WO2022196704A1 - 方向性電磁鋼板およびその製造方法 - Google Patents

方向性電磁鋼板およびその製造方法 Download PDF

Info

Publication number
WO2022196704A1
WO2022196704A1 PCT/JP2022/011728 JP2022011728W WO2022196704A1 WO 2022196704 A1 WO2022196704 A1 WO 2022196704A1 JP 2022011728 W JP2022011728 W JP 2022011728W WO 2022196704 A1 WO2022196704 A1 WO 2022196704A1
Authority
WO
WIPO (PCT)
Prior art keywords
annealing
steel sheet
mass
grain
coating
Prior art date
Application number
PCT/JP2022/011728
Other languages
English (en)
French (fr)
Inventor
誠 渡邉
拓弥 山田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020237028073A priority Critical patent/KR20230132831A/ko
Priority to US18/546,780 priority patent/US20240254600A1/en
Priority to EP22771449.0A priority patent/EP4296382A4/en
Priority to CN202280020922.1A priority patent/CN116981789A/zh
Priority to JP2022542097A priority patent/JP7428259B2/ja
Publication of WO2022196704A1 publication Critical patent/WO2022196704A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet, particularly to a grain-oriented electrical steel sheet subjected to magnetic domain refining treatment and a method for producing the same, and more specifically, to a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties and a method for producing the same. is.
  • grain-oriented electrical steel sheets are mainly used as core materials for transformers, they are strongly required to have excellent magnetic properties, especially low iron loss. For this reason, grain-oriented electrical steel sheets are conventionally produced by subjecting a cold-rolled Si-containing steel sheet to decarburization annealing that also serves as primary recrystallization annealing, applying an annealing separator containing MgO as the main ingredient, and then carrying out secondary annealing in finish annealing. It is manufactured by a method in which recrystallization is caused and crystal grains are highly aligned in the ⁇ 110 ⁇ 001> orientation (so-called Goss orientation).
  • the above-mentioned finish annealing requires a period of about 10 days, including the secondary recrystallization annealing and the purification treatment in which the temperature is raised to a maximum of about 1200°C. For this reason, batch annealing, in which annealing is performed in a coiled state, is usually performed.
  • the subscale mainly composed of SiO2 formed on the surface of the steel sheet during decarburization annealing, and the annealing separator mainly composed of MgO applied to the surface of the steel sheet after decarburization annealing A forsterite film is formed on the surface of the steel sheet by causing the reaction of MgO+SiO 2 ⁇ Mg 2 SiO 4 .
  • Such a forsterite coating has the effect of imparting insulating properties and corrosion resistance to the steel sheet, as well as imparting tensile stress to the surface of the steel sheet to improve magnetic properties. Therefore, the forsterite coating is required to be uniform and have excellent adhesion.
  • grain-oriented electrical steel sheets are required to further improve iron loss characteristics. For this reason, grain-oriented electrical steel sheets that have undergone flattening annealing are irradiated with a laser, an electron beam, plasma, or the like to be heated and locally distorted, thereby improving iron loss.
  • the coating may be partially peeled off due to thermal strain. If such a peeled film portion exists, the corrosion resistance and insulating properties will be degraded. Therefore, in order to prevent this, the coating must be applied and baked again. Taking extra steps in this way leads to problems such as an increase in cost and an insufficient reduction in iron loss due to the release of the local thermal strain that has been applied.
  • Patent Document 1 discloses a method in which an Se-enriched portion is provided at the interface between the film and the base iron, and an electron beam is irradiated after controlling the ratio of the Se-enriched portion to a predetermined level. .
  • Patent Document 2 when performing a magnetic domain refining treatment by irradiating the surface of a grain-oriented electrical steel sheet that has undergone final finish annealing with an electron beam, the grain-oriented electrical steel sheet is heated to 50 ° C. or higher, and then subjected to magnetic domain refining. A method of applying the treatment is disclosed.
  • Patent Document 3 when the surface of the steel sheet is quantitatively analyzed by fluorescent X-ray analysis, the Ti and Al intensities are contained in a specific relationship with the FX (Al) and Fe intensities. is disclosed.
  • Patent Literature 4 discloses a method in which an undercoating contains a nitrogen compound of 0.02 g/m 2 or more in terms of N, and the degree of contact between the undercoating and the steel sheet is kept within a specific range.
  • JP 2012-52232 A Japanese Patent No. 6465054 Retable No. 2015-40799 JP 2012-92409 A
  • Patent Document 1 is based on the knowledge that if the coating is improved, Se will be concentrated, and as a result, the coating will be more likely to be destroyed during magnetic domain refining, but this is not the case with electron beams. However, it cannot be used with methods other than electron beams, such as magnetic domain refining using lasers or plasma jets. Furthermore, it is necessary to consider the enrichment of S, Al, etc. in addition to the enrichment of Se, and it has been difficult to keep all of them within a predetermined range because the enrichment state differs for each element.
  • Patent Document 1 mentions the enrichment of S and Al in addition to the enrichment of Se, even if any of them are adopted, the final annealing is performed in the coil state, so the temperature and atmosphere are cannot be made uniform, and it is difficult to keep all areas of the coil within a given range. Therefore, it was difficult to fit within the limited range described in Patent Document 1.
  • such a technique still has the problem of film peeling if the irradiation energy for magnetic domain refining is increased in order to increase the iron loss improvement effect.
  • Patent Document 2 is also limited to magnetic domain refining using an electron beam, and no effect is recognized for magnetic domain refining using a plasma jet or laser.
  • heating and cooling are performed in the vacuum part before and after the electron beam irradiation, there is a problem that large equipment costs and running costs are required.
  • Patent Document 3 it is necessary to take an unnatural heat cycle of rapid heating to 400 to 650°C for finish annealing and then slow heating to 700 to 850°C.
  • exhaust heat from the annealing furnace requires excessive costs.
  • Patent Document 4 in addition to adjusting the length of the interface between the base film and the base iron, the amount of gas supplied in the finish annealing for forming nitride, the coil winding tension, and the water content in the annealing separator are adjusted.
  • it is difficult to obtain a uniform coating over the entire surface of the coil because, depending on the position of the coil, there are places where water tends to stay and places where it is difficult, and there are places where winding tension is likely to be applied and parts where it is difficult. rice field.
  • the method of preventing film peeling due to magnetic domain refining treatment is still in a situation where it is difficult to say that it is sufficient. Furthermore, with the increasing need for energy saving in recent years, there is a tendency to increase the irradiation energy of the magnetic domain refining treatment in order to further improve iron loss. However, in recent years, a problem has arisen that sufficient effects cannot be obtained.
  • the present invention has been made in view of the above circumstances. An electrical steel sheet and a manufacturing method thereof are proposed.
  • the gist and configuration of the present invention are as follows. 1. A grain-oriented electrical steel sheet having a ceramic coating and containing Mn, wherein the coating has a Mn+Fe concentration of 0.05 mass% or more and a Young's modulus of 108 to 144 GPa.
  • a method for producing a grain-oriented electrical steel sheet according to 1 above A steel material for a grain oriented electrical steel sheet containing Mn is hot rolled, then cold rolled once or twice or more with intermediate annealing to obtain a final plate thickness, and is further subjected to decarburization annealing that also serves as primary recrystallization. After the annealing, the surface of the steel sheet is coated with an annealing separating agent containing 50 mass% or more of MgO and then subjected to final annealing. If necessary, the unreacted separating agent after the above finish annealing is removed, followed by planarization annealing.
  • a method for manufacturing a steel plate The conditions for the above decarburization annealing are adjusted within the range of annealing temperature: 700 to 900°C, soaking time: 30 to 300 seconds, dew point of wet hydrogen atmosphere at least in the first stage of the soaking process: 45 to 60°C.
  • the absorbances of fayalite, clinoferrosilite, and silica on the surface of the steel sheet after decarburization annealing are A1, A2, and A3, ⁇ (A1+A2)/(A1+A2+A3) ⁇ 100 is 45% or more,
  • the temperature range from at least 950°C to 1100°C is an atmosphere containing H 2
  • the gas flow rate in the above temperature range is 1.0 ⁇ 10 -5 to 7.6 ⁇ 10 -5 (NL/ min) range of grain-oriented electrical steel sheet manufacturing method.
  • the coating is prevented from peeling off during the magnetic domain refining treatment, the corrosion resistance and insulation properties of the coating can be maintained, and the magnetic domain refining treatment can be performed at a higher energy density, so the iron loss can be effectively reduced. can be reduced.
  • an annealing separator mainly composed of magnesium oxide was applied to the surface of the steel sheet and dried.
  • the steel sheet is subjected to heat treatment under the conditions of raising the temperature at 25°C/h in a N2 atmosphere up to 700°C and in a 75 vol% H2 + 25 vol% N2 atmosphere from 700°C to 1200°C.
  • the steel was then subjected to final annealing, which also serves as purification, by holding in an H2 atmosphere at 1200° C for 10 hours.
  • the final annealing was performed by changing the gas flow rate in the process of raising the temperature.
  • undercoating means forsteritic coating For finish annealed sheets having various forsteritic coatings (ceramic coatings, hereinafter simply referred to as undercoating means forsteritic coating) thus obtained, the Young's modulus of the undercoating is was evaluated by nanoindentation, and the concentrations of Mn and Fe in the undercoat were quantified by Auger electron spectroscopy.
  • the nanoindentation method is a method in which an indenter is pushed into a measurement object, the load and depth at that time are continuously measured, and the composite elastic modulus is calculated from the relationship between the indentation depth and the load.
  • This nano-indentation method is generally used for physical property testing of thin films because the indentation depth of the indenter is smaller than that of the micro-Vickers method.
  • a diamond triangular pyramid indenter (Berkovich type, apex angle: 60°) is used, and the undercoating film is loaded at any three points for a load time of 5 seconds, unloaded time: 2 seconds, maximum A load of 1000 ⁇ N was used, and a linear load was applied at room temperature by pressing the indenter.
  • Auger electron spectroscopy measures the kinetic energy distribution of Auger electrons emitted when irradiated with an electron beam. Since the escape depth of Auger electrons is limited to several nanometers or less, it is possible to analyze the concentration of various components only in the undercoating portion without being affected by the base iron.
  • a coating agent was applied to the finish-annealed coil, which is the steel sheet after the purification annealing, and after drying, a flattening treatment was performed at 800° C. for 20 seconds to obtain a product sheet.
  • the product sheet was subjected to magnetic domain refining treatment by laser irradiation at an irradiation power of 3.0 mJ/mm 2 , and the presence or absence of peeling of the film on the product sheet after irradiation was examined by microscopic observation.
  • the above laser irradiation was performed under the condition that the irradiation pitch was 10 mm and the rolling direction was perpendicular to the rolling direction. Table 1 shows the results of this observation.
  • the reason why the peeling resistance of the coating is improved when the Young's modulus of the undercoating is within the above range is as follows.
  • the coating peels off due to local thermal expansion due to heating in a very short time, and when the thermally expanded portion is cooled, it separates from the steel plate.
  • Shear stress is generated due to the difference in thermal expansion coefficient between the coatings, and the coating is peeled off because it exceeds the fracture resistance stress of the coating. Therefore, in order to prevent such peeling, it is considered effective to increase the fracture resistance of the film due to thermal stress.
  • the Young's modulus of the coating In order to increase the fracture resistance, it is effective to lower the Young's modulus of the coating. This is because the higher the Young's modulus, the higher the shear stress due to thermal expansion. On the other hand, the lower the Young's modulus of the coating, the better. If it is less than 108 GPa, the tensile tension applied to the steel sheet by the coating decreases, and the iron loss increases, which is not preferable.
  • Fe and Mn are considered to exist in the form of metals and other compounds (sulfides, oxides, silicates, etc.) in the coating, and these compounds are the main components of the undercoating. Since it has a relatively higher coefficient of thermal expansion than forsterite and is close to iron, thermal expansion due to heating is less likely to occur, preventing peeling of the coating. In addition, Fe and Mn themselves also act to lower the Young's modulus of the film.
  • the present inventors investigated the factors controlling the Young's modulus and Fe+Mn concentration of the undercoating.
  • the reason why attention is paid to the absorbance of firelite, clinoferrosilite and silica is as follows. That is, both of them react with MgO in the annealing separator to form forsterite, which is an undercoat.
  • the ratio of the sum of the absorbance A1 of Fyrelite and the absorbance A2 of clinoferrosilite to the sum of the absorbances A1, A2 and A3 of Fyrelite, clinoferrosilite and silica (hereinafter referred to as the sum) are also shown in Table 1 above.
  • the absorbances of firelite, clinoferrosilite, and silica on the surface of the steel sheet measured by FTIR are A1, A2, and A3, respectively.
  • the FTIR measurement method and the absorbance measurement method the method described in JP-A-2005-69917 was used.
  • Table 1 also shows the gas flow rate per coil surface area of the atmosphere gas supplied into the finish annealing furnace in the temperature range of 950 to 1100° C. for the finish annealing described above. As shown in Table 1, the higher the sum of the absorbance ratios of fayalite and clinoferrosilite, the higher the concentration of Fe+Mn in the undercoat. It can be seen that there is a tendency to further increase.
  • the Young's modulus of the undercoating is also greatly affected by the sum of the absorbance ratios of fayalite and clinoferrosilite, and the gas flow rate. It can be seen that the Fe+Mn concentration of the undercoating increases and the Young's modulus is kept within the range of 108 to 144 GPa by keeping it within the range of 10 ⁇ 5 NL/min.
  • Fayalite and clinoferrosilite are represented by Fe 2 SiO 4 and FeSiO 3 , but actually, Fe and Mn are mutually substituted in the steel sheet containing Mn, resulting in (Fe x ,Mn 1 ⁇ x )2SiO 4 , (Fe x , Mn 1 ⁇ x ) SiO 3 is formed.
  • the behavior in the temperature range of 950 to 1100°C in the final annealing temperature range is extremely important for film formation. This is because the forsterite-forming reaction begins in earnest in this temperature range. And it is important to introduce H2 into the atmosphere in such a temperature range. This facilitates the formation of a film by promoting the volume diffusion of MgO and by moving silica in the internal oxide film to the surface layer of the steel sheet.
  • the concentration of the introduced H 2 is not particularly limited, it is preferably in the range of about 5 vol % or more. Also, the upper limit may be 100 vol%.
  • the gas flow rate is high, the forsterite-forming ability will be excessively increased. As a result, the obtained forsterite coating has an increased Young's modulus due to coarsening of the grain size and a decrease in porosity. From this point of view, it is necessary to moderately reduce the gas flow rate. On the other hand, if the gas flow rate is excessively lowered, the effect of introducing the gas itself is lowered. As a result, the coating is poorly formed and the shape of the coating is deteriorated to such an extent that the coating is peeled off even without magnetic domain refining.
  • the gas flow rate is set so that the number of times of gas replacement is appropriate according to the internal volume of the bell of the annealing furnace. For example, if the furnace internal volume is 10 m 3 , the gas flow rate is usually 1.5 to 6 NL/min. However, in the present invention, the optimum flow rate varies depending on the amount of oxides on the surface of the steel sheet and the amount of MgO applied. Must be set to range.
  • C 0.020-0.080 mass% If the C content is less than 0.020 mass%, the grain boundary strengthening effect of C is lost, and defects such as cracks in the slab may occur, which hinder the production. On the other hand, if it exceeds 0.080 mass%, it may be difficult to reduce it by decarburization annealing to 0.005 mass% or less where magnetic aging does not occur. Therefore, C is preferably in the range of 0.020-0.080 mass%. More preferably, the lower limit is 0.025 mass% and the upper limit is 0.075 mass%.
  • Si 2.50-4.50 mass%
  • Si is an element necessary to increase the resistivity of steel and reduce iron loss. This effect may not be sufficiently obtained at less than 2.50 mass%.
  • Si is preferably in the range of 2.50-4.50 mass%. More preferably, the lower limit is 2.80 mass% and the upper limit is 4.00 mass%.
  • Mn 0.03-0.30 mass%
  • Mn is an element necessary for improving the hot workability of steel. This effect may not be sufficiently exhibited at less than 0.03 mass%. On the other hand, if it exceeds 0.30 mass%, the magnetic flux density of the product sheet may decrease. Therefore, Mn is preferably in the range of 0.03-0.30 mass%. More preferably, the lower limit is 0.04 mass% and the upper limit is 0.20 mass%.
  • Components other than the above C, Si and Mn are divided into cases where inhibitors are used and cases where inhibitors are not used in order to cause secondary recrystallization.
  • Al and N are respectively Al: 0.010 to 0.040 mass% and N: 0.003 to 0.012 mass%. It is preferable to contain it within the range.
  • MnS/MnSe inhibitor it is preferable to contain Mn in the amount described above and one or two of S: 0.002 to 0.030 mass% and Se: 0.003 to 0.030 mass%. . If the amount of each added is less than the above lower limit, a sufficient inhibitor effect cannot be obtained.
  • the AlN-based and MnS/MnSe-based inhibitors may be used in combination.
  • Ni 0.010 to 1.500 mass%
  • Cr 0.01 to 0.50 mass%
  • Cu 0.01 to 0.50 mass%
  • P 0.005 to 0.200 mass%
  • Sb 0.005 to 0.200 for the purpose of improving magnetic properties mass%
  • Sn 0.005 to 0.500 mass%
  • Bi 0.005 to 0.050 mass%
  • Mo 0.005 to 0.100 mass%
  • B 0.0002 to 0.0025 mass%
  • Te 0.0005 to 0.0100 mass%
  • Nb 0.001 to 0.030 mass%
  • V 0.001 to 0.010 mass%
  • W 0.002 to 0.050 mass%
  • Ti 0.001 to 0.050 mass%
  • Ta 0.001 to 0.050 mass%.
  • a steel material may be produced by a conventionally known ingot-slabbing-rolling method or continuous casting method, or directly Thin slabs with a thickness of 100 mm or less may be produced by casting.
  • the slab is heated to about 1350° C. if it contains an inhibitor component, and is heated to a temperature of 1300° C. or lower if it does not contain an inhibitor component, and then subjected to hot rolling.
  • hot rolling may be performed immediately after casting without heating. Further, in the case of thin cast slabs, hot rolling may be performed, or hot rolling may be omitted and the following steps may be performed as they are.
  • the hot-rolled sheet or thin cast piece obtained by hot rolling is subjected to hot-rolled sheet annealing as necessary.
  • the temperature of this hot-rolled sheet annealing is preferably in the range of 800 to 1150° C. in order to obtain good magnetic properties. That is, when the temperature is lower than 800°C, the band structure formed by hot rolling remains, making it difficult to obtain a primary recrystallized structure with regular grains and inhibiting the development of secondary recrystallization. On the other hand, if the temperature exceeds 1150°C, the grain size after annealing of the hot-rolled sheet becomes too coarse, and it becomes difficult to obtain a primary recrystallized structure with regular grain size.
  • the hot-rolled sheet or thin slab after hot-rolling or after hot-rolled sheet annealing is cold-rolled once or cold-rolled twice or more with intermediate annealing to obtain a cold-rolled sheet with the final thickness.
  • the annealing temperature of the intermediate annealing is preferably in the range of 900-1200°C. If the temperature is lower than 900°C, the recrystallized grains after the intermediate annealing become finer, and the Goss nuclei in the primary recrystallized structure are reduced, which tends to lower the magnetic properties of the product sheet. On the other hand, when the temperature exceeds 1200°C, the crystal grains become too coarse as in the case of hot-rolled sheet annealing, making it difficult to obtain a primary recrystallized structure with regular grains.
  • cold rolling which is the final thickness
  • cold rolling is performed by raising the steel plate temperature during cold rolling to 100 to 300°C, or raising the temperature to 100 to 300°C during cold rolling. It is effective to improve the primary recrystallization texture and improve the magnetic properties by performing the aging treatment once or multiple times.
  • the cold-rolled sheet having the final thickness is then subjected to decarburization annealing that also serves as primary recrystallization annealing.
  • decarburization annealing that also serves as primary recrystallization annealing.
  • the sum of the absorbance ratios based on the absorbance of fayalite (Fe 2 SiO 4 ) and clinoferrosilite (FeSiO 3 ) in FTIR measurement on the surface of the steel sheet (Formula 1 above) is 45% or more.
  • the decarburization annealing conditions for this purpose are an annealing temperature of 700 to 900° C. and a holding time of 30 to 300 seconds. If the annealing temperature for the decarburization annealing is less than 700° C.
  • the decarburization will be insufficient or the primary recrystallized grain size will be small, resulting in deterioration of the magnetic properties.
  • the temperature exceeds 900° C. or the time exceeds 300 seconds, the primary grain size becomes too large and the magnetic properties deteriorate.
  • the decarburization annealing consists of a heating step of heating to the annealing temperature range described above and a soaking step of holding in the temperature range after heating for the above retention time.
  • the soaking step can be divided into a former stage for controlling the thickness of the subscales and a latter stage for adjusting the reactivity between the subscales and the annealing separator, at least the former stage being in a wet hydrogen atmosphere, and
  • the dew point of the atmosphere is 45-60°C.
  • setting the dew point of the atmosphere at least in the first stage of the soaking process to 45 to 60°C means that if it is lower than 45°C, a sufficient amount of subscale cannot be obtained, resulting in insufficient formation of the undercoating.
  • the atmospheric dew point is higher than 60° C., an excessive amount of the undercoating may be formed, and the adhesion of the undercoating may be deteriorated.
  • the concentration of H 2 in the wet hydrogen atmosphere can be in the range of 40% to 80% as usual.
  • the absorbances of A1, A2 and A3 can be adjusted.
  • pH 2 O/pH 2 is desirably in the range of 0.3 to 0.55.
  • a wet hydrogen atmosphere and set the dew point of the atmosphere to be in the range of 45 to 60°C, even in areas other than the first stage of the soaking process of decarburization annealing.
  • a dry hydrogen atmosphere can be used in the latter stage of the soaking process.
  • the soaking area can be divided into two stages, the front stage and the rear stage. It is preferable that both or one of the soaking temperature and the oxidizing pH 2 O/pH 2 of the annealing atmosphere be different between the former stage and the latter stage. This is because the subscale can be controlled more precisely. That is, when the soaking temperature is changed, it is preferable that the temperature difference between the former stage and the latter stage is 20° C. or more. On the other hand, when changing the oxidizability, the difference of pH 2 O/pH 2 is changed by 0.2 or more.
  • the amount of change is not particularly limited, but in general, the latter stage is higher in temperature than the former stage, and the latter stage is lower in pH 2 O/pH 2 than the former stage in terms of oxidizability.
  • the preceding stage can be further divided into a plurality of stages. In this case, the difference in temperature and/or pH 2 O/pH 2 between the latter stage and the preceding stage should be the above conditions. .
  • the absorbance ratios A1, A2, and A3 described above may change depending on the material composition and the pre-process of decarburization annealing. It is necessary to adjust the annealing conditions. For example, if the Si content in the steel material is as low as 3 mass% or less, the absorbance ratio tends to decrease, so the dew point is set higher. In addition, if the cleanliness of the steel sheet surface before decarburization annealing (for example, the oxygen basis weight before decarburization annealing) is high, such as 0.1 g/m 2 or higher, it is effective to set the dew point to a lower value. be.
  • an annealing separator is applied and finish annealing is performed.
  • the temperature range from at least 950 ° C. to 1100 ° C. is made into an H 2 -containing atmosphere, and the gas flow rate in this temperature range is 1.0 ⁇ 10 -5 to 7.6 ⁇ 10 -5 NL/per surface area of the steel sheet.
  • the min range is an important aspect of the present invention as described above. It should be noted that this temperature range is a temperature range in which Fe and Mn are concentrated in the film due to the substitution reaction of MgO, an annealing separator, with (Fe,Mn) 2SiO4 on the surface of the steel sheet.
  • the gas flow rate in finish annealing is often determined according to the volume in the furnace, but in the present invention, it is important to set the range of the gas flow rate according to the surface area of the steel sheet as described above. This is because the gas flow rate corresponding to the volume of the furnace is too large. That is, if the gas flow rate is less than 1.0 ⁇ 10 ⁇ 5 NL/min, the effect of introducing the gas is reduced, resulting in poor film formation. On the other hand, if the gas flow rate exceeds 7.6 ⁇ 10 ⁇ 5 NL/min, Fe and Mn migrate into MgO, resulting in degraded peeling resistance of the film during magnetic domain refining.
  • the H 2 concentration in the atmosphere in the above temperature range may be low, but as a guide, it should be 0.1 vol % or more, more preferably 0.5 vol % or more.
  • the upper limit may be 100vol%.
  • the concentration is less than 100 vol %, it is possible to mainly use N2 , Ar, etc. as the gas for balancing the atmosphere.
  • the steel sheet coil is washed with water, brushed, pickled, etc. to remove the unreacted annealing separator adhering to the surface of the steel sheet. , a steel plate for magnetic domain refining treatment.
  • the steel sheet thus obtained has a Young's modulus of 108 to 144 GPa in the undercoating and a Mn+Fe concentration of 0.05 to 5.0 mass% in the undercoating.
  • the coating adhesion itself deteriorates.
  • the Young's modulus of the undercoating exceeds 144 GPa, the coating breaks due to magnetic domain refining.
  • the concentration of Mn+Fe in the undercoat is less than 0.05 mass %, these elements cannot absorb the thermal stress generated by magnetic domain refining, resulting in film breakage.
  • the upper limit of the Mn+Fe concentration is not particularly limited, but about 5.0 mass% is preferable in consideration of productivity and the like.
  • EPMA Auger electron spectroscopy
  • SIMS any other analysis method that is usually used to analyze the concentration of Mn or Fe in steel sheets may be used.
  • a magnetic domain refining treatment method there is a method of introducing linear or point-like thermal strain or impact strain to the final product plate by laser irradiation, electron beam irradiation, plasma jet, etc., which is generally practiced. can be used.
  • the grain-oriented electrical steel sheet manufactured in this way not only has excellent corrosion resistance and insulation properties due to its high coating adhesion, but also does not cause coating peeling even if the irradiation energy for magnetic domain refining is sufficiently increased. By increasing the irradiation energy to an ideal intensity, an effect of improving iron loss can also be obtained. Moreover, in the manufacturing method according to the present invention, all the items not described in this specification can be used in a conventional manner.
  • the chemical composition of the grain-oriented electrical steel sheet according to the present invention is the chemical composition of the steel sheet obtained by applying the above-described manufacturing method to the steel having the chemical composition described above. Specifically, C: 0.005 mass% or less, Si: 2.5 to 4.5 mass% and Mn: 0.03 to 0.30 mass%, Al: 0.010 mass% or less, N: 0.005 mass% or less, S: 0.005 mass% or less, Se : Contains 0.005 mass% or less, the balance being Fe and unavoidable impurities.
  • Example 1 C: 0.070mass%, Si: 3.43mass%, Mn: 0.08mass%, Al: 0.005mass%, N: 0.004mass%, S: 0.002mass% and Sb: 0.02mass%, the balance being Fe and unavoidable impurities
  • a steel slab consisting of is produced by a continuous casting method, heated to a temperature of 1250 ° C, hot rolled to a hot-rolled plate with a thickness of 2.4 mm, and subjected to hot-rolled plate annealing at 1000 ° C for 50 seconds.
  • the sheet is first cold rolled to an intermediate sheet thickness of 1.8 mm, subjected to intermediate annealing under conditions of 1100°C for 20 seconds, and then secondary cold rolled to a final sheet thickness of 0.27 mm.
  • the sheet was finished, and the cold-rolled sheet was subjected to decarburization annealing.
  • the decarburization annealing the sum of the absorbance ratios of fayalite and clinoferrosilite was adjusted to 60% by holding at 840°C for 100 seconds in a moist atmosphere of 50vol% H2-50vol % N2 and a dew point of 57°C. .
  • an annealing separator mainly composed of magnesium oxide was applied to the surface of the steel sheet and dried.
  • This steel sheet was subjected to finish annealing up to 950°C in N2 atmosphere, then from 950°C to 1100°C in H2 + Ar atmosphere with various mixed conditions, and from 1100°C to 1170° C in H2 atmosphere.
  • the temperature was raised at a rate of 25°C/h, followed by annealing at 1170°C for 10 hours in a H2 atmosphere, which also serves as purification.
  • the H 2 gas flow rate in the atmosphere was set to 3.0 ⁇ 10 ⁇ 5 NL/min on the surface of the steel sheet.
  • the Young's modulus of the undercoat was evaluated by nanoindentation, and the Mn and Fe concentrations in the undercoat were quantified by Auger electron spectroscopy.
  • the coil of the finish-annealed sheet was coated with a coating liquid, dried, and flattened at 800° C. for 20 seconds to obtain a product sheet.
  • the product sheet was irradiated with an electron beam at an irradiation power of 90 mA/mm 2 , and the film was observed under a microscope to check for peeling of the undercoat. Table 2 shows the investigation results at this time.
  • Example 2 A steel slab having the chemical composition shown in Table 3, the balance being Fe and unavoidable impurities, was produced by a continuous casting method, heated to a temperature of 1380 ° C., and then hot rolled to a thickness of 2.0 mm. The hot-rolled sheet was subjected to hot-rolled sheet annealing under conditions of 1030° C. for 10 seconds, and then cold-rolled to finish a cold-rolled sheet having a final sheet thickness of 0.23 mm. After that, decarburization annealing was applied to obtain a steel sheet.
  • the dew point is adjusted for each steel type under the conditions of 840°C x 100 seconds, 50 vol% H2 - 50 vol% N2 atmosphere, and in the second stage of decarburization annealing, 870°C x 10 seconds, 100 vol % H2. , the dew point was fixed at 10°C, and the sum of the absorbance ratios of fayalite and clinoferrosilite was adjusted to 45% or more. After that, an annealing separator mainly composed of magnesium oxide was applied to the surface of the steel sheet and dried.
  • This steel sheet was subjected to final annealing up to 950°C in an Ar atmosphere, then from 950° C to 1100° C in an H2 containing atmosphere with various H2 concentrations, and then from 1100 to 1170° C in an H2 atmosphere at 25°C. /h, and then annealed at 1170°C for 10 hours in a H2 atmosphere for purification.
  • the H 2 gas flow rate in the atmosphere was set to 3.0 ⁇ 10 ⁇ 5 NL/min on the surface of the steel sheet.
  • the Young's modulus of the undercoat was evaluated by nanoindentation, and the Mn and Fe concentrations in the undercoat were quantified by Auger electron spectroscopy.
  • the coil of the finish-annealed sheet was coated with a coating liquid, dried, and flattened at 800° C. for 20 seconds to obtain a product sheet. Thereafter, the product sheet was irradiated with an electron beam at an irradiation power of 90 mA/mm 2 , and the film was observed under a microscope to check for peeling of the film. Table 3 shows the investigation results at this time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

磁区細分化処理を行った際の被膜密着性を改善する方途を提案する。方向性電磁鋼板が有するセラミックス質の下地被膜中のMn+Fe濃度を0.05mass%以上とし、かつ下地被膜のヤング率を108~144GPaとする。

Description

方向性電磁鋼板およびその製造方法
 本発明は、方向性電磁鋼板、中でも磁区細分化処理に供する方向性電磁鋼板およびその製造方法に関し、具体的には、優れた磁気特性と被膜特性を有する方向性電磁鋼板およびその製造方法に関するものである。
 方向性電磁鋼板は、主にトランスの鉄心材料として使用されることから、磁気特性に優れること、特に鉄損の低いことが強く求められている。そのため、方向性電磁鋼板は、従来、冷間圧延したSi含有鋼板に、一次再結晶焼鈍を兼ねた脱炭焼鈍を施し、MgOを主剤とする焼鈍分離剤を塗布した後、仕上焼鈍において二次再結晶を起こさせ、結晶粒を{110}<001>方位(いわゆるゴス方位)に高度にそろえる方法で製造している。
 上記仕上焼鈍は、二次再結晶させる焼鈍と、最高1200℃程度の温度まで昇温する純化処理を合わせて10日間程度の期間を要する。そのため、通常、コイルに巻いた状態で焼鈍を施すバッチ焼鈍により行われている。
 ここで、上記仕上焼鈍中において、脱炭焼鈍時の鋼板表面に形成されるSiOを主体としたサブスケールと、脱炭焼鈍後に鋼板表面に塗布したMgOを主剤とする焼鈍分離剤とが、MgO+SiO→MgSiOの反応を起こすことで、鋼板表面にフォルステライト被膜が形成される。
 かかるフォルステライト被膜は、鋼板に絶縁性や耐食性を付与することの他に、鋼板表面に引張り応力を付与して磁気特性を改善する効果がある。そのため、フォルステライト被膜には、均一で密着性に優れることが要求される。
 近年、省エネルギーに対する要求を背景として、方向性電磁鋼板には更なる鉄損特性の改善が求められるようになってきている。そのために、平坦化焼鈍まで終了した方向性電磁鋼板に、レーザーや電子ビーム、プラズマ等を照射して加熱し、局所的な歪を加えることにより、鉄損を改善することが行われている。
 しかしながら、このような局所的な加熱を行うと、熱歪により被膜が部分的に剥離することがある。もしもこのような被膜剥離部が存在すると、耐食性や絶縁性を劣化させることになる。そこで、これを防ぐために再度コーティングを塗布、焼き付けしなければならない。
 このように工程を余分に取ることは、コストアップの要因や、せっかく与えた局所的熱歪が解放されて鉄損が十分に下がらないといった、問題につながる。
 かかる問題を解決する方策として、各種対策が提案されている。例えば、特許文献1には、被膜と地鉄の界面にSeの濃化部を有し、濃化部の割合を所定のレベルに制御したうえで、電子ビームを照射する方法が開示されている。
 特許文献2には、最終仕上げ焼鈍済みの方向性電磁鋼板の表面に、電子ビームを照射して磁区細分化処理を行うに際し、前記方向性電磁鋼板を50℃以上に加熱したのち、磁区細分化処理を施す方法が開示されている。
 特許文献3には、鋼板表面を蛍光X線分析で定量分析したときのTi、Al強度をFX(Al)およびFe強度と特定の関係に収めること、そのために、最終仕上焼鈍を特定のヒートパタン内に収めること、が開示されている。
 特許文献4には、下地被膜に、窒素化合物をN換算で0.02g/m以上含有し、さらに、下地被膜と鋼板との接触度を特定の範囲に収める方法が開示されている。
特開2012-52232号公報 特許第6465054号公報 再表2015-40799号 特開2012-92409号公報
 これら先行技術のうち、まず特許文献1については、被膜を改善するとSeが濃化し、これに起因して磁区細分化時に被膜が破壊されやすくなるが電子ビームではそうならない、との知見によるものであり、電子ビーム以外の方法、例えばレーザーやプラズマジェットによる磁区細分化では用いることができない。
 さらに、Seの濃化以外にもS、Al等の濃化も考慮する必要があり、それらをいずれも所定の範囲に収めることは、元素ごとに濃化状態が異なるため困難であった。
 なお、特許文献1では、Seの濃化以外にもSやAlの濃化が挙げられているものの、それらのいずれを採用しても、コイル状態で仕上焼鈍するため、全長全幅で温度、雰囲気を均一にすることができず、コイルのすべての領域を所定の範囲内におさめることは困難である。そのため、特許文献1に記載された限定範囲に収めることは困難であった。
 また、かかる技術には、電子ビームを用いた場合であっても、鉄損改善効果を高めるために磁区細分化する際の照射エネルギーを高めると、やはり被膜剥離するとの問題が残っていた。
 特許文献2に記載の方法でも同様に、電子ビームによる磁区細分化に限定されており、プラズマジェットやレーザーによる磁区細分化では効果が認められていない。加えて、電子ビーム照射前後の真空部で加熱と冷却を行うために、大きな設備コスト及びランニングコストがかかるという問題があった。さらに、電子ビームを用いた場合には、前記特許文献1にかかるものと同じ問題が残っていた。
 特許文献3では、仕上焼鈍の400~650℃までを急加熱した後700~850℃までを徐熱するという、不自然なヒートサイクルをとる必要があるため、コイルに巻いた状態で焼鈍するには、焼鈍炉の排熱に過大なコストがかかる。また、コイル全長全幅にわたってこの条件を満足させることは困難であり、良好な条件で均一に被膜を被成させる点について問題が残っていた。
 特許文献4では、下地被膜と地鉄との界面の長さを調節することに加え、窒化物を形成させるための仕上焼鈍のガス供給量、コイル巻き取り張力および焼鈍分離剤中の水分量を特定する必要がある。しかしながら、コイル位置により水分が滞留しやすい場所としにくい場所があること、また巻き取り張力のかかりやすい部分とかかりにくい部分があること、などから、コイル全面にわたって均一な被膜を得ることは困難であった。
 以上述べたように、磁区細分化処理による被膜剥離を防止する方法は、未だ十分とは言い難い状況にあった。さらに、近年の省エネルギーのニーズの高まりとともに、鉄損をさらに改善するために磁区細分化処理の照射エネルギーを増大させていく傾向にあり、従来では被膜剥離防止に効果が認められた対策であっても、近年では十分な効果が得られないとの問題が生じている。
 本発明は以上の事情に鑑みてなされたものであって、下地被膜の成分を調整して物理特性を改善することにより、磁区細分化処理を行った際の被膜密着性を確保した、方向性電磁鋼板およびその製造方法について提案するものである。
 本発明の要旨構成は以下のとおりである。
 1.セラミックス質の被膜を有し、Mnを含有する方向性電磁鋼板において、該被膜の、Mn+Fe濃度が0.05mass%以上、かつヤング率が108~144GPaである方向性電磁鋼板。
2.前記1に記載の方向性電磁鋼板を製造する方法であって、
 Mnを含有する方向性電磁鋼板用鋼素材を、熱間圧延し、次いで1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚とし、さらに一次再結晶を兼ねた脱炭焼鈍を施した後、鋼板表面に50mass%以上のMgOを含有する焼鈍分離剤を塗布して仕上焼鈍し、必要に応じて上記仕上焼鈍後の未反応分離剤を除去したのち平坦化焼鈍する方向性電磁鋼板の製造方法であって、
 上記脱炭焼鈍の条件を、焼鈍温度:700~900℃、均熱時間:30~300秒、均熱工程の少なくとも前段での湿水素雰囲気の露点:45~60℃の範囲内において、それぞれ調整することにより、上記脱炭焼鈍後の鋼板表面の、フーリエ変換赤外線吸収スペクトル法(FTIR)によって測定される、ファイヤライト、クリノフェロシライトおよびシリカの吸光度をそれぞれA1、A2およびA3としたときの、{(A1+A2)/(A1+A2+A3)}×100を45%以上にするとともに、
 上記仕上焼鈍において、少なくとも950℃から1100℃までの温度範囲をH含有雰囲気とし、かつ上記温度範囲のガス流量を鋼板の表面積1m当たり1.0×10-5~7.6×10-5(NL/min)の範囲とする方向性電磁鋼板の製造方法。
 この発明によれば、被膜密着性に優れる方向性電磁鋼板を提供することができる。特に、磁区細分化処理での被膜剥離が防止されることで、該被膜による耐食性、絶縁性を維持できるとともに、より高いエネルギー密度で磁区細分化処理を行うことができるので鉄損を効果的に低減することができる。
 以下、本発明を開発する契機となった実験について述べる。
<実験1>
 C:0.06mass%、Si:3.3mass%、Mn:0.07mass%、Al:0.03mass%およびN:0.01mass%を含有する鋼を溶製し、連続鋳造法で鋼スラブとした後、1400℃に加熱し、熱間圧延して板厚2.2mmの熱延板とし、1000℃×60秒の条件の熱延板焼鈍を施した後、一次冷間圧延して中間板厚を1.7mmとし、1100℃×80秒の条件の中間焼鈍を施した後、200℃の温間圧延により最終板厚0.23mmの冷延板とした。
 次いで、50vol%H-50vol%Nの雰囲気で、露点を種々に変更して830℃で100秒保持する脱炭焼鈍を施すことにより、鋼板表面の生成酸化物を変化させた。その後、酸化マグネシウムを主体とする焼鈍分離剤を鋼板表面に塗布して乾燥した。
 かかる鋼板に対し、仕上焼鈍として、700℃までをN雰囲気、700℃から1200℃までを75vol%H+25 vol%N雰囲気で25℃/hで昇温する条件の熱処理を行い、引き続いて1200℃で10時間、H雰囲気で保定する純化を兼ねた仕上焼鈍を行った。なお、この仕上焼鈍は、その昇温過程において、ガス流量を種々に変更して行った。
 このようにして得られた各種のフォルステライト質の被膜(セラミック質の被膜であり、以下単に下地被膜といった場合はフォルステライト質の被膜を意味する)を有する仕上焼鈍板について、下地被膜のヤング率をナノインデンテーションにより評価するとともに、下地被膜中のMnおよびFeの濃度をオージェ電子分光法により定量した。
 なお、ナノインデンテーション法とは、測定対象へ圧子を押し込み、その際の荷重と深さを連続的に測定し、押し込み深さと荷重との関係から複合弾性率を算出する方法である。このナノインデンテーション法は、マイクロビッカース法と比較して圧子の押し込み深さが小さいため、薄膜の物性試験を行う際に一般的に用いられる。
 その測定条件としては、ダイヤモンド製の三角錐圧子(バーコビッチ型、頂角:60°)を用いて、下地被膜に対し、任意の3箇所で負荷時間:5秒、除荷時間:2秒、最大荷重:1000μNとして圧子を押し込む、室温での線形荷重付加方式とした。
 また、オージェ電子分光法は、電子線を照射したときに放出されるオージェ電子の運動エネルギー分布を測定するものである。オージェ電子の脱出深さが数nm以下に限られるため、地鉄の影響を受けずに下地被膜部分のみの各種成分濃度の分析を行うことができる。
 その後、前記純化焼鈍後の鋼板である仕上焼鈍コイルにコーティング剤を塗布し、乾燥後800℃で20秒の条件の平坦化処理を施して製品板とした。かかる製品板に、照射パワーを3.0mJ/mmとしてレーザー照射して磁区細分化処理を施し、照射後の製品板における被膜の剥離の有無を顕微鏡観察により調査した。
 なお、上記レーザー照射は、その他、照射ピッチ:10mmで圧延方向に直角となる条件で行った。
 この観察結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、下地被膜のヤング率が108~144GPaでかつ、下地被膜中の(Mn+Fe)濃度が0.05mass%以上の領域において、被膜剥離が観察されず、良好な被膜が得られていることがわかる。
 このような結果が得られた原因について、本発明者らは以下のとおり考える。
 まず、下地被膜のヤング率が上記の範囲になると被膜の耐剥離性が改善される理由については以下のとおりである。
 そもそも、磁区細分化のために熱ひずみを加えたときに被膜が剥離するのは、ごく短時間に加熱されることにより局所的に熱膨張し、かかる熱膨張部位が冷却される際に鋼板と被膜の間の熱膨張率差からせん断応力が生じ、被膜の破壊抵抗応力を超えるため剥離している。
 よって、このような剥離を防ぐためには、被膜の熱応力による破壊抵抗を高めることが効果的と考えられる。そして、この破壊抵抗を高めるためには、被膜のヤング率を下げることが有効となる。これは、熱膨張によるせん断応力はヤング率が高いほど高まるからである。一方、被膜のヤング率は低いほど良いというわけではなく、108GPa未満になると、被膜が鋼板に与える引張り張力が低下し、鉄損が高くなってしまい好ましくない。
 他方、Fe、Mnが被膜中に導入されると被膜の耐剥離性が改善される理由については以下のとおりである。
 Fe、Mnは、被膜中、金属状態や、他の化合物(硫化物、酸化物、ケイ酸塩等)の状態として存在していると考えられるが、これらの化合物は下地被膜の主成分であるフォルステライトよりも熱膨張率が相対的に大きく、鉄に近いため、加熱による熱膨張が起こりにくくなって被膜剥離が防止される。また、Fe、Mn自体が被膜のヤング率を下げる働きもある。
 次いで、本発明者らは、このように下地被膜のヤング率とFe+Mn濃度を制御する因子について調査を行った。ここで、ファイアライト、クリノフェロシライトおよびシリカの吸光度に着目したのは、次の理由による。すなわち、いずれも焼鈍分離剤中のMgOと反応して下地被膜であるフォルステライトを形成するからである。
 かくして得られた測定値につき、ファイアライトの吸光度A1とクリノフェロシライトの吸光度A2との和がファイアライト、クリノフェロシライトおよびシリカの吸光度A1、A2およびA3の総和に占める比率(以下、吸光度比の和とも示す)を、前記表1に併記する。なお、鋼板表面の、FTIRによって測定される、ファイアライト、クリノフェロシライトおよびシリカの吸光度をそれぞれA1、A2およびA3とする。また、FTIRの測定方法および吸光度の測定方法としては、特開2005-69917号公報に記載の方法を用いた。
 なお、本発明において、上記吸光度比の和は、以下の式1によって求められる値を用いる。
 すなわち、ファイアライトの吸光度比=[A1/(A1+A2+A3)]×100、クリノフェロシライトの吸光度比=[A2/(A1+A2+A3)]×100となる。そして、ファイアライトの吸光度比とクリノフェロシライトの吸光度比との和は、以下のとおりとなる。
 吸光度比の和=[A1/(A1+A2+A3)]×100+[A2/(A1+A2+A3)]×100
       ={(A1+A2)/(A1+A2+A3)}×100・・・式1
 また、表1に、上記した仕上焼鈍の950~1100℃の温度範囲において仕上焼鈍炉内に供給した雰囲気ガスのコイル表面積当たりのガス流量について併記する。
 表1に示すように、ファイアライトとクリノフェロシライトの吸光度比の和が高いほど下地被膜中のFe+Mn濃度が増大する傾向にあるが、これに加えてガス流量を調節することによって、Fe+Mn濃度がさらに高まる傾向にあることがわかる。
 さらに、下地被膜のヤング率についても、ファイヤライトとクリノフェロシライトの吸光度比の和、およびガス流量が大きく影響しており、これらをそれぞれ45%以上、鋼板表面積当たり1.0×10-5~7.6×10-5NL/minの範囲に収めることによって、下地被膜のFe+Mn濃度が高まりヤング率が108~144GPaの範囲に収められていることがわかる。
 ここで、以上の結果が得られた原因について、本発明者らは以下のとおり考える。
 ファイアライトとクリノフェロシライトはFeSiOとFeSiOであらわされるが、実際には、Mnを含む鋼板中において、FeとMnは相互置換しあい、(Fe,Mn1-x)2SiO、(Fe,Mn1-x)SiOのような形となる。これらが、仕上焼鈍中にはさらにMgと相互固溶しあって、
(Fe,Mn1-x) 2SiO+MgO→(Fe,Mn,Mg1―y-z) 2SiO+(Fex-y,Mn1―x-z,Mgy+z)O
(Fe,Mn1-x) SiO+MgO→(Fe,Mn,Mg1―y-z)SiO+( Fex-y,Mn1―x-z,Mgy+z)O
といった形で、Mgが該化合物内に侵入するとともに、Fe、Mnが該酸化物外に放出され、それが最終的には下地被膜中のFe、Mn化合物となって残存することになる。すなわち、ファイヤライトやクリノフェロシライトを一定量以上確保することによって、下地被膜中のFe+Mn量を確保することができるもの、と考えられる。
 加えて、仕上焼鈍中の雰囲気ガス条件についていえば、被膜形成には、仕上焼鈍温度域で950~1100℃の温度範囲での挙動が極めて重要である。これは、この温度範囲でフォルステライト形成反応が本格的に始まるためである。そして、かかる温度範囲では雰囲気中にHを導入することが重要である。これにより、MgOの体拡散が促進されたり、内部酸化膜中のシリカが鋼板表層に移動したりすることによって、被膜の形成がしやすくなる。なお、上記導入されたHの濃度は特に限定されないが、5vol%程度以上の範囲が好ましい。また、上限は100vol%であってもよい。
 ここで、ガス流量が多いと雰囲気中のHによるMgOの拡散の働きがより強まる。これは、上記のようなMgとMnやFeとの置換反応も促進されることを意味する。その結果、被膜中にトラップされていたMnやFeがMgO中に拡散してしまう。すなわち、被膜中のFe、Mn量が低下することになる。一方、ガス流量を適度に低下させると、Hによる内部酸化中のシリカの表層移動を進めつつMnやFeのMgO中への拡散を抑制し、MnやFeを効果的に被膜中に残すことができる。
 なお、ガス流量が多いと、フォルステライト形成能が過度に高まりすぎることにもなる。その結果、得られるフォルステライト被膜は粒径が粗大化したり、気孔率が低下したりすることによってヤング率が増大する。こうした点から、ガス流量は、適度に低下させることが必要となる。一方、ガス流量を過度に低下すると、ガスを入れる効果そのものが低下してしまう。その結果、被膜形成が不良となって被膜の形態が劣化し、磁区細分化を行わなくても被膜が剥離するほどになってしまう。
 本発明では、ガス流量は鋼板表面積当たりで制御することが重要である。通常、方向性電磁鋼板の仕上焼鈍は、コイルに巻かれた形でバッチ式焼鈍炉によって行われる。ここで、ガス流量は、焼鈍炉のベルの内容積に応じてガス置換回数が適正となるように設定される。例えば、炉内容積が10mとすれば、ガス流量は通常1.5~6NL/minで行われる。しかしながら、本発明では、鋼板表面の酸化物や塗布されたMgOの量に応じて最適流量が変化するため、後述するように、炉内容積から算出されるガス流量よりも10~60%程度低い範囲に設定する必要がある。
 次に、本発明を適用する方向性電磁鋼板の鋼素材(スラブ)が有すべき好ましい成分組成について説明する。なお、以下に記載の成分組成の残部はFeおよび不可避的不純物である。
C:0.020~0.080mass% 
 Cは、0.020mass%に満たないと、Cによる粒界強化効果が失われ、スラブに割れが生じるなど、製造に支障を来たす欠陥を生ずる、おそれがある。一方、0.080mass%を超えると、磁気時効の起こらない0.005mass%以下に脱炭焼鈍で低減することが困難となる、おそれがある。よって、Cは0.020~0.080mass%の範囲とするのが好ましい。より好ましくは、下限が0.025mass%であって、上限が0.075mass%である。
Si:2.50~4.50mass%  
 Siは、鋼の比抵抗を高め、鉄損を低減するのに必要な元素である。この効果は、2.50mass%未満では十分に得られない、おそれがある。一方、4.50mass%を超えると、加工性が低下し、圧延して製造すること困難となる、おそれがある。よって、Siは2.50~4.50mass%の範囲とするのが好ましい。より好ましくは、下限が2.80 mass%であって、上限が4.00mass%である。
Mn:0.03~0.30mass%  
 Mnは、鋼の熱間加工性を改善するために必要な元素である。この効果は、0.03mass%未満では十分に発現されない、おそれがある。一方、0.30mass%を超えると、製品板の磁束密度が低下する、おそれがある。よって、Mnは0.03~0.30mass%の範囲とするのが好ましい。より好ましくは、下限が0.04 mass%であって、上限が0.20mass%である。  
 上記C、SiおよびMn以外の成分については、二次再結晶を生じさせるために、インヒビターを利用する場合と、しない場合とに分けられる。  
 まず、二次再結晶を生じさせるためにインヒビターを利用する場合で、例えば、AlN系インヒビターを利用するときには、AlおよびNを、それぞれAl:0.010~0.040mass%、N:0.003~0.012mass%の範囲で含有させるのが好ましい。また、MnS・MnSe系インヒビターを利用する場合には、前述した量のMnと、S:0.002~0.030mass%およびSe:0.003~0.030mass%のうちの1種または2種を含有させることが好ましい。それぞれ添加量が、上記下限値より少ないと、インヒビター効果が十分に得られず、一方、上限値を超えると、インヒビター成分がスラブ加熱時に未固溶で残存し、磁気特性の低下をもたらす。なお、AlN系とMnS・MnSe系のインヒビターは併用してもよい。
 インヒビターを利用しない場合は、Al:0.010mass%以下、N:0.005mass%以下、S:0.005mass%以下、Se:0.005mass%以下の範囲に抑制することが好ましい。
 上記成分以外に、磁気特性の改善を目的として、Ni:0.010~1.500mass%、Cr:0.01~0.50mass%、Cu:0.01~0.50mass%、P:0.005~0.200mass%、Sb:0.005~0.200mass%、Sn;0.005~0.500mass%、Bi:0.005~0.050mass%、Mo:0.005~0.100mass%、B:0.0002~0.0025mass%、Te:0.0005~0.0100mass%、Nb:0.001~0.030mass%、V:0.001~0.010mass%、W:0.002~0.050mass%、Ti:0.001~0.050mass%およびTa:0.001~0.050mass%のうちから選ばれる1種または2種以上を適宜添加してもよい。
 なお、これらの成分において、Cuは上限を超えると表面割れが発生しやすくなり、P、Snは上限を超えると圧延時に破断しやすくなる。また、Mo、Biは上限を超えると抑制力が強くなりすぎて二次再結晶が不安定化し、Nb,Tiは上限を超えると、最終製品まで鋼中に残留して鉄損を劣化させる、おそれがある。さらに、その他の元素は上限を超えると被膜が劣化する、おそれがある。これらの点から上限が制限されることが好ましい。一方、それぞれの下限値は、添加効果が得られる観点から規定される。
 次に、本発明の方向性電磁鋼板の製造方法について説明する。
 前述した成分組成を有する鋼を常法の精錬プロセスで溶製した後、従来公知の造塊-分塊圧延法または連続鋳造法で鋼素材(スラブ)を製造してもよいし、あるいは、直接鋳造法で100mm以下の厚さの薄鋳片を製造してもよい。上記スラブは常法に従い、例えば、インヒビター成分を含有する場合には、1350℃程度まで加熱し、一方インヒビター成分を含まない場合は、1300℃以下の温度に加熱した後、熱間圧延に供する。なお、インヒビター成分を含有しない場合には、鋳造後加熱することなく直ちに熱間圧延してもよい。また、薄鋳片の場合には、熱間圧延してもよいし熱間圧延を省略してそのまま以後の工程に進めてもよい。
 次いで、熱間圧延して得た熱延板または薄鋳片は、必要に応じて熱延板焼鈍を施す。この熱延板焼鈍の温度は、良好な磁気特性を得るためには、800~1150℃の範囲とするのが好ましい。すなわち、800℃未満では、熱間圧延で形成されたバンド組織が残留し、整粒の一次再結晶組織を得ることが難しくなり、二次再結晶の発達が阻害される。一方、1150℃を超えると、熱延板焼鈍後の粒径が粗大化し過ぎて、やはり整粒の一次再結晶組織を得ることが難しくなるからである。
 熱間圧延後あるいは熱延板焼鈍後の熱延板または薄鋳片は、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延をして最終板厚の冷延板とする。上記中間焼鈍の焼鈍温度は、900~1200℃の範囲とするのが好ましい。900℃未満では、中間焼鈍後の再結晶粒が細かくなり、さらに一次再結晶組織におけるGoss核が減少して製品板の磁気特定が低下する傾向がある。一方、1200℃を超えると、熱延板焼鈍のときと同様、結晶粒が粗大化し過ぎて整粒の一次再結晶組織を得ることが難しくなる。
 また、最終板厚とする冷間圧延(最終冷間圧延)は、冷間圧延時の鋼板温度を100~300℃に上昇させて行うことや、冷間圧延の途中で100~300℃の温度で時効処理を1回または複数回施すことが、一次再結晶集合組織を改善し、磁気特性を向上させるのに有効である。
 最終板厚とした冷延板には、その後、一次再結晶焼鈍を兼ねた脱炭焼鈍を施す。本発明では、脱炭焼鈍後の鋼板につき、該鋼板表面のFTIR測定でのファイアライト(FeSiO)とクリノフェロシライト(FeSiO)の吸光度に基づく、吸光度比の和(前記式1)が45%以上となるようにすることが重要である。
 そのための脱炭焼鈍の条件としては、焼鈍温度は700~900℃、保持時間は30~300秒の範囲とする。脱炭焼鈍の焼鈍温度が700℃未満、もしくは保持時間が30秒未満では、脱炭が不十分となるか、または一次再結晶粒径が小さくなるため、磁気特性が劣化する。一方で、同温度が900℃を超えたり同時間が300秒を超えたりすると、一次粒径が大きくなりすぎて、やはり磁気特性が劣化する。
 さらに、脱炭焼鈍は、上記した焼鈍温度域に加熱する加熱工程および加熱後の温度域に上記した保持時間で保持する均熱工程からなる。そして、該均熱工程は、サブスケールの厚みを制御するための前段と、サブスケールと焼鈍分離剤の反応性を調整するための後段に分けることができ、少なくとも前段は湿水素雰囲気とし、かつ雰囲気の露点を45~60℃とする。
 すなわち、均熱工程の少なくとも前段の雰囲気の露点を45~60℃とするのは、45℃よりも低いと十分なサブスケール量が得られず、ひいては下地被膜の形成が不十分となる。また雰囲気露点が60℃よりも高いと、下地被膜の形成量が過多となり、下地被膜の密着性が劣化する、おそれがある。
 上記の湿水素雰囲気のH濃度については常法どおり、40%から80%の範囲で行うことが可能である。そして、上記の範囲の露点およびH濃度を変更して、雰囲気酸化性pHO/pHを調整することにより、上記したA1、A2およびA3の吸光度を調節することができる。かかるpHO/pHは0.3~0.55の範囲が望ましい。
 また、脱炭焼鈍の均熱工程の前段以外においても、湿水素雰囲気とし、かつ雰囲気の露点は45~60℃の範囲とすることが望ましい。或いは、加熱工程や、均熱工程の各段階で雰囲気を変更することも可能である。さらに、均熱工程の後段では、乾水素雰囲気とすることも可能である。
 上記の通り、均熱領域は、前段と後段の2段に分けることができる。前段と後段では、均熱温度、焼鈍雰囲気の酸化性pHO/pHの両方、もしくはいずれかを異なる条件とすることが好ましい。なぜなら、サブスケールをより精密に制御することができるからである。
 すなわち、均熱温度を変える場合は、前段と後段の温度差を20℃以上とすることが好ましい。一方、酸化性を変える場合は、pHO/pHの差を0.2以上変化させる。いずれの場合も変更量は特に限定されるものではないが、一般に、温度に関しては後段が前段よりも高温であり、また、酸化性に関しては後段が前段よりも低pHO/pHであることが多い。本発明では、これらの条件を踏襲することが可能である。
 さらに、上記前段は、さらに複数段に分けることが可能であり、この場合は後段とその前の段の温度および/またはpHO/pHの差を上記した条件となるようにすればよい。
 ただし、上述の吸光度比A1、A2およびA3は、素材成分や脱炭焼鈍の前工程によって変化する可能性があるため、製造履歴に応じて、上記した脱炭焼鈍各条件の範囲内において、さらに焼鈍条件を調整する必要がある。
 例えば、鋼素材中のSi量が3mass%以下の低めの含有量であれば、吸光度比が低下傾向となるため、露点を高めに設定する。他にも、脱炭焼鈍前の鋼板表面の清浄度(例えば脱炭焼鈍前の酸素目付量)が0.1g/m以上の高い条件であれば、露点を低めに設定することも効果的である。また、吸光度比を高めるために、脱炭焼鈍の加熱工程の露点を高めに設定し、均熱工程の露点を低めに設定することも可能である。
 これらの処理は特に限定されるものでなく、吸光度比を本発明に従う所望の範囲に収めることができれば、上記した脱炭焼鈍各条件の範囲内における、いずれの条件を用いてもよい。
 次に、脱炭焼鈍後に焼鈍分離剤を塗布して仕上焼鈍を施す。かかる仕上焼鈍において、少なくとも950℃から1100℃までの温度範囲をH含有雰囲気とするとともに、該温度域のガス流量を、鋼板の表面積当たりで1.0×10-5~7.6×10-5NL/minの範囲とすることが、上述した通り本発明の重要な点である。なお、この温度範囲は、焼鈍分離剤のMgOが鋼板表面の(Fe,Mn)2SiOとの置換反応によりFeやMnを被膜中に濃化させる温度範囲である。 
 通常、仕上焼鈍におけるガス流量は炉内の容積に応じて決められることが多いが、本発明では、前述のとおり鋼板の表面積に応じてガス流量の範囲を設定することが重要となる。なぜなら、炉内の容積に応じたガス流量では、ガス流量が多すぎてしまうからである。すなわち、ガス流量が1.0×10-5NL/min未満では、ガスを入れる効果そのものが低下して被膜形成不良となるからである。一方、ガス流量が7.6×10-5NL/minを超えると、Fe、MnがMgO中に移行するため、やはり磁区細分化での被膜の耐剥離性が劣化してしまう。
 なお、上記の温度範囲の雰囲気のH濃度は低くてもよいが、目安としては、0.1vol%以上、さらに望ましくは0.5vol%以上とする。上限は100vol%であってよい。なお、100vol%未満の場合に雰囲気をバランスさせるガスとしては、NやAr等を主に用いることが可能である。
 仕上焼鈍後の鋼板コイルは、鋼板表面に付着した未反応の焼鈍分離剤を除去するための水洗やブラッシング、酸洗等を行い、その後、コーティング液を塗布、乾燥後焼き付けて平坦化焼鈍を行い、磁区細分化処理用の鋼板とする。
 かくして得られた鋼板は、下地被膜のヤング率が108~144GPaであり、かつ、下地被膜中のMn+Fe濃度が0.05~5.0mass%となる。
 なお、下地被膜のヤング率が108GPa未満になると被膜密着性そのものが劣化する。一方、下地被膜のヤング率が144GPaを超えると磁区細分化により被膜破壊が起こる。
 下地被膜中のMn+Fe濃度が0.05mass%未満になると磁区細分化により発生する熱応力をこれらの元素が吸収することができなくなり被膜破壊が起こる。一方、Mn+Fe濃度の上限は特に限定されないが、生産性等を考慮すると5.0mass%程度が好ましい。
 ここで、下地被膜中のMn、Fe濃度の分析方法はEPMAやオージェ電子分光、SIMS等、通常鋼板のMnや、Feの濃度分析に用いられるいずれの分析法を用いてもよい。
 磁区細分化処理方法としては、一般的に実施されているような、最終製品板に、レーザー照射や電子ビーム照射、プラズマジェット等で線状または点状に熱歪や衝撃歪を導入する方法を用いることができる。
 このようにして製造された方向性電磁鋼板は、高い被膜密着性を持つことにより耐食性、絶縁性が優れているばかりでなく、磁区細分化の照射エネルギーを十分高めても被膜剥離が生じないため、照射エネルギーを理想的な強度まで高めることにより、鉄損を改善する効果も得られる。
 また、本発明に従う製造方法では、本明細書に記載のない項目は、いずれも常法を用いることができる。
 なお、本発明に従う上記方向性電磁鋼板の成分組成は、前述した成分組成を有する鋼に、上記した製造方法を適用して得られる鋼板の成分組成になる。
 具体的には、C:0.005mass%以下、Si:2.5~4.5mass%およびMn:0.03~0.30mass%、Al:0.010mass%以下、N:0.005mass%以下、S:0.005mass%以下、Se:0.005mass%以下を含み、残部Feおよび不可避的不純物である。
 また、Ni:0.010~1.500mass%、Cr:0.01~0.50mass%、Cu:0.01~0.50mass%、P:0.005~0.200mass%、Sb:0.005~0.200mass%、Sn;0.005~0.500mass%、Bi:0.005~0.050mass%、Mo:0.005~0.100mass%、B:0.0002~0.0025mass%、Te:0.0005~0.0100mass%、Nb:0.001~0.030mass%、V:0.001~0.010mass%、W:0.002~0.050mass%、Ti:0.001~0.050mass%およびTa:0.001~0.050mass%のうちから選ばれる1種または2種以上をさらに含むことができる。
 [実施例1]
 C:0.070mass%、Si:3.43mass%、Mn:0.08mass%、Al:0.005mass%、N:0.004mass%、S:0.002mass%およびSb:0.02mass%を含み、残部Feおよび不可避的不純物からなる鋼スラブを連続鋳造法で製造し、1250℃の温度に加熱した後、熱間圧延して、板厚2.4mmの熱延板とし、1000℃×50秒の条件の熱延板焼鈍を施した後、一次冷間圧延により板厚1.8mmの中間板厚とし、1100℃×20秒の条件の中間焼鈍を施した後、二次冷間圧延して最終板厚が0.27mmの冷延板に仕上げ、該冷延板に脱炭焼鈍を施した。脱炭焼鈍は、50vol%H-50vol%N、露点57℃の湿潤雰囲気下、840℃で100秒保持することにより、ファイヤライトとクリノフェロシライトの吸光度比の和を60%に調整した。その後、酸化マグネシウムを主体とする焼鈍分離剤を鋼板表面に塗布し、乾燥した。
 この鋼板に、仕上焼鈍として、950℃までをN雰囲気、次いで950℃から1100℃までをH+Arの混合条件を種々に変更した雰囲気、そして1100℃から1170℃までをH雰囲気にて25℃/hで昇温し、引き続き1170℃、10時間でH雰囲気にて保定する純化を兼ねた焼鈍を行った。この仕上焼鈍の昇温過程において、雰囲気のHガス流量を鋼板表面で3.0×10-5NL/minとした。
 かくして得られたフォルステライト質の下地被膜を有する仕上焼鈍板について、下地被膜部分のヤング率をナノインデンテーションにより評価するとともに、下地被膜中のMn,Fe濃度をオージェ電子分光法により定量した。
 その後、仕上焼鈍板コイルに、コーティング液を塗布、乾燥後、800℃×20秒の条件の平坦化処理を施して製品板とした。その後、製品板に、照射パワーを90mA/mmで電子ビーム照射し、被膜を顕微鏡観察して下地被膜剥離の有無を調査した。このときの調査結果を表2に示す。 
Figure JPOXMLDOC01-appb-T000002
 表2から、本発明を適用することで、電子ビーム照射時の下地被膜剥離を防止できていることが分かる。
 [実施例2]
 表3に記載の成分組成を有し、残部がFeおよび不可避的不純物からなる鋼スラブを連続鋳造法で製造し、1380℃の温度に加熱した後、熱間圧延して板厚2.0mmの熱延板とし、1030℃×10秒の条件の熱延板焼鈍を施した後、冷間圧延して最終板厚が0.23mmの冷延板に仕上げた。その後、脱炭焼鈍を施して鋼板とした。脱炭焼鈍の前段は840℃×100秒、50vol%H-50vol%Nの雰囲気の条件で露点を鋼種ごとに調整し、脱炭焼鈍の後段は870℃×10秒、100vol%H2、露点10℃に固定して、ファイヤライトとクリノフェロシライトの吸光度比の和が45%以上となるように調整した。その後、酸化マグネシウムを主体とする焼鈍分離剤を鋼板表面に塗布し、乾燥した。
 この鋼板に、仕上焼鈍として、950℃までをAr雰囲気、次いで950℃から1100℃までをH濃度を種々に変更したH含有雰囲気、そして1100~1170℃までをH雰囲気にて25℃/hで昇温し、引き続き1170℃10時間H雰囲気で保定する純化を兼ねた焼鈍を行った。この仕上焼鈍の昇温過程において、雰囲気のHガス流量を鋼板表面で3.0×10-5NL/minとした。
 かくして得られたフォルステライト質下地被膜を有する仕上焼鈍板について、下地被膜部分のヤング率をナノインデンテーションにより評価するとともに、下地被膜中のMn、Fe濃度をオージェ電子分光法により定量した。
 次いで、仕上焼鈍板コイルに、コーティング液を塗布、乾燥後、800℃×20秒の条件の平坦化処理を施して製品板とした。その後、製品板に、照射パワーを90mA/mmで電子ビーム照射し、被膜を顕微鏡観察して被膜剥離の有無を調査した。このときの調査結果を表3に示す。 
Figure JPOXMLDOC01-appb-T000003
 表3から、本発明を適用することで、電子ビーム照射時の被膜剥離を防止できていることが分かる。

Claims (2)

  1.  セラミックス質の被膜を有し、Mnを含有する方向性電磁鋼板において、該被膜の、Mn+Fe濃度が0.05mass%以上、かつヤング率が108~144GPaである方向性電磁鋼板。
  2.  請求項1に記載の方向性電磁鋼板を製造する方法であって、
     Mnを含有する方向性電磁鋼板用鋼素材を、熱間圧延し、次いで1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚とし、さらに一次再結晶を兼ねた脱炭焼鈍を施した後、鋼板表面に50mass%以上のMgOを含有する焼鈍分離剤を塗布して仕上焼鈍し、必要に応じて上記仕上焼鈍後の未反応分離剤を除去したのち平坦化焼鈍する方向性電磁鋼板の製造方法であって、
     上記脱炭焼鈍の条件を、焼鈍温度:700~900℃、均熱時間:30~300秒、均熱工程の少なくとも前段での湿水素雰囲気の露点:45~60℃の範囲内において、それぞれ調整することにより、上記脱炭焼鈍後の鋼板表面の、フーリエ変換赤外線吸収スペクトル法(FTIR)によって測定される、ファイヤライト、クリノフェロシライトおよびシリカの吸光度をそれぞれA1、A2およびA3としたときの、{(A1+A2)/(A1+A2+A3)}×100を45%以上にするとともに、
     上記仕上焼鈍において、少なくとも950℃から1100℃までの温度範囲をH含有雰囲気とし、かつ上記温度範囲のガス流量を鋼板の表面積1m当たり1.0×10-5~7.6×10-5(NL/min)の範囲とする方向性電磁鋼板の製造方法。
     
     
PCT/JP2022/011728 2021-03-15 2022-03-15 方向性電磁鋼板およびその製造方法 WO2022196704A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237028073A KR20230132831A (ko) 2021-03-15 2022-03-15 방향성 전기 강판 및 그 제조 방법
US18/546,780 US20240254600A1 (en) 2021-03-15 2022-03-15 Grain-oriented electrical steel sheet and method of producing same
EP22771449.0A EP4296382A4 (en) 2021-03-15 2022-03-15 ORIENTED ELECTROMAGNETIC STEEL SHEET AND MANUFACTURING METHOD THEREOF
CN202280020922.1A CN116981789A (zh) 2021-03-15 2022-03-15 取向性电磁钢板及其制造方法
JP2022542097A JP7428259B2 (ja) 2021-03-15 2022-03-15 方向性電磁鋼板およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-041861 2021-03-15
JP2021041861 2021-03-15

Publications (1)

Publication Number Publication Date
WO2022196704A1 true WO2022196704A1 (ja) 2022-09-22

Family

ID=83322137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011728 WO2022196704A1 (ja) 2021-03-15 2022-03-15 方向性電磁鋼板およびその製造方法

Country Status (6)

Country Link
US (1) US20240254600A1 (ja)
EP (1) EP4296382A4 (ja)
JP (1) JP7428259B2 (ja)
KR (1) KR20230132831A (ja)
CN (1) CN116981789A (ja)
WO (1) WO2022196704A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117752A (ja) * 1991-10-25 1993-05-14 Kawasaki Steel Corp 繰り返し曲げ特性の優れた方向性珪素鋼板の製造方法
JPH06287764A (ja) * 1993-03-31 1994-10-11 Nippon Steel Corp 低鉄損方向性電磁鋼板
JPH0941042A (ja) * 1995-07-31 1997-02-10 Kawasaki Steel Corp 磁束密度の高い方向性けい素鋼板の製造方法及び脱炭焼鈍方法
JP2005069917A (ja) 2003-08-26 2005-03-17 Jfe Steel Kk 磁気特性に優れた方向性電磁鋼板の製造方法
JP2012031515A (ja) * 2010-06-30 2012-02-16 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2012052232A (ja) 2010-08-06 2012-03-15 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2012092409A (ja) 2010-10-28 2012-05-17 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2014201806A (ja) * 2013-04-08 2014-10-27 新日鐵住金株式会社 方向性電磁鋼板及びその製造方法
JP2015040799A (ja) 2013-08-22 2015-03-02 富士電機株式会社 電源回路装置、電流計測装置、電力監視システム、並びに電源回路装置の保護方法
JP2016216779A (ja) * 2015-05-20 2016-12-22 Jfeスチール株式会社 方向性電磁鋼板とその製造方法
JP6465054B2 (ja) 2016-03-15 2019-02-06 Jfeスチール株式会社 方向性電磁鋼板の製造方法および製造設備列
CN110643796A (zh) * 2019-11-13 2020-01-03 武汉钢铁有限公司 一种底层附着性良好的高磁感取向硅钢的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3397277B2 (ja) * 1995-10-17 2003-04-14 新日本製鐵株式会社 超低鉄損超高磁束密度一方向性電磁鋼帯の製造方法
JP3952606B2 (ja) * 1998-08-19 2007-08-01 Jfeスチール株式会社 磁気特性および被膜特性に優れた方向性電磁鋼板およびその製造方法
JP5923881B2 (ja) * 2010-06-30 2016-05-25 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP5853352B2 (ja) * 2010-08-06 2016-02-09 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP6512412B2 (ja) * 2016-01-29 2019-05-15 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
EP3950971B1 (en) * 2019-03-29 2023-11-22 JFE Steel Corporation Grain-oriented electrical steel sheet and production method therefor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117752A (ja) * 1991-10-25 1993-05-14 Kawasaki Steel Corp 繰り返し曲げ特性の優れた方向性珪素鋼板の製造方法
JPH06287764A (ja) * 1993-03-31 1994-10-11 Nippon Steel Corp 低鉄損方向性電磁鋼板
JPH0941042A (ja) * 1995-07-31 1997-02-10 Kawasaki Steel Corp 磁束密度の高い方向性けい素鋼板の製造方法及び脱炭焼鈍方法
JP2005069917A (ja) 2003-08-26 2005-03-17 Jfe Steel Kk 磁気特性に優れた方向性電磁鋼板の製造方法
JP2012031515A (ja) * 2010-06-30 2012-02-16 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2012052232A (ja) 2010-08-06 2012-03-15 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2012092409A (ja) 2010-10-28 2012-05-17 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2014201806A (ja) * 2013-04-08 2014-10-27 新日鐵住金株式会社 方向性電磁鋼板及びその製造方法
JP2015040799A (ja) 2013-08-22 2015-03-02 富士電機株式会社 電源回路装置、電流計測装置、電力監視システム、並びに電源回路装置の保護方法
JP2016216779A (ja) * 2015-05-20 2016-12-22 Jfeスチール株式会社 方向性電磁鋼板とその製造方法
JP6465054B2 (ja) 2016-03-15 2019-02-06 Jfeスチール株式会社 方向性電磁鋼板の製造方法および製造設備列
CN110643796A (zh) * 2019-11-13 2020-01-03 武汉钢铁有限公司 一种底层附着性良好的高磁感取向硅钢的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4296382A4

Also Published As

Publication number Publication date
EP4296382A1 (en) 2023-12-27
KR20230132831A (ko) 2023-09-18
CN116981789A (zh) 2023-10-31
JP7428259B2 (ja) 2024-02-06
EP4296382A4 (en) 2024-08-07
JPWO2022196704A1 (ja) 2022-09-22
US20240254600A1 (en) 2024-08-01

Similar Documents

Publication Publication Date Title
US9738949B2 (en) Method for producing grain-oriented electrical steel sheet
JP5854233B2 (ja) 方向性電磁鋼板の製造方法
KR101498404B1 (ko) 방향성 전기 강판의 제조 방법
JP5954347B2 (ja) 方向性電磁鋼板およびその製造方法
JP6344490B2 (ja) 方向性電磁鋼板およびその製造方法
WO2017006955A1 (ja) 方向性電磁鋼板とその製造方法
JP6436316B2 (ja) 方向性電磁鋼板の製造方法
JP2019099827A (ja) 方向性電磁鋼板の製造方法
JP5854234B2 (ja) 方向性電磁鋼板の製造方法
JP5434524B2 (ja) 方向性電磁鋼板の製造方法
JP7428259B2 (ja) 方向性電磁鋼板およびその製造方法
JP2019099839A (ja) 方向性電磁鋼板の製造方法
JP2021155833A (ja) 方向性電磁鋼板の製造方法
WO2021085421A1 (ja) 方向性電磁鋼板とその製造方法
JP6885206B2 (ja) レーザー磁区制御用方向性電磁鋼板とその製造方法
JP3716608B2 (ja) 方向性電磁鋼板の製造方法
JP5011712B2 (ja) 一方向性電磁鋼板の製造方法
JP4241126B2 (ja) 方向性電磁鋼板の製造方法
WO2023157959A1 (ja) 方向性電磁鋼板
JP2019085632A (ja) 方向性電磁鋼板及びその製造方法
JP2003201518A (ja) 磁気特性の優れた方向性電磁鋼板の製造方法
JP2002275534A (ja) 方向性電磁鋼板の製造方法
JP2002266029A (ja) 方向性電磁鋼板の製造方法
WO2022210504A1 (ja) 方向性電磁鋼板の製造方法
JPH07188759A (ja) 磁気特性の優れた方向性けい素鋼板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022542097

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771449

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202317054136

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 18546780

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237028073

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237028073

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280020922.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022771449

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022771449

Country of ref document: EP

Effective date: 20230921

NENP Non-entry into the national phase

Ref country code: DE