WO2022198843A1 - 一种锂离子电池三元正极材料及其制备方法 - Google Patents

一种锂离子电池三元正极材料及其制备方法 Download PDF

Info

Publication number
WO2022198843A1
WO2022198843A1 PCT/CN2021/105921 CN2021105921W WO2022198843A1 WO 2022198843 A1 WO2022198843 A1 WO 2022198843A1 CN 2021105921 W CN2021105921 W CN 2021105921W WO 2022198843 A1 WO2022198843 A1 WO 2022198843A1
Authority
WO
WIPO (PCT)
Prior art keywords
ternary
positive electrode
lithium
electrode material
calcination
Prior art date
Application number
PCT/CN2021/105921
Other languages
English (en)
French (fr)
Inventor
赵焱樟
陈瑶
许梦清
Original Assignee
万向一二三股份公司
万向集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万向一二三股份公司, 万向集团公司 filed Critical 万向一二三股份公司
Publication of WO2022198843A1 publication Critical patent/WO2022198843A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of positive electrode materials for lithium ion batteries, in particular to a ternary positive electrode material for lithium ion batteries and a preparation method thereof.
  • the commonly used cathode materials for lithium batteries mainly include layered lithium cobalt oxide, ternary materials, lithium manganate with spinel structure, and lithium iron phosphate with olivine structure.
  • Ternary materials have high specific capacity, energy density and power density, and relatively stable performance, making them popular materials for commercial cathodes.
  • the electrochemical properties, thermal stability and structural stability of ternary materials need to be further improved, especially in high temperature and high potential test environments; these problems are particularly prominent with the increase of nickel content. Therefore, the modification of ternary materials is very important.
  • the ternary material is generally coated, the coating layer is used to improve the lithium ion conductivity and electronic conductivity of the ternary material, and the lithium ion and electronic conductivity are simultaneously improved by multiple coating, thereby significantly improving the Structural stability, thermal stability, rate capability, and long-cycle stability of ternary cathodes.
  • a positive electrode material for improving the first discharge capacity and its preparation method disclosed in the Chinese patent document, its publication number CN111162249A
  • the positive electrode material is made of a positive electrode material matrix, a lithium source and a coating agent
  • the coating is made of
  • the coating agent is any or a combination of boric acid, lithium borate, aluminum borate, sodium borate, potassium borate, aluminum oxide, titanium oxide, zirconium oxide, and yttrium oxide.
  • the ternary material is modified with a boron-containing capping agent, although B can stabilize the crystal structure and make the crystal structure more complete, thereby improving the processability, safety and cycle of the battery, the introduction of B will reduce the material. The lithium ion conductivity, thus affecting the performance of the battery.
  • the present invention is to overcome the problem in the prior art that when a boron-containing coating agent is used to coat and modify a ternary positive electrode material, the introduction of B will reduce the lithium ion conductivity of the material, thereby affecting the battery performance, and provide a lithium ion battery.
  • Ternary cathode material and preparation method thereof by improving the coating agent and preparation method, a layer of material with high lithium ion conductivity is coated on the surface of the ternary cathode material, which improves the capacity performance of the material and reduces the amount of ions
  • the resistivity can improve the rate performance; at the same time, the coating layer can effectively slow down the side reaction between the ternary material and the electrolyte, improve its cycle performance and prolong the battery life.
  • a ternary positive electrode material for a lithium ion battery comprising a ternary material and a coating layer coated on the surface of the ternary material, wherein the coating layer includes a Li 2+x C 1-x B x O 3 coating agent, where 0 ⁇ x ⁇ 1.
  • the present invention uses Li 2+x C 1-x B x O 3 material obtained by sintering lithium borate and lithium carbonate as a coating agent.
  • Li 2+x C 1- x B x O 3 can significantly improve the lithium ion conductivity of the coated ternary cathode material, and improve the influence of the introduction of B element on the decrease of the ionic conductivity of the material.
  • the coating layer in the present invention can effectively slow down the occurrence of side reactions between the ternary positive electrode material and the electrolyte, improve its cycle performance, prolong the battery life, and obtain a high-capacity, long-life, low-cost, safe and environmentally friendly positive electrode. Material.
  • the preparation method of the Li 2+x C 1-x B x O 3 coating agent is as follows: Lithium borate and lithium carbonate are uniformly mixed according to the molar ratio of B atoms and C atoms, and then sintered.
  • the sintering temperature is 800-900° C.
  • the sintering time is 18-26 hours.
  • the ternary material is an NCM ternary material.
  • the coating layer further includes other coating agents, and the other coating agents are selected from one or more of aluminum oxide, magnesium oxide, boron oxide, and tungsten oxide.
  • the present invention also provides a preparation method of the above-mentioned lithium ion battery ternary positive electrode material, comprising the following steps:
  • the secondary calcined sample powder is uniformly mixed with a coating material including Li 2+x C 1-x B x O 3 coating agent, and then calcined three times to obtain a coated ternary positive electrode material.
  • the present invention adopts three Calcination process:
  • the ternary material precursor is first calcined to provide lithium source and doping modification, the lithium source provides lithium atoms in the ternary material, and the precursor is mixed and sintered to form lithium nickel cobalt manganese oxide.
  • the ternary material is modified with an alkaline solution, and the surface of the ternary material can be formed with Li 2+ x C 1-x B x O 3 , the dense oxide reacted with the coating agent; finally, the ternary material is coated by the third calcination, and the reaction between the coating agent and the oxide formed on the surface of the ternary material during the second calcination is used.
  • the present invention simultaneously improves the capacity performance and cycle performance of the battery under the combined action of the coating agent and the coating process.
  • the lithium source described in step (1) is selected from one or more of lithium hydroxide, lithium carbonate and lithium acetate, and the molar ratio of the ternary material precursor to the lithium source is 1:1.0 ⁇ 1.2;
  • the dopant is selected from one or more of zirconia, alumina, magnesia, and strontium oxide, and the doping amount of the dopant is 300-2000ppm of the quality of the ternary material precursor;
  • the primary calcination temperature is 700 ⁇ 900°C, calcination time is 18 ⁇ 26h.
  • the alkali solution described in step (2) is selected from one or more of lithium hydroxide solution, lithium carbonate solution, and lithium nitrate solution, and the concentration of the alkali solution is 0.1 ⁇ 5mol/L; step ( 2)
  • the stirring time is 0.5 ⁇ 5h, the vacuum drying temperature is 100 ⁇ 300°C, and the drying time is 10 ⁇ 24h;
  • the environment for the secondary calcination is air and/or CO atmosphere, the secondary calcination temperature is 200 ⁇ 500°C, and the calcination time is 2 to 5 hours.
  • the quality of the Li 2+x C 1-x B x O 3 coating agent is 500-5000 ppm of the quality of the secondary calcined sample powder; 26h.
  • the coating material in step (3) also includes other coating agents, and the addition amount of the other coating agents is 400-20000 ppm of the mass of the secondary calcined sample powder.
  • the present invention has the following beneficial effects:
  • Li 2+x C 1-x B x O 3 material obtained by sintering lithium borate and lithium carbonate as a coating agent can significantly improve the lithium ion conductivity of the coated ternary cathode material and improve the The influence of the introduction of B element on the reduction of the ionic conductivity of the material;
  • the surface of the ternary material is modified by an alkaline solution before coating, and a dense oxide that can react with the Li 2+x C 1-x B x O 3 coating agent is generated on the surface of the ternary material, Therefore, the Li 2+x C 1-x B x O 3 coating agent can effectively coat the surface of the ternary material, and the formed coating layer is not easy to fall off; Battery capacity performance and cycle performance.
  • a preparation method of a ternary positive electrode material for a lithium ion battery comprising the following steps:
  • NCM ternary material precursor NCM811 (Ni:Co:Mn molar ratio is 8:1:1) with lithium carbonate and zirconia, and stir to obtain a powder material.
  • the molar ratio of NCM811 to lithium carbonate is 1: 1.1.
  • the doping amount of zirconia is 1000ppm of the mass of NCM811; the powder material is calcined once, the calcination temperature is 800°C, the calcination time is 24h, and the ternary material is obtained after pulverization;
  • Lithium borate and lithium carbonate are uniformly mixed according to the molar ratio of B atoms and C atoms as 1:1, and sintered at 850° C. for 24 hours to obtain Li 2.5 C 0.5 B 0.5 O 3 coating agent;
  • the secondary calcined sample powder and Li 2.5 C 0.5 B 0.5 O 3 coating agent are mixed uniformly and then calcined three times.
  • the mass of Li 2.5 C 0.5 B 0.5 O 3 coating agent is 1000ppm of the secondary calcined sample powder.
  • the third calcination temperature is 700°C, and the calcination time is 24h to obtain the coated ternary cathode material.
  • a preparation method of a ternary positive electrode material for a lithium ion battery comprising the following steps:
  • Lithium borate and lithium carbonate are uniformly mixed according to the molar ratio of B atoms and C atoms being 1:4, and sintered at 800° C. for 26 hours to obtain Li 2.2 C 0.8 B 0.2 O 3 coating agent;
  • the secondary calcined sample powder and Li 2.2 C 0.8 B 0.2 O 3 coating agent are mixed uniformly and then calcined three times.
  • the mass of Li 2.2 C 0.8 B 0.2 O 3 coating agent is 500ppm of the mass of the secondary calcined sample powder
  • the third calcination temperature is 600°C
  • the calcination time is 26h to obtain the coated ternary cathode material.
  • a preparation method of a ternary positive electrode material for a lithium ion battery comprising the following steps:
  • NCM ternary cathode material precursor NCM811 with lithium carbonate and alumina, stir evenly to obtain powder materials, the molar ratio of NCM811 and lithium carbonate is 1:1.2, and the doping amount of zirconia is 2000ppm of the quality of NCM811;
  • the powder material is calcined once, the calcination temperature is 900°C, the calcination time is 18h, and the ternary material is obtained after pulverization;
  • Lithium borate and lithium carbonate are uniformly mixed according to the molar ratio of B atoms and C atoms as 2:3, and sintered at 900° C. for 18 hours to obtain Li 2.4 C 0.6 B 0.4 O 3 coating agent;
  • the secondary calcined sample powder is mixed with Li 2.4 C 0.6 B 0.4 O 3 coating agent and magnesium oxide, and then calcined three times.
  • the quality of Li 2.4 C 0.6 B 0.4 O 3 coating agent is the secondary calcined sample powder
  • the mass of 5000ppm, the mass of magnesium oxide is 10000ppm of the mass of the secondary calcined sample powder, the tertiary calcination temperature is 800 °C, the calcination time is 18h, and the coated ternary cathode material is obtained.
  • a preparation method of a ternary positive electrode material for a lithium ion battery comprising the following steps:
  • NCM ternary material precursor NCM811 (Ni:Co:Mn molar ratio is 8:1:1) with lithium carbonate and zirconia, and stir to obtain a powder material.
  • the molar ratio of NCM811 to lithium carbonate is 1: 1.1.
  • the doping amount of zirconia is 1000ppm of the mass of NCM811; the powder material is calcined once, the calcination temperature is 800°C, the calcination time is 24h, and the ternary material is obtained after pulverization;
  • Lithium borate and lithium carbonate are uniformly mixed according to the molar ratio of B atoms and C atoms as 1:1, and sintered at 850° C. for 24 hours to obtain Li 2.5 C 0.5 B 0.5 O 3 coating agent;
  • the secondary calcined sample powder is uniformly mixed with Li 2.5 C 0.5 B 0.5 O 3 coating agent and boron oxide, and then calcined three times.
  • the quality of Li 2.5 C 0.5 B 0.5 O 3 coating agent is the secondary calcined sample powder
  • the mass of boron oxide is 1000ppm of the mass
  • the mass of boron oxide is 5000ppm of the mass of the secondary calcined sample powder
  • the third calcination temperature is 700°C
  • the calcination time is 24h to obtain the coated ternary cathode material.
  • a preparation method of a ternary positive electrode material for a lithium ion battery comprising the following steps:
  • NCM ternary material precursor NCM811 (Ni:Co:Mn molar ratio is 8:1:1) with lithium carbonate and zirconia, and stir to obtain a powder material.
  • the molar ratio of NCM811 to lithium carbonate is 1: 1.1.
  • the doping amount of zirconia is 1000ppm of the mass of NCM811; the powder material is calcined once, the calcination temperature is 800°C, the calcination time is 24h, and the ternary material is obtained after pulverization;
  • a preparation method of a ternary positive electrode material for a lithium ion battery comprising the following steps:
  • NCM ternary material precursor NCM811 (Ni:Co:Mn molar ratio is 8:1:1) with lithium carbonate and zirconia, and stir to obtain a powder material.
  • the molar ratio of NCM811 to lithium carbonate is 1: 1.1.
  • the doping amount of zirconia is 1000ppm of the mass of NCM811; the powder material is calcined once, the calcination temperature is 800°C, the calcination time is 24h, and the ternary material is obtained after pulverization;
  • a preparation method of a ternary positive electrode material for a lithium ion battery comprising the following steps:
  • NCM ternary material precursor NCM811 (Ni:Co:Mn molar ratio is 8:1:1) with lithium carbonate and zirconia, and stir to obtain a powder material.
  • the molar ratio of NCM811 to lithium carbonate is 1: 1.1.
  • the doping amount of zirconia is 1000ppm of the mass of NCM811; the powder material is calcined once, the calcination temperature is 800°C, the calcination time is 24h, and the ternary material is obtained after pulverization;
  • a preparation method of a ternary positive electrode material for a lithium ion battery comprising the following steps:
  • NCM ternary material precursor NCM811 (Ni:Co:Mn molar ratio is 8:1:1) with lithium carbonate and zirconia, and stir to obtain a powder material.
  • the molar ratio of NCM811 to lithium carbonate is 1: 1.1.
  • the doping amount of zirconia is 1000ppm of the mass of NCM811; the powder material is calcined once, the calcination temperature is 800°C, the calcination time is 24h, and the ternary material is obtained after pulverization;
  • the secondary calcined sample powder is uniformly mixed with lithium borate and lithium carbonate and then calcined three times.
  • Lithium borate and lithium carbonate are mixed according to the molar ratio of B atoms and C atoms as 1:1, and the total mass is the secondary calcined sample powder. 1000ppm of the mass, the third calcination temperature is 700°C, and the calcination time is 24h to obtain the coated ternary cathode material.
  • a preparation method of a ternary positive electrode material for a lithium ion battery comprising the following steps:
  • NCM ternary material precursor NCM811 (Ni:Co:Mn molar ratio is 8:1:1) with lithium carbonate and zirconia, and stir to obtain a powder material.
  • the molar ratio of NCM811 to lithium carbonate is 1: 1.1.
  • the doping amount of zirconia is 1000ppm of the mass of NCM811; the powder material is calcined once, the calcination temperature is 800°C, the calcination time is 24h, and the ternary material is obtained after pulverization;
  • Lithium borate and lithium carbonate are uniformly mixed according to the molar ratio of B atoms and C atoms as 1:1, and sintered at 850° C. for 24 hours to obtain Li 2.5 C 0.5 B 0.5 O 3 coating agent;
  • the ternary material is uniformly mixed with Li 2.5 C 0.5 B 0.5 O 3 coating agent, and then secondary calcination is performed.
  • the quality of Li 2.5 C 0.5 B 0.5 O 3 coating agent is 1000ppm of the quality of the ternary material.
  • the calcination temperature was 700° C. and the calcination time was 24 h to obtain the coated ternary cathode material.
  • Positive electrode positive electrode material, Super P, VGCF, PVDF, its mass ratio is 92:2:2:3;
  • Negative electrode lithium metal sheet
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • Test voltage 2.8 ⁇ 4.3V
  • Capacity test conditions 0.1C constant current charge and discharge test.
  • the initial discharge capacity of the NCM ternary positive electrode material obtained by using the coating agent and preparation method of the present invention in Examples 1 to 4 can reach more than 200mAh/g, and the capacity after 100 cycles is maintained.
  • the initial capacity is high in Example 4, but the capacity retention rate is low after 100 cycles, which may be caused by the introduction of extra lithium borate into the coating agent, which reduces the conductivity.
  • Comparative Example 1 the NCM ternary material was not coated with a coating agent, and the initial discharge capacity and the capacity retention rate after 100 cycles were significantly lower than those in Example 1.
  • Comparative Example 2 only lithium borate was used as the coating agent. Although the initial discharge capacity was high, the capacity retention rate after 100 cycles was poor, which did not meet the requirements of the battery.
  • Comparative Example 3 only lithium carbonate was used as the coating agent. , the performance of the material decreases, probably because the excess lithium carbonate reduces the conductivity of the material and the alkali content increases, which reduces the capacity and cycle performance of the battery; in Comparative Example 4, a mixture of lithium phosphate and lithium carbonate was used as the coating. The initial discharge capacity of the battery is good, but the cycle performance is significantly reduced.
  • the increase in capacity may be caused by the introduction of lithium borate in the coating agent.
  • Mixed sintering treatment the ionic conductivity of the material is not good, resulting in a decrease in cycle performance; in Comparative Example 5, no secondary calcination was performed, and the surface of the ternary material was not modified with an alkaline solution.
  • the surface bonding force is poor, and the coating layer is easy to fall off, resulting in the initial discharge capacity and capacity retention rate of the battery are lower than the samples using the secondary calcination process. It is illustrated that the capacity performance and cycle performance of the battery can be effectively improved by using the coating agent and the preparation method of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种锂离子电池三元正极材料及其制备方法,包括三元材料及包覆在三元材料表面的包覆层,包覆层中包括Li2+xC1-xBxO3包覆剂,其中0<x<1。制备方法步骤为:(1)将三元正极材料前驱体与锂源和掺杂剂混合,进行一次煅烧,得到三元材料;(2)将三元材料分散到碱性溶液中,搅拌使其充分润湿,抽滤后在真空环境下干燥,再进行二次煅烧,得到二次煅烧样品粉末;(3)将二次煅烧样品粉末与包括Li2+xC1-xBxO3包覆剂的包覆材料混合均匀后进行三次煅烧。本发明通过对包覆剂及制备方法进行改善,在三元正极材料的表面包覆一层锂离子电导率较高的材料,有效提升了电池的容量性能及循环性能。

Description

一种锂离子电池三元正极材料及其制备方法 技术领域
本发明涉及锂离子电池正极材料领域,尤其是涉及一种锂离子电池三元正极材料及其制备方法。
背景技术
随着新能源汽车的发展,锂离子动力电池作为最热门的电动车动力电池而备受关注。相对发展成熟稳定的石墨负极,针对于高容量、长寿命、低成本、安全环保的正极材料的研发显得尤为迫切。当前常用的锂电池正极材料主要有层状结构的钴酸锂、三元材料、尖晶石结构的锰酸锂以及橄榄石结构的磷酸铁锂。三元材料拥有较高的比容量,能量密度和功率密度,比较稳定的性能,从而成为商业正极的热门材料。但是三元材料的电化学性能、热稳定性、结构稳定性还需进一步提高,尤其是在高温以及高电位测试环境下;随着镍含量的提高,这些问题显得尤为突出。因此,对于三元材料的改性十分重要。
现有技术中一般通过对三元材料进行包覆,利用包覆层提高三元材料的锂离子导电率、电子导电率以及通过多次包覆同时提高锂离子和电子导电率,从而显著地提高三元正极的结构稳定性、热稳定性、倍率性能以及长循环稳定性。例如,在中国专利文献上公开的“一种提升首次放电容量的正极材料及其制备方法”,其公开号CN111162249A,该正极材料由正极材料基体、锂源和包覆剂制成,所述包覆剂为硼酸、硼酸锂、硼酸铝、硼酸钠、硼酸钾、氧化铝、氧化钛、氧化锆、氧化钇中的任意或组合。
用含硼包覆剂对三元材料进行改性时,虽然B能稳定晶体的结构,使晶体的结构更加完整,从而改善电池的加工性、安全性及循环性,但B的引入会降低材料的锂离子电导率,从而影响电池的性能。
发明内容
本发明是为了克服现有技术使用含硼包覆剂对三元正极材料包覆改性时,B的引入会降低材料的锂离子电导率,从而影响电池性能的问题,提供一种锂离子电池三元正极材料及其制备方法,通过对包覆剂及制备方法进行改善,在三元正极材料的表面包覆一层锂离子电导率较高的材料,在提升材料的容量性能同时,降低离子电阻率,改善倍率性能;同时包覆层能够有效的减缓三元材料与电解液之间的副反应发生,提升其循环性能,延长电池寿命。
为了实现上述目的,本发明采用以下技术方案:
一种锂离子电池三元正极材料,包括三元材料及包覆在三元材料表面的包覆层,所述包覆层中包括Li 2+xC 1-xB xO 3包覆剂,其中0<x<1。
本发明使用硼酸锂与碳酸锂烧结后得到的Li 2+xC 1-xB xO 3材料作为包覆剂,与现有的硼酸盐包覆剂相比,Li 2+xC 1-xB xO 3可以显著提升包覆后的三元正极材料的锂离子电导率,改善了引入B元素后对材料离子电导率降低的影响。并且,本发明中的包覆层能够有效的减缓三元正极材料与电解液之间的副反应发生,提升其循环性能,延长电池寿命,得到高容量、长寿命、低成本、安全环保的正极材料。
作为优选,所述Li 2+xC 1-xB xO 3包覆剂的制备方法为:将硼酸锂与碳酸锂按B原子和C原子的摩尔比混合均匀后烧结即得。
作为优选,烧结温度为800~900℃,烧结时间18~26h。
作为优选,所述三元材料为NCM三元材料。
作为优选,所述包覆层中还包括其他包覆剂,其他包覆剂选自氧化铝,氧化镁,氧化硼,氧化钨中的一种或几种。
本发明还提供了一种上述锂离子电池三元正极材料的制备方法,包括如下步骤:
(1)将三元材料前驱体与锂源和掺杂剂混合,搅拌均匀得到粉末材料,将粉末材料进行一次煅烧,粉碎后得到三元材料;
(2)将三元材料分散到碱性溶液中,搅拌使其充分润湿,抽滤后在真空环境下干燥,再进行二次煅烧,得到二次煅烧样品粉末;
(3)将二次煅烧样品粉末与包括Li 2+xC 1-xB xO 3包覆剂的包覆材料混合均匀后进行三次煅烧,得到包覆后的三元正极材料。
为了使本发明中的Li 2+xC 1-xB xO 3包覆剂可以有效包覆在三元材料表面,形成与三元材料紧密结合、不易脱落的包覆层,本发明采用三次煅烧工艺:先通过一次煅烧对三元材料前驱体提供锂源并进行掺杂改性,锂源提供三元材料中的锂原子,与前驱体经过混合烧结后形成锂镍钴锰氧化物即三元材料;掺杂剂掺杂进入三元材料内部,可以改善材料的电学性能;然后通过二次煅烧,利用碱性溶液对三元材料进行改性,在三元材料表面生成可以与Li 2+xC 1-xB xO 3包覆剂反应的致密氧化物;最后通过三次煅烧对三元材料进行包覆,利用包覆剂与二次煅烧时在三元材料表面形成的氧化物的反应,使Li 2+xC 1-xB xO 3包覆剂牢固包覆在三元材料表面形成包覆层,且包覆层不易从三元材料表面脱落。因此,本发明在包覆剂和包覆工艺的共同作用下,同时提升了电池的容量性能及循环性能。
作为优选,步骤(1)中所述的锂源选自氢氧化锂,碳酸锂,醋酸锂中的一种或几种,三元材料前驱体与锂源的摩尔比为1:1.0~1.2;所述的掺杂剂选自氧化锆,氧化铝,氧化镁,氧化锶中的一种或几种,掺杂剂的掺杂量为三元材料前驱体质量的300~2000ppm;一次煅烧 温度为700~900℃,煅烧时间18~26h。
作为优选,步骤(2)中所述的碱液选自氢氧化锂溶液,碳酸锂溶液,硝酸锂溶液中的一种或几种,所述碱液的浓度为0.1~5mol/L;步骤(2)中的搅拌时间0.5~5h,真空干燥温度100~300℃,干燥时间10~24h;二次煅烧的环境为空气和/或CO 2气氛,二次煅烧温度为200~500℃,煅烧时间2~5h。
作为优选,步骤(3)中Li 2+xC 1-xB xO 3包覆剂的质量为二次煅烧样品粉末质量的500~5000ppm;三次煅烧温度为600~800℃,煅烧时间18~26h。
作为优选,步骤(3)中的包覆材料中还包括其他包覆剂,其他包覆剂的添加量为二次煅烧样品粉末质量的400~20000ppm。
因此,本发明具有如下有益效果:
(1)使用硼酸锂与碳酸锂烧结后得到的Li 2+xC 1-xB xO 3材料作为包覆剂,可以显著提升包覆后的三元正极材料的锂离子电导率,改善了引入B元素后对材料离子电导率降低的影响;
(2)在包覆前先通过碱性溶液对三元材料表面进行改性,在三元材料表面生成可以与Li 2+xC 1-xB xO 3包覆剂反应的致密氧化物,从而使Li 2+xC 1-xB xO 3包覆剂可以有效包覆在三元材料表面,形成的包覆层不易脱落;在包覆剂和包覆工艺的共同作用下,提升了电池的容量性能和循环性能。
具体实施方式
下面结合具体实施方式对本发明做进一步的描述。
在本发明中,若非特指,所有原料均可从市场购得或是本行业常用的,下述实施例中的方法,如无特别说明,均为本领域常规方法。
实施例1:
一种锂离子电池三元正极材料的制备方法,包括如下步骤:
(1)将NCM三元材料前驱体NCM811(Ni:Co:Mn摩尔比为8:1:1)与碳酸锂和氧化锆混合,搅拌均匀得到粉末材料,NCM811与碳酸锂的摩尔比为1:1.1,氧化锆的掺杂量为NCM811质量的1000ppm;将粉末材料进行一次煅烧,煅烧温度800℃,煅烧时间24h,粉碎后得到三元材料;
(2)将三元材料分散到2mol/L碳酸锂溶液中,搅拌3h使其充分润湿,抽滤后在真空环境下200℃干燥12h,再进行二次煅烧,二次煅烧温度300℃,煅烧时间3h,得到二次煅烧样品粉末;
(3)将硼酸锂与碳酸锂按B原子和C原子的摩尔比为1:1混合均匀,850℃下烧结24h得到 Li 2.5C 0.5B 0.5O 3包覆剂;
(4)将二次煅烧样品粉末与Li 2.5C 0.5B 0.5O 3包覆剂混合均匀后进行三次煅烧,Li 2.5C 0.5B 0.5O 3包覆剂的质量为二次煅烧样品粉末质量的1000ppm,三次煅烧温度为700℃,煅烧时间24h,得到包覆后的三元正极材料。
实施例2:
一种锂离子电池三元正极材料的制备方法,包括如下步骤:
(1)将NCM三元材料前驱体NCM811与氢氧化锂和氧化铝混合,搅拌均匀得到粉末材料,NCM811与氢氧化锂的摩尔比为1:1.0,氧化铝的掺杂量为NCM811质量的300ppm;将粉末材料进行一次煅烧,煅烧温度700℃,煅烧时间26h,粉碎后得到三元材料;
(2)将三元材料分散到0.1mol/L氢氧化锂溶液中,搅拌5h使其充分润湿,抽滤后在真空环境下100℃干燥24h,再进行二次煅烧,二次煅烧温度200℃,煅烧时间5h,得到二次煅烧样品粉末;
(3)将硼酸锂与碳酸锂按B原子和C原子的摩尔比为1:4混合均匀,800℃下烧结26h得到Li 2.2C 0.8B 0.2O 3包覆剂;
(4)将二次煅烧样品粉末与Li 2.2C 0.8B 0.2O 3包覆剂混合均匀后进行三次煅烧,Li 2.2C 0.8B 0.2O 3包覆剂的质量为二次煅烧样品粉末质量的500ppm,三次煅烧温度为600℃,煅烧时间26h,得到包覆后的三元正极材料。
实施例3:
一种锂离子电池三元正极材料的制备方法,包括如下步骤:
(1)将NCM三元正极材料前驱体NCM811与碳酸锂和氧化铝混合,搅拌均匀得到粉末材料,NCM811与碳酸锂的摩尔比为1:1.2,氧化锆的掺杂量为NCM811质量的2000ppm;将粉末材料进行一次煅烧,煅烧温度900℃,煅烧时间18h,粉碎后得到三元材料;
(2)将三元材料分散到5mol/L碳酸锂溶液中,搅拌0.5h使其充分润湿,抽滤后在真空环境下300℃干燥10h,再进行二次煅烧,二次煅烧温度500℃,煅烧时间2h,得到二次煅烧样品粉末;
(3)将硼酸锂与碳酸锂按B原子和C原子的摩尔比为2:3混合均匀,900℃下烧结18h得到Li 2.4C 0.6B 0.4O 3包覆剂;
(4)将二次煅烧样品粉末与Li 2.4C 0.6B 0.4O 3包覆剂及氧化镁混合均匀后进行三次煅烧,Li 2.4C 0.6B 0.4O 3包覆剂的质量为二次煅烧样品粉末质量的5000ppm,氧化镁的质量为二次煅烧样品粉末质量的10000ppm,三次煅烧温度为800℃,煅烧时间18h,得到包覆后的三元正极 材料。
实施例4:
一种锂离子电池三元正极材料的制备方法,包括如下步骤:
(1)将NCM三元材料前驱体NCM811(Ni:Co:Mn摩尔比为8:1:1)与碳酸锂和氧化锆混合,搅拌均匀得到粉末材料,NCM811与碳酸锂的摩尔比为1:1.1,氧化锆的掺杂量为NCM811质量的1000ppm;将粉末材料进行一次煅烧,煅烧温度800℃,煅烧时间24h,粉碎后得到三元材料;
(2)将三元材料分散到2mol/L碳酸锂溶液中,搅拌3h使其充分润湿,抽滤后在真空环境下200℃干燥12h,再进行二次煅烧,二次煅烧温度300℃,煅烧时间3h,得到二次煅烧样品粉末;
(3)将硼酸锂与碳酸锂按B原子和C原子的摩尔比为1:1混合均匀,850℃下烧结24h得到Li 2.5C 0.5B 0.5O 3包覆剂;
(4)将二次煅烧样品粉末与Li 2.5C 0.5B 0.5O 3包覆剂及氧化硼混合均匀后进行三次煅烧,Li 2.5C 0.5B 0.5O 3包覆剂的质量为二次煅烧样品粉末质量的1000ppm,氧化硼的质量为二次煅烧样品粉末质量的5000ppm,三次煅烧温度为700℃,煅烧时间24h,得到包覆后的三元正极材料。
对比例1(不对NCM进行包覆):
一种锂离子电池三元正极材料的制备方法,包括如下步骤:
(1)将NCM三元材料前驱体NCM811(Ni:Co:Mn摩尔比为8:1:1)与碳酸锂和氧化锆混合,搅拌均匀得到粉末材料,NCM811与碳酸锂的摩尔比为1:1.1,氧化锆的掺杂量为NCM811质量的1000ppm;将粉末材料进行一次煅烧,煅烧温度800℃,煅烧时间24h,粉碎后得到三元材料;
(2)将三元材料分散到2mol/L碳酸锂溶液中,搅拌3h使其充分润湿,抽滤后在真空环境下200℃干燥12h,再进行二次煅烧,二次煅烧温度300℃,煅烧时间3h,得到三元正极材料。
对比例2(仅用硼酸锂包覆):
一种锂离子电池三元正极材料的制备方法,包括如下步骤:
(1)将NCM三元材料前驱体NCM811(Ni:Co:Mn摩尔比为8:1:1)与碳酸锂和氧化锆混合,搅拌均匀得到粉末材料,NCM811与碳酸锂的摩尔比为1:1.1,氧化锆的掺杂量为NCM811质量的1000ppm;将粉末材料进行一次煅烧,煅烧温度800℃,煅烧时间24h,粉碎后得到三元材料;
(2)将三元材料分散到2mol/L碳酸锂溶液中,搅拌3h使其充分润湿,抽滤后在真空环境下200℃干燥12h,再进行二次煅烧,二次煅烧温度300℃,煅烧时间3h,得到二次煅烧样品粉末;
(3)将二次煅烧样品粉末与硼酸锂混合均匀后进行三次煅烧,硼酸锂的质量为二次煅烧样品粉末质量的500ppm,三次煅烧温度为600℃,煅烧时间26h,得到包覆后的三元正极材料。
对比例3(仅用碳酸锂包覆)
一种锂离子电池三元正极材料的制备方法,包括如下步骤:
(1)将NCM三元材料前驱体NCM811(Ni:Co:Mn摩尔比为8:1:1)与碳酸锂和氧化锆混合,搅拌均匀得到粉末材料,NCM811与碳酸锂的摩尔比为1:1.1,氧化锆的掺杂量为NCM811质量的1000ppm;将粉末材料进行一次煅烧,煅烧温度800℃,煅烧时间24h,粉碎后得到三元材料;
(2)将三元材料分散到2mol/L碳酸锂溶液中,搅拌3h使其充分润湿,抽滤后在真空环境下200℃干燥12h,再进行二次煅烧,二次煅烧温度300℃,煅烧时间3h,得到二次煅烧样品粉末;
(3)将二次煅烧样品粉末与碳酸锂混合均匀后进行三次煅烧,碳酸锂的质量为二次煅烧样品粉末质量的500ppm,三次煅烧温度为600℃,煅烧时间26h,得到包覆后的三元正极材料。
对比例4(硼酸锂和碳酸锂混合后不进行烧结):
一种锂离子电池三元正极材料的制备方法,包括如下步骤:
(1)将NCM三元材料前驱体NCM811(Ni:Co:Mn摩尔比为8:1:1)与碳酸锂和氧化锆混合,搅拌均匀得到粉末材料,NCM811与碳酸锂的摩尔比为1:1.1,氧化锆的掺杂量为NCM811质量的1000ppm;将粉末材料进行一次煅烧,煅烧温度800℃,煅烧时间24h,粉碎后得到三元材料;
(2)将三元材料分散到2mol/L碳酸锂溶液中,搅拌3h使其充分润湿,抽滤后在真空环境下200℃干燥12h,再进行二次煅烧,二次煅烧温度300℃,煅烧时间3h,得到二次煅烧样品粉末;
(3)将二次煅烧样品粉末与硼酸锂和碳酸锂混合均匀后进行三次煅烧,硼酸锂与碳酸锂按B原子和C原子的摩尔比为1:1混合,总质量为二次煅烧样品粉末质量的1000ppm,三次煅烧温度为700℃,煅烧时间24h,得到包覆后的三元正极材料。
对比例5(不用碱溶液进行改性):
一种锂离子电池三元正极材料的制备方法,包括如下步骤:
(1)将NCM三元材料前驱体NCM811(Ni:Co:Mn摩尔比为8:1:1)与碳酸锂和氧化锆混合,搅拌均匀得到粉末材料,NCM811与碳酸锂的摩尔比为1:1.1,氧化锆的掺杂量为NCM811质量的1000ppm;将粉末材料进行一次煅烧,煅烧温度800℃,煅烧时间24h,粉碎后得到三元材料;
(2)将硼酸锂与碳酸锂按B原子和C原子的摩尔比为1:1混合均匀,850℃下烧结24h得到Li 2.5C 0.5B 0.5O 3包覆剂;
(3)将三元材料与Li 2.5C 0.5B 0.5O 3包覆剂混合均匀后进行二次煅烧,Li 2.5C 0.5B 0.5O 3包覆剂的质量为三元材料质量的1000ppm,二次煅烧温度为700℃,煅烧时间24h,得到包覆后的三元正极材料。
将上述实施例和对比例中得到的三元正极材料分别组装成扣式电池进行性能测试,结果如表1中所示。
扣式电池中:
正极:正极材料,Super P,VGCF,PVDF,其质量比为92:2:2:3;
负极:金属锂片;
电解液:1mol/L的LiPF 6溶解于碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二甲酯(DMC)(EC:EMC:DMC=1:1:1wt%);
测试电压:2.8~4.3V;
容量测试条件:0.1C恒流充放电测试。
表1:电池性能测试结果。
  初始放电容量(mAh/g) 循环100圈后容量保持率(%)
实施例1 202.6 89.4
实施例2 201.8 88.7
实施例3 200.9 87.5
实施例4 206.4 85.6
对比例1 197.2 82.5
对比例2 203.2 85.1
对比例3 197.4 87.1
对比例4 201.8 85.6
对比例5 202.5 86.2
从表1中可以看出,实施例1~4中采用本发明中的包覆剂和制备方法得到的NCM三元正极材料初始放电容量可以达到200mAh/g以上,且循环100圈后的容量保持率高,其中 实施例4中初始容量很高,但是循环100圈后容量保持率偏低,可能是因为在包覆剂中引入额外的硼酸锂,电导率降低导致。
而对比例1中不用包覆剂对NCM三元材料进行包覆,初始放电容量及循环100圈后的容量保持率与实施例1中相比均有明显降低。对比例2中仅用硼酸锂作为包覆剂,虽然初始放电容量较高,但循环100圈后的容量保持率差,不满足电池的使用要求;对比例3中仅用碳酸锂作为包覆剂,材料性能反而降低,可能是因为多余的碳酸锂导致材料导电性降低,碱含量增加,使得电池的容量与循环性能都发生了下降;对比例4中用磷酸锂和碳酸锂的混合物作为包覆剂,包覆前不对其进行烧结,电池的初始放电容量较好,但循环性能显著降低,容量的提升可能是包覆剂中硼酸锂的引入导致,但是由于没有预先对碳酸锂和硼酸锂进行混合烧结处理,材料的离子电导率不佳,导致循环性能出现降低;对比例5中不进行二次煅烧,不用碱性溶液对三元材料表面进行改性,由于包覆层无法与三元材料表面结合力差,包覆层易脱落,导致电池的初始放电容量及容量保持率均低于采用二次煅烧工艺的样品。说明采用本发明中的包覆剂及制备方法,可以有效提高电池的容量性能和循环性能。

Claims (10)

  1. 一种锂离子电池三元正极材料,其特征是,包括三元材料及包覆在三元材料表面的包覆层,所述包覆层中包括Li 2+xC 1-xB xO 3包覆剂,其中0<x<1。
  2. 根据权利要求1所述的一种锂离子电池三元正极材料,其特征是,所述Li 2+xC 1-xB xO 3包覆剂的制备方法为:将硼酸锂与碳酸锂按B原子和C原子的摩尔比混合均匀后烧结即得。
  3. 根据权利要求2所述的一种锂离子电池三元正极材料,其特征是,烧结温度为800~900℃,烧结时间18~26h。
  4. 根据权利要求1或2所述的一种锂离子电池三元正极材料,其特征是,所述三元材料为NCM三元材料。
  5. 根据权利要求1或2所述的一种锂离子电池三元正极材料,其特征是,所述包覆层中还包括其他包覆剂,所述其他包覆剂选自氧化铝,氧化镁,氧化硼,氧化钨中的一种或几种。
  6. 一种如权利要求1~5任一所述的锂离子电池三元正极材料的制备方法,其特征是,包括如下步骤:
    (1)将三元材料前驱体与锂源和掺杂剂混合,搅拌均匀得到粉末材料,将粉末材料进行一次煅烧,粉碎后得到三元材料;
    (2)将三元材料分散到碱性溶液中,搅拌使其充分润湿,抽滤后在真空环境下干燥,再进行二次煅烧,得到二次煅烧样品粉末;
    (3)将二次煅烧样品粉末与包括Li 2+xC 1-xB xO 3包覆剂的包覆材料混合均匀后进行三次煅烧,得到包覆后的三元正极材料。
  7. 根据权利要求6所述的一种锂离子电池三元正极材料的制备方法,其特征是,步骤(1)中所述的锂源选自氢氧化锂,碳酸锂,醋酸锂中的一种或几种,三元材料前驱体与锂源的摩尔比为1:1.0~1.2;所述的掺杂剂选自氧化锆,氧化铝,氧化镁,氧化锶中的一种或几种,掺杂剂的掺杂量为三元材料前驱体质量的300~2000ppm;一次煅烧温度为700~900℃,煅烧时间18~26h。
  8. 根据权利要求6所述的一种锂离子电池三元正极材料的制备方法,其特征是,步骤(2)中所述的碱液选自氢氧化锂溶液,碳酸锂溶液,硝酸锂溶液中的一种或几种,所述碱液的浓度为0.1~5mol/L;步骤(2)中的搅拌时间0.5~5h,真空干燥温度100~300℃,干燥时间10~24h;二次煅烧的环境为空气和/或CO 2气氛,二次煅烧温度为200~500℃,煅烧时间2~5h。
  9. 根据权利要求6所述的一种锂离子电池三元正极材料的制备方法,其特征是,步骤(3)中Li 2+xC 1-xB xO 3包覆剂的质量为二次煅烧样品粉末质量的500~5000ppm;三次煅烧温度为600~800℃,煅烧时间18~26h。
  10. 根据权利要求6或9所述的一种锂离子电池三元正极材料的制备方法,其特征是,步骤(3)中的包覆材料中还包括其他包覆剂,其他包覆剂的添加量为二次煅烧样品粉末质量的400~20000ppm。
PCT/CN2021/105921 2021-03-24 2021-07-13 一种锂离子电池三元正极材料及其制备方法 WO2022198843A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110313449.3 2021-03-24
CN202110313449.3A CN113363476B (zh) 2021-03-24 2021-03-24 一种锂离子电池三元正极材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2022198843A1 true WO2022198843A1 (zh) 2022-09-29

Family

ID=77525001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105921 WO2022198843A1 (zh) 2021-03-24 2021-07-13 一种锂离子电池三元正极材料及其制备方法

Country Status (2)

Country Link
CN (1) CN113363476B (zh)
WO (1) WO2022198843A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114628675B (zh) * 2021-11-08 2023-08-15 万向一二三股份公司 一种三元锂电池正极材料及其制备方法
CN114927671B (zh) * 2022-06-17 2024-06-14 远景动力技术(江苏)有限公司 正极活性材料、其制备方法、电化学装置和电子设备
CN115057486A (zh) * 2022-06-28 2022-09-16 湖北亿纬动力有限公司 一种改性三元正极材料及其制备方法与锂离子电池
CN115498166B (zh) * 2022-10-19 2024-01-30 楚能新能源股份有限公司 一种三元正极材料、制备方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393285A (zh) * 2014-10-14 2015-03-04 鸿源控股有限公司 镍钴铝三元正极材料及其制备方法
CN104659412A (zh) * 2015-01-29 2015-05-27 中国科学院物理研究所 含平面三角形基团的锂碳硼氧化物固态电解质材料和电池
CN111162249A (zh) * 2018-11-07 2020-05-15 天津国安盟固利新材料科技股份有限公司 一种提升首次放电容量的正极材料及其制备方法
CN111244426A (zh) * 2020-01-20 2020-06-05 新奥石墨烯技术有限公司 富镍三元正极材料及制备方法、锂离子电池
CN112289995A (zh) * 2020-10-29 2021-01-29 上海电气集团股份有限公司 复合正极浆料与正极极片、固态电池
CN112436123A (zh) * 2020-11-29 2021-03-02 无锡博力盛能源科技有限公司 一种复合包覆型镍基三元正极材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311079A (ja) * 2003-04-02 2004-11-04 Chemiprokasei Kaisha Ltd 固体電解質およびそれ用いたリチウム電池
WO2014116084A1 (ko) * 2013-01-28 2014-07-31 주식회사 엘지화학 고전압 리튬 이차 전지
CN103236521A (zh) * 2013-04-17 2013-08-07 天津华夏泓源实业有限公司 一种表面包覆硼锂复合氧化物的镍钴锰酸锂正极材料及其制备方法
CN108206278A (zh) * 2016-12-20 2018-06-26 宁德时代新能源科技股份有限公司 改性锂离子电池正极材料及其制备方法、锂离子电池
CN107039640B (zh) * 2017-03-02 2019-09-13 清华大学 复合电极材料及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393285A (zh) * 2014-10-14 2015-03-04 鸿源控股有限公司 镍钴铝三元正极材料及其制备方法
CN104659412A (zh) * 2015-01-29 2015-05-27 中国科学院物理研究所 含平面三角形基团的锂碳硼氧化物固态电解质材料和电池
CN111162249A (zh) * 2018-11-07 2020-05-15 天津国安盟固利新材料科技股份有限公司 一种提升首次放电容量的正极材料及其制备方法
CN111244426A (zh) * 2020-01-20 2020-06-05 新奥石墨烯技术有限公司 富镍三元正极材料及制备方法、锂离子电池
CN112289995A (zh) * 2020-10-29 2021-01-29 上海电气集团股份有限公司 复合正极浆料与正极极片、固态电池
CN112436123A (zh) * 2020-11-29 2021-03-02 无锡博力盛能源科技有限公司 一种复合包覆型镍基三元正极材料及其制备方法

Also Published As

Publication number Publication date
CN113363476A (zh) 2021-09-07
CN113363476B (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
CN110931768B (zh) 一种高镍类单晶锂离子电池正极材料及制备方法
CN108807926B (zh) 一种Co/B共包覆镍钴锰锂离子正极材料及其制备方法
CN110931738B (zh) 一种复相高压正极材料及其制备方法
CN113363476B (zh) 一种锂离子电池三元正极材料及其制备方法
CN110429268A (zh) 一种改性硼掺杂富锂锰基正极材料及其制备方法与应用
WO2017000219A1 (zh) 掺杂的导电氧化物以及基于此材料的改进电化学储能装置极板
CN113363415B (zh) 一种含固态电解质的高镍三元复合正极及锂离子电池
CN113644272B (zh) 一种铈铋复合氧化物掺杂锂离子电池正极材料及其制备方法
CN109950496B (zh) 一种双包覆镍钴铝酸锂三元正极材料及制备方法
CN114520318B (zh) 一种动力电池用高镍无钴镍钨锰酸锂正极材料及制备方法
CN111916701B (zh) 一种包覆型正极材料及其制备方法和用途
WO2022198844A1 (zh) 一种无钴高镍掺镁层状正极材料的制备方法
CN110808363A (zh) 一种硅酸锂包覆的富锂锰基正极材料及其制备方法与应用
CN114079086A (zh) 正极补锂添加剂、正极极片、其制备方法及锂离子电池
CN112786881A (zh) 一种固态锂电池及其制备方法
WO2023160307A1 (zh) 正极补锂添加剂及其制备方法和应用
CN114094068A (zh) 钴包覆的正极材料及其制备方法、正极片和锂离子电池
CN112701276A (zh) 一种四元多晶正极材料及其制备方法和应用
CN113363477B (zh) 一种多层包覆三元正极材料的制备方法
CN117080412A (zh) 钠离子电池正极材料及制备方法、正极极片和钠离子电池
CN113972369B (zh) 一种高压实密度三元正极材料
CN109742346B (zh) Si/Al共包覆镍钴锰锂离子电池正极材料及其制备方法
CN109037669A (zh) 一种改性镍钴铝酸锂正极材料及其制备方法和应用
CN116845191A (zh) 一种自补锂型三元材料、制备方法及应用
CN107834054B (zh) 一种锂离子电池用镍锰酸锂-石墨烯复合材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932457

Country of ref document: EP

Kind code of ref document: A1