the driver's head In response to the driver's gaze direction being the A-pillar direction, the driver's eyeball turning leftward or rightward, and the driver's eyeball turning angle exceeding a predetermined first angle threshold , the driver's head is oriented toward at least one of the A-pillars, and the driver's face is oriented toward at least one of the A-pillars, and the state of the turn signal and/or the state of the turn signal lever is obtained;
  • the detection result includes an intention to switch from straight driving control to steering control.
  • the method further includes:
  • fourth control information is generated, wherein the fourth control information is used to control the brightness state of the A-pillar display screen to switch to a preset high brightness state.
  • a control device for a display screen of a vehicle including:
  • the detection module is used to detect the driver's intention to control the steering of the vehicle, and obtain the detection result
  • the first generation module is configured to generate control information for controlling the brightness state of the A-pillar display screen of the vehicle according to the detection result, wherein the A-pillar display screen is installed inside the A-pillar of the vehicle and used to display The image outside the vehicle in the blind spot of the driver's line of sight formed by the A-pillar occlusion.
  • the first generation module is used for:
  • first control information is generated, wherein the first control information is used to control the brightness state of the A-pillar display screen to switch to a preset high brightness state.
  • the brightness value corresponding to the preset high brightness state is positively correlated with the current ambient light brightness.
  • the first generation module is used for:
  • second control information is generated, wherein the second control information is used to control the brightness state of the A-pillar display screen to switch to a preset low brightness state, the brightness value corresponding to the preset low brightness state is lower than the current ambient light brightness.
  • the preset low-brightness state includes a non-screen-off state.
  • the apparatus further includes:
  • a second generating module configured to generate third control information in response to the detection result not including the driver's intention to switch from straight-going control to steering control within the first preset time period, wherein the third control The information is used to control the A-pillar display to go out.
  • the control information is used to control the brightness state of the A-pillar display screen corresponding to the steering direction indicated by the steering control;
  • the control information is used to control the brightness state of the A-pillar display screens on both sides.
  • the detection module is used for:
  • the driver's intention to control the steering of the vehicle is detected, and the detection result is obtained.
  • the detection module is used for:
  • the detection result includes an intention to switch from straight-going control to steering control.
  • the detection module is used for:
  • determining that the detection result includes switching from straight driving control to steering control intention of.
  • the detection module is used for:
  • the detection result of the steering information includes an intention to switch from straight-going control to steering control.
  • the detection module is used for:
  • the detection result includes an intention to switch from straight-going control to steering control.
  • the detection module is used for:
  • determining that the detection result includes an intention to switch from straight-going control to steering control.
  • the detection module is used for:
  • the detection result includes an intention to switch from straight driving control to steering control.
  • the detection module is used for:
  • the gaze direction of the driver the rotation direction of the driver's eyeballs, the rotation angle of the driver's eyeballs, and the orientation of the driver's head , the orientation of the driver's face;
  • the driver's head In response to the driver's gaze direction being the A-pillar direction, the driver's eyeball turning leftward or rightward, and the driver's eyeball turning angle exceeding a predetermined first angle threshold , the driver's head is oriented toward at least one of the A-pillars, and the driver's face is oriented toward at least one of the A-pillars, and the state of the turn signal and/or the state of the turn signal lever is obtained;
  • the detection result includes an intention to switch from straight driving control to steering control.
  • the apparatus further includes:
  • a third generating module configured to generate fourth control information in response to detecting that the hazard warning flasher of the vehicle is turned on, wherein the fourth control information is used to control the brightness state of the A-pillar display screen to be switched to a preset high-brightness state.
  • a vehicle comprising:
  • the first camera is used to collect the outside image in the blind area of the driver's line of sight formed by the A-pillar, and send the outside image to the A-pillar display screen;
  • the controller is used to detect the driver's steering control intention of the vehicle, obtain a detection result, generate control information for controlling the brightness state of the A-pillar display screen according to the detection result, and report to the A-pillar display screen sending the control information;
  • the A-pillar display screen is installed on the inner side of the A-pillar of the vehicle, and is respectively connected with the first camera and the controller, and is used to control the brightness state according to the control information, and display the Outside image.
  • the controller is used to:
  • first control information is generated, wherein the first control information is used to control the brightness state of the A-pillar display screen to switch to a preset high brightness state.
  • the brightness value corresponding to the preset high brightness state is positively correlated with the current ambient light brightness.
  • the controller is used to:
  • second control information is generated, wherein the second control information is used to control the brightness state of the A-pillar display screen to switch to a preset low brightness state, the brightness value corresponding to the preset low brightness state is lower than the current ambient light brightness.
  • the preset low-brightness state includes a non-screen-off state.
  • the controller is further used for:
  • third control information is generated, wherein the third control information is used to control the A The column display goes out.
  • the control information is used to control the brightness state of the A-pillar display screen corresponding to the steering direction indicated by the steering control;
  • the control information is used to control the brightness state of the A-pillar display screens on both sides.
  • the vehicle further includes: a second camera for collecting image data of the driving area and sending the image data of the driving area to the controller;
  • the controller is configured to detect the driver's intention to control the steering of the vehicle according to the image data of the driving area, and obtain a detection result.
  • the controller is used to:
  • the detection result includes an intention to switch from straight-going control to steering control.
  • the controller is used to:
  • determining that the detection result includes switching from straight-forward control to steering control intention of.
  • the controller is used to:
  • the detection result of the steering information includes an intention to switch from straight-going control to steering control.
  • the controller is used to:
  • the detection result includes an intention to switch from straight-going control to steering control.
  • the vehicle further includes: a body control module for acquiring the steering wheel angle and/or the wheel angle of the vehicle, and sending the steering wheel angle and/or the wheel angle to the controller;
  • the controller is configured to: in response to determining that the vehicle is in a steering state according to the rotation angle of the steering wheel and/or the rotation angle of the wheels, determine that the detection result includes an intention to switch from straight-travel control to steering control.
  • the vehicle further includes: a body control module for acquiring the status of the turn signal and/or the status of the turn signal lever, and sending the status of the turn signal and/or the status of the turn signal lever to the controller. state;
  • the controller is configured to determine that the detection result includes an intention to switch from straight-travel control to steering control in response to the turn signal being turned on and/or the turn signal lever being a non-return state.
  • the vehicle further includes: a body control module for acquiring the state of the turn signal and/or the state of the turn signal lever;
  • the controller is configured to: determine at least one of the following according to the image data of the driving area: the gaze direction of the driver, the rotation direction of the driver's eyeball, the rotation angle of the driver's eyeball, the driving The orientation of the driver's head, the orientation of the driver's face; in response to the driver's gaze direction being the A-pillar direction, the driver's eyeball turning direction is turning left or right , the rotation angle of the driver's eyeball exceeds a predetermined first angle threshold, the driver's head is oriented toward the A-pillar, and the driver's face is oriented toward at least one of the A-pillar, Obtain the state of the turn signal and/or the state of the turn signal lever from the body control module; in response to the state of the turn signal being the on state and/or the state of the turn signal lever being the non-returning state, determine The detection result includes the intention to switch from straight-going control to steering control.
  • the controller is further used for:
  • fourth control information is generated, wherein the fourth control information is used to control the brightness state of the A-pillar display screen to switch to a preset high brightness state.
  • an electronic device comprising: one or more processors; a memory for storing executable instructions; wherein the one or more processors are configured to invoke the memory storage executable instructions to perform the above method.
  • a computer-readable storage medium having computer program instructions stored thereon, the computer program instructions implementing the above method when executed by a processor.
  • a computer program product comprising computer-readable code, or a non-volatile computer-readable storage medium carrying the computer-readable code, when the computer-readable code is stored in an electronic device When running, the processor in the electronic device executes the above method.
  • a detection result is obtained, and according to the detection result, control information for controlling the brightness state of the A-pillar display screen of the vehicle is generated.
  • the driver's steering control of the vehicle intends to control the brightness state of the A-pillar display screen, so as to provide the driver with a blind spot for the driver's line of sight formed by the A-pillar occlusion on the premise of reducing the interference of the A-pillar display screen to the driver. Image outside the car, which in turn helps to improve driving safety and can reduce the power consumption of the A-pillar display.
  • FIG. 1 shows a flowchart of a method for controlling a display screen of a vehicle provided by an embodiment of the present disclosure.
  • FIG. 2 shows a schematic diagram of a vehicle provided by an embodiment of the present disclosure.
  • FIG. 3 shows a schematic diagram of an application scenario provided by an embodiment of the present disclosure.
  • FIG. 4 shows a block diagram of a control device for a vehicle display screen provided by an embodiment of the present disclosure.
  • FIG. 5 shows a block diagram of an electronic device 800 provided by an embodiment of the present disclosure.
  • FIG. 6 shows a block diagram of an electronic device 1900 provided by an embodiment of the present disclosure.
  • Embodiments of the present disclosure provide a method and device for controlling a display screen of a vehicle, an electronic device, a storage medium, and a vehicle.
  • a detection result is obtained, and according to the detection result, a Control information that controls the brightness state of the A-pillar display screen of the vehicle, so that the brightness state of the A-pillar display screen can be controlled based on the driver's steering control intention of the vehicle, so as to reduce the interference of the A-pillar display screen to the driver. It provides the driver with an image outside the vehicle in the blind area of the driver's line of sight formed by the occlusion of the A-pillar, thereby helping to improve driving safety and reducing the power consumption of the A-pillar display.
  • FIG. 1 shows a flowchart of a method for controlling a display screen of a vehicle provided by an embodiment of the present disclosure.
  • the control method of the vehicle display screen may be executed by a terminal device or a server or other processing device.
  • the terminal device may be a vehicle-mounted device, a user equipment (User Equipment, UE), a mobile device, a user terminal, a terminal, a cellular phone, a cordless phone, a Personal Digital Assistant (PDA), a handheld device, a computing device, or a wearable devices, etc.
  • UE user equipment
  • PDA Personal Digital Assistant
  • the in-vehicle device may be a vehicle, a domain controller or a processor in the cabin, or may be a DMS (Driver Monitor System, driver monitoring system) or an OMS (Occupant Monitoring System, occupant monitoring system) used to execute images Device host, etc. for data processing operations.
  • the method for controlling the display screen of the vehicle may be implemented by the processor calling computer-readable instructions stored in the memory. As shown in FIG. 1 , the control method of the vehicle display screen includes steps S11 to S12.
  • step S11 the driver's intention to control the steering of the vehicle is detected, and the detection result is obtained.
  • step S12 control information for controlling the brightness state of the A-pillar display screen of the vehicle is generated according to the detection result, wherein the A-pillar display screen is installed inside the A-pillar of the vehicle, and is used to display the A-pillar displayed by the vehicle.
  • the A-pillar display screen may refer to a display screen installed on the inner side of the A-pillar of the vehicle and used to display the image outside the vehicle in the blind area of the driver's line of sight formed by the occlusion of the A-pillar.
  • the A-pillar display screen When the A-pillar display screen is lit, it can display the outside image in real time in the blind area of the driver's line of sight formed by the A-pillar occlusion.
  • the number of A-pillar displays can be one or more than two.
  • the number of A-pillar displays can be one, if the vehicle is left rudder, the A-pillar display can be installed on the inside of the left A-pillar, and if the vehicle is right-hand rudder, the A-pillar display can be installed on the right Inside the A-pillar.
  • the number of A-pillar display screens may be two, and the two A-pillar display screens are respectively installed on the inner side of the left A-pillar and the inner side of the right A-pillar.
  • more than two A-pillar display screens may be installed inside the left A-pillar, and/or more than two A-pillar display screens may be installed inside the right A-pillar.
  • the A-pillar display screen can not only be used to display the outside image in the blind area of the driver's line of sight formed by the A-pillar, but also can be used to display other information. Those skilled in the art can use it according to the actual application scenario. Additional functions of the A-pillar display can be flexibly set according to needs and/or personal preferences, which are not limited here.
  • the image outside the vehicle in the blind area of the driver's line of sight formed by being blocked by the A-pillar can be acquired by at least one camera installed outside the cabin.
  • the outside image in the blind area of the driver's line of sight formed by the occlusion of the left A-pillar can be acquired by at least one camera installed in the left rearview mirror, the outside of the left A-pillar, the left side of the front windshield, etc. , where the left rearview mirror represents the exterior rearview mirror on the left side of the vehicle; the outside image in the blind area of the driver's sight formed by the right A-pillar can be installed on the right rearview mirror, the outside of the right A-pillar, At least one camera on the right side of the front windshield, etc. is acquired, wherein the right rearview mirror represents the exterior rearview mirror on the right side of the vehicle.
  • the driver's intention to control the steering of the vehicle may represent the driver's intention to control the steering of the vehicle and/or control the vehicle to go straight.
  • the detection result of the driver's intention to control the steering of the vehicle may include: intention to switch from straight control to steering control, intention to switch from steering control to straight control, intention to maintain straight control, intention to maintain steering control, and the like.
  • the straight-driving control means controlling the vehicle to go straight
  • the steering control means controlling the steering of the vehicle, wherein the steering control may include left-turn control or right-turn control. Controlling vehicle steering can be used to control vehicle turns, lane changes, U-turns, and the like.
  • the detecting the driver's intention to control the steering of the vehicle to obtain the detection result includes: acquiring image data of the driving area; detecting the steering of the vehicle by the driver according to the image data of the driving area Control intent and get detection results.
  • the image data of the driving area may be acquired by at least one camera installed in and/or outside the vehicle cabin.
  • the image data of the driving area can be obtained through the DMS camera installed in the vehicle cabin.
  • the image data of the driving area can be acquired through a common camera installed in the vehicle cabin.
  • the image data of the driving area may include at least one of videos, images, and image sequences of the driving area.
  • the visual information of the driving area can be used to accurately detect the driver Steering control intent for the vehicle.
  • the image data of the driving area can be input into a pre-trained first neural network, and the driver's intention to control the steering of the vehicle can be detected via the first neural network to obtain a detection result.
  • the first neural network may be pre-trained by using the first training data set.
  • the first training data set may include multiple items of image samples of the driving area, and labeled data of the detection results corresponding to the multiple items of image samples of the driving area one-to-one.
  • detecting the driver's steering control intention to the vehicle through the first neural network can improve the accuracy of the detection result of the driver's steering control intention to the vehicle, and can improve the detection of the driver's steering control intention to the vehicle. speed.
  • a function for detecting the driver's steering control intention of the vehicle can be pre-designed, and the pre-designed function can be used to detect the driver's steering control intention to the vehicle from the image data of the driving area, and obtain Test results.
  • the detecting the driver's intention to control the steering of the vehicle according to the image data of the driving area, and obtaining the detection result includes: determining the driver's steering control intention according to the image data of the driving area. Gaze direction; in response to the driver's gaze direction being the A-pillar direction, it is determined that the detection result includes an intention to switch from straight-going control to steering control.
  • the driver's gaze direction is the A-pillar direction, which may indicate that the driver's gaze area is the area where the A-pillar is located.
  • the image data of the driving area can be input into a pre-trained second neural network, and the driver's gaze direction can be determined via the second neural network.
  • the second neural network may be pre-trained by using the second training data set.
  • the second training data set may include multiple items of image samples of the driving area, and labeled data of gaze directions corresponding to the multiple items of image samples of the driving area one-to-one.
  • the driver's gaze direction is determined according to the image data of the driving area, and in response to the driver's gaze direction being the direction of the A-pillar, it is determined that the detection result includes the intention to switch from the straight driving control to the steering control, which is determined by This can accurately determine the driver's steering control intention of the vehicle based on the driver's gaze direction.
  • the detecting the driver's intention to control the steering of the vehicle according to the image data of the driving area, and obtaining the detection result includes: determining the driver according to the image data of the driving area the rotation direction and/or rotation angle of the eyeball; in response to the rotation direction of the driver's eyeball being left or right, and/or the rotation angle of the eyeball exceeds a predetermined first angle threshold, It is determined that the detection result includes the intention to switch from straight-going control to steering control.
  • the rotational direction of the driver's eyeball may be determined according to the image data of the driving area, and in response to whether the rotational direction of the driver's eyeball is leftward or rightward, it is determined that the detection result includes the direct driving control Intent to switch to steering control.
  • the image data of the driving area can be input into a pre-trained third neural network, and the rotation direction of the driver's eyeball can be determined via the third neural network.
  • the third neural network may be pre-trained by using the third training data set.
  • the third training data set may include multiple items of image samples of the driving area, and labeled data of the rotation directions of the eyeballs corresponding to the multiple items of image samples of the driving area one-to-one.
  • the rotational angle of the driver's eyeball may be determined according to the image data of the driving area, and in response to the rotational angle of the driver's eyeball exceeding a predetermined first angle threshold, determining the detection result includes switching from the straight-driving control to Steering control intent.
  • the image data of the driving area can be input into a pre-trained fourth neural network, and the rotation angle of the driver's eyeball can be determined via the fourth neural network.
  • the fourth neural network may be pre-trained by using the fourth training data set.
  • the fourth training data set may include multiple items of image samples of the driving area, and labeled data of the rotation angles of the eyeballs corresponding to the multiple items of image samples of the driving area one-to-one.
  • the rotation direction and rotation angle of the driver's eyeball may be determined according to the image data of the driving area, and in response to the driver's rotation direction of the eyeball being leftward or rightward, and the driver The rotation angle of the eyeball exceeds a predetermined first angle threshold, and it is determined that the detection result includes an intention to switch from straight-travel control to steering control.
  • the rotation direction and/or rotation angle of the driver's eyeballs are determined according to the image data of the driving area, and the rotation direction of the driver's eyeballs is leftward or rightward in response, and/or Or the rotation angle of the eyeball exceeds a predetermined first angle threshold, and it is determined that the detection result includes the intention to switch from the straight driving control to the steering control, so that the driver can accurately determine based on the rotation direction and/or rotation angle of the driver's eyeball. steering control intent.
  • the detecting the driver's intention to control the steering of the vehicle according to the image data of the driving area, and obtaining the detection result includes: determining the driver according to the image data of the driving area the rotation direction of the eyeball; in response to the rotation direction of the driver's eyeball being left or right, according to the image data of the driving area, determine the driver's line of sight direction; in response to the The driver's line of sight falls on the A-pillar, and it is determined that the detection result of the steering information includes the intention to switch from straight-driving control to steering control.
  • the image data of the driving area can be input into a pre-trained fifth neural network, and the driver's sight direction can be determined via the fifth neural network.
  • the fifth neural network may be pre-trained by using the fifth training data set.
  • the fifth training data set may include multiple items of image samples of the driving area, and labeled data of the line of sight directions corresponding to the multiple items of image samples of the driving area.
  • the driver's sight direction is determined according to the image data of the driving area by responding to whether the driver's eyeball is turning left or right, and in response to the driver's sight direction falling on On the A-pillar, it is determined that the detection result of the steering information includes the intention to switch from straight driving control to steering control, so that the driver's eyeballs can be tracked based on the image data of the driving area, so that the driver's steering control intention of the vehicle can be accurately determined.
  • the detecting the driver's intention to control the steering of the vehicle according to the image data of the driving area, and obtaining the detection result includes: determining the driver according to the image data of the driving area The orientation of the head or face of the driver; in response to the orientation of the driver's head or face being toward the A-pillar, determining that the detection result includes an intention to switch from straight-going control to steering control.
  • the image data of the driving area may be input into a pre-trained sixth neural network, and the orientation of the driver's head may be determined via the sixth neural network.
  • the sixth neural network may be pre-trained by using the sixth training data set.
  • the sixth training data set may include multiple items of image samples of the driving area, and labeled data of the orientation of the head corresponding to the multiple items of image samples of the driving area one-to-one.
  • the image data of the driving area can be input into a pre-trained seventh neural network, and the orientation of the driver's face can be determined via the seventh neural network.
  • the seventh neural network may be pre-trained by using the seventh training data set.
  • the seventh training data set may include multiple items of image samples of the driving area, and labeled data of the orientation of the face corresponding to the multiple items of image samples of the driving area one-to-one.
  • the orientation of the driver's head or face is determined according to the image data of the driving area, and in response to the orientation of the driver's head or face being toward the A-pillar, the determination is made.
  • the detection result includes the intention to switch from the straight travel control to the steering control, whereby the driver's intention to control the steering of the vehicle can be accurately determined based on the orientation of the driver's head or face.
  • the driving areas in the first training data set, the second training data set, the third training data set, the fourth training data set, the fifth training data set, the sixth training data set and the seventh training data set can be the same or different.
  • the image samples of any driving area in any training dataset may be videos, images, or image sequences of the driving area.
  • the detecting the driver's intention to control the steering of the vehicle, and obtaining the detection result includes: acquiring the steering wheel angle and/or the wheel angle of the vehicle; The turning angle and/or the turning angle of the wheel determines that the vehicle is in a steering state, and it is determined that the detection result includes an intention to switch from straight-travel control to steering control.
  • a body control module BCM, Body Control Module
  • BCM Body Control Module
  • the vehicle may be determined that the vehicle is in a steering state in response to the turning angle of the wheel being greater than or equal to a predetermined third angle threshold.
  • it may be determined that the vehicle is in a steering state in response to the steering wheel angle being greater than or equal to a predetermined second angle threshold and the wheel angle being greater than or equal to a predetermined third angle threshold.
  • the driver's intention to control the steering of the vehicle can be accurately determined by using the steering angle and/or the wheel angle.
  • the detecting the driver's intention to control the steering of the vehicle, and obtaining the detection result includes: acquiring the state of the turn signal and/or the state of the turn signal lever; If the state is an on state and/or the state of the turn signal lever is a non-return state, it is determined that the detection result includes an intention to switch from straight-travel control to steering control.
  • the state of the turn signal and/or the state of the turn signal lever of the vehicle may be acquired through the body control module or other modules.
  • the state of the turn signal light may be an on state or an off state
  • the state of the turn signal lever may be a return state or a non-return state.
  • the detection result includes an intention to switch from straight-travel control to steering control in response to the turn signal being in an on state.
  • the detection result in response to the state of the turn signal lever being a non-return state, it may be determined that the detection result includes an intention to switch from straight-travel control to steering control.
  • the detection result includes an intention to switch from straight-travel control to steering control in response to the turn signal being turned on and the turn signal lever being non-returning.
  • the driver's intention to control the steering of the vehicle can be accurately determined by using the state of the turn signal and/or the turn signal lever.
  • the detecting the driver's intention to control the steering of the vehicle, and obtaining the detection result includes: determining at least one of the following according to the image data of the driving area: the driver's gaze direction, all the The rotation direction of the driver's eyeball, the rotation angle of the driver's eyeball, the orientation of the driver's head, the orientation of the driver's face; in response to the driver's gaze direction is A The direction of the column, the rotation direction of the driver's eyeball is left or right, the rotation angle of the driver's eyeball exceeds a predetermined first angle threshold, and the driver's head is facing toward At least one of the A-pillar and the driver's face is oriented toward the A-pillar, obtaining the state of the turn signal and/or the state of the turn signal lever; in response to the state of the turn signal being an on state and/or Or the state of the turn signal lever is a non-return state, and it is determined that the detection result includes an intention to switch from straight-travel control to steering control
  • the detection result in response to satisfying the first preset condition, it is determined that the detection result includes an intention to maintain the straight-forward control.
  • the first preset condition may include at least one of the following: the driver's gaze direction is in front of the vehicle; the driver's head or face is facing in front of the vehicle; determined according to the steering wheel angle and/or the wheel angle of the vehicle The vehicle is in a non-steering state; the state of the turn signal is an off state and/or the state of the turn signal lever is a return state.
  • the driver's gaze direction is in front of the vehicle; the driver's head or face is facing in front of the vehicle; determined according to the steering wheel angle and/or the wheel angle of the vehicle The vehicle is in a non-steering state; the state of the turn signal is an off state and/or the state of the turn signal lever is a return state.
  • the state of the turn signal is an off state and/or the state of the turn signal lever is a return state.
  • the second preset condition may include at least one of the following: the driver's gaze direction is in the direction of the A-pillar for a duration that reaches the second preset duration; the orientation of the driver's head or face is in the direction of the A-pillar for the duration Reaching a third preset duration; determining that the vehicle is in a steering state for a duration that reaches a fourth preset duration according to the steering wheel angle and/or the wheel angle; the turn signal is turned on and/or The state of the turn signal lever is the non-return state and the duration reaches the fifth preset duration.
  • the driver's gaze direction is in the direction of the A-pillar for a duration that reaches the second preset duration
  • the orientation of the driver's head or face is in the direction of the A-pillar for the duration Reaching a third preset duration
  • the turn signal is turned on and/or
  • the detection result includes an intention to switch from steering control to straight-ahead control.
  • the third preset condition may include at least one of the following: the driver's gaze direction is converted from the direction of the A-pillar to the front of the vehicle; the direction of the driver's head or face is converted from the direction of the A-pillar to the front of the vehicle; according to The turning angle of the steering wheel and/or the turning angle of the wheels determines that the vehicle is converted from a steering state to a non-steering state; the state of the turn signal is converted from an on state to an off state; the state of the turn signal lever is changed from a non-steering state.
  • the reset state transitions to the reset state.
  • those skilled in the art can also set other conditions for determining that the detection result includes the intention to switch from steering control to straight-forward control, which is not limited here.
  • the brightness state of the A-pillar display screen may represent the brightness state of the A-pillar display screen and/or the on-off state of the A-pillar display screen.
  • the control information may represent information for controlling the brightness state of the A-pillar display of the vehicle. After the control information is generated according to the detection result, the control information may be sent to the A-pillar display screen.
  • the A-pillar display screen can control the brightness state according to the control information, and display the outside image in the blind area of the driver's line of sight formed by the blocking of the A-pillar when it is on.
  • the A-pillar display screen can adjust the brightness status; if the current brightness status of the A-pillar display screen is different from the brightness status indicated by the control information If the indicated brightness status is the same, the A-pillar display screen can not adjust the brightness status.
  • the generating control information for controlling the brightness state of the A-pillar display screen of the vehicle according to the detection result includes: switching from straight-driving control to steering control in response to the detection result
  • the intent is to generate first control information, wherein the first control information is used to control the brightness state of the A-pillar display screen to be switched to a preset high brightness state.
  • the control information includes first control information.
  • the brightness value corresponding to the preset high brightness state may be higher than the current ambient light brightness. Under different ambient light brightness, the brightness values corresponding to the preset high brightness state may be different or the same.
  • the first control information when the A-pillar display screen is in a screen-off state, can be used to control the A-pillar display screen to light up the screen, and control the A-pillar display screen to adjust the brightness to a preset high brightness state Corresponding brightness value; when the A-pillar display screen is on, the first control information can be used to control the A-pillar display screen to adjust the brightness to a preset brightness value corresponding to the high brightness state.
  • first control information for controlling the brightness state of the A-pillar display screen to switch to a preset high-brightness state is generated.
  • the A-pillar display can be controlled to display the outside image in the blind area of the driver's sight formed by the A-pillar with sufficient brightness, so that the driver can clearly see through the A-pillar display.
  • the image outside the car in the blind spot of the driver's line of sight formed by the A-pillar can improve steering safety.
  • the brightness value corresponding to the preset high brightness state is positively correlated with the current ambient light brightness.
  • the brightness value corresponding to the preset high brightness state when the brightness of the current ambient light is high, the brightness value corresponding to the preset high brightness state may be high; when the brightness of the current ambient light is low, the brightness value corresponding to the preset high brightness state may be lower.
  • the brightness value corresponding to the preset high brightness state can be flexibly determined according to the current ambient light brightness, thereby further improving driving safety. For example, the ambient light brightness during daytime and nighttime is usually quite different. By determining the brightness value corresponding to the preset high brightness state according to the current ambient light brightness, it is possible to reduce the brightness of the A-pillar display screen when the ambient light brightness is high.
  • the lower level prevents the driver from seeing the A-pillar display and can reduce the glare caused by the higher brightness of the A-pillar display when the ambient light level is low. That is, under different ambient light brightness, the A-pillar display screen can be controlled to display at an appropriate brightness, so that the driver can see the outside image displayed on the A-pillar display screen clearly and reduce the damage to the driver's eyes.
  • the generating control information for controlling the brightness state of the A-pillar display screen of the vehicle according to the detection result includes: in response to the detection result, including switching from steering control to straight driving The intention of control is to generate second control information, wherein the second control information is used to control the brightness state of the A-pillar display screen to switch to a preset low brightness state, and the preset low brightness state corresponds to the brightness The value is lower than the current ambient light level.
  • the control information includes second control information. Under different ambient light brightness, the brightness values corresponding to the preset low brightness state may be different or the same. For example, the brightness value corresponding to the preset low brightness state is positively correlated with the current ambient light brightness.
  • the preset low brightness state When the current ambient light brightness is high, the preset low brightness state may correspond to a high brightness value; when the current ambient light brightness is low, the preset low brightness state may correspond to a low brightness value.
  • second control information for controlling the brightness state of the A-pillar display screen to switch to a preset low brightness state is generated, and the This can reduce the interference of the A-pillar display on the driver's driving after the steering is completed, and can save the power consumption of the A-pillar display.
  • the brightness state of the A-pillar display screen is controlled to be switched to a preset low brightness state, which can greatly reduce the brightness of the A-pillar display screen. Interference with drivers driving at night.
  • the preset low-brightness state includes a non-screen-off state.
  • the A-pillar display screen is controlled to be switched to a preset low-brightness state that is not a screen-off state, so that when the driver needs to watch it again
  • the A-pillar display it can quickly switch to a preset high-brightness state, so that it can quickly respond to the driver's demand for viewing the outside image in the blind area of the driver's line of sight formed by the A-pillar, thereby helping to further improve driving safety.
  • the method further includes: in response to the detection result not including the driver's intention to switch from the straight driving control to the steering control within the first preset time period, generating third control information, wherein the The third control information is used to control the A-pillar display screen to be turned off.
  • the detection result does not include the driver's intention to switch from the straight-driving control to the steering control within the first preset time period, it may be determined that the vehicle maintains the straight-driving state for a long time.
  • the third control information for controlling the display of the A-pillar to be turned off is generated to control the display of the A-pillar to be turned off, thereby further reducing the interference of the A-pillar display to the driver, and further reducing the display of the A-pillar. power consumption of the screen.
  • the A-pillar display screen may not be controlled to be turned off, that is, the A-pillar display screen may be controlled to remain in a non-off-screen state.
  • the preset low-brightness state includes a screen-off state.
  • the A-pillar display screen may be controlled to be off in response to the detection result including the intention to switch from the steering control to the straight driving control.
  • the brightness value corresponding to the preset high brightness state may be higher than the brightness value corresponding to the preset low brightness state.
  • the control information is used to monitor the A-pillar display screen corresponding to the steering direction indicated by the steering control
  • the control information is used to control the brightness state of the A-pillar display screens on both sides when the detection result includes the intention to switch from straight driving control to steering control.
  • the control information when the detection result includes an intention to switch from straight driving control to steering control, the control information is used to display the A-pillar display screen corresponding to the steering direction indicated by the steering control. Control the brightness state. For example, if the steering control instructs a left turn, the control information can be used to control the brightness state of the A-pillar display screen inside the left A-pillar; if the steering control instructs a right turn, the control information can be used for It is used to control the brightness status of the A-pillar display on the inside of the right A-pillar. According to this example, the brightness state of the A-pillar display screen corresponding to the steering direction indicated by the steering control can be accurately controlled.
  • the control information is used to control the brightness state of the A-pillar display screens on both sides.
  • the brightness state of the A-pillar displays on both sides can be controlled at the same time based on the intention of switching from the straight-forward control to the steering control, so that it is convenient for the driver to view the outside images displayed by the A-pillar displays on both sides at the same time.
  • the method further includes: in response to detecting that a hazard warning flasher of the vehicle is turned on, generating fourth control information, wherein the fourth control information is used to control the display of the A-pillar
  • the brightness state of the screen is switched to the preset high brightness state.
  • the third control information may be the same as or different from the first control information.
  • the brightness value of the A-pillar display screen corresponding to the third control information may be different from the brightness value of the A-pillar display screen corresponding to the first control information. Since the hazard warning flashers usually have higher priority than the turn signals, the signals from the turn signals and the turn signal lever may be deactivated when the hazard warning flashers are on.
  • the present disclosure also provides a vehicle, a control device for a vehicle display screen, an electronic device, a computer-readable storage medium, and a program, all of which can be used to implement any control method for a vehicle display screen provided by the present disclosure, and the corresponding technical solutions and For the technical effect, please refer to the corresponding record in the method section, which will not be repeated.
  • FIG. 2 shows a schematic diagram of a vehicle provided by an embodiment of the present disclosure.
  • the shown vehicle includes: a first camera 21 , which is used to collect the outside image in the blind area of the driver's sight formed by the blocking of the A-pillar, and send the outside image to the A-pillar display screen 23 ; control the The device 22 is used to detect the driver's intention to control the steering of the vehicle, obtain the detection result, and generate control information for controlling the brightness state of the A-pillar display screen 23 according to the detection result, and display it to the A-pillar
  • the screen 23 sends the control information;
  • the A-pillar display screen 23 is installed on the inner side of the A-pillar of the vehicle, and is connected to the first camera 21 and the controller 22 respectively, and is used to control the brightness state according to the control information. , and display the outside image when it is on.
  • the controller 22 may be a DMS controller, a domain controller, or the like.
  • the controller 22 is configured to: in response to the detection result including an intention to switch from straight-run control to steering control, generate first control information, where the first control information is used for Controlling the brightness state of the A-pillar display screen 23 to switch to a preset high brightness state.
  • the brightness value corresponding to the preset high brightness state is positively correlated with the current ambient light brightness.
  • the controller 22 is configured to: in response to the detection result including an intention to switch from steering control to straight-forward control, generate second control information, where the second control information is used for
  • the brightness state of the A-pillar display screen 23 is controlled to be switched to a preset low brightness state, and the brightness value corresponding to the preset low brightness state is lower than the current ambient light brightness.
  • the preset low-brightness state includes a non-screen-off state.
  • the controller 22 is further configured to: in response to the detection result not including the driver's intention to switch from straight-driving control to steering control within the first preset time period, generate a first Three control information, wherein the third control information is used to control the A-pillar display screen 23 to turn off.
  • the control information when the detection result includes an intention to switch from straight driving control to steering control, the control information is used to monitor the A-pillar display screen corresponding to the steering direction indicated by the steering control 23; or, when the detection result includes an intention to switch from straight-forward control to steering control, the control information is used to control the brightness state of the A-pillar displays 23 on both sides.
  • the vehicle further includes: a second camera, configured to collect image data of the driving area, and send the image data of the driving area to the controller 22; the controller 22, It is used to detect the driver's steering control intention of the vehicle according to the image data of the driving area, and obtain the detection result.
  • a second camera configured to collect image data of the driving area, and send the image data of the driving area to the controller 22; the controller 22, It is used to detect the driver's steering control intention of the vehicle according to the image data of the driving area, and obtain the detection result.
  • the second camera may be a DMS camera or a common camera, etc., which is not limited herein.
  • the controller 22 is configured to: determine the gaze direction of the driver according to the image data of the driving area; in response to the driver's gaze direction being the A-pillar direction, determine The detection result includes an intention to switch from straight-run control to steering control.
  • the controller 22 is configured to: determine the rotation direction and/or rotation angle of the driver's eyeballs according to the image data of the driving area; in response to the driver's eyeballs The rotation direction is left or right, and/or the rotation angle of the eyeball exceeds a predetermined first angle threshold, it is determined that the detection result includes an intention to switch from straight-travel control to steering control.
  • the controller 22 is configured to: determine the rotation direction of the driver's eyeball according to the image data of the driving area; Turn left or right, and determine the line of sight of the driver according to the image data of the driving area; in response to the direction of the driver's line of sight falling on the A-pillar, determining the detection result of the steering information includes: Intent to switch straight control to steering control.
  • the controller 22 is configured to: determine the orientation of the driver's head or face according to the image data of the driving area; in response to the driver's head or face The orientation of the face is towards the A-pillar, and it is determined that the detection result includes the intention to switch from the straight-ahead control to the steering control.
  • the vehicle further includes: a body control module, configured to acquire the steering wheel angle and/or the wheel angle of the vehicle, and send the steering wheel angle and/or wheel angle to the controller 22 .
  • the controller 22 is configured to: in response to determining that the vehicle is in a turning state according to the turning angle of the steering wheel and/or the turning angle of the wheel, determining that the detection result includes switching from straight-travel control to turning control intent.
  • the vehicle further includes: a body control module, configured to acquire the state of the turn signal and/or the state of the turn signal lever, and send the state of the turn signal to the controller 22 And/or the state of the turn signal lever; the controller 22 is used for: in response to the state of the turn signal being an on state and/or the state of the turn signal lever being a non-return state, determine the detection
  • the result includes the intention to switch from straight-forward control to steering control.
  • the vehicle further includes: a body control module for acquiring the state of the turn signal and/or the state of the turn signal lever; the controller 22 is used for: according to the image data of the driving area , determine at least one of the following: the driver's gaze direction, the driver's eyeball turning direction, the driver's eyeball turning angle, the driver's head orientation, the driver's The orientation of the face; in response to the driver's gaze direction being the A-pillar direction, the driver's eyeball turning leftward or rightward, and the driver's eyeball turning angle exceeding a predetermined At least one of the first angle threshold of , the driver's head is oriented toward the A-pillar, and the driver's face is oriented toward the A-pillar, the status of the turn signal and the direction of the turn signal are obtained from the body control module. /or the state of the turn signal lever; in response to the state of the turn signal being turned on and/or the state of the turn signal lever being the non-returning state, determine that the detection
  • the controller 22 is further configured to: in response to detecting that the hazard warning flasher of the vehicle is turned on, generate fourth control information, wherein the fourth control information is used to control the The brightness state of the A-pillar display screen 23 is switched to a preset high brightness state.
  • the first camera is used to collect the outside image in the blind area of the driver's line of sight formed by the A-pillar, and the outside image is sent to the A-pillar display screen, and the controller detects the driver's attitude to the vehicle.
  • the controller detects the driver's attitude to the vehicle.
  • the control intention obtaining the detection result, generating control information for controlling the brightness state of the A-pillar display screen according to the detection result, sending the control information to the A-pillar display screen, and according to the control information through the A-pillar display screen
  • the information controls the brightness state, and displays the outside image when it is on, so that the brightness state of the A-pillar display can be controlled based on the driver's intention to control the steering of the vehicle, thereby reducing the impact of the A-pillar display on the driver.
  • Under the premise of preventing the interference of the driver it provides the driver with an image outside the vehicle in the blind area of the driver's sight that is blocked by the A-pillar, thereby helping to improve driving safety and reducing the power consumption of the A
  • FIG. 3 shows a schematic diagram of an application scenario provided by an embodiment of the present disclosure.
  • the illustrated vehicle includes a first camera 31 , a DMS controller 32 , an A-pillar display screen 33 , a DMS camera 34 and a body control module 35 .
  • the DMS controller 32 is respectively connected with the A-pillar display screen 33 , the DMS camera 34 and the body control module 35 , and the A-pillar display screen 33 is also connected with the first camera 31 .
  • the first camera 31 may be used to collect images outside the vehicle in the blind area of the driver's line of sight formed by being blocked by the A-pillars, and send the images outside the vehicle to the A-pillar display screen 33 .
  • the DMS camera 34 can be used to collect image data of the driving area, and send the image data of the driving area to the DMS controller 32 .
  • the body control module 35 may be configured to acquire at least one of the following vehicle status information: steering wheel angle, wheel angle, turn signal status, turn signal status, and hazard warning flasher status. After acquiring the state information of the vehicle, the body control module 35 may send the state information of the vehicle to the DMS controller 32 .
  • the DMS controller 32 can be used to detect the driver's intention to control the steering of the vehicle according to the image data of the driving area and/or the state information of the vehicle, obtain the detection result, and generate a display 33 for controlling the A-pillar display according to the detection result. and send the control information to the A-pillar display screen 33 .
  • the A-pillar display screen 23 can be used to control the brightness state according to the control information, and display the outside image when it is in the lit state.
  • FIG. 4 shows a block diagram of a control device for a vehicle display screen provided by an embodiment of the present disclosure.
  • the control device of the vehicle display screen includes:
  • the detection module 41 is used to detect the driver's intention to control the steering of the vehicle, and obtain the detection result;
  • the first generation module 42 is configured to generate control information for controlling the brightness state of the A-pillar display screen of the vehicle according to the detection result, wherein the A-pillar display screen is installed inside the A-pillar of the vehicle for displaying The image outside the car in the blind spot of the driver's line of sight formed by the A-pillar.
  • the first generation module 42 is used for:
  • first control information is generated, wherein the first control information is used to control the brightness state of the A-pillar display screen to switch to a preset high brightness state.
  • the brightness value corresponding to the preset high brightness state is positively correlated with the current ambient light brightness.
  • the first generation module 42 is used for:
  • second control information is generated, wherein the second control information is used to control the brightness state of the A-pillar display screen to switch to a preset low brightness state, the brightness value corresponding to the preset low brightness state is lower than the current ambient light brightness.
  • the preset low-brightness state includes a non-screen-off state.
  • the apparatus further includes:
  • a second generating module configured to generate third control information in response to the detection result not including the driver's intention to switch from straight-going control to steering control within the first preset time period, wherein the third control The information is used to control the A-pillar display to go out.
  • the control information is used to control the brightness state of the A-pillar display screen corresponding to the steering direction indicated by the steering control;
  • the control information is used to control the brightness state of the A-pillar display screens on both sides.
  • the detection module 41 is used for:
  • the driver's intention to control the steering of the vehicle is detected, and the detection result is obtained.
  • the detection module 41 is used for:
  • the detection result includes an intention to switch from straight-going control to steering control.
  • the detection module 41 is used for:
  • determining that the detection result includes switching from straight driving control to steering control intention of.
  • the detection module 41 is used for:
  • the detection result of the steering information includes an intention to switch from straight-going control to steering control.
  • the detection module 41 is used for:
  • the detection result includes an intention to switch from straight-going control to steering control.
  • the detection module 41 is used for:
  • determining that the detection result includes an intention to switch from straight-going control to steering control.
  • the detection module 41 is used for:
  • the detection result includes an intention to switch from straight driving control to steering control.
  • the detection module 41 is used for:
  • the gaze direction of the driver the rotation direction of the driver's eyeballs, the rotation angle of the driver's eyeballs, and the orientation of the driver's head , the orientation of the driver's face;
  • the driver's head In response to the driver's gaze direction being the A-pillar direction, the driver's eyeball turning leftward or rightward, and the driver's eyeball turning angle exceeding a predetermined first angle threshold , the driver's head is oriented toward at least one of the A-pillars, and the driver's face is oriented toward at least one of the A-pillars, and the state of the turn signal and/or the state of the turn signal lever is obtained;
  • the detection result includes an intention to switch from straight driving control to steering control.
  • the apparatus further includes:
  • a third generating module configured to generate fourth control information in response to detecting that the hazard warning flasher of the vehicle is turned on, wherein the fourth control information is used to control the brightness state of the A-pillar display screen to be switched to a preset high-brightness state.
  • a detection result is obtained, and according to the detection result, control information for controlling the brightness state of the A-pillar display screen of the vehicle is generated.
  • the driver's steering control of the vehicle intends to control the brightness state of the A-pillar display screen, so as to provide the driver with a blind spot for the driver's line of sight formed by the A-pillar occlusion on the premise of reducing the interference of the A-pillar display screen to the driver. Image outside the car, which in turn helps to improve driving safety and can reduce the power consumption of the A-pillar display.
  • the functions or modules included in the apparatus provided in the embodiments of the present disclosure may be used to execute the methods described in the above method embodiments, and the specific implementation and technical effects may refer to the above method embodiments. It is concise and will not be repeated here.
  • Embodiments of the present disclosure further provide a computer-readable storage medium, on which computer program instructions are stored, and when the computer program instructions are executed by a processor, the foregoing method is implemented.
  • the computer-readable storage medium may be a non-volatile computer-readable storage medium, or may be a volatile computer-readable storage medium.
  • Embodiments of the present disclosure further provide a computer program, including computer-readable codes, when the computer-readable codes are executed in an electronic device, the processor in the electronic device executes the above method.
  • Embodiments of the present disclosure further provide a computer program product, including computer-readable codes, or a non-volatile computer-readable storage medium carrying computer-readable codes, when the computer-readable codes are executed in an electronic device, A processor in the electronic device executes the above method.
  • Embodiments of the present disclosure further provide an electronic device, including: one or more processors; a memory for storing executable instructions; wherein the one or more processors are configured to invoke executable instructions stored in the memory instruction to execute the above method.
  • the electronic device may be provided as a terminal, server or other form of device.
  • the electronic device may be an in-vehicle device, such as a DMS controller, a domain controller, or the like.
  • FIG. 5 shows a block diagram of an electronic device 800 provided by an embodiment of the present disclosure.
  • electronic device 800 may be a mobile phone, computer, digital broadcast terminal, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, etc. terminal.
  • electronic device 800 may include one or more of the following components: processing component 802, memory 804, power supply component 806, multimedia component 808, audio component 810, input/output (I/O) interface 812, sensor component 814 , and the communication component 816 .
  • the processing component 802 generally controls the overall operation of the electronic device 800, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 can include one or more processors 820 to execute instructions to perform all or some of the steps of the methods described above.
  • processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components.
  • processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802.
  • Memory 804 is configured to store various types of data to support operation at electronic device 800 . Examples of such data include instructions for any application or method operating on electronic device 800, contact data, phonebook data, messages, pictures, videos, and the like. Memory 804 may be implemented by any type of volatile or nonvolatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power supply assembly 806 provides power to various components of electronic device 800 .
  • Power supply components 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to electronic device 800 .
  • Multimedia component 808 includes a screen that provides an output interface between the electronic device 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
  • the multimedia component 808 includes a front-facing camera and/or a rear-facing camera. When the electronic device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 810 is configured to output and/or input audio signals.
  • audio component 810 includes a microphone (MIC) that is configured to receive external audio signals when electronic device 800 is in operating modes, such as calling mode, recording mode, and voice recognition mode.
  • the received audio signal may be further stored in memory 804 or transmitted via communication component 816 .
  • audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 814 includes one or more sensors for providing status assessment of various aspects of electronic device 800 .
  • the sensor assembly 814 can detect the on/off state of the electronic device 800, the relative positioning of the components, such as the display and the keypad of the electronic device 800, the sensor assembly 814 can also detect the electronic device 800 or one of the electronic device 800 Changes in the position of components, presence or absence of user contact with the electronic device 800 , orientation or acceleration/deceleration of the electronic device 800 and changes in the temperature of the electronic device 800 .
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 814 may also include a light sensor, such as a complementary metal oxide semiconductor (CMOS) or charge coupled device (CCD) image sensor, for use in imaging applications.
  • CMOS complementary metal oxide semiconductor
  • CCD charge coupled device
  • the sensor assembly 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communication between electronic device 800 and other devices.
  • the electronic device 800 can access a wireless network based on communication standards, such as wireless network (Wi-Fi), second generation mobile communication technology (2G), third generation mobile communication technology (3G), fourth generation mobile communication technology (4G) )/Long Term Evolution (LTE) of Universal Mobile Communications Technology, Fifth Generation Mobile Communications Technology (5G), or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • electronic device 800 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A programmed gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A programmed gate array
  • controller microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • a non-volatile computer-readable storage medium such as a memory 804 comprising computer program instructions executable by the processor 820 of the electronic device 800 to perform the above method is also provided.
  • FIG. 6 shows a block diagram of an electronic device 1900 provided by an embodiment of the present disclosure.
  • the electronic device 1900 may be provided as a server.
  • electronic device 1900 includes processing component 1922, which further includes one or more processors, and a memory resource represented by memory 1932 for storing instructions executable by processing component 1922, such as applications.
  • An application program stored in memory 1932 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 1922 is configured to execute instructions to perform the above-described methods.
  • the electronic device 1900 may also include a power supply assembly 1926 configured to perform power management of the electronic device 1900, a wired or wireless network interface 1950 configured to connect the electronic device 1900 to a network, and an input output (I/O) interface 1958 .
  • the electronic device 1900 can operate based on an operating system stored in the memory 1932, such as a Microsoft server operating system (Windows Server TM ), a graphical user interface based operating system (Mac OS X TM ) introduced by Apple, a multi-user multi-process computer operating system (Unix TM ), Free and Open Source Unix-like Operating System (Linux TM ), Open Source Unix-like Operating System (FreeBSD TM ) or the like.
  • Microsoft server operating system Windows Server TM
  • Mac OS X TM graphical user interface based operating system
  • Uniix TM multi-user multi-process computer operating system
  • Free and Open Source Unix-like Operating System Linux TM
  • FreeBSD TM Open Source Unix-like Operating System
  • a non-volatile computer-readable storage medium such as memory 1932 comprising computer program instructions executable by processing component 1922 of electronic device 1900 to perform the above-described method.
  • the present disclosure may be a system, method and/or computer program product.
  • the computer program product may include a computer-readable storage medium having computer-readable program instructions loaded thereon for causing a processor to implement various aspects of the present disclosure.
  • a computer-readable storage medium may be a tangible device that can hold and store instructions for use by the instruction execution device.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing.
  • Non-exhaustive list of computer readable storage media include: portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM) or flash memory), static random access memory (SRAM), portable compact disk read only memory (CD-ROM), digital versatile disk (DVD), memory sticks, floppy disks, mechanically coded devices, such as printers with instructions stored thereon Hole cards or raised structures in grooves, and any suitable combination of the above.
  • RAM random access memory
  • ROM read only memory
  • EPROM erasable programmable read only memory
  • flash memory static random access memory
  • SRAM static random access memory
  • CD-ROM compact disk read only memory
  • DVD digital versatile disk
  • memory sticks floppy disks
  • mechanically coded devices such as printers with instructions stored thereon Hole cards or raised structures in grooves, and any suitable combination of the above.
  • Computer-readable storage media are not to be construed as transient signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through waveguides or other transmission media (eg, light pulses through fiber optic cables), or through electrical wires transmitted electrical signals.
  • the computer readable program instructions described herein may be downloaded to various computing/processing devices from a computer readable storage medium, or to an external computer or external storage device over a network such as the Internet, a local area network, a wide area network, and/or a wireless network.
  • the network may include copper transmission cables, fiber optic transmission, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers.
  • a network adapter card or network interface in each computing/processing device receives computer-readable program instructions from a network and forwards the computer-readable program instructions for storage in a computer-readable storage medium in each computing/processing device .
  • Computer program instructions for carrying out operations of the present disclosure may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or instructions in one or more programming languages.
  • Source or object code written in any combination, including object-oriented programming languages, such as Smalltalk, C++, etc., and conventional procedural programming languages, such as the "C" language or similar programming languages.
  • the computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server implement.
  • the remote computer may be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (eg, using an Internet service provider through the Internet connect).
  • LAN local area network
  • WAN wide area network
  • custom electronic circuits such as programmable logic circuits, field programmable gate arrays (FPGAs), or programmable logic arrays (PLAs) can be personalized by utilizing state information of computer readable program instructions.
  • Computer readable program instructions are executed to implement various aspects of the present disclosure.
  • These computer readable program instructions may be provided to a processor of a general purpose computer, special purpose computer or other programmable data processing apparatus to produce a machine that causes the instructions when executed by the processor of the computer or other programmable data processing apparatus , resulting in means for implementing the functions/acts specified in one or more blocks of the flowchart and/or block diagrams.
  • These computer readable program instructions can also be stored in a computer readable storage medium, these instructions cause a computer, programmable data processing apparatus and/or other equipment to operate in a specific manner, so that the computer readable medium on which the instructions are stored includes An article of manufacture comprising instructions for implementing various aspects of the functions/acts specified in one or more blocks of the flowchart and/or block diagrams.
  • Computer readable program instructions can also be loaded onto a computer, other programmable data processing apparatus, or other equipment to cause a series of operational steps to be performed on the computer, other programmable data processing apparatus, or other equipment to produce a computer-implemented process , thereby causing instructions executing on a computer, other programmable data processing apparatus, or other device to implement the functions/acts specified in one or more blocks of the flowcharts and/or block diagrams.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more functions for implementing the specified logical function(s) executable instructions.
  • the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented in dedicated hardware-based systems that perform the specified functions or actions , or can be implemented in a combination of dedicated hardware and computer instructions.
  • the computer program product can be specifically implemented by hardware, software or a combination thereof.
  • the computer program product is embodied as a computer storage medium, and in another optional embodiment, the computer program product is embodied as a software product, such as a software development kit (Software Development Kit, SDK), etc. Wait.
  • a software development kit Software Development Kit, SDK

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Signal Processing (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种车辆显示屏的控制方法,包括:检测驾驶员对车辆的转向控制意图,得到检测结果;根据所述检测结果,生成用于控制车辆的A柱显示屏的亮度状态的控制信息,其中,所述A柱显示屏安装在车辆的A柱内侧,用于显示被A柱遮挡形成的驾驶员视线盲区内的车外影像。还公开了使用上述方法的装置、设备、介质及车辆。由此能够基于驾驶员对车辆的转向控制意图控制A柱显示屏的亮度状态,从而能够在降低A柱显示屏对驾驶员的干扰的前提下,为驾驶员提供被A柱遮挡形成的驾驶员视线盲区内的车外影像,进而有助于提高行车安全,并能够降低A柱显示屏的功耗。

Description

车辆显示屏的控制方法及装置、设备、介质及车辆
本申请要求在2021年3月23日提交中国专利局、申请号为202110309295.0、申请名称为“车辆显示屏的控制方法及装置、设备、介质及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及车辆技术领域,尤其涉及一种车辆显示屏的控制方法及装置、设备、介质及车辆。
背景技术
车辆的ABC柱不仅是撑起车舱车顶的金属柱子,而且对车舱内的乘员有重要的保护作用。在车辆发生翻滚或者倾覆时,ABC柱有助于大大降低车舱被挤压变形的可能性,从而对保护车舱内的乘员的生命安全具有重要意义。其中,A柱是车辆的左前方和右前方连接车顶和前舱的连接柱,通常在发动机舱和驾驶舱之间,左右后视镜的上方。在转向时,A柱容易遮挡驾驶员的视线。
发明内容
本公开提供了一种车辆显示屏的控制技术方案。
根据本公开的一方面,提供了一种车辆显示屏的控制方法,包括:
检测驾驶员对车辆的转向控制意图,得到检测结果;
根据所述检测结果,生成用于控制车辆的A柱显示屏的亮度状态的控制信息,其中,所述A柱显示屏安装在车辆的A柱内侧,用于显示被A柱遮挡形成的驾驶员视线盲区内的车外影像。
在一种可能的实现方式中,所述根据所述检测结果,生成用于控制车辆的A柱显示屏的亮度状态的控制信息,包括:
响应于所述检测结果包括由直行控制切换为转向控制的意图,生成第一控制信息,其中,所述第一控制信息用于控制所述A柱显示屏的亮度状态转换至预设的高亮度状态。
在一种可能的实现方式中,所述预设的高亮度状态对应的亮度值与当前的环境光亮度正相关。
在一种可能的实现方式中,所述根据所述检测结果,生成用于控制车辆的A柱显示屏的亮度状态的控制信息,包括:
响应于所述检测结果包括由转向控制切换为直行控制的意图,生成第二控制信息,其中,所述第二控制信息用于控制所述A柱显示屏的亮度状态转换至预设的低亮度状态,所述预设的低亮度状态对应的亮度值低于当前的环境光亮度。
在一种可能的实现方式中,所述预设的低亮度状态包括非熄屏状态。
在一种可能的实现方式中,在所述生成第二控制信息之后,所述方法还包括:
响应于在第一预设时长内所述检测结果不包括所述驾驶员进行由直行控制切换为转向控制的意图,生成第三控制信息,其中,所述第三控制信息用于控制所述A柱显示屏熄灭。
在一种可能的实现方式中,
在所述检测结果包括由直行控制切换为转向控制的意图的情况下,所述控制信息用于对所述转向控制所指示的转向方向对应的A柱显示屏的亮度状态进行控制;
或者,
在所述检测结果包括由直行控制切换为转向控制的意图的情况下,所述控制信息用于对两侧的A柱显示屏的亮度状态进行控制。
在一种可能的实现方式中,所述检测驾驶员对车辆的转向控制意图,得到检测结果,包括:
获取驾驶区域的影像数据;
根据所述驾驶区域的影像数据,检测驾驶员对车辆的转向控制意图,得到检测结果。
在一种可能的实现方式中,所述根据所述驾驶区域的影像数据,检测驾驶员对车辆的转向控制意图,得到检测结果,包括:
根据所述驾驶区域的影像数据,确定所述驾驶员的注视方向;
响应于所述驾驶员的注视方向为A柱方向,确定所述检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述根据所述驾驶区域的影像数据,检测驾驶员对车辆的转向控制意图,得到检测结果,包括:
根据所述驾驶区域的影像数据,确定所述驾驶员的眼球的转动方向和/或转动角度;
响应于所述驾驶员的眼球的转动方向为向左转动或向右转动,和/或所述眼球的转动角度超过预定的第一角度阈值,确定检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述根据所述驾驶区域的影像数据,检测驾驶员对车辆的转向控制意图,得到检测结果,包括:
根据所述驾驶区域的影像数据,确定所述驾驶员的眼球的转动方向;
响应于所述驾驶员的眼球的转动方向为向左转动或向右转动,根据所述驾驶区域的影像数据,确定所述驾驶员的视线方向;
响应于所述驾驶员的视线方向落在A柱上,确定转向信息的检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述根据所述驾驶区域的影像数据,检测驾驶员对车辆的转向控制意图,得到检测结果,包括:
根据所述驾驶区域的影像数据,确定所述驾驶员的头部或脸部的朝向;
响应于所述驾驶员的头部或脸部的朝向为朝向A柱,确定检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述检测驾驶员对车辆的转向控制意图,得到检测结果,包括:
获取所述车辆的方向盘的转角和/或车轮的转角;
响应于根据所述方向盘的转角和/或所述车轮的转角确定所述车辆处于转向状态,确定检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述检测驾驶员对车辆的转向控制意图,得到检测结果,包括:
获取转向灯的状态和/或转向灯拨杆的状态;
响应于所述转向灯的状态为开启状态和/或所述转向灯拨杆的状态为非回位状态,确定检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述检测驾驶员对车辆的转向控制意图,得到检测结果,包括:
根据驾驶区域的影像数据,确定以下至少一项:所述驾驶员的注视方向、所述驾驶员的眼球的转动方向、所述驾驶员的眼球的转动角度、所述驾驶员的头部的朝向、所述驾驶员的脸部的朝向;
响应于所述驾驶员的注视方向为A柱方向、所述驾驶员的眼球的转动方向为向左转动或向右转动、所述驾驶员的眼球的转动角度超过预定的第一角度阈值、所述驾驶员的头部朝向为朝向A柱、所述驾驶员的脸部的朝向为朝向A柱中的至少之一,获取转向灯的状态和/或转向灯拨杆的状态;
响应于所述转向灯的状态为开启状态和/或所述转向灯拨杆的状态为非回位状态,确定检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述方法还包括:
响应于检测到所述车辆的危险报警闪光灯开启,生成第四控制信息,其中,所述第四控制信息用于控制所述A柱显示屏的亮度状态转换至预设的高亮度状态。
根据本公开的一方面,提供了一种车辆显示屏的控制装置,包括:
检测模块,用于检测驾驶员对车辆的转向控制意图,得到检测结果;
第一生成模块,用于根据所述检测结果,生成用于控制车辆的A柱显示屏的亮度状态的控制信息,其中,所述A柱显示屏安装在车辆的A柱内侧,用于显示被A柱遮挡形成的驾驶员视线盲区内的车外影像。
在一种可能的实现方式中,所述第一生成模块用于:
响应于所述检测结果包括由直行控制切换为转向控制的意图,生成第一控制信息,其中,所述第一控制信息用于控制所述A柱显示屏的亮度状态转换至预设的高亮度状态。
在一种可能的实现方式中,所述预设的高亮度状态对应的亮度值与当前的环境光亮度正相关。
在一种可能的实现方式中,所述第一生成模块用于:
响应于所述检测结果包括由转向控制切换为直行控制的意图,生成第二控制信息,其中,所述第二控制信息用于控制所述A柱显示屏的亮度状态转换至预设的低亮度状态,所述预设的低亮度状态对应的亮度值低于当前的环境光亮度。
在一种可能的实现方式中,所述预设的低亮度状态包括非熄屏状态。
在一种可能的实现方式中,所述装置还包括:
第二生成模块,用于响应于在第一预设时长内所述检测结果不包括所述驾驶员进行由直行控制切换为转向控制的意图,生成第三控制信息,其中,所述第三控制信息用于控制所述A柱显示屏熄灭。
在一种可能的实现方式中,
在所述检测结果包括由直行控制切换为转向控制的意图的情况下,所述控制信息用于对所述转向控制所指示的转向方向对应的A柱显示屏的亮度状态进行控制;
或者,
在所述检测结果包括由直行控制切换为转向控制的意图的情况下,所述控制信息用于对两侧的A柱显示屏的亮度状态进行控制。
在一种可能的实现方式中,所述检测模块用于:
获取驾驶区域的影像数据;
根据所述驾驶区域的影像数据,检测驾驶员对车辆的转向控制意图,得到检测结果。
在一种可能的实现方式中,所述检测模块用于:
根据所述驾驶区域的影像数据,确定所述驾驶员的注视方向;
响应于所述驾驶员的注视方向为A柱方向,确定所述检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述检测模块用于:
根据所述驾驶区域的影像数据,确定所述驾驶员的眼球的转动方向和/或转动角度;
响应于所述驾驶员的眼球的转动方向为向左转动或向右转动,和/或所述眼球的转动角度超过预定的第一角度阈值,确定检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述检测模块用于:
根据所述驾驶区域的影像数据,确定所述驾驶员的眼球的转动方向;
响应于所述驾驶员的眼球的转动方向为向左转动或向右转动,根据所述驾驶区域的影像数据,确定所述驾驶员的视线方向;
响应于所述驾驶员的视线方向落在A柱上,确定转向信息的检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述检测模块用于:
根据所述驾驶区域的影像数据,确定所述驾驶员的头部或脸部的朝向;
响应于所述驾驶员的头部或脸部的朝向为朝向A柱,确定检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述检测模块用于:
获取所述车辆的方向盘的转角和/或车轮的转角;
响应于根据所述方向盘的转角和/或所述车轮的转角确定所述车辆处于转向状态,确定检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述检测模块用于:
获取转向灯的状态和/或转向灯拨杆的状态;
响应于所述转向灯的状态为开启状态和/或所述转向灯拨杆的状态为非回位状态,确定检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述检测模块用于:
根据驾驶区域的影像数据,确定以下至少一项:所述驾驶员的注视方向、所述驾驶员的眼球的转动方向、所述驾驶员的眼球的转动角度、所述驾驶员的头部的朝向、所述驾驶员的脸部的朝向;
响应于所述驾驶员的注视方向为A柱方向、所述驾驶员的眼球的转动方向为向左转动或向右转动、所述驾驶员的眼球的转动角度超过预定的第一角度阈值、所述驾驶员的头部朝向为朝向A柱、所述驾驶员的脸部的朝向为朝向A柱中的至少之一,获取转向灯的状态和/或转向灯拨杆的状态;
响应于所述转向灯的状态为开启状态和/或所述转向灯拨杆的状态为非回位状态,确定检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述装置还包括:
第三生成模块,用于响应于检测到所述车辆的危险报警闪光灯开启,生成第四控制信息,其中,所述第四控制信息用于控制所述A柱显示屏的亮度状态转换至预设的高亮度状态。
根据本公开的一方面,提供了一种车辆,包括:
第一摄像头,用于采集被A柱遮挡形成的驾驶员视线盲区内的车外影像,并向A柱显示屏发送所述车外影像;
控制器,用于检测驾驶员对车辆的转向控制意图,得到检测结果,根据所述检测结果,生成用于控制所述A柱显示屏的亮度状态的控制信息,并向所述A柱显示屏发送所述控制信息;
所述A柱显示屏,安装在车辆的A柱内侧,分别与所述第一摄像头和所述控制器连接,用于根据所述控制信息控制亮度状态,并在处于点亮状态时显示所述车外影像。
在一种可能的实现方式中,所述控制器用于:
响应于所述检测结果包括由直行控制切换为转向控制的意图,生成第一控制信息,其中,所述第一控制信息用于控制所述A柱显示屏的亮度状态转换至预设的高亮度状态。
在一种可能的实现方式中,所述预设的高亮度状态对应的亮度值与当前的环境光亮度正相关。
在一种可能的实现方式中,所述控制器用于:
响应于所述检测结果包括由转向控制切换为直行控制的意图,生成第二控制信息,其中,所述第二控制信息用于控制所述A柱显示屏的亮度状态转换至预设的低亮度状态,所述预设的低亮度状态对应的亮度值低于当前的环境光亮度。
在一种可能的实现方式中,所述预设的低亮度状态包括非熄屏状态。
在一种可能的实现方式中,所述控制器还用于:
响应于在第一预设时长内所述检测结果不包括所述驾驶员进行由直行控制切换为转向控制的意图,生成第三控制信息,其中,所述第三控制信息用于控制所述A柱显示屏熄灭。
在一种可能的实现方式中,
在所述检测结果包括由直行控制切换为转向控制的意图的情况下,所述控制信息用于对所述转向控制所指示的转向方向对应的A柱显示屏的亮度状态进行控制;
或者,
在所述检测结果包括由直行控制切换为转向控制的意图的情况下,所述控制信息用于对两侧的A 柱显示屏的亮度状态进行控制。
在一种可能的实现方式中,
所述车辆还包括:第二摄像头,用于采集驾驶区域的影像数据,并向所述控制器发送所述驾驶区域的影像数据;
所述控制器,用于根据所述驾驶区域的影像数据,检测驾驶员对车辆的转向控制意图,得到检测结果。
在一种可能的实现方式中,所述控制器用于:
根据所述驾驶区域的影像数据,确定所述驾驶员的注视方向;
响应于所述驾驶员的注视方向为A柱方向,确定所述检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述控制器用于:
根据所述驾驶区域的影像数据,确定所述驾驶员的眼球的转动方向和/或转动角度;
响应于所述驾驶员的眼球的转动方向为向左转动或向右转动,和/或所述眼球的转动角度超过预定的第一角度阈值,确定检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述控制器用于:
根据所述驾驶区域的影像数据,确定所述驾驶员的眼球的转动方向;
响应于所述驾驶员的眼球的转动方向为向左转动或向右转动,根据所述驾驶区域的影像数据,确定所述驾驶员的视线方向;
响应于所述驾驶员的视线方向落在A柱上,确定转向信息的检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述控制器用于:
根据所述驾驶区域的影像数据,确定所述驾驶员的头部或脸部的朝向;
响应于所述驾驶员的头部或脸部的朝向为朝向A柱,确定检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,
所述车辆还包括:车身控制模块,用于获取所述车辆的方向盘的转角和/或车轮的转角,并向所述控制器发送所述方向盘的转角和/或所述车轮的转角;
所述控制器用于:响应于根据所述方向盘的转角和/或所述车轮的转角确定所述车辆处于转向状态,确定检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,
所述车辆还包括:车身控制模块,用于获取转向灯的状态和/或转向灯拨杆的状态,并向所述控制器发送所述转向灯的状态和/或所述转向灯拨杆的状态;
所述控制器用于:响应于所述转向灯的状态为开启状态和/或所述转向灯拨杆的状态为非回位状态,确定检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,
所述车辆还包括:车身控制模块,用于获取转向灯的状态和/或转向灯拨杆的状态;
所述控制器用于:根据驾驶区域的影像数据,确定以下至少一项:所述驾驶员的注视方向、所述驾驶员的眼球的转动方向、所述驾驶员的眼球的转动角度、所述驾驶员的头部的朝向、所述驾驶员的脸部的朝向;响应于所述驾驶员的注视方向为A柱方向、所述驾驶员的眼球的转动方向为向左转动或向右转动、所述驾驶员的眼球的转动角度超过预定的第一角度阈值、所述驾驶员的头部朝向为朝向A柱、所述驾驶员的脸部的朝向为朝向A柱中的至少之一,从所述车身控制模块获取转向灯的状态和/或转向灯拨杆的状态;响应于所述转向灯的状态为开启状态和/或所述转向灯拨杆的状态为非回位状态,确定检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述控制器还用于:
响应于检测到所述车辆的危险报警闪光灯开启,生成第四控制信息,其中,所述第四控制信息用于控制所述A柱显示屏的亮度状态转换至预设的高亮度状态。
根据本公开的一方面,提供了一种电子设备,包括:一个或多个处理器;用于存储可执行指令的存储器;其中,所述一个或多个处理器被配置为调用所述存储器存储的可执行指令,以执行上述方法。
根据本公开的一方面,提供了一种计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述方法。
根据本公开的一方面,提供了一种计算机程序产品,包括计算机可读代码,或者承载有计算机可读代码的非易失性计算机可读存储介质,当所述计算机可读代码在电子设备中运行时,所述电子设备中的处理器执行上述方法。
在本公开实施例中,通过检测驾驶员对车辆的转向控制意图,得到检测结果,并根据所述检测结果,生成用于控制车辆的A柱显示屏的亮度状态的控制信息,由此能够基于驾驶员对车辆的转向控制意图控制A柱显示屏的亮度状态,从而能够在降低A柱显示屏对驾驶员的干扰的前提下,为驾驶员提供被A柱遮挡形成的驾驶员视线盲区内的车外影像,进而有助于提高行车安全,并能够降低A柱显示屏的功耗。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,而非限制本公开。
根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,这些附图示出了符合本公开的实施例,并与说明书一起用于说明本公开的技术方案。
图1示出本公开实施例提供的车辆显示屏的控制方法的流程图。
图2示出本公开实施例提供的车辆的示意图。
图3示出本公开实施例提供的一种应用场景的示意图。
图4示出本公开实施例提供的车辆显示屏的控制装置的框图。
图5示出本公开实施例提供的一种电子设备800的框图。
图6示出本公开实施例提供的一种电子设备1900的框图。
具体实施方式
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中术语“至少一种”表示多种中的任意一种或多种中的至少两种的任意组合,例如,包括A、B、C中的至少一种,可以表示包括从A、B和C构成的集合中选择的任意一个或多个元素。
另外,为了更好地说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。
本公开实施例提供了一种车辆显示屏的控制方法及装置、电子设备、存储介质及车辆,通过检测驾驶员对车辆的转向控制意图,得到检测结果,并根据所述检测结果,生成用于控制车辆的A柱显示 屏的亮度状态的控制信息,由此能够基于驾驶员对车辆的转向控制意图控制A柱显示屏的亮度状态,从而能够在降低A柱显示屏对驾驶员的干扰的前提下,为驾驶员提供被A柱遮挡形成的驾驶员视线盲区内的车外影像,进而有助于提高行车安全,并能够降低A柱显示屏的功耗。
图1示出本公开实施例提供的车辆显示屏的控制方法的流程图。在一种可能的实现方式中,所述车辆显示屏的控制方法可以由终端设备或服务器或其它处理设备执行。其中,终端设备可以是车载设备、用户设备(User Equipment,UE)、移动设备、用户终端、终端、蜂窝电话、无绳电话、个人数字助理(Personal Digital Assistant,PDA)、手持设备、计算设备或者可穿戴设备等。其中,车载设备可以是车舱内的车机、域控制器或者处理器,还可以是DMS(Driver Monitor System,驾驶员监控系统)或者OMS(Occupant Monitoring System,乘员监控系统)中用于执行图像等数据处理操作的设备主机等。在一些可能的实现方式中,所述车辆显示屏的控制方法可以通过处理器调用存储器中存储的计算机可读指令的方式来实现。如图1所示,所述车辆显示屏的控制方法包括步骤S11至步骤S12。
在步骤S11中,检测驾驶员对车辆的转向控制意图,得到检测结果。
在步骤S12中,根据所述检测结果,生成用于控制车辆的A柱显示屏的亮度状态的控制信息,其中,所述A柱显示屏安装在车辆的A柱内侧,用于显示被A柱遮挡形成的驾驶员视线盲区内的车外影像。
在本公开实施例中,A柱显示屏可以表示安装在车辆的A柱内侧、用于显示被A柱遮挡形成的驾驶员视线盲区内的车外影像的显示屏。A柱显示屏可以在处于点亮状态时,可以实时显示被A柱遮挡形成的驾驶员视线盲区内的车外影像。A柱显示屏的数量可以为一个或两个以上。例如,A柱显示屏的数量可以为一个,若车辆为左舵,则该A柱显示屏可以安装在左侧A柱内侧,若车辆为右舵,则该A柱显示屏可以安装在右侧A柱内侧。又如,A柱显示屏的数量可以为两个,这两个A柱显示屏分别安装在左侧A柱内侧和右侧A柱内侧。又如,左侧A柱内侧可以安装两个以上A柱显示屏,和/或,右侧A柱内侧可以安装两个以上A柱显示屏。当然,在一些应用场景中,A柱显示屏除了可以用于显示被A柱遮挡形成的驾驶员视线盲区内的车外影像,还可以用于显示其他信息,本领域技术人员可以根据实际应用场景需求和/或个人喜好灵活设置A柱显示屏的附加功能,在此不做限定。
在本公开实施例中,被A柱遮挡形成的驾驶员视线盲区内的车外影像,可以由安装在车舱外的至少一个摄像头采集获得。例如,被左侧A柱遮挡形成的驾驶员视线盲区内的车外影像,可以由安装在左后视镜、左侧A柱外侧、前挡风玻璃的左侧等处的至少一个摄像头采集获得,其中,左后视镜表示车辆左侧的外后视镜;被右侧A柱遮挡形成的驾驶员视线盲区内的车外影像,可以由安装在右后视镜、右侧A柱外侧、前挡风玻璃的右侧等处的至少一个摄像头采集获得,其中,右后视镜表示车辆右侧的外后视镜。
在本公开实施例中,驾驶员对车辆的转向控制意图,可以表示驾驶员控制车辆转向和/或控制车辆直行的意图。驾驶员对车辆的转向控制意图的检测结果,可以包括:由直行控制切换为转向控制的意图、由转向控制切换为直行控制的意图、维持直行控制的意图、维持转向控制的意图等等。其中,所述直行控制表示控制车辆直行,所述转向控制表示控制车辆转向,其中,所述转向控制可以包括左转控制或者右转控制。控制车辆转向可以用于控制车辆转弯、变道、掉头等。
在一种可能的实现方式中,所述检测驾驶员对车辆的转向控制意图,得到检测结果,包括:获取驾驶区域的影像数据;根据所述驾驶区域的影像数据,检测驾驶员对车辆的转向控制意图,得到检测结果。在该实现方式中,可以通过安装在车舱内和/或车舱外的至少一个摄像头,获取驾驶区域的影像数据。例如,可以通过安装在车舱内的DMS摄像头,获取驾驶区域的影像数据。又如,可以通过安装在车舱内的普通摄像头,获取驾驶区域的影像数据。其中,驾驶区域的影像数据可以包括驾驶区域的视频、图像、图像序列等中的至少之一。在该实现方式中,通过获取驾驶区域的影像数据,并根据驾驶区域的影像数据,检测驾驶员对车辆的转向控制意图,得到检测结果,由此能够利用驾驶区域的视觉信息准确地检测驾驶员对车辆的转向控制意图。
作为该实现方式的一个示例,可以将驾驶区域的影像数据输入预先训练的第一神经网络,经由第 一神经网络检测驾驶员对车辆的转向控制意图,得到检测结果。其中,第一神经网络可以采用第一训练数据集预先训练。第一训练数据集可以包括多项驾驶区域的影像样本,以及与多项驾驶区域的影像样本一一对应的检测结果的标注数据。在该示例中,通过第一神经网络检测驾驶员对车辆的转向控制意图,能够提高驾驶员对车辆的转向控制意图的检测结果的准确性,并能够提高检测驾驶员对车辆的转向控制意图的速度。作为该实现方式的另一个示例,可以预先设计用于检测驾驶员对车辆的转向控制意图的函数,可以采用该预先设计的函数对驾驶区域的影像数据检测驾驶员对车辆的转向控制意图,得到检测结果。
作为该实现方式的一个示例,所述根据所述驾驶区域的影像数据,检测驾驶员对车辆的转向控制意图,得到检测结果,包括:根据所述驾驶区域的影像数据,确定所述驾驶员的注视方向;响应于所述驾驶员的注视方向为A柱方向,确定所述检测结果包括由直行控制切换为转向控制的意图。在该示例中,驾驶员的注视方向为A柱方向,可以表示驾驶员的注视区域为A柱所在区域。在一个例子中,可以将驾驶区域的影像数据输入预先训练的第二神经网络,经由第二神经网络确定驾驶员的注视方向。其中,第二神经网络可以采用第二训练数据集预先训练。第二训练数据集可以包括多项驾驶区域的影像样本,以及与多项驾驶区域的影像样本一一对应的注视方向的标注数据。在该示例中,通过根据驾驶区域的影像数据,确定驾驶员的注视方向,并响应于驾驶员的注视方向为A柱方向,确定所述检测结果包括由直行控制切换为转向控制的意图,由此能够基于驾驶员的注视方向准确地确定驾驶员对车辆的转向控制意图。
作为该实现方式的另一个示例,所述根据所述驾驶区域的影像数据,检测驾驶员对车辆的转向控制意图,得到检测结果,包括:根据所述驾驶区域的影像数据,确定所述驾驶员的眼球的转动方向和/或转动角度;响应于所述驾驶员的眼球的转动方向为向左转动或向右转动,和/或所述眼球的转动角度超过预定的第一角度阈值,确定检测结果包括由直行控制切换为转向控制的意图。
在一个例子中,可以根据驾驶区域的影像数据,确定驾驶员的眼球的转动方向,并响应于驾驶员的眼球的转动方向为向左转动或向右转动,确定检测结果包括由直行控制切换为转向控制的意图。其中,可以将驾驶区域的影像数据输入预先训练的第三神经网络,经由第三神经网络确定驾驶员的眼球的转动方向。其中,第三神经网络可以采用第三训练数据集预先训练。第三训练数据集可以包括多项驾驶区域的影像样本,以及与多项驾驶区域的影像样本一一对应的眼球的转动方向的标注数据。
在另一个例子中,可以根据驾驶区域的影像数据,确定驾驶员的眼球的转动角度,并响应于驾驶员的眼球的转动角度超过预定的第一角度阈值,确定检测结果包括由直行控制切换为转向控制的意图。其中,可以将驾驶区域的影像数据输入预先训练的第四神经网络,经由第四神经网络确定驾驶员的眼球的转动角度。其中,第四神经网络可以采用第四训练数据集预先训练。第四训练数据集可以包括多项驾驶区域的影像样本,以及与多项驾驶区域的影像样本一一对应的眼球的转动角度的标注数据。
在另一个例子中,可以根据驾驶区域的影像数据,确定驾驶员的眼球的转动方向和转动角度,并响应于驾驶员的眼球的转动方向为向左转动或向右转动,且驾驶员的眼球的转动角度超过预定的第一角度阈值,确定检测结果包括由直行控制切换为转向控制的意图。
在上述示例中,通过根据驾驶区域的影像数据,确定驾驶员的眼球的转动方向和/或转动角度,并响应于驾驶员的眼球的转动方向为向左转动或向右转动,和/或眼球的转动角度超过预定的第一角度阈值,确定检测结果包括由直行控制切换为转向控制的意图,由此能够基于驾驶员的眼球的转动方向和/或转动角度准确地确定驾驶员对车辆的转向控制意图。
作为该实现方式的另一个示例,所述根据所述驾驶区域的影像数据,检测驾驶员对车辆的转向控制意图,得到检测结果,包括:根据所述驾驶区域的影像数据,确定所述驾驶员的眼球的转动方向;响应于所述驾驶员的眼球的转动方向为向左转动或向右转动,根据所述驾驶区域的影像数据,确定所述驾驶员的视线方向;响应于所述驾驶员的视线方向落在A柱上,确定转向信息的检测结果包括由直行控制切换为转向控制的意图。在一个例子中,可以将驾驶区域的影像数据输入预先训练的第五神经 网络,经由第五神经网络确定驾驶员的视线方向。其中,第五神经网络可以采用第五训练数据集预先训练。第五训练数据集可以包括多项驾驶区域的影像样本,以及与多项驾驶区域的影像样本一一对应的视线方向的标注数据。在该示例中,通过响应于驾驶员的眼球的转动方向为向左转动或向右转动,根据驾驶区域的影像数据,确定驾驶员的视线方向,并响应于驾驶员的视线方向落在A柱上,确定转向信息的检测结果包括由直行控制切换为转向控制的意图,由此能够基于驾驶区域的影像数据跟踪驾驶员的眼球,从而能够准确地确定驾驶员对车辆的转向控制意图。
作为该实现方式的另一个示例,所述根据所述驾驶区域的影像数据,检测驾驶员对车辆的转向控制意图,得到检测结果,包括:根据所述驾驶区域的影像数据,确定所述驾驶员的头部或脸部的朝向;响应于所述驾驶员的头部或脸部的朝向为朝向A柱,确定检测结果包括由直行控制切换为转向控制的意图。在一个例子中,可以将驾驶区域的影像数据输入预先训练的第六神经网络,经由第六神经网络确定驾驶员的头部的朝向。其中,第六神经网络可以采用第六训练数据集预先训练。第六训练数据集可以包括多项驾驶区域的影像样本,以及与多项驾驶区域的影像样本一一对应的头部的朝向的标注数据。在另一个例子中,可以将驾驶区域的影像数据输入预先训练的第七神经网络,经由第七神经网络确定驾驶员的脸部的朝向。其中,第七神经网络可以采用第七训练数据集预先训练。第七训练数据集可以包括多项驾驶区域的影像样本,以及与多项驾驶区域的影像样本一一对应的脸部的朝向的标注数据。在该示例中,通过根据所述驾驶区域的影像数据,确定所述驾驶员的头部或脸部的朝向,并响应于所述驾驶员的头部或脸部的朝向为朝向A柱,确定检测结果包括由直行控制切换为转向控制的意图,由此能够基于驾驶员的头部或脸部的朝向准确地确定驾驶员对车辆的转向控制意图。
在上述实现方式中,第一训练数据集、第二训练数据集、第三训练数据集、第四训练数据集、第五训练数据集、第六训练数据集和第七训练数据集中的驾驶区域的影像样本可以相同或不同。任一训练数据集中的任意一项驾驶区域的影像样本可以是驾驶区域的视频、图像或者图像序列等。
在另一种可能的实现方式中,所述检测驾驶员对车辆的转向控制意图,得到检测结果,包括:获取所述车辆的方向盘的转角和/或车轮的转角;响应于根据所述方向盘的转角和/或所述车轮的转角确定所述车辆处于转向状态,确定检测结果包括由直行控制切换为转向控制的意图。在该实现方式中,可以通过车身控制模块(BCM,Body Control Module)或者其他模块获取车辆的方向盘的转角和/或车轮的转角。作为该实现方式的一个示例,可以响应于方向盘的转角大于或等于预定的第二角度阈值,确定车辆处于转向状态。作为该实现方式的另一个示例,可以响应于车轮的转角大于或等于预定的第三角度阈值,确定车辆处于转向状态。作为该实现方式的另一个示例,可以响应于方向盘的转角大于或等于预定的第二角度阈值,且车轮的转角大于或等于预定的第三角度阈值,确定车辆处于转向状态。根据该实现方式,能够利用方向盘的转角和/或车轮的转角,准确地确定驾驶员对车辆的转向控制意图。
在另一种可能的实现方式中,所述检测驾驶员对车辆的转向控制意图,得到检测结果,包括:获取转向灯的状态和/或转向灯拨杆的状态;响应于所述转向灯的状态为开启状态和/或所述转向灯拨杆的状态为非回位状态,确定检测结果包括由直行控制切换为转向控制的意图。在该实现方式中,可以通过车身控制模块或者其他模块获取车辆的转向灯的状态和/或转向灯拨杆的状态。其中,转向灯的状态可以为开启状态或关闭状态,转向灯拨杆的状态可以为回位状态或者非回位状态。作为该实现方式的一个示例,可以响应于转向灯的状态为开启状态,确定检测结果包括由直行控制切换为转向控制的意图。作为该实现方式的另一个示例,可以响应于转向灯拨杆的状态为非回位状态,确定检测结果包括由直行控制切换为转向控制的意图。作为该实现方式的另一个示例,可以响应于转向灯的状态为开启状态,且转向灯拨杆的状态为非回位状态,确定检测结果包括由直行控制切换为转向控制的意图。根据该实现方式,能够利用转向灯和/或转向灯拨杆的状态,准确地确定驾驶员对车辆的转向控制意图。
在另一种可能的实现方式中,所述检测驾驶员对车辆的转向控制意图,得到检测结果,包括:根 据驾驶区域的影像数据,确定以下至少一项:所述驾驶员的注视方向、所述驾驶员的眼球的转动方向、所述驾驶员的眼球的转动角度、所述驾驶员的头部的朝向、所述驾驶员的脸部的朝向;响应于所述驾驶员的注视方向为A柱方向、所述驾驶员的眼球的转动方向为向左转动或向右转动、所述驾驶员的眼球的转动角度超过预定的第一角度阈值、所述驾驶员的头部朝向为朝向A柱、所述驾驶员的脸部的朝向为朝向A柱中的至少之一,获取转向灯的状态和/或转向灯拨杆的状态;响应于所述转向灯的状态为开启状态和/或所述转向灯拨杆的状态为非回位状态,确定检测结果包括由直行控制切换为转向控制的意图。根据该实现方式,能够结合驾驶区域的影像数据以及转向灯和/或转向灯拨杆的状态,进一步提高所确定的驾驶员对车辆的转向控制意图的准确性。
在一种可能的实现方式中,可以响应于满足第一预设条件,确定所述检测结果包括维持直行控制的意图。其中,第一预设条件可以包括以下至少一项:驾驶员的注视方向为车辆前方;驾驶员的头部或脸部的朝向为车辆前方;根据车辆的方向盘的转角和/或车轮的转角确定所述车辆处于非转向状态;转向灯的状态为关闭状态和/或转向灯拨杆的状态为回位状态。当然,本领域技术人员还可以设置其他用于判定检测结果包括维持直行控制的意图的条件,在此不做限定。
在一种可能的实现方式中,可以响应于满足第二预设条件,确定所述检测结果包括维持转向控制的意图。其中,第二预设条件可以包括以下至少一项:驾驶员的注视方向为A柱方向的持续时长达到第二预设时长;驾驶员的头部或脸部的朝向为A柱方向的持续时长达到第三预设时长;根据所述方向盘的转角和/或所述车轮的转角确定所述车辆处于转向状态的持续时长达到第四预设时长;所述转向灯的状态为开启状态和/或所述转向灯拨杆的状态为非回位状态的持续时长达到第五预设时长。当然,本领域技术人员还可以设置其他用于判定检测结果包括维持转向控制的意图的条件,在此不做限定。
在一种可能的实现方式中,可以响应于满足第三预设条件,确定所述检测结果包括由转向控制切换为直行控制的意图。其中,第三预设条件可以包括以下至少一项:驾驶员的注视方向由A柱方向转换为车辆前方;驾驶员的头部或脸部的朝向由朝向A柱方向转换为朝向车辆前方;根据所述方向盘的转角和/或所述车轮的转角确定所述车辆由转向状态转换为非转向状态;所述转向灯的状态由开启状态转换为关闭状态;所述转向灯拨杆的状态由非回位状态转换为回位状态。当然,本领域技术人员还可以设置其他用于判定检测结果包括由转向控制切换为直行控制的意图的条件,在此不做限定。
在本公开实施例中,A柱显示屏的亮度状态可以表示A柱显示屏的亮度的高低状态和/或A柱显示屏的亮灭状态。所述控制信息可以表示用于控制车辆的A柱显示屏的亮度状态的信息。在根据所述检测结果生成所述控制信息之后,可以向A柱显示屏发送所述控制信息。A柱显示屏可以根据所述控制信息控制亮度状态,并在处于点亮状态时显示被A柱遮挡形成的驾驶员视线盲区内的车外影像。其中,若A柱显示屏当前的亮度状态与所述控制信息所指示的亮度状态不同,则A柱显示屏可以对亮度状态进行调整;若A柱显示屏当前的亮度状态与所述控制信息所指示的亮度状态相同,则A柱显示屏可以不对亮度状态进行调整。
在一种可能的实现方式中,所述根据所述检测结果,生成用于控制车辆的A柱显示屏的亮度状态的控制信息,包括:响应于所述检测结果包括由直行控制切换为转向控制的意图,生成第一控制信息,其中,所述第一控制信息用于控制所述A柱显示屏的亮度状态转换至预设的高亮度状态。在该实现方式中,所述控制信息包括第一控制信息。预设的高亮度状态对应的亮度值可以高于当前的环境光亮度。在不同的环境光亮度下,预设的高亮度状态对应的亮度值可以不同或相同。在该实现方式中,在A柱显示屏处于熄屏状态的情况下,第一控制信息可以用于控制A柱显示屏点亮屏幕,并控制A柱显示屏调节亮度至预设的高亮度状态对应的亮度值;在A柱显示屏处于点亮状态的情况下,第一控制信息可以用于控制A柱显示屏调节亮度至预设的高亮度状态对应的亮度值。在该实现方式中,通过响应于所述检测结果包括由直行控制切换为转向控制的意图,生成用于控制A柱显示屏的亮度状态转换至预设的高亮度状态的第一控制信息,由此能够在驾驶员转向或有意图转向时,控制A柱显示屏以足够的亮度显示被A柱遮挡形成的驾驶员视线盲区内的车外影像,从而驾驶员能够通过A柱显示屏清楚地观看 被A柱遮挡形成的驾驶员视线盲区内的车外影像,进而能够提高转向安全。
作为该实现方式的一个示例,所述预设的高亮度状态对应的亮度值与当前的环境光亮度正相关。在该示例中,在当前的环境光亮度较高时,预设的高亮度状态对应的亮度值可以较高;在当前的环境光亮度较低时,预设的高亮度状态对应的亮度值可以较低。根据该示例,能够根据当前的环境光亮度,灵活地确定预设的高亮度状态对应的亮度值,从而能够进一步提高行车安全。例如,白天和夜间的环境光亮度通常差别较大,通过根据当前的环境光亮度确定预设的高亮度状态对应的亮度值,由此能够减少在环境光亮度较高时由于A柱显示屏亮度较低导致驾驶员看不清A柱显示屏的情况,并能够减少在环境光亮度较低时由于A柱显示屏亮度较高导致刺眼的情况。即,能够在不同的环境光亮度下,控制A柱显示屏以合适的亮度进行显示,从而能够兼顾驾驶员看清A柱显示屏显示的车外影像和减少对驾驶员眼睛的伤害的需求。
在另一种可能的实现方式中,所述根据所述检测结果,生成用于控制车辆的A柱显示屏的亮度状态的控制信息,包括:响应于所述检测结果包括由转向控制切换为直行控制的意图,生成第二控制信息,其中,所述第二控制信息用于控制所述A柱显示屏的亮度状态转换至预设的低亮度状态,所述预设的低亮度状态对应的亮度值低于当前的环境光亮度。在该实现方式中,所述控制信息包括第二控制信息。在不同的环境光亮度,预设的低亮度状态对应的亮度值可以不同或相同。例如,预设的低亮度状态对应的亮度值与当前的环境光亮度正相关。在当前的环境光亮度较高时,预设的低亮度状态对应的亮度值可以较高;在当前的环境光亮度较低时,预设的低亮度状态对应的亮度值可以较低。在该实现方式中,通过响应于所述检测结果包括由转向控制切换为直行控制的意图,生成用于控制A柱显示屏的亮度状态转换至预设的低亮度状态的第二控制信息,由此能够在转向结束后,减小A柱显示屏对驾驶员行车的干扰,并能够节省A柱显示屏的功耗。例如,在夜间行车时,响应于所述检测结果包括由转向控制切换为直行控制的意图,控制A柱显示屏的亮度状态切换至预设的低亮度状态,由此能够大大降低A柱显示屏对驾驶员夜间行车的干扰。
作为该实现方式的一个示例,所述预设的低亮度状态包括非熄屏状态。在该示例中,通过响应于所述检测结果包括由转向控制切换为直行控制的意图,控制A柱显示屏转换至非熄屏状态的预设的低亮度状态,由此当驾驶员需要再次观看A柱显示屏时,能够快速转换至预设的高亮度状态,从而能够快速响应驾驶员观看被A柱遮挡形成的驾驶员视线盲区内的车外影像的需求,进而有助于进一步提高行车安全。
在一个例子中,所述方法还包括:响应于在第一预设时长内所述检测结果不包括所述驾驶员进行由直行控制切换为转向控制的意图,生成第三控制信息,其中,所述第三控制信息用于控制所述A柱显示屏熄灭。在这个例子中,在第一预设时长内所述检测结果不包括驾驶员进行由直行控制切换为转向控制的意图的情况下,可以判定车辆维持较长时间的直行状态。在这种情况下,通过生成控制A柱显示屏熄灭的第三控制信息,以控制A柱显示屏熄灭,由此能够进一步降低A柱显示屏对驾驶员的干扰,并能够进一步降低A柱显示屏的功耗。
当然,在另一个例子中,还可以不控制A柱显示屏熄灭,即,可以控制A柱显示屏持续处于非熄屏状态。
作为该实现方式的另一个示例,预设的低亮度状态包括熄屏状态。在该示例中,可以响应于所述检测结果包括由转向控制切换为直行控制的意图,控制A柱显示屏熄灭。
在本公开实施例中,在相同的环境光亮度下,预设的高亮度状态对应的亮度值可以高于预设的低亮度状态对应的亮度值。
在一种可能的实现方式中,在所述检测结果包括由直行控制切换为转向控制的意图的情况下,所述控制信息用于对所述转向控制所指示的转向方向对应的A柱显示屏的亮度状态进行控制;或者,在所述检测结果包括由直行控制切换为转向控制的意图的情况下,所述控制信息用于对两侧的A柱显示屏的亮度状态进行控制。
作为该实现方式的一个示例,在所述检测结果包括由直行控制切换为转向控制的意图的情况下,所述控制信息用于对所述转向控制所指示的转向方向对应的A柱显示屏的亮度状态进行控制。例如,若所述转向控制指示左转,则所述控制信息可以用于控制左侧A柱内侧的A柱显示屏的亮度状态;若所述转向控制指示右转,则所述控制信息可以用于控制右侧A柱内侧的A柱显示屏的亮度状态。根据该示例,能够准确地对所述转向控制所指示的转向方向对应的A柱显示屏进行亮度状态的控制。
作为该实现方式的另一个示例,在所述检测结果包括由直行控制切换为转向控制的意图的情况下,所述控制信息用于对两侧的A柱显示屏的亮度状态进行控制。根据该示例,能够基于由直行控制切换为转向控制的意图,同时对两侧的A柱显示屏进行亮度状态的控制,从而能够方便驾驶员同时观看两侧的A柱显示屏显示的车外影像。
在一种可能的实现方式中,所述方法还包括:响应于检测到所述车辆的危险报警闪光灯开启,生成第四控制信息,其中,所述第四控制信息用于控制所述A柱显示屏的亮度状态转换至预设的高亮度状态。其中,第三控制信息可以与第一控制信息相同或不同。例如,第三控制信息对应的A柱显示屏的亮度值可以与第一控制信息对应的A柱显示屏的亮度值有差异。由于危险报警闪光灯通常比转向灯具有更高的优先级,因此,当危险报警闪光灯开启时,转向灯和转向灯拨杆的信号可能会失效。因此,通过响应于检测到车辆的危险报警闪光灯开启,生成用于控制A柱显示屏的亮度状态转换至预设的高亮度状态的第四控制信息,由此能够在危险报警闪光灯开启时控制A柱显示屏持续处于预设的高亮度状态,从而能够进一步提高行车安全。
可以理解,本公开提及的上述各个方法实施例,在不违背原理逻辑的情况下,均可以彼此相互结合形成结合后的实施例,限于篇幅,本公开不再赘述。本领域技术人员可以理解,在具体实施方式的上述方法中,各步骤的具体执行顺序应当以其功能和可能的内在逻辑确定。
此外,本公开还提供了车辆、车辆显示屏的控制装置、电子设备、计算机可读存储介质、程序,上述均可用来实现本公开提供的任一种车辆显示屏的控制方法,相应技术方案和技术效果可参见方法部分的相应记载,不再赘述。
图2示出本公开实施例提供的车辆的示意图。如图2所示,所示车辆包括:第一摄像头21,用于采集被A柱遮挡形成的驾驶员视线盲区内的车外影像,并向A柱显示屏23发送所述车外影像;控制器22,用于检测驾驶员对车辆的转向控制意图,得到检测结果,根据所述检测结果,生成用于控制所述A柱显示屏23的亮度状态的控制信息,并向所述A柱显示屏23发送所述控制信息;所述A柱显示屏23,安装在车辆的A柱内侧,分别与所述第一摄像头21和所述控制器22连接,用于根据所述控制信息控制亮度状态,并在处于点亮状态时显示所述车外影像。
在本公开实施例中,控制器22可以是DMS控制器、域控制器等等。
在一种可能的实现方式中,所述控制器22用于:响应于所述检测结果包括由直行控制切换为转向控制的意图,生成第一控制信息,其中,所述第一控制信息用于控制所述A柱显示屏23的亮度状态转换至预设的高亮度状态。
在一种可能的实现方式中,所述预设的高亮度状态对应的亮度值与当前的环境光亮度正相关。
在一种可能的实现方式中,所述控制器22用于:响应于所述检测结果包括由转向控制切换为直行控制的意图,生成第二控制信息,其中,所述第二控制信息用于控制所述A柱显示屏23的亮度状态转换至预设的低亮度状态,所述预设的低亮度状态对应的亮度值低于当前的环境光亮度。
在一种可能的实现方式中,所述预设的低亮度状态包括非熄屏状态。
在一种可能的实现方式中,所述控制器22还用于:响应于在第一预设时长内所述检测结果不包括所述驾驶员进行由直行控制切换为转向控制的意图,生成第三控制信息,其中,所述第三控制信息用于控制所述A柱显示屏23熄灭。
在一种可能的实现方式中,在所述检测结果包括由直行控制切换为转向控制的意图的情况下,所述控制信息用于对所述转向控制所指示的转向方向对应的A柱显示屏23的亮度状态进行控制;或者, 在所述检测结果包括由直行控制切换为转向控制的意图的情况下,所述控制信息用于对两侧的A柱显示屏23的亮度状态进行控制。
在一种可能的实现方式中,所述车辆还包括:第二摄像头,用于采集驾驶区域的影像数据,并向所述控制器22发送所述驾驶区域的影像数据;所述控制器22,用于根据所述驾驶区域的影像数据,检测驾驶员对车辆的转向控制意图,得到检测结果。
在该实现方式中,第二摄像头可以为DMS摄像头或者普通摄像头等,在此不做限定。
在一种可能的实现方式中,所述控制器22用于:根据所述驾驶区域的影像数据,确定所述驾驶员的注视方向;响应于所述驾驶员的注视方向为A柱方向,确定所述检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述控制器22用于:根据所述驾驶区域的影像数据,确定所述驾驶员的眼球的转动方向和/或转动角度;响应于所述驾驶员的眼球的转动方向为向左转动或向右转动,和/或所述眼球的转动角度超过预定的第一角度阈值,确定检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述控制器22用于:根据所述驾驶区域的影像数据,确定所述驾驶员的眼球的转动方向;响应于所述驾驶员的眼球的转动方向为向左转动或向右转动,根据所述驾驶区域的影像数据,确定所述驾驶员的视线方向;响应于所述驾驶员的视线方向落在A柱上,确定转向信息的检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述控制器22用于:根据所述驾驶区域的影像数据,确定所述驾驶员的头部或脸部的朝向;响应于所述驾驶员的头部或脸部的朝向为朝向A柱,确定检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述车辆还包括:车身控制模块,用于获取所述车辆的方向盘的转角和/或车轮的转角,并向所述控制器22发送所述方向盘的转角和/或所述车轮的转角;所述控制器22用于:响应于根据所述方向盘的转角和/或所述车轮的转角确定所述车辆处于转向状态,确定检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述车辆还包括:车身控制模块,用于获取转向灯的状态和/或转向灯拨杆的状态,并向所述控制器22发送所述转向灯的状态和/或所述转向灯拨杆的状态;所述控制器22用于:响应于所述转向灯的状态为开启状态和/或所述转向灯拨杆的状态为非回位状态,确定检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述车辆还包括:车身控制模块,用于获取转向灯的状态和/或转向灯拨杆的状态;所述控制器22用于:根据驾驶区域的影像数据,确定以下至少一项:所述驾驶员的注视方向、所述驾驶员的眼球的转动方向、所述驾驶员的眼球的转动角度、所述驾驶员的头部的朝向、所述驾驶员的脸部的朝向;响应于所述驾驶员的注视方向为A柱方向、所述驾驶员的眼球的转动方向为向左转动或向右转动、所述驾驶员的眼球的转动角度超过预定的第一角度阈值、所述驾驶员的头部朝向为朝向A柱、所述驾驶员的脸部的朝向为朝向A柱中的至少之一,从所述车身控制模块获取转向灯的状态和/或转向灯拨杆的状态;响应于所述转向灯的状态为开启状态和/或所述转向灯拨杆的状态为非回位状态,确定检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述控制器22还用于:响应于检测到所述车辆的危险报警闪光灯开启,生成第四控制信息,其中,所述第四控制信息用于控制所述A柱显示屏23的亮度状态转换至预设的高亮度状态。
在本公开实施例中,通过第一摄像头采集被A柱遮挡形成的驾驶员视线盲区内的车外影像,并向A柱显示屏发送所述车外影像,通过控制器检测驾驶员对车辆的转向控制意图,得到检测结果,根据所述检测结果,生成用于控制A柱显示屏的亮度状态的控制信息,并向A柱显示屏发送所述控制信息,通过A柱显示屏根据所述控制信息控制亮度状态,并在处于点亮状态时显示所述车外影像,由此能够 基于驾驶员对车辆的转向控制意图控制A柱显示屏的亮度状态,从而能够在降低A柱显示屏对驾驶员的干扰的前提下,为驾驶员提供被A柱遮挡形成的驾驶员视线盲区内的车外影像,进而有助于提高行车安全,并能够降低A柱显示屏的功耗。
本公开实施例可以应用于智能座舱等技术领域。下面通过一个具体的应用场景说明本公开实施例提供的车辆。图3示出本公开实施例提供的一种应用场景的示意图。如图3所示,所示车辆包括第一摄像头31、DMS控制器32、A柱显示屏33、DMS摄像头34和车身控制模块35。其中,DMS控制器32分别与A柱显示屏33、DMS摄像头34和车身控制模块35连接,A柱显示屏33还与第一摄像头31连接。
其中,第一摄像头31可以用于采集被A柱遮挡形成的驾驶员视线盲区内的车外影像,并向A柱显示屏33发送所述车外影像。
DMS摄像头34可以用于采集驾驶区域的影像数据,并向DMS控制器32发送驾驶区域的影像数据。
车身控制模块35可以用于获取以下至少一项车辆的状态信息:方向盘的转角、车轮的转角、转向灯的状态、转向灯的状态、危险报警闪光灯的状态。车身控制模块35在获取到车辆的状态信息之后,可以向DMS控制器32发送车辆的状态信息。
DMS控制器32可以用于根据驾驶区域的影像数据和/或车辆的状态信息,检测驾驶员对车辆的转向控制意图,得到检测结果,根据所述检测结果,生成用于控制A柱显示屏33的亮度状态的控制信息,并向A柱显示屏33发送所述控制信息。
A柱显示屏23可以用于根据所述控制信息控制亮度状态,并在处于点亮状态时显示所述车外影像。
图4示出本公开实施例提供的车辆显示屏的控制装置的框图。如图4所示,所述车辆显示屏的控制装置包括:
检测模块41,用于检测驾驶员对车辆的转向控制意图,得到检测结果;
第一生成模块42,用于根据所述检测结果,生成用于控制车辆的A柱显示屏的亮度状态的控制信息,其中,所述A柱显示屏安装在车辆的A柱内侧,用于显示被A柱遮挡形成的驾驶员视线盲区内的车外影像。
在一种可能的实现方式中,所述第一生成模块42用于:
响应于所述检测结果包括由直行控制切换为转向控制的意图,生成第一控制信息,其中,所述第一控制信息用于控制所述A柱显示屏的亮度状态转换至预设的高亮度状态。
在一种可能的实现方式中,所述预设的高亮度状态对应的亮度值与当前的环境光亮度正相关。
在一种可能的实现方式中,所述第一生成模块42用于:
响应于所述检测结果包括由转向控制切换为直行控制的意图,生成第二控制信息,其中,所述第二控制信息用于控制所述A柱显示屏的亮度状态转换至预设的低亮度状态,所述预设的低亮度状态对应的亮度值低于当前的环境光亮度。
在一种可能的实现方式中,所述预设的低亮度状态包括非熄屏状态。
在一种可能的实现方式中,所述装置还包括:
第二生成模块,用于响应于在第一预设时长内所述检测结果不包括所述驾驶员进行由直行控制切换为转向控制的意图,生成第三控制信息,其中,所述第三控制信息用于控制所述A柱显示屏熄灭。
在一种可能的实现方式中,
在所述检测结果包括由直行控制切换为转向控制的意图的情况下,所述控制信息用于对所述转向控制所指示的转向方向对应的A柱显示屏的亮度状态进行控制;
或者,
在所述检测结果包括由直行控制切换为转向控制的意图的情况下,所述控制信息用于对两侧的A柱显示屏的亮度状态进行控制。
在一种可能的实现方式中,所述检测模块41用于:
获取驾驶区域的影像数据;
根据所述驾驶区域的影像数据,检测驾驶员对车辆的转向控制意图,得到检测结果。
在一种可能的实现方式中,所述检测模块41用于:
根据所述驾驶区域的影像数据,确定所述驾驶员的注视方向;
响应于所述驾驶员的注视方向为A柱方向,确定所述检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述检测模块41用于:
根据所述驾驶区域的影像数据,确定所述驾驶员的眼球的转动方向和/或转动角度;
响应于所述驾驶员的眼球的转动方向为向左转动或向右转动,和/或所述眼球的转动角度超过预定的第一角度阈值,确定检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述检测模块41用于:
根据所述驾驶区域的影像数据,确定所述驾驶员的眼球的转动方向;
响应于所述驾驶员的眼球的转动方向为向左转动或向右转动,根据所述驾驶区域的影像数据,确定所述驾驶员的视线方向;
响应于所述驾驶员的视线方向落在A柱上,确定转向信息的检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述检测模块41用于:
根据所述驾驶区域的影像数据,确定所述驾驶员的头部或脸部的朝向;
响应于所述驾驶员的头部或脸部的朝向为朝向A柱,确定检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述检测模块41用于:
获取所述车辆的方向盘的转角和/或车轮的转角;
响应于根据所述方向盘的转角和/或所述车轮的转角确定所述车辆处于转向状态,确定检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述检测模块41用于:
获取转向灯的状态和/或转向灯拨杆的状态;
响应于所述转向灯的状态为开启状态和/或所述转向灯拨杆的状态为非回位状态,确定检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述检测模块41用于:
根据驾驶区域的影像数据,确定以下至少一项:所述驾驶员的注视方向、所述驾驶员的眼球的转动方向、所述驾驶员的眼球的转动角度、所述驾驶员的头部的朝向、所述驾驶员的脸部的朝向;
响应于所述驾驶员的注视方向为A柱方向、所述驾驶员的眼球的转动方向为向左转动或向右转动、所述驾驶员的眼球的转动角度超过预定的第一角度阈值、所述驾驶员的头部朝向为朝向A柱、所述驾驶员的脸部的朝向为朝向A柱中的至少之一,获取转向灯的状态和/或转向灯拨杆的状态;
响应于所述转向灯的状态为开启状态和/或所述转向灯拨杆的状态为非回位状态,确定检测结果包括由直行控制切换为转向控制的意图。
在一种可能的实现方式中,所述装置还包括:
第三生成模块,用于响应于检测到所述车辆的危险报警闪光灯开启,生成第四控制信息,其中,所述第四控制信息用于控制所述A柱显示屏的亮度状态转换至预设的高亮度状态。
在本公开实施例中,通过检测驾驶员对车辆的转向控制意图,得到检测结果,并根据所述检测结果,生成用于控制车辆的A柱显示屏的亮度状态的控制信息,由此能够基于驾驶员对车辆的转向控制意图控制A柱显示屏的亮度状态,从而能够在降低A柱显示屏对驾驶员的干扰的前提下,为驾驶员提供被A柱遮挡形成的驾驶员视线盲区内的车外影像,进而有助于提高行车安全,并能够降低A柱显示屏的功耗。
在一些实施例中,本公开实施例提供的装置具有的功能或包含的模块可以用于执行上文方法实施例描述的方法,其具体实现和技术效果可以参照上文方法实施例的描述,为了简洁,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述方法。其中,所述计算机可读存储介质可以是非易失性计算机可读存储介质,或者可以是易失性计算机可读存储介质。
本公开实施例还提出一种计算机程序,包括计算机可读代码,当所述计算机可读代码在电子设备中运行时,所述电子设备中的处理器执行用于实现上述方法。
本公开实施例还提出一种计算机程序产品,包括计算机可读代码,或者承载有计算机可读代码的非易失性计算机可读存储介质,当所述计算机可读代码在电子设备中运行时,所述电子设备中的处理器执行上述方法。
本公开实施例还提供一种电子设备,包括:一个或多个处理器;用于存储可执行指令的存储器;其中,所述一个或多个处理器被配置为调用所述存储器存储的可执行指令,以执行上述方法。
电子设备可以被提供为终端、服务器或其它形态的设备。例如,所述电子设备可以是车载设备,例如可以是DMS控制器、域控制器等。
图5示出本公开实施例提供的一种电子设备800的框图。例如,电子设备800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等终端。
参照图5,电子设备800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制电子设备800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在电子设备800的操作。这些数据的示例包括用于在电子设备800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为电子设备800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为电子设备800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述电子设备800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当电子设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当电子设备800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为电子设备800提供各个方面的状态评估。例如,传感器组件814可以检测到电子设备800的打开/关闭状态,组件的相对定位,例如所述组件为电子设备800的显示器和小键盘,传感器组件814还可以检测电子设备800或电子设备800一个组件的位置改变,用户与电子设备800接触的存在或不存在,电子设备800方位或加速/减速和电子设备800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如互补金属氧化物半导体(CMOS)或电荷耦合装置(CCD)图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于电子设备800和其他设备之间有线或无线方式的通信。电子设备800可以接入基于通信标准的无线网络,如无线网络(Wi-Fi)、第二代移动通信技术(2G)、第三代移动通信技术(3G)、第四代移动通信技术(4G)/通用移动通信技术的长期演进(LTE)、第五代移动通信技术(5G)或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,电子设备800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种非易失性计算机可读存储介质,例如包括计算机程序指令的存储器804,上述计算机程序指令可由电子设备800的处理器820执行以完成上述方法。
图6示出本公开实施例提供的一种电子设备1900的框图。例如,电子设备1900可以被提供为一服务器。参照图6,电子设备1900包括处理组件1922,其进一步包括一个或多个处理器,以及由存储器1932所代表的存储器资源,用于存储可由处理组件1922的执行的指令,例如应用程序。存储器1932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1922被配置为执行指令,以执行上述方法。
电子设备1900还可以包括一个电源组件1926被配置为执行电子设备1900的电源管理,一个有线或无线网络接口1950被配置为将电子设备1900连接到网络,和一个输入输出(I/O)接口1958。电子设备1900可以操作基于存储在存储器1932的操作系统,例如微软服务器操作系统(Windows Server TM),苹果公司推出的基于图形用户界面操作系统(Mac OS X TM),多用户多进程的计算机操作系统(Unix TM),自由和开放原代码的类Unix操作系统(Linux TM),开放原代码的类Unix操作系统(FreeBSD TM)或类似。
在示例性实施例中,还提供了一种非易失性计算机可读存储介质,例如包括计算机程序指令的存储器1932,上述计算机程序指令可由电子设备1900的处理组件1922执行以完成上述方法。
本公开可以是系统、方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本公开的各个方面的计算机可读程序指令。
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、 以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。
这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
用于执行本公开操作的计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本公开的各个方面。
这里参照根据本公开实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本公开的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
附图中的流程图和框图显示了根据本公开的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
该计算机程序产品可以具体通过硬件、软件或其结合的方式实现。在一个可选实施例中,所述计算机程序产品具体体现为计算机存储介质,在另一个可选实施例中,计算机程序产品具体体现为软件产品,例如软件开发包(Software Development Kit,SDK)等等。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露 的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (21)

  1. 一种车辆显示屏的控制方法,其特征在于,包括:
    检测驾驶员对车辆的转向控制意图,得到检测结果;
    根据所述检测结果,生成用于控制车辆的A柱显示屏的亮度状态的控制信息,其中,所述A柱显示屏安装在车辆的A柱内侧,用于显示被A柱遮挡形成的驾驶员视线盲区内的车外影像。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述检测结果,生成用于控制车辆的A柱显示屏的亮度状态的控制信息,包括:
    响应于所述检测结果包括由直行控制切换为转向控制的意图,生成第一控制信息,其中,所述第一控制信息用于控制所述A柱显示屏的亮度状态转换至预设的高亮度状态。
  3. 根据权利要求2所述的方法,其特征在于,所述预设的高亮度状态对应的亮度值与当前的环境光亮度正相关。
  4. 根据权利要求1至3中任意一项所述的方法,其特征在于,所述根据所述检测结果,生成用于控制车辆的A柱显示屏的亮度状态的控制信息,包括:
    响应于所述检测结果包括由转向控制切换为直行控制的意图,生成第二控制信息,其中,所述第二控制信息用于控制所述A柱显示屏的亮度状态转换至预设的低亮度状态,所述预设的低亮度状态对应的亮度值低于当前的环境光亮度。
  5. 根据权利要求4所述的方法,其特征在于,所述预设的低亮度状态包括非熄屏状态。
  6. 根据权利要求5所述的方法,其特征在于,在所述生成第二控制信息之后,所述方法还包括:
    响应于在第一预设时长内所述检测结果不包括所述驾驶员进行由直行控制切换为转向控制的意图,生成第三控制信息,其中,所述第三控制信息用于控制所述A柱显示屏熄灭。
  7. 根据权利要求1至6中任意一项所述的方法,其特征在于,
    在所述检测结果包括由直行控制切换为转向控制的意图的情况下,所述控制信息用于对所述转向控制所指示的转向方向对应的A柱显示屏的亮度状态进行控制;
    或者,
    在所述检测结果包括由直行控制切换为转向控制的意图的情况下,所述控制信息用于对两侧的A柱显示屏的亮度状态进行控制。
  8. 根据权利要求1至7中任意一项所述的方法,其特征在于,所述检测驾驶员对车辆的转向控制意图,得到检测结果,包括:
    获取驾驶区域的影像数据;
    根据所述驾驶区域的影像数据,检测驾驶员对车辆的转向控制意图,得到检测结果。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述驾驶区域的影像数据,检测驾驶员对车辆的转向控制意图,得到检测结果,包括:
    根据所述驾驶区域的影像数据,确定所述驾驶员的注视方向;
    响应于所述驾驶员的注视方向为A柱方向,确定所述检测结果包括由直行控制切换为转向控制的意图。
  10. 根据权利要求8或9所述的方法,其特征在于,所述根据所述驾驶区域的影像数据,检测驾驶员对车辆的转向控制意图,得到检测结果,包括:
    根据所述驾驶区域的影像数据,确定所述驾驶员的眼球的转动方向和/或转动角度;
    响应于所述驾驶员的眼球的转动方向为向左转动或向右转动,和/或所述眼球的转动角度超过预定的第一角度阈值,确定检测结果包括由直行控制切换为转向控制的意图。
  11. 根据权利要求8至10中任意一项所述的方法,其特征在于,所述根据所述驾驶区域的影像数据,检测驾驶员对车辆的转向控制意图,得到检测结果,包括:
    根据所述驾驶区域的影像数据,确定所述驾驶员的眼球的转动方向;
    响应于所述驾驶员的眼球的转动方向为向左转动或向右转动,根据所述驾驶区域的影像数据,确 定所述驾驶员的视线方向;
    响应于所述驾驶员的视线方向落在A柱上,确定转向信息的检测结果包括由直行控制切换为转向控制的意图。
  12. 根据权利要求8至11中任意一项所述的方法,其特征在于,所述根据所述驾驶区域的影像数据,检测驾驶员对车辆的转向控制意图,得到检测结果,包括:
    根据所述驾驶区域的影像数据,确定所述驾驶员的头部或脸部的朝向;
    响应于所述驾驶员的头部或脸部的朝向为朝向A柱,确定检测结果包括由直行控制切换为转向控制的意图。
  13. 根据权利要求1至12中任意一项所述的方法,其特征在于,所述检测驾驶员对车辆的转向控制意图,得到检测结果,包括:
    获取所述车辆的方向盘的转角和/或车轮的转角;
    响应于根据所述方向盘的转角和/或所述车轮的转角确定所述车辆处于转向状态,确定检测结果包括由直行控制切换为转向控制的意图。
  14. 根据权利要求1至13中任意一项所述的方法,其特征在于,所述检测驾驶员对车辆的转向控制意图,得到检测结果,包括:
    获取转向灯的状态和/或转向灯拨杆的状态;
    响应于所述转向灯的状态为开启状态和/或所述转向灯拨杆的状态为非回位状态,确定检测结果包括由直行控制切换为转向控制的意图。
  15. 根据权利要求1至13任意一项所述的方法,其特征在于,所述检测驾驶员对车辆的转向控制意图,得到检测结果,包括:
    根据驾驶区域的影像数据,确定以下至少一项:所述驾驶员的注视方向、所述驾驶员的眼球的转动方向、所述驾驶员的眼球的转动角度、所述驾驶员的头部的朝向、所述驾驶员的脸部的朝向;
    响应于所述驾驶员的注视方向为A柱方向、所述驾驶员的眼球的转动方向为向左转动或向右转动、所述驾驶员的眼球的转动角度超过预定的第一角度阈值、所述驾驶员的头部朝向为朝向A柱、所述驾驶员的脸部的朝向为朝向A柱中的至少之一,获取转向灯的状态和/或转向灯拨杆的状态;
    响应于所述转向灯的状态为开启状态和/或所述转向灯拨杆的状态为非回位状态,确定检测结果包括由直行控制切换为转向控制的意图。
  16. 根据权利要求1至15中任意一项所述的方法,其特征在于,所述方法还包括:
    响应于检测到所述车辆的危险报警闪光灯开启,生成第四控制信息,其中,所述第四控制信息用于控制所述A柱显示屏的亮度状态转换至预设的高亮度状态。
  17. 一种车辆显示屏的控制装置,其特征在于,包括:
    检测模块,用于检测驾驶员对车辆的转向控制意图,得到检测结果;
    第一生成模块,用于根据所述检测结果,生成用于控制车辆的A柱显示屏的亮度状态的控制信息,其中,所述A柱显示屏安装在车辆的A柱内侧,用于显示被A柱遮挡形成的驾驶员视线盲区内的车外影像。
  18. 一种电子设备,其特征在于,包括:
    一个或多个处理器;
    用于存储可执行指令的存储器;
    其中,所述一个或多个处理器被配置为调用所述存储器存储的可执行指令,以执行权利要求1至16中任意一项所述的方法。
  19. 一种计算机可读存储介质,其上存储有计算机程序指令,其特征在于,所述计算机程序指令被处理器执行时实现权利要求1至16中任意一项所述的方法。
  20. 一种车辆,其特征在于,包括:
    第一摄像头,用于采集被A柱遮挡形成的驾驶员视线盲区内的车外影像,并向A柱显示屏发送所述车外影像;
    控制器,用于检测驾驶员对车辆的转向控制意图,得到检测结果,根据所述检测结果,生成用于控制所述A柱显示屏的亮度状态的控制信息,并向所述A柱显示屏发送所述控制信息;
    所述A柱显示屏,安装在车辆的A柱内侧,分别与所述第一摄像头和所述控制器连接,用于根据所述控制信息控制亮度状态,并在处于点亮状态时显示所述车外影像。
  21. 一种计算机程序产品,其特征在于,包括计算机可读代码,或者承载有计算机可读代码的非易失性计算机可读存储介质,当所述计算机可读代码在电子设备中运行时,所述电子设备中的处理器执行权利要求1至16中任意一项所述的方法。
PCT/CN2021/113563 2021-03-23 2021-08-19 车辆显示屏的控制方法及装置、设备、介质及车辆 WO2022198907A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110309295.0 2021-03-23
CN202110309295.0A CN113002424A (zh) 2021-03-23 2021-03-23 车辆显示屏的控制方法及装置、设备、介质及车辆

Publications (1)

Publication Number Publication Date
WO2022198907A1 true WO2022198907A1 (zh) 2022-09-29

Family

ID=76405524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113563 WO2022198907A1 (zh) 2021-03-23 2021-08-19 车辆显示屏的控制方法及装置、设备、介质及车辆

Country Status (2)

Country Link
CN (1) CN113002424A (zh)
WO (1) WO2022198907A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113002424A (zh) * 2021-03-23 2021-06-22 上海商汤临港智能科技有限公司 车辆显示屏的控制方法及装置、设备、介质及车辆
CN113547984A (zh) * 2021-06-23 2021-10-26 云度新能源汽车有限公司 一种基于hud的车辆a柱盲区识别方法和系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104890576A (zh) * 2015-05-22 2015-09-09 西安电子科技大学 一种智能全方位消除汽车盲区的装置
US9845053B2 (en) * 2014-05-20 2017-12-19 Panasonic Intellectual Property Management Co., Ltd. Image display system and display used in image display system
KR20190004111A (ko) * 2017-07-03 2019-01-11 이학로 자동차 사각지대 방지 a 및 c필라 시스템
US20190100145A1 (en) * 2017-10-02 2019-04-04 Hua-Chuang Automobile Information Technical Center Co., Ltd. Three-dimensional image driving assistance device
CN211075717U (zh) * 2019-11-20 2020-07-24 吴振源 一种汽车a柱盲区可视系统
KR20200110033A (ko) * 2019-03-15 2020-09-23 김필재 영상 디스플레이 시스템 및 방법
CN211684869U (zh) * 2019-12-25 2020-10-16 宜宾凯翼汽车有限公司 一种a柱安全显示系统
CN113002424A (zh) * 2021-03-23 2021-06-22 上海商汤临港智能科技有限公司 车辆显示屏的控制方法及装置、设备、介质及车辆

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670935A (en) * 1993-02-26 1997-09-23 Donnelly Corporation Rearview vision system for vehicle including panoramic view
US20030227546A1 (en) * 2002-06-06 2003-12-11 Hilborn Thomas W. Viewing arrangement
CN103273884B (zh) * 2013-06-08 2015-07-22 南京恒天伟智能技术有限公司 车载全方位路况监视装置
CN104309533A (zh) * 2014-10-31 2015-01-28 成都众易通科技有限公司 一种车辆辅助驾驶系统
CN108819895A (zh) * 2018-05-23 2018-11-16 浙江吉利汽车研究院有限公司 一种车载全景影像系统
CN110920523A (zh) * 2019-10-24 2020-03-27 浙江合众新能源汽车有限公司 一种透明立柱前后视镜的实现装置及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9845053B2 (en) * 2014-05-20 2017-12-19 Panasonic Intellectual Property Management Co., Ltd. Image display system and display used in image display system
CN104890576A (zh) * 2015-05-22 2015-09-09 西安电子科技大学 一种智能全方位消除汽车盲区的装置
KR20190004111A (ko) * 2017-07-03 2019-01-11 이학로 자동차 사각지대 방지 a 및 c필라 시스템
US20190100145A1 (en) * 2017-10-02 2019-04-04 Hua-Chuang Automobile Information Technical Center Co., Ltd. Three-dimensional image driving assistance device
KR20200110033A (ko) * 2019-03-15 2020-09-23 김필재 영상 디스플레이 시스템 및 방법
CN211075717U (zh) * 2019-11-20 2020-07-24 吴振源 一种汽车a柱盲区可视系统
CN211684869U (zh) * 2019-12-25 2020-10-16 宜宾凯翼汽车有限公司 一种a柱安全显示系统
CN113002424A (zh) * 2021-03-23 2021-06-22 上海商汤临港智能科技有限公司 车辆显示屏的控制方法及装置、设备、介质及车辆

Also Published As

Publication number Publication date
CN113002424A (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
US10591723B2 (en) In-vehicle projection display system with dynamic display area
WO2022062659A1 (zh) 智能驾驶控制方法及装置、车辆、电子设备和存储介质
WO2022041671A1 (zh) 方向盘脱手检测方法及装置、电子设备和存储介质
WO2022198907A1 (zh) 车辆显示屏的控制方法及装置、设备、介质及车辆
JP6413207B2 (ja) 車両用表示装置
JP4946672B2 (ja) 脇見検出装置および方法、並びに、プログラム
CN108128249B (zh) 用于改变外侧后视摄像头的视野的系统和方法
JP2010128794A (ja) 車両周辺認知支援装置
JP2014026564A (ja) 車両用警告装置
US20140005886A1 (en) Controlling automotive functionality using internal- and external-facing sensors
WO2022142331A1 (zh) 车载显示屏的控制方法及装置、电子设备和存储介质
CN111556281B (zh) 车用安全系统及其操作方法
TW202033394A (zh) 車用擴增實境眼鏡輔助裝置
WO2022188362A1 (zh) 分心提醒方法及装置、电子设备和存储介质
JP4498771B2 (ja) 車載用後方監視装置
JP6686450B2 (ja) メガネ型情報表示装置
CN111788088A (zh) 车辆用显示控制装置和显示控制方法
JP2019144971A (ja) 移動体の制御システムおよび制御方法
JP2021113019A (ja) 車両用表示装置
US11130447B2 (en) Vehicle rear-view mirror and method for controlling the same, control system of the vehicle rear-view mirror
CN114013367B (zh) 一种远光灯使用提醒方法及装置、电子设备和存储介质
CN113361361B (zh) 与乘员交互的方法及装置、车辆、电子设备和存储介质
CN115460352B (zh) 车载视频的处理方法、装置、设备、存储介质和程序产品
JP2019110390A (ja) 車両周辺監視装置
JP2019086654A (ja) 画像表示装置及び画像表示装置の制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/02/2024)